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We analytically evaluate the expectation value of a baryonic Wilson loop in a holographic model of an
SUð3Þ pure gauge theory. We then discuss three aspects of a static three-quark potential: an aspect of
universality which concerns properties independent of a geometric configuration of quarks, a heavy
diquark structure, and a relation between the three- and two-quark potentials.
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I. INTRODUCTION

Formany years, there has been great interest in triply heavy
baryons [1,2]. The challenge here is to reach the level of
knowledge similar to that of charmonium and bottomonium.
On the theoretical side, the challenge is to explain the structure
and properties of such baryons. It is expected that thepotential
models would be useful in doing so. Furthermore, in the
process, one would expect to gain important insights into
understanding how baryons are put together from quarks.
The three-quark potential is one of the most important

inputs of the potential models and also a key to under-
standing the quark confinement mechanism in baryons.
However, so far, there is no reliable formula to describe the
three-quark potential. The best known phenomenological
models are Ansätze which are a kind of Cornell model for a
three-quark system. The Δ law states that the static three-
quark potential is a sum of two-quark potentials [3].1 In
practice, it is taken to be the sum of Cornell-type potentials,

E3Q
ðx1;x2;x3Þ ¼

X3
i<j

−
α3Q
jxijj

þ 1

2
σjxijj þ C; ð1:1Þ

where xi is the position vector of the ith quark, xij ¼
xi − xj, α3Q and C are parameters, and σ is the string
tension. The relation with the quark-antiquark potential
implies that α3Q ¼ 1

2
αQQ̄. The Δ law predicts that the

energy grows linearly with the perimeter of the triangle
formed by quarks. Alternatively, the Y law states that the
energy grows linearly with the minimal length of a string
network which has a junction at the Fermat point of the
triangle [4–6]. In this case, a slight modification of (1.1) is
of common use in the potential models. It is simply

E3Q
ðx1;x2;x3Þ ¼

X3
i<j

−
α3Q
jxijj

þ σLmin þ C: ð1:2Þ

Unfortunately, there have not yet been any experimental
results concerning triply heavy baryons. Thus, the predic-
tions2 based on either the Δ law or the Y law cannot be
compared to the real world, and the last word has not yet
been said on this matter. In such a situation, lattice gauge
theory is the premier method for obtaining quantitative
and nonperturbative predictions from strongly interacting
gauge theories. The three-quark potentials are being studied
on the lattice [8]. Although the accuracy of numerical
simulations has been improved, the situation is still not
completely clear. There is no problem with the fit by the Y
law at long distances [9–11]. At shorter distances, the
conclusion is mixed in the sense that some results favor the
Δ law [10,12] and others favor the Y law [9,11,13].
The situation is even worse with the hybrid three-quark

potentials. So far, there are no phenomenological predic-
tions, and very little is known about those from lattice
studies.3 These potentials remain almost unknown and
therefore merit more attention, as in the case of the hybrid
quark-antiquark potentials [8,15].
One of the implications of the AdS=CFT correspondence

[16] is that it opened a new window for studying strongly
coupled gauge theories and, as a result, resumed interest
in finding a string description (string dual) of QCD. It is
worth noting that it is not an old fashioned four-
dimensional string theory in Minkowski space but a five-
(ten-)dimensional one in a curved space.
In this paper, we continue a series of studies [17,18]

devoted to the three-quark potentials within a five- (ten-)
dimensional effective string theory. The model we are
developing represents a kind of soft wall model of
Ref. [19], where the violation of conformal symmetry is
manifest in the background metric [20]. It would be unwise
to pretend that such a model is dual to QCD or that it can be
deduced starting from the AdS=CFT correspondence. Our
reasons for now pursuing this model are as follows:

1For more details, see Appendix D.

2For a recent development, see, e.g., Ref. [7].
3See, however, Ref. [14].
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(1) There still is no string theory which is dual to QCD.
It would seem very good to gain what experience
we can by solving any problems that can be solved
with the effective string model already at our
disposal. The AdS=CFT correspondence is a good
starting point because we already know a lot about
Wilson loops in N ¼ 4 supersymmetric Yang-Mills
theory [21].4

(2) The results provided by this model are consistent
with the lattice calculations and QCD phenomenol-
ogy. In some cases, the quantitative agreement is so
good that one could not even expect such a success
from a simple model. In Ref. [22], we have com-
puted the quark-antiquark potential. Subsequent
work made it clear that the model should be taken
seriously, particularly in the context of consistency
with the lattice [23] and quarkonium spectrum [24].
Another instance of perfect consistency between the
model [18] and the lattice calculations [9,11,12] is
the three-quark potential obtained on an equilateral
triangle. In addition, the model also reproduces one
of the hybrid potentials of Ref. [25]. It is the Σ−

u
potential [26].

