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We consider a two-dimensional scalar field theory with a nilpotent current algebra, which is dual to the
Principal Chiral Model. The quantum theory is renormalizable and not asymptotically free; the theory is
strongly coupled at short distances (encountering a Landau pole). We suggest it can serve as a toy model for
λϕ4 theory in four dimensions, just as the principal chiral model is a useful toy model for Yang-Mills
theory. We find some classical wave solutions that survive the strong coupling limit and quantize them by

the collective variable method. They describe excitations with an unusual dispersion relation ω ∝ jkj23.
Perhaps they are the “preons” at strong coupling, the bound states of which form massless particles over
long distances.
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I. INTRODUCTION

We study the field theory [1–3] with equations of motion

ϕ̈ ¼ λ½ _ϕ;ϕ0� þ ϕ00; ð1:1Þ

where ϕ is valued in a Lie algebra, ϕ∶R1;1 → suð2Þ. This
follows from the action

S1 ≡
Z

L1dxdt

¼
Z

Tr

�
1

2λ
_ϕ2 −

1

2λ
ϕ02 þ 1

3
ϕ½ _ϕ;ϕ0�

�
dxdt: ð1:2Þ

In the λ → 0 limit, these equations admit linear wave
solutions. But in the high-coupling regime, the theory is
dominated by nonlinear effects.
S1 is closely tied to other models and subjects, which we

elaborate on in Sec. II. These include the study of slow
light, the Wess-Zumino-Witten (WZW) model, and the
mathematical theory of hypoelliptic operators. Of particular
interest in this paper, the model described by S1 is also
classically dual to the well-studied principal chiral model,
described by the action

S2 ¼
Z

L2dxdt

¼ 1

2f

Z
Trfðg−1 _gÞ2 − c2ðg−1g0Þ2gdxdt; ð1:3Þ

where g∶R1;1 → SUð2Þ. This is a special case of the
nonlinear sigma model, with target space SUð2Þ.

Despite their classical equivalence, S1 and S2 lead to
entirely different quantum theories. S2 gives an asymptoti-
cally free theory: at short distances f → 0, giving us free
massless excitations. But the true particles that survive to
long distances are bound states of nonzero mass [4,5]. For
this reason, the principal chiral model is often used as a toy
model for four-dimensional Yang-Mills theory, notorious
for its mathematical complexity. Not only do the two
theories share similar short-distance behavior, but the
existence of a mass gap in the principal chiral model has
served as a proof of concept for the conjectured mass gap in
Yang-Mills (though neither can yet be proven with full
mathematical rigor).
S1, on the other hand, leads to a renormalizable but not

asymptotically free quantum theory. At short distances the
coupling constant λ → ∞, while at long distances we have
weakly nonlinear massless excitations. It makes sense to
use S1 as a 2D toy model for strongly coupled theories, in
particular four-dimensional λϕ4 theory.1 The behavior of
quantum field theories at high coupling is notoriously
intractable, and the physical meaning of such theories is
still up for debate. For this reason, it is still necessary to
search for simple examples of such theories and try to
gleam what meaning, if any, they have in the short-
distance limit.
In addition to sharing short-distance behavior, both the

S1 model and λϕ4 theory can be described by hypoelliptic
Hamiltonian operators with a step-3 nilpotent bracket
algebra, suggesting some algebraic structure in common
(Sec. II B and Appendix A). The S1 model’s relative
simplicity makes it a good candidate for attempting to
probe the high coupling regime of field theories in general,
but the connection to λϕ4 theory seems the closest.
Additionally, its classical duality to the principal chiral
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1That is, pure λϕ4 theory, describing a Higgs-like particle with
no coupling to fermions.
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model motivates a juxtaposition of the two theories in the
classical and quantum formulations.
To glimpse what becomes of our theory in the high

coupling limit, we take the modest approach of finding
nonlinear wave-type solutions to the classical model which
survive the λ → ∞ limit (Sec. III). This set of solutions
defines a mechanical system or “reduced system” in each of
the dual models. While they physically appear very differ-
ent, the resulting classical solutions can be mapped from
one system to another. We quantize these collective
variables to determine their dispersion relation (Sec. IV)
in the short-distance limit for each theory. We have in mind
the sine-Gordon theory, the solitons of which turn out to be
the fundamental constituents that bind to form scalar
particles [6,7].
These reduced quantum theories yield two different

results. In particular, the reduced model of S1 has an exotic
dispersion relation in the short-distance limit. We postulate
that its spectrum may hint at the fundamental constituents
of the highly coupled theory, which need not behave like
traditional particles at all. In Sec. V we offer concluding
remarks and a side-by-side comparison of our work with S1
and S2.