(3) Analytic formulas are obtained by solving the
model. This allows one to easily compare the results
with the lattice and QCD phenomenology.

(4) The model is able to explore QCD properties in the
transition region between confinement and asymp-
totic freedom. As seen from Fig. 3, it can operate at
length scales down to 0.2 fm. This is a big advantage
of the model over any type of old fashioned four-
dimensional string model in Minkowski space.

(5) The aim of our work is to make predictions which
may then be tested by means of other methods, e.g.,
numerical simulations.

Of course, it is worth keeping in mind that this model, as
any other model, has its own limitations. In particular, it
breaks down at very small length scales, which makes it
impossible to compare the results with those of perturba-
tive QCD.
The paper is organized as follows. For orientation, we

begin by setting the framework and recalling some pre-
liminary results. Then, we consider the three-quark poten-
tial of collinear quarks. This allows us to compare the
results with those obtained on the equilateral geometry and
make predictions on what is expected to be universal
(independent of a geometrical configuration of quarks) at
short and long distances. We go on in Sec. III to discuss the
quark-diquark and quark-quark potentials as the limiting
cases of that obtained for the collinear geometry. Our goal
here is to determine the leading terms in the interquark

potential. In Sec. IV, we give an example of the three-quark
hybrid potential. Here, we also consider a relation between
two and three hybrid quark potentials and make a pre-
diction of universality for a gap between the potential and
its hybrid at long distances. We conclude in Sec. V with a
discussion of some open problems and possibilities for
further study. Some technical details are given in the
Appendixes.

II. THREE-QUARK POTENTIAL VIA
GAUGE/STRING DUALITY

In this section, we will derive the three-quark potential
for two different geometries. We start with an equilateral
triangle geometry and then consider a collinear geometry.
Although we mainly concentrate on the collinear geometry,
as our basic example, the approach is equally applicable for
any geometry. Appendixes A and B provide the necessary
tool kit for doing so.

A. Preliminaries

The static three-quark potential can be determined from
the expectation value of a baryonic Wilson loop [8]. The
Wilson loop in question is defined in a gauge-invariant
manner as W3Q

¼ 1
3!
εabcεa0b0c0Uaa0

1 Ubb0
2 Ucc0

3 , with Ui the
path-ordered exponents along the lines shown in Fig. 1. In
the limit T → ∞, the expectation value of W3Q

is given by

hW3Q
i ¼

X∞
n¼0

Bne
−EðnÞ

3Q
T
: ð2:1Þ

Here, Eð0Þ
3Q

is called the three-quark potential (ground-state

energy) if the corresponding contribution dominates the
sum as T approaches infinity. In other words, it requires

Eð0Þ
3Q

< EðiÞ
3Q

for any i > 0 and any quark configuration. If so,

then the remaining EðiÞ
3Q
’s are called hybrid three-quark

potentials (excited-state energies).

FIG. 1. A baryonic Wilson loop. A three-quark stateQ1Q2Q3 is
generated at t ¼ 0 and is annihilated at t ¼ T.

4There is an obvious question. If N ¼ 3, why is it a good
starting point? We have no answer and take this as an assumption,
but (2) partially resolves the question.
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In our study of baryonic Wilson loops, we adapt a
formalism proposed within the AdS=CFT correspondence
[27,28] to a confining gauge theory.
First, we take the Ansatz for the background metric

ds2 ¼ esr
2 R2

r2
ðdt2 þ d~x2 þ dr2Þ þ e−sr

2

gð5Þab dω
adωb:

ð2:2Þ

Thus, the geometry in question is a one-parameter defor-
mation, parametrized by s, of a product of a five-dimen-
sional (Euclidean) anti–de Sitter space (AdS5) of radius R
and a five-dimensional compact space (sphere) X of which
the coordinates are ωa. In Eq. (2.2), there are the two free
parameters R and s. Note that the first combines with α0

from the Nambu-Goto action (A1) such that g ¼ R2

2πα0 then is
to be fitted. Since we deal with an effective string theory
based on the Nambu-Goto formulation,5 knowing the
background geometry is sufficient for our purposes.
There are good motivations for taking this Ansatz. First,
such a deformation of AdS5 leads to linear Regge-like
spectra for mesons [19,20] and the quark-antiquark poten-
tial [22], which is very satisfactory in the light of lattice
gauge theory and phenomenology [23,24]. Second, the
deformation of X is motivated by thermodynamics [29].
Next, we consider the baryon vertex. In the static gauge,

we take the Ansatz

Svert ¼ m
e−2sr

2

r
T ð2:3Þ

for its action, where m and s are parameters. Note that the
parameter s is the same as in Eq. (2.2) so that only m is a
new one.
In what follows, we will assume that quarks are placed at

the same point in the internal space.6 Therefore, the detailed
structure ofX is not important, except the exponential warp
factor depending on the radial direction. The motivation
for such a form of the warp factor is drawn from the
AdS=CFT construction, where the baryon vertex is a

5-brane [27]. Taking a term
R
dtd5ω

ffiffiffiffiffiffiffi
gð6Þ

p
from the world

volume action of the brane results in Te−2sr
2

=r. This is, of
course, a heuristic argument, but it leads to the very
satisfactory result that the lattice data of [9,11,12] obtained
on an equilateral triangle can be described by a single
parameter [18].

One of the important differences between QCD and
AdS=CFT is that QCD has gotten much further than
AdS=CFT in addressing the issue of hybrid potentials
[15]. The common wisdom is that those potentials corre-
spond to excited strings [5]. The structure of string
excitations is quite complicated and is made of many
different kinds of elementary excitations like vibrational
modes, loops, knots, etc. Adopting the view point that some
excitations imply a formation of cusps, one can model them
by inserting local objects (defects) on a string.7 Thus, what
we need is an action for such an object. In the static gauge,
we take the action to be of the form

Sdef ¼ n
e−2sr

2

r
T; ð2:4Þ

where n and s are parameters. Again, s is the same as
in Eq. (2.2).
The form like (2.4) seems natural if one thinks of the

defect as a tiny loop formed by a pair of baryon-antibaryon
vertices connected with fundamental strings. In such a
scenario, the expression (2.4) is based on an assumption
that the strings do not change the radial dependence in
(2.3). This is also a heuristic argument, but it can be
confronted with the lattice data of [25]. For Σ−

u , the result is
in good agreement [26]. Notice that (2.4) contains only one
free parameter that makes it attractive from the phenom-
enological point of view.
Finally, we place heavy quarks at the boundary points of

the five-dimensional space (r ¼ 0) but at the same point in
the internal space X. We consider configurations in which
each quark is the end point of the Nambu-Goto string, with
the strings joining at the baryon vertex in the interior as
shown in Fig. 2. For excited strings, we also place defects
on them as shown in Fig. 8. The total action of a system
has, in addition to the standard Nambu-Goto actions, also
contributions arising from the baryon vertex and defect.
The expectation value of the Wilson loop is then

hW3Q
i ∼ e−Smin ; ð2:5Þ

where Smin is the minimal action of the system. Combining
it with (2.1) gives the three-quark potential.8

B. Equilateral triangle geometry

As a warmup, let us give a derivation of the three-quark
potential in the case in which the quarks are at the vertices
of an equilateral triangle of length L [18]. To this end, we5This has some limitations. The reason is that the Green-

Schwarz formulation similar to that for AdS5 × S5 is still missing.
So, we consider the model as an effective theory rather than an
ultimate solution for QCD.

6It is worth noting that this assumption makes the problem
effectively five dimensional and hence more tractable. From the
five-dimensional point of view, the vertex looks like a pointlike
object (particle).

7A similar idea was used in four-dimensional string models,
but with a different goal, such as a description of linear baryons.
For more discussion and references, see Ref. [30].