A. Notation

We regard ϕ ¼ 1
2i ½ϕ1σ1 þ ϕ2σ2 þ ϕ3σ3� ¼ 1

2iϕ · σ as a
traceless anti-Hermitian matrix. Recall then that the com-
mutator and cross product are related by

½X; Y� ¼ 1

2i
ðX × YÞ · σ: ð1:4Þ

Also, we define TrX ≡ −2trX so that

Trϕ2 ¼ ϕ2
1 þ ϕ2

2 þ ϕ2
3: ð1:5Þ

In relativistically invariant notation, Eqs. (1.1) and (1.2) can
be written as

∂μ∂μϕa −
λ

2
ϵabcϵ

μν∂μϕ
b∂νϕ

c ¼ 0; ð1:6Þ

S1 ¼
1

2λ

Z
∂μϕ

a∂νϕ
aημνd2x

þ 1

6

Z
ϵabcϕ

a∂μϕ
b∂νϕ

cϵμνd2x; ð1:7Þ

where μ, ν ¼ 0, 1 and a; b; c ¼ 1, 2, 3; also, ϵμν and ϵabc are
the Levi-Civitá tensors. This is a particular case of the
general sigma model studied in Ref. [8] as the background
of string theory, with a flat metric on the target space and a
constant 3-form field ϵabc.

II. RELATION TO OTHER MODELS

A. c → 0 limit and slow light

Consider the equations of motion (1.1) where the speed
of linear propagation at low coupling is taken to be c rather
than 1:

ϕ̈ ¼ λ½ _ϕ;ϕ0� þ c2ϕ00: ð2:1Þ

If we rescale ϕ → λaϕ, t → λbt, this becomes

λa−2bϕ̈ ¼ λ1þ2a−b _ϕ × ϕ0 þ c2λaϕ00: ð2:2Þ

Set a ¼ 2b and 1þ 2a ¼ b to get

ϕ̈ ¼ _ϕ × ϕ0 þ c2λ−
2
3ϕ00: ð2:3Þ

Thus, the strong coupling limit λ → ∞ at fixed c is
equivalent to the limit c → 0 with λ ¼ 1:

ϕ̈ ¼ _ϕ × ϕ0: ð2:4Þ

The strongly coupled limit can be thought of as the limit
in which the waves move very slowly. It has been noted in
that literature [9] that when the speed of light in a medium
is small, nonlinear effects are magnified. Although the
specific equations appearing there are different, it is
possible that the solutions of the sort we study are of
interest in that context as well.
From a field theoretic context, the equivalence of these

limits seems troubling. At short distances, the highly
coupled theory will not be relativistic. It is a sort of
“postrelativistic” regime, where c → 0. This is much the
opposite of the case in the theory of S2; there the short-
distance excitations are massless but form massive bounds
states which survive to long distances and can be non-
relativistic in the traditional c → ∞ sense. Perhaps some
exotic excitations at high coupling are in fact the funda-
mental constituents in the S1-model, forming as bound
states the ordinary massless particles which appear in the
long-distance limit. As we know from the quark model,
the short-distance excitations do not need to be particles in
the usual sense; they could be confined. In any case, it is
important to know what solutions might survive the high
coupling limit, whether they be unphysical or simply
unintuitive.
We will see an example of wave solutions which

classically survive the c → 0 limit, continuing to propagate
through nonlinearity alone. Since the energy density is
constant, these solutions do not violate causality; they are
analogous to the continuous wave solutions in a medium
where the phase velocity is greater than c.
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B. Sub-Riemannian geometry and the
strong coupling limit

Many physical problems (Yang-Mills, fluid mechanics)
become intractable in the strong coupling limit where the
nonlinearities dominate. It would be nice to have a unified
geometric approach to understanding these systems.Wehave
such an approach in the weak coupling limit: small pertur-
bations around a stable equilibrium are equivalent to a
harmonic oscillator.
A larger picture emerges if we think in terms of

Riemannian and sub-Riemannian geometry. The orbits of
many mechanical systems of physical interest (again,
Yang-Mills or incompressible fluids) can be thought of as
geodesics in some appropriate Riemannian manifold. In the
simplest case, the harmonic oscillator describes geodesics in
the Heisenberg group. The anharmonic oscillator (and many
nonlinear field theories with quartic coupling) can also be
thought of as geodesic motion on a nilpotent Lie group, by
introducing an additional generator (see Appendix A for
more detail).
In the limit of strong coupling, the metric degenerates

and becomes sub-Riemannian [10]. That is, the contra-
variant metric tensor has some zero eigenvalues so that it
can be written as

P
jXj ⊗ Xj for some vector fields Xj

which may have a linear span smaller than the tangent
space. Moreover, in the cases of interest, these vector fields
satisfy the celebrated Hörmander condition: Xj along with
their repeated commutators span the tangent spaces at every
point. In such a case, there are still geodesics connecting
every pair of sufficiently close points (Chow-Rashevskii
theorem [10]). Thus, we can define a distance between
pairs of points as the shortest length of geodesics.
These ideas came to the notice of many physicists

following a model for the self-propulsion of an amoeba
[11], though they have roots in the Carnot-Caratheodory
geometric formalism of thermodynamics and in control
theory. Hörmander [12] discovered independently that the
same criterion is sufficient for the sub-Riemannian Laplace
operatorΔ ¼ P

jX
2
j to be hypoelliptic, meaning the solution

f to the inhomogenous equationΔf ¼ u is smoothwhenever
the source u is smooth. This can be thought of the quantum
version of the above condition on subgeodesic connectivity.
This kind of sub-Riemannian geometry may present a

powerful geometric framework for strongly coupled field
theories. The example we work out in this paper is arguably
the simplest interesting case of a strongly coupled field
theory, and the solutions we study correspond to sub-
Riemannian geodesics in the limit λ → ∞. We hope to apply
such geometric ideas to other cases in the future, using this as
a prototype.