8Like in AdS=CFT, this formula is oversimplified for various
reasons, but it seems acceptable for the purposes of the effective
string theory based on the Nambu-Goto formulation.
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consider the configuration shown in Fig. 2. Here, gravity
pulls the baryon vertex toward the boundary that allows the
result to be consistent with the lattice data [9–12].
The D3 symmetry of the problem immediately implies

that the projection of V onto the xy plane is a center of the
triangle and all the strings have an identical profile. In this
case, a radius of the circumscribed circle is given by (A16),
and as a consequence, the triangle’s side length is9

L ¼
ffiffiffiffiffi
3λ

s

r �Z
1

0

dvv2eλð1−v2Þð1 − v4e2λð1−v2ÞÞ−1
2

þ
Z

1ffiffi
ν
λ

p dvv2eλð1−v2Þð1 − v4e2λð1−v2ÞÞ−1
2

�
; ð2:6Þ

where λ ∈ ½0; 1� and ν ≤ λ. Note that ν ¼ sr2þ and
λ ¼ sr2max, with rmax shown in Fig. 10.
It is straightforward to compute the total energy of the

configuration E ¼ P
3
i¼1 Ei þ VðrþÞ. The energy of a

single string is given by Eq. (A20). Then, using this
expression and the expression (2.3) for the gravitational
energy of the baryon vertex, we find

E3Q
¼ 3g

ffiffiffi
s
λ

r �
κ

ffiffiffi
λ

ν

r
e−2ν þ

Z
1

0

dv
v2

ðeλv2ð1 − v4e2λð1−v2ÞÞ−1
2

− 1 − v2Þ þ
Z

1ffiffi
ν
λ

p
dv
v2

eλv
2ð1 − v4e2λð1−v2ÞÞ−1

2

�
þ C;

ð2:7Þ

with C a normalization constant. It is equal to 3c as it
follows from Eq. (A20). In addition, κ ¼ m

3g, as defined
in Eq. (B10).
At this point, we can complete the parametric description

of the three-quark potential for the equilateral triangle
geometry. To this end, the gluing conditions at the vertex
should be involved. When the triangle is equilateral, we
impose the condition (B10)

sin α ¼ κð1þ 4νÞe−3ν; ð2:8Þ

which is nothing else but the balance of force in the radial
direction. Here, we have abbreviated αþ to α. Note that a
negative value of α, as sketched in Fig. 2, implies that
κ < 0. In this case, the gravitational force is directed in the
downward vertical direction.
Combining Eq. (2.8) with Eq. (A18), one can express λ

in terms of the ProductLog function [31]

λðνÞ ¼ −ProductLog½−νe−νð1 − κ2ð1þ 4νÞ2e−6νÞ−1
2�:

ð2:9Þ

Here, ν ∈ ½0; ν��, with ν� a solution to λðνÞ ¼ 1.
Thus, the potential is given in parametric form by

E3Q
¼ EðνÞ and L ¼ LðνÞ. The parameter takes values

on the interval ½0; ν��. This is the main result of this section.
It is a special case of the result announced in Ref. [18].
Now, we wish to compare this result to the lattice data

and see some of the surprising features of our model. But
first let us look at the behavior of E3Q

ðLÞ at short and long
distances.
A simple analysis shows that LðνÞ is a monotonically

increasing function on the interval ½0; ν�� and that LðνÞ goes
to zero as ν → 0 and goes to infinity as ν → ν�. Thus, to
analyze the short distance behavior of E3Q

, we need to find
the asymptotic behavior of LðνÞ and EðνÞ near ν ¼ 0.10 In
this case, we restrict ourselves to the two leading terms,
which allow us to easily obtain the energy as a function of
the triangle’s side length. Thus, at short distances, the three-
quark potential is given by

E3Q
ðLÞ ¼ −3

α3Q
L

þ Cþ 3

2
σ0Lþ oðLÞ; ð2:10Þ

with

α3Q ¼−
1

3
L0E0g; σ0¼

2

3L0

�
E1þ

L1

L0

E0

�
gs: ð2:11Þ

The Li’s and Ei’s are expressed in terms of the beta function
and given by Eqs. (C3) and (C4), respectively.
In a similar spirit, we can explore the long distance

behavior of E3Q
. Expanding the right-hand sides of

Eqs. (2.6) and (2.7) near ν ¼ ν�, we reduce these equations
to a single equivalent equation,

E3Q
ðLÞ ¼

ffiffiffi
3

p
σLþ cþ oð1Þ; ð2:12Þ

with

FIG. 2. A baryon configuration. The quarksQi are placed at the
vertices of the equilateral triangle. V is a baryon vertex.