C. Relation to the WZW model

We can also regard our equations as a limiting case of the
Wess-Zumino-Witten model2 [13]

SWZW ¼ 1

4λ21

Z
tr∂μg∂μg−1d2xþ

n
24π

Z
M3

trðg−1dgÞ3 ð2:5Þ

as n → ∞ and λ1 → 0, keeping λ ¼ λ21ðn=2πÞ
2
3 fixed.3 To

see this, let gðxÞ ¼ ebiσaϕ
aðxÞ, and expand in powers of b:

SWZW ¼ b2

2λ21

Z
∂μϕa∂μϕ

a

þ n
24π

b3
Z
M3

2ϵabcdϕadϕbdϕc þ � � � ð2:6Þ

To this order the WZW term is an exact differential, so we
can write it as an integral over space-time,

SWZW ¼ 1

2

b2

λ21

Z
∂μϕa∂μϕ

a

þ n
12π

b3
Z

ϵabcϕ
adϕbdϕc þ � � � ð2:7Þ

SWZW reduces to S1 if we identify b3 ¼ 2π=n and λ as
above. By taking this limit, we can easily get the renorm-
alization of our model. Recall that [13] the one loop
renormalization group equation of theOðNÞWZWmodel is

dλ21
d logΛ

¼ −
λ41ðN − 2Þ

2π

�
1 −

�
λ21n
4π

�
2
�
: ð2:8Þ

We need the particular case of N ¼ 4 corresponding to the
target space being S3 ≈ SUð2Þ. Thus, in our limit n → ∞,
λ1 → 0 keeping λ fixed,

dλ
d logΛ

¼ λ4

4π
: ð2:9Þ

It is useful to take this limit rather than calculating loop
corrections from scratch, as the renormalization group
evolution of the WZW has been studied to high order
[14,15]. Including these higher order terms does not alter
the short-distance divergence of λ.

D. Duality with the principal chiral model

We have now seen that the S1 model is strongly coupled
in the short-distance limit. Yet, as a classical field theory, it
can be viewed [1,2] as a dual to the asymptotically free
principal chiral model with equation of motion

∂μ½g−1∂μg� ¼ 0; g∶R1;1 → SUð2Þ: ð2:10Þ

To see this, we define the currents

2Witten’s Tr is our tr. His λ is our λ1.

3Here, M3 is a 3-manifold of which the two-dimensional
space-time is the boundary. We do not require λ21 to take the
conformally invariant value 4π

n .
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I ¼ 1

λ
_ϕ; J ¼ ϕ0 ð2:11Þ

so the equations of motion become

_J ¼ λI0; _I ¼ λ½I; J� þ 1

λ
J0: ð2:12Þ

We can solve the second equation with the relations

I ¼ 1

λ2
g−1g0; J ¼ 1

λ
g−1 _g: ð2:13Þ

Then the first equation becomes

∂0½g−1 _g� ¼ ∂1½g−1g0�; ð2:14Þ

which is the nonlinear sigma model. Thus, the same
classical equations of motion follow from the action

S2 ¼
1

2f

Z
Trfðg−1 _gÞ2 − c2ðg−1g0Þ2gdxdt ð2:15Þ

if we identify f ¼ λ2. A summary of relevant correspond-
ences in the dual models can be found in Table I at the end
of Sec. V.
We also briefly note that our theory is closely related to

the sigma model on the Heisenberg group (see Ref. [16]).

III. REDUCTION TO A MECHANICAL SYSTEM

We will look at propagating waves of the form

ϕðt; xÞ ¼ eKxRðtÞe−Kx þmKx; K ¼ i
2
k

�
1 0

0 −1

�

ð3:1Þ

for constants k, m. These solutions are equivariant under
translations: the “potential” ϕ changes by an internal
rotation and a constant shift under translation, while the
currents only change only by the internal rotation. Thus, the
energy density is constant. They are to be contrasted with
soliton solutions, which have energy density concentrated
at the location of the soliton. They are more analogous to
the plane wave solutions of the wave equation, or a
continuous wave laser beam. Moreover, the currents

I ¼ 1

λ
eKx _Re−Kx; J ¼ eKxf½K;R� þmKge−Kx ð3:2Þ

are periodic in space with wavelength 2π
k . Defining

L≡ ½K;R� þmK; S≡ _Rþ 1

λ
K; ð3:3Þ

we can write the equations of motion and identity (2.12) in
a symmetric form,

_L ¼ ½K; S�; _S ¼ λ½S; L�: ð3:4Þ

This new choice of variables will allow us to connect to the
dual theory, identify the conserved quantities, and pass to
the quantum theory more easily.

A. Reduced system Lagrangian

Three conserved quantities follow immediately:

s2k2 ≡ TrS2

C1k2 ≡ TrSL

C2k2 ≡ Tr

�
1

2
L2 −

1

λ
KS

�
: ð3:5Þ

The quantity s will be of importance in the dual picture,
while the other constants have less obvious roles there.
Moreover, we have the identity

TrKL ¼ mk2: ð3:6Þ

Of the six independent variables in S and L, only two
remain after taking into account these constants of motion.
The dynamics are described by the effective Lagrangian
density (dropping a total time derivative and an overall
factor of volume of space divided by λ)

L1¼Tr

�
1

2
_R2þ λ

3
R½ _R; ½K;R�þmK�

−
1

2
ð½K;R�þmKÞ2

�

¼Tr

�
1

2

�
S−

1

λ
K

�
2

þ λ

3
R

�
S−

1

λ
K;L

�
−
1

2
L2

�
ð3:7Þ

and Hamiltonian density

H1 ¼ Tr

�
1

2

�
S −

1

λ
K

�
2

þ 1

2
L2

�
; ð3:8Þ

B. Reduction to one degree of freedom

It is useful to work with the first two components of R as
a single complex variable. Defining Z ¼ R1 þ iR2, we can
write explicitly

L ¼ k
2

�
im Z

−Z −im

�
: ð3:9Þ

To describe the third component, we define

u≡ 1

k
_R3 −

1

λ
; ð3:10Þ

allowing us to write a similarly compact expression for S,
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S ¼ 1

2i

�
uk _Z
_Z −uk

�
: ð3:11Þ

The three conserved quantities (3.5) can now be written
in terms of Z and u as

s2k2 ¼ u2k2 þ j _Zj2

C1k2 ¼
ik
2
½Z _Z− _ZZ� −mk2u

C2k2 ¼
k2

2

�
m2 þ 2u

λ
þ jZj2

�
: ð3:12Þ

Using the identity�
d
dt

jZj2
�

2

¼ 4jZj2j _Zj2 þ ð _ZZ − Z _ZÞ2; ð3:13Þ

we can combine these three equations to eliminate Z and
yield an ordinary differential equation (ODE) for uðtÞ,

_u2 ¼ k2λ2
��

2C2 −m2 −
2

λ
u

�
ðs2 − u2Þ − ½muþ C1�2

�
:

ð3:14Þ

C. Solution in terms of elliptic functions

The ODE for uðtÞ describes an elliptic curve. Setting
u ¼ avþ b, we can pick the constants

a ¼ 2

k2λ
; b ¼ C2λ

3
ð3:15Þ

to bring our ODE to Weierstrass normal form in terms of v:

_v2 ¼ 4v3 − g2v − g3: ð3:16Þ

The somewhat unsightly expressions for g2 and g3 can be
obtained by symbolic computation:

g2 ¼
1

3
k4λ2ð3C1λmþ C2

2λ
2 þ 3s2Þ

g3 ¼
1

108
k6λ4ð27C2

1 þ 18C1C2λmþ 4C3
2λ

2

− 36C2sþ 27m2s2Þ: ð3:17Þ

The solution to the Weierstrass differential equation (3.16)
is then

vðtÞ ¼ ℘ðtþ αÞ ⇒ uðtÞ ¼ 2

k2λ
℘ðtþ αÞ þ C2λ

3
; ð3:18Þ

where ℘ is the Weierstrass P-function and α is a complex
constant determined by the initial conditions. We can most
immediately solve for R3ðtÞ. Recalling (3.10), we have

_R3 ¼
2

kλ
℘ðtþ αÞ þ k

�
C2λ

3
þ 1

λ

�
: ð3:19Þ

In order to obtain a sensible solution, ℘ðtþ αÞ must be
real and bounded. This requires ImðαÞ ¼ jω2j, where ω2 is
the imaginary half-period of the Weierstrass P-function
(which depends on the elliptic invariants g2, g3). The real
part of α merely shifts our solution in time, so we can take
α ¼ ω2 for simplicity. Using the relationship

Z
℘ðuÞdu ¼ −ζðuÞ; ð3:20Þ

where ζ is the Weierstrass ζ-function, and taking R3ð0Þ ¼ 0
gives the solution

R3ðtÞ ¼
2

kλ
½ζðω2Þ − ζðtþ ω2Þ� þ

�
C2λ

3
þ 1

λ

�
kt: ð3:21Þ

The solution for the other two components is found by
making the substitution Z ¼ reiθ in (3.12). Writing jZ2j ¼
r2 quickly yields

r2ðtÞ ¼ 4

3
C2 −m2 −

4

k2λ2
℘ðtþ ω2Þ: ð3:22Þ

Note that the choice of ReðαÞ ¼ 0 we made earlier implies
that t ¼ 0 is a turning point of the radial variable, as ℘0ðω2Þ
is necessarily 0. It is useful to write

r2ðtÞ ¼ 4

k2λ2
½℘ðΩÞ − ℘ðtþ ω2Þ�; ð3:23Þ

where

℘ðΩÞ ¼ k2λ2
�
C2

3
−
m2

4

�
: ð3:24Þ

Then we can use the identity

℘ðzÞ − ℘ðΩÞ ¼ −
σðzþ ΩÞσðz −ΩÞ

σ2ðzÞσ2ðΩÞ ; ð3:25Þ

where σ is the Weierstrass σ-function, in order to simplify a
later result. We obtain the solution

rðtÞ ¼ 2

λkσðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðtþ ω2 þ ΩÞσðtþ ω2 −ΩÞp

σðtþ ω2Þ
: ð3:26Þ

To find θðtÞ from (3.12), we substitute
ðZZ − Z _ZÞ ¼ −2ir2 _θ, obtaining
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_θ ¼ C3