9We abbreviate νþ to ν when this is not ambiguous. 10For details, see Appendix C.
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σ ¼ egs;

c ¼ 3g
ffiffiffi
s

p �
κffiffiffiffiffi
ν�

p e−2ν� þ
Z

1

0

dv
v2

ðev2ð1 − v4e2ð1−v2ÞÞ12

− 1 − v2Þ þ
Z

1ffiffiffiffi
ν�

p
dv
v2

ev
2ð1 − v4e2ð1−v2ÞÞ12

�
þ C:

ð2:13Þ

Here, σ is the physical string tension. It remains universal
and unaltered in all the cases: the quark-antiquark [22],
hybrid [26], three-quark potentials [17], and also in the
examples we consider below. It is notable that the constant
terms at short and long distances are different. Because of
scheme ambiguities, each of those has no physical mean-
ing, but the difference

c − C ¼ 3g
ffiffiffi
s

p �
κffiffiffiffiffi
ν�

p e−2ν� þ
Z

1

0

dv
v2

ðev2ð1 − v4e2ð1−v2ÞÞ12

− 1 − v2Þ þ
Z

1ffiffiffiffi
ν�

p
dv
v2

ev
2ð1 − v4e2ð1−v2ÞÞ12

�
ð2:14Þ

is not ambiguous and is free from divergences. This makes
the model so different from the phenomenological laws
(1.1) and (1.2), where the difference vanishes.
Having found the asymptotic behaviors at short and long

distances, we can compare our model of the three-quark
potential with the results of numerical simulations. We
proceed along the lines of Ref. [18]. First, we set g ¼ 0.176
and s ¼ 0.44 GeV2, i.e., to the same values as those of
Ref. [26] used for modeling the quark-antiquark potentials
of [25]. Then, the remaining parameter is fitted to be
κ ¼ −0.083 using the data of Ref. [12] from numerical
simulations of the baryonic Wilson loops. The result is

plotted in Fig. 3. We see that the model reproduces the
lattice data remarkably well with just one free parameter.
A simple estimate using Eq. (2.11) and the fitted value of

κ shows that [18]

α3Q
αQQ̄

≈ 0.495;
σ0
σ
≈ 1.007; ð2:15Þ

where αQQ̄ is a coefficient in front of the Coulomb term of
the quark-antiquark potential [22]. Explicitly, it is given
by αQQ̄ ¼ ð2πÞ3Γ−4ð1

4
Þg [32]. This suggests that at short

distances Eq. (2.10) can be rewritten as

E3Q
ðLÞ ≈ −

3

2

αQQ̄
L

þ Cþ 3

2
σLþ oðLÞ ≈ 1

2

X3
i<j

EQQ̄ðrijÞ;

ð2:16Þ

where EQQ̄ðrijÞ is the quark-antiquark potential and rij
denotes the distance between the vertices i and j. With
our choice of normalization, the normalization constant C
for the energy of a single baryon configuration is equal to
3c, while that of the quark-antiquark pair is 2c [see
Eq. (A23)]. This is consistent with the relation (2.16).
Actually, it is the Δ law suggested in Ref. [3]. The analysis
of Refs. [10,12,18] shows that it is a good approximation to
the lattice at distances shorter than 0.6–0.8 fm.
The underlying physical picture is not necessarily very

accurate for baryons. We suggest that the Δ law can be
treated in a way that helps clarify the physics of strong
interactions and at the same time complies with the lattice.
The picture that emerges from this point of view is that at
short distances the three-quark potential is described by a

FIG. 3. The lattice data are taken from Refs. [10,12] (squares), [9] (disks), and [11] (triangles). We use the normalization of [12]. We
do not display any error bars because they are comparable to the size of the symbols. Left: E3Q

as a function of L at g ¼ 0.176,
s ¼ 0.44 GeV2, κ ¼ −0.083, and C ¼ 1.87 GeV. Right: The Δ law (2.10) (dashed) and the Y law (2.18) (dotted).
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sum of two-body potentials. At length scales where a
diquark can be treated as a pointlike object, it is simply

E3Q
ðLÞ ≈ 1

2

X3
i<j

EQDðrijÞ; ð2:17aÞ

with EQD a quark-diquark potential. This is plausible
because in this case EQD coincides with the quark-antiquark
potential such that (2.17a) reduces to Eq. (2.16).
Alternatively, it may be written as a sum over all quark-
quark pairs,

E3Q
ðLÞ ≈

X3
i<j

EQQðrijÞ; ð2:17bÞ

with EQQ a quark-quark potential. Notice that (2.17b) can
be derived from (2.16) by using the one-half rule EQQ ≈
1
2
EQQ̄ [2]. Wewill return to these issues again in Sec. III and