r2
þ kmλ

2

¼ k2λ2C3

4½℘ðΩÞ − ℘ðtþ ω2Þ�
þ kmλ

2
; ð3:27Þ

where

C3 ≡ k

�
m3λ

2
− C1 −mλC2

�
: ð3:28Þ

Using the identityZ
dz

℘ðzÞ−℘ðΩÞ¼
1

℘0ðΩÞ
�
2zζðΩÞþ log

σðz−ΩÞ
σðzþΩÞ

�
ð3:29Þ

and taking θð0Þ ¼ 0, we have

θðtÞ ¼ k2λ2C3

4℘0ðΩÞ
�
2tζðΩÞ

þ log
σðtþ ω2 −ΩÞσðω2 þ ΩÞ
σðtþ ω2 þ ΩÞσðω2 −ΩÞ

�
þ kmλ

2
t: ð3:30Þ

We can use the Weierstrass differential equation (3.16)
directly to obtain ℘0ðΩÞ ¼ ði=2Þk2λ2C3, leading to a
seemingly remarkable cancellation. We then have

eiθðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðtþ ω2 þ ΩÞσðω2 −ΩÞ
σðtþ ω2 −ΩÞσðω2 þ ΩÞ

s

· exp

�
−
�
ζðΩÞ þ ikmλ

2

�
t

�
: ð3:31Þ

Finally, a few terms cancel in the overall expression for Z,
yielding

ZðtÞ ¼
�

2

λkσðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðω2 −ΩÞ
σðω2 þ ΩÞ

s �
σðtþ ω2 þΩÞ
σðtþ ω2Þ

· exp

�
−
�
ζðΩÞ þ ikmλ

2

�
t

�
: ð3:32Þ

Asample solution is plotted inFig. 1.We can see that, in the
R1–R2 plane, the solution traces an oscillating curve in
between some inner andouter radius.Meanwhile, the solution
propagates in the R3 direction with nonuniform speed. This
behavior is typical over all parameter values we tested.

IV. MECHANICAL INTERPRETATION AND
QUANTIZATION OF THE REDUCED SYSTEMS

The equations of motion following from the ansatz (3.4),
defining the reduced system for S1, can be written as

R̈ ¼ λ½ _R; ½K;R� þmK� þ ½K; ½K;R��: ð4:1Þ

These are the equations of motion of a particle in a static
electromagnetic field, given by (working in cylindrical
polar coordinates where R1 ¼ r cos θ, R2 ¼ r sin θ,
z ¼ R3)

~B ¼ krθ̂ þmkẑ; ~E ¼ k2rr̂; ð4:2Þ

which follow from the vector and scalar potentials

~A ¼ λk
2
ðmrθ̂ þ r2ẑÞ; V ¼ k2

2
r2: ð4:3Þ

The classical Hamiltonian is then

FIG. 1. The orbit in the R1–R2 plane (above) and the evolution
of R3 with time (below). The sample solution is plotted for 0 <
t < 21 and uses parameters k ¼ 1, λ ¼ 2.4, C1 ¼ 0.5, C2 ¼ 1,
s ¼ 2, m ¼ 0.5.
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H1 ¼
1

2
p2
r þ

1

2

½pθ − Aθ�2
r2

þ 1

2
½pz − Az�2 þ VðrÞ: ð4:4Þ

It is clear that pθ and pz are conserved. This formulation
lends some physical intuition to the solutions found in
Sec. III. We can pass to the quantum theory as usual by
finding the covariant Laplacian in cylindrical coordinates,

Ĥ1ψ ¼ −
ℏ2

2

1

r
∂
∂r

�
r
∂ψ
∂r

�
þ 1

2r2
½−iℏ∂θ − Aθ�2ψ

þ 1

2
½−iℏ∂z − Az�2ψ þ VðrÞψ : ð4:5Þ

The conservation of pθ, pz leads us to seek a solution to the
Schrodinger equation of the separable form

ψðr; θ; zÞ ¼ 1ffiffiffi
r

p ρðrÞeilθeipzzℏ ð4:6Þ

for integer l ¼ pθ
ℏ . The system is then reduced to a one-

dimensional Schrodinger equation,

−
ℏ2ρ00ðrÞ

2
þ UðrÞρðrÞ ¼ EρðrÞ; ð4:7Þ

with effective potential

UðrÞ ¼ −
ℏ2

8r2
þ 1

2

½ℏl − Aθ�2
r2

þ 1

2
½pz − Az�2 þ VðrÞ

¼ 1

2

�
ℏ2½l2 − 1

4
�

r2
−
ℏkλml

r
þ
�
k2λ2m2

4
þ p2

z

�

þ ðk − λpzÞkr2 þ
λ2k2r4

4

�
: ð4:8Þ

At low coupling ðλ → 0Þ, we have

−ℏ2ρ00 þ
�
ℏ2½l2 − 1

4
�

r2
þ p2

z þ
k2

2
r2
�
ρ ¼ Eρ; ð4:9Þ

and we see by dimensional analysis

½ℏk� ¼ 1=L2 ⇒ E ∼ jℏkj: ð4:10Þ

These are weakly coupled massless excitations. But in the
high coupling limit ðλ → ∞Þ, we have

−ℏ2ρ00 þ
�
k2λ2

4
ðm2 þ r4Þ

�
ρ ¼ Eρ; ð4:11Þ

which yields a much more peculiar spectrum,

½ℏ2kλ�2 ¼ 1=L6 ⇒ E ∼ jℏ2λkj2=3: ð4:12Þ
If this dispersion relation describes some fundamental
constituents of the theory, then they are certainly not

particles in the traditional sense. We propose that this
may be a glimpse of some postrelativistic constituents as
mentioned in Sec. II A.

A. Quantization of the dual reduced system

In the dual picture (nonlinear sigma model), our ansatz
picks out a class of solutions that correspond to a different
mechanical system. Though the equations of motion in
each picture can be mapped to one another via the duality,
the correspondence is not immediately obvious, and the
systems will appear very different upon quantization.
After the ansatz, the duality relations (2.13) read

g−1g0 ¼ λeKx
�
Sþ1

λ
K

�
e−Kx; g−1 _g¼ λeKxLe−Kx: ð4:13Þ

Writing g ¼ hðt; xÞe−Kx yields

h−1h0 ¼ λSh−1 _h ¼ λL: ð4:14Þ

We further suppose that h is separable as hðt; xÞ ¼
FðxÞQðtÞ. Then the equation for S can be separated as

F−1ðxÞF0ðxÞ ¼ λQðtÞSðtÞQ−1ðtÞ: ð4:15Þ

Both sides are equal to some constant traceless matrix C.
SinceQðtÞ is only unique up to multiplication on the left by
a constant matrix in SUð2Þ, we can use this to choose C to
be diagonal and thus proportional to K. We then have

QðtÞSðtÞQ−1ðtÞ ¼ sK; ð4:16Þ

implying that TrS2 ¼ s2k2. (4.15) is satisfied if

FðxÞ ¼ eλsKx: ð4:17Þ

Thus, the full corresponding ansatz for the field variable in
the dual theory is

gðt; xÞ ¼ eλsKxQðtÞe−Kx; ð4:18Þ

where Q is related to the previous variables by

S ¼ sQ−1ðtÞKQðtÞ; L ¼ 1

λ
Q−1 _Q: ð4:19Þ

The dual Lagrangian can now be written as

L2 ¼
1

2f2
Tr½ðQ−1 _QÞ2 − ðλsQ−1KQ − KÞ2�: ð4:20Þ

It is useful to parametrize Q in terms of the Euler angles:

Q ¼ e
i
2
σ3γe

i
2
σ1βe

i
2
σ3α: ð4:21Þ

The traces in L2 can then be computed directly, yielding
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L2 ¼
1

λ2

�
_α2 þ _β2 þ _γ2

2
þ cos β _α _γ −VðβÞ

�
; ð4:22Þ

where (dropping a constant shift)

VðβÞ ¼ −2k2λs cos β: ð4:23Þ

As a mechanical system, this is the well-known spinning
top (isotropic Lagrange top). It is instructive to write

L2 ¼
1

λ2

�
1

2
gij _αi _αj − V

�
; ð4:24Þ

where

gij ¼

0
B@

1 0 cos β

0 1 0

cos β 0 1

1
CA ð4:25Þ

is the metric of the rotation group and V is the gravitational
potential of the top. The overall constant 1

λ2
in the action

leads to a rescaling of ℏ↦ℏλ2 upon quantization.
To pass to the quantum theory, we find the Laplacian

operator with respect to the metric g of Eulerian coordinates,

∇2ψ ¼ 1ffiffiffi
g

p ∂i½
ffiffiffi
g

p
gij∂jψ �: ð4:26Þ

The Hamiltonian is then

Ĥ2 ¼ −
ℏ2λ4

2

�∂2
α þ ∂2

γ − 2 cos β∂α∂γ

sin2β

þ ∂2
β þ cot β∂βψ

�
þ Vψ : ð4:27Þ

Wecan again reduce the Schrodinger equation Ĥ2ψ ¼ Eψ to
a one-dimensional Schrodinger equation with the ansatz

ψðα; γ; βÞ ¼ eimααeimγγ
BðβÞffiffiffiffiffiffiffiffiffi
sin β

p ; ð4:28Þ

yielding

−ℏ2λ4
B00ðβÞ
2

þUðβÞBðβÞ ¼ EBðβÞ; ð4:29Þ

where

UðβÞ ¼ −
ℏ2λ4

8
þ ℏ2λ4

2sin2β

�
mα

2 þm2
γ

− 2mαmγ cos β −
1

4

�
− 2k2λs cos β: ð4:30Þ

This can be studied by standard techniques for periodic
potentials (Floquet theory, Bloch waves, etc.) We content
ourselves with a quick look at low energy excitations: small
oscillations around the classical equilibrium q ¼ 0 and
setting mα ¼ 0 ¼ mγ. Changing variables β ¼ ℏλ2q and
expanding around the classical minimum q ¼ 0 gives

−
1

2

d2B
dq2

þ
�
q2ðℏ2k2sλ5Þ − 1

8q2
− 2k2s

�
B ≈ EB: ð4:31Þ

The solutions involve Laguerre polynomials, and the spec-
trum is, in this approximation, En≈

ffiffiffi
2

p ð2nþ1Þℏk ffiffiffi
s

p
λ
5
2. If

we remove the zero-point energy (n ¼ 0),wehave the energy
of n free particles each of energy e1 ¼ ℏk

ffiffiffiffiffi
8s

p
λ
5
2. This is the

dispersion relation of massless particles, except for a rescal-
ing of the speed.

V. CONCLUSIONS AND OUTLOOK

Because they only exist in the short-distance limit, it is
difficult to say whether objects like “preons” we discuss
could correspond to directly observable objects in an
experiment. Quarks were not considered at first to be
directly observable things either, as they could not be
created as isolated particles. In the S1-model’s strong
coupling limit, the Minkowski geometry of space-time
appears to be lost, and wave propagation is sustained
entirely by the nonlinearity. However, these waves do not
appear to transmit information, and perhaps any postrela-
tivistic effects are hidden by some sort of confinement
when they form bound states.
It is at least intriguing to question whether highly

coupled theories have fundamental constituents with such
an exotic nature that they have been overlooked. Drawing
parallels with λϕ4 theory, it is tempting to speculate that the
Higgs particle of the standard model is such a composite of
some strongly bound preons existing only at short dis-
tances. Were this the case, one could sensibly describe a
“pure Higgs” at short distances.
For a more complete understanding, we must quantize

the whole theory rather than just its mechanical reduction.
Since the equations have a Lax pair, it should be possible to
perform a canonical transformation to angle variables and
then pass to the quantum theory. Such a quantization was
achieved for sine-Gordon theory [7], proving that the
solitons are fermions which bind to form the scalar waves.
A similar analysis of our model is a lengthy endeavor, and
we hope to return to this later after laying the groundwork
and motivation here.
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We present a side-by-side comparison of comparison of
our work with the two models in Table I below.
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APPENDIX: QUADRATIC HAMILTONIANS
WITH NILPOTENT BRACKET ALGEBRAS

Many classical systems have a quadratic Hamiltonian
together with Poisson brackets (or commutators in the
quantum case) which generate a Lie algebra,

H ¼ 1

2
habvavb; fva; vbg ¼ ccabvc; ðA1Þ

where ccab are the structure constants of the bracket algebra
and va the dynamical variables. The quadratic nature of the
Hamiltonian immediately affords a geometric interpreta-
tion: hab defines a left-invariant metric, h ∈ g∨g on the Lie
group G (with generating algebra g). The equations of
motion then describe geodesics on the Lie group under this
metric.
A nilpotent Lie algebra of step n is a Lie algebra in which

all repeated brackets of order n vanish. The combination of
a quadratic Hamiltonian and a nilpotent bracket algebra can
allow one to solve for the spectrum of a quantum system
algebraically, using only the representation structure of the

associated Lie group. This is done by using a representation
to generate raising and lowering operators, as is familiar in
the case of the harmonic oscillator. While we did not take
this (somewhat ambitious) approach here, it is carried out in
Ref. [17] for a magnetic system very similar to the one we
discuss in Sec. IV. It is worth at least mentioning this point
of view, as it connects the model studied here to other, more
well-known models.

1. Nilpotent mechanical systems

The simplest system of this type is a harmonic oscillator,

H ¼ 1

2
ðp2 þ ω2q2Þ; fp; qg ¼ 1: ðA2Þ

Here, the canonical variables p and q form a step-2
nilpotent Lie algebra, where all double commutators
vanish. Of course, any Hamiltonian in terms of the
canonical variables will have this bracket algebra, but what
happens in the nonquadratic case? Consider the anhar-
monic oscillator,

H ¼ 1

2
ðp2 þ ω2q2Þ þ λq4: ðA3Þ

We can recast this as a quadratic Hamiltonian with step-3
nilpotent bracket algebra by defining q2 ¼ q2 and then
treating this as a distinct element of the algebra. We then
have

H ¼ 1

2
ðp2 þ ω2q2Þ þ λq22 ðA4Þ

TABLE I. A comparison of results in the dual models.

Nilpotent field theory (S1) Principal chiral model (S2)

L1 ¼ Trf 1
2λ
_ϕ2 − 1

2λ ϕ
02 þ 1

3
ϕ½ _ϕ;ϕ0�g Lagrangian density L2 ¼ 1

2λ2
Trfðg−1 _gÞ2 − ðg−1g0Þ2g

I ¼ 1
λ
_ϕ, J ¼ ϕ0 Currents I ¼ g−1g0, J ¼ g−1 _g

λI0 ¼ _J Current identity _I − 1
λ J

0 þ λ½J; I� ¼ 0
_I − 1

λ J
0 þ λ½J; I� ¼ 0 Equation of motion λI0 ¼ _J

Reduced system of S1 Reduced system of S2
ϕðt; xÞ ¼ eKxRðtÞe−Kx þmKx Wave ansatz gðt; xÞ ¼ eλsKxQðtÞe−Kx

I ¼ eKx _Re−Kx Wave currents I ¼ eKxfλsQ−1KQ − Kge−Kx

J ¼ eKxfλ½K;R� þmKge−Kx
J ¼ eKxfQ−1 _Qge−Kx

S ¼ _Rþ 1
λK Common variables S ¼ sQ−1KQ

L ¼ ½K;R� þmK L ¼ 1
λQ

−1 _Q
_L ¼ ½K; S� Current identity _S ¼ λ½S; L�
_S ¼ λ½S; L� Equation of motion _L ¼ ½K; S�

H1 ¼ Trf1
2
ðS − 1

λKÞ2 þ 1
2
L2g Hamiltonian H1 ¼ H2 H2 ¼ Trf1

2
ðS − 1

λKÞ2 þ 1
2
L2g

L1 ¼ Trf1
2
ðS − 1

λKÞ2 þ 1
3
R½S − K;L� − 1

2
L2g Lagrangian L1 ≠ L2 L2 ¼ 1

2
TrfL2 − ðS − KÞ2g

E ∼ jkj2=3 ðλ → ∞Þ Short-range dispersion E ∼ jkj ðλ → 0Þ
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fp; q2g ¼ 2q; fp; qg ¼ 1; fq2; qg ¼ 0; ðA5Þ

where one can see that all triple commutators vanish. Thus,
the classical anharmonic oscillator describes geodesics
in the corresponding nilpotent Lie group. It is then possible
to solve such quantum theories using the methods
of Ref. [17].
The mechanical reduction of our field theory gives

another example. The equations of motion (3.4) follow
from the Hamiltonian (3.8) with Poisson brackets

fSa; Sbg ¼ λϵabcLc;

fLa; Lbg ¼ 0;

fSa; Lbg ¼ ϵabcKc: ðA6Þ

This a step-3 nilpotent Lie algebra. Its representation on
the space of functions of R is what we used to quantize the
theory. In the dual picture, the Poisson brackets would not
be nilpotent; the Lie algebra it is the semidirect product of
SUð2Þ with an Abelian algebra.

2. Nilpotent field theories

Interestingly, we find that some of the most important
field theories of particle physics can be described in this
way. The bosonic part of the standard model consists of
Yang-Mills theory coupled to a Higgs sector described as a
λϕ4 scalar field theory.
In field theory, the obvious analog of the anharmonic

oscillator is pure λϕ4 theory. Identifying ϕ2ðxÞ ¼ ϕ2ðxÞ,
this theory can be described by

H ¼ 1

2

Z
½π2ðxÞ þm2ϕ2ðxÞ þ λϕ2

2�dx ðA7Þ

fπðxÞ;ϕ2ðyÞg ¼ 2ϕðxÞδðx − yÞ;
fπðxÞ;ϕðyÞg ¼ δðx − yÞ: ðA8Þ

Pure λϕ4 theory (without coupling to fermions) in four
dimensions remains intractable in the short-distance limit; it
is not an asymptotically free theory. We see here that it
follows from a Hamiltonian with one degree of extra
nilpotency in the bracket algebra. This suggests that perhaps
the theory is more easily tamed with an algebraic approach.
Another famously puzzling theory, Yang-Mills theory,

can be cast in the same language. Here, the Poisson
brackets and Hamiltonian are best expressed in terms of
the electric field

E½a� ¼
Z

Ebiabidx ðA9Þ

(where a is a smooth test function) and the magnetic field
B ¼ dAþ A∧A:

fE½a�; Bg ¼ daþ ½A; a�;
fE½a�; Ag ¼ a;

fAajðxÞ;AbjðyÞg ¼ 0; ðA10Þ

H ¼ 1

2

Z
ðE2 þ B2Þdx: ðA11Þ

Yang-Mills theory, however, is an asymptotically free
theory. The fact that it can be brought to the same form
as pure λϕ4 theory suggests some commonality in the
structure of the two theories, though they might
appear glaringly different due to their short-distance
behavior.
We pause to note that not all systems are nilpotent. The

simplest example would be the rigid rotor, which has the
angular momentum momentum bracket algebra, in which
repeated commutators do not vanish. Such a Lie algebra is
perhaps misleadingly labeled as simple in the mathematics
literature. Also, the Euler equations of an ideal fluid can be
formulated with a quadratic Hamiltonian on the Lie algebra
of vector fields. Nilpotent Lie algebras could be useful as
approximations here.

3. Current algebra of S1
The equations of motion (2.12) follow from the

Hamiltonian

H1 ¼
1

2

Z �
λIaIa þ

1

λ
JaJa

�
dx ðA12Þ

and the Poisson brackets from S1,

fJaðxÞ; JbðyÞg1 ¼ 0

fIaðxÞ; JbðyÞg1 ¼ −δbaδ0ðx − yÞ
fIaðxÞ; IbðyÞg1 ¼ ϵabcJcδðx − yÞ: ðA13Þ

So this theory can also be cast as a quadratic Hamiltonian
with step-3 nilpotent algebra. This further motivates the
analogy between our model and λϕ4 theories.
It is natural, in nilpotent Lie algebras, to take the singular

limit of the metric where the coefficient of the higher-step
generators shrinks to zero. (This geometry has been well
studied in the simplest case of the Heisenberg group [10]).
This is precisely the strong coupling limit λ → ∞ of our
theory: the second term in the Hamiltonian 1

2

R ½λIaIa þ
1
λ J

aJa�dx tends to zero. In this limit the cometric is not
invertible.
The resulting sub-Riemannian geometry still has geo-

desics connecting nearby points; the Hormander condition
is satisfied because the commutator of the surviving
generators IaðxÞ generate the remaining ones Ja. The
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Chow-Rashevsky theorem does not directly apply here as
we are dealing with an infinite-dimensional manifold. But it
does suggest that there are propagating solutions even in
the limit λ → ∞. We found some examples numerically

first and then found analytic solutions including these
examples. So at least in this case, the intuition provided
by the sub-Riemannian geometry was useful in under-
standing the strong coupling limit.
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