Appendix D.
Actually, in connection with the above analysis, some

additional questions should be asked. To reach the con-
clusion that in the interval [0.2 fm, 0.7 fm] the three-quark
potential is well approximated by a sum of two-body
potentials, we analyzed the short distance behavior of the
expressions (2.6) and (2.7). It turns out that the first terms
of the series (2.10) provide a good approximation in this
interval, as can be seen from Fig. 3. This is a model artifact.
Does it imply that (2.10) is also reliable at shorter
distances? This is unclear. Certainly, no resummation of
perturbative series of a pure SUð3Þ gauge theory is known.
But it might occur that resummation will lead to the form of
Eq. (2.10). In addition, the relation (2.15) between αQQ̄ and
α3Q is similar to that of the tree-level result. What may be
the reason? In the model we are considering, α3Q is a
function of the parameter κ, while αQQ̄ is a constant. So,
there may be any relation between those coefficients. The
peculiar one is the result of fitting to the lattice. Again, to
really explain why it is so, resummation of perturbative
series is needed.
What happens at longer distances? We can reasonably

expect that Eq. (2.12) is a proper approximation for E3Q
.

This is indeed the case [18]. It is interesting that the Lüscher
correction to Eq. (2.12) turns out to be negligible. In fact,
such a behavior is also provided by the Y law at long
distances [4,5].
Thus, the physical picture we have is that our model

incorporates two-body interactions, the Δ law, at short
distances and a genuine three-body interaction, the Y law, at
longer distances. In the string context, the two-body
interaction is described by a single string stretched between
a quark and a diquark, while the three-body interaction is
the standard one. It includes three strings meeting at a
common junction. Mathematically, E3Q

ðLÞ is a complicated

function of L of which the asymptotic behavior is described
by the Δ and Y laws.
If one includes the Lüscher correction, like in the Y

law,11

E3Q
ðLÞ ¼

ffiffiffi
3

p
σLþ cY − 3

α3Q
L

; ð2:18Þ

then the whole picture does not change and remains the
same as before, except the transition between the two
behaviors occurs at a slightly larger scale, of order 0.8 fm as
seen from Fig. 3.
So far, we have tacitly assumed that gravity pulls the

vertex toward the boundary. This is an important difference
between our model and those in the literature devoted to
duals of large N (supersymmetric) gauge theories. There
are obvious questions one can ask about what took place.
Is the 1=N expansion really a good approximation? What is
the origin for κ being negative? Is it a model artifact?
Unfortunately, no real resolution of this problem will be
proposed here. Our criterion is to mimic QCD and provide
the basis for further calculations.

C. Symmetric collinear geometry

Given the set of parameters that we have just fitted,
it is straightforward to determine the three-quark potential
for other geometries and make some predictions in the
cases when there are no lattice data available. To get some
intuition, we first consider the symmetric collinear
geometry.
As before, we place the quarks at the boundary points of

the five-dimensional space and consider a configuration in
which each of the quarks is the end point of a fundamental
string. The strings join at a baryon vertex in the interior as
shown in Fig. 4, on the left. For convenience, the quarks are
on the x axis such that x1 ¼ −L, x2 ¼ L, and x3 ¼ 0.
Since the quark configuration is symmetric under

reflection through x ¼ 0, the side strings have an identical
profile, and the middle string is stretched in the radial
direction. Given this, we can use the general formula (A16)
to write

L ¼
ffiffiffi
λ

s

r �Z
1

0

dvv2eλð1−v2Þð1 − v4e2λð1−v2ÞÞ−1
2

þ
Z

1ffiffi
ν
λ

p dvv2eλð1−v2Þð1 − v4e2λð1−v2ÞÞ−1
2

�
; ð2:19Þ

where ν ¼ sr2þ and λ ¼ sr2max, with rmax shown in Fig. 10.
The expression for the total energy can be read from the

formulas (A10), (A20), and (2.3). We have

11This issue was raised by H. Suganuma. Here, we replace
c ≈ 1.60 GeV by cY ≈ 1.67 GeV to better fit the data.
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E3Q
¼ 2g

ffiffiffi
s
λ

r �Z
1

0

dv
v2

ðeλv2ð1 − v4e2λð1−v2ÞÞ−1
2 − 1 − v2Þ

þ
Z

1ffiffi
ν
λ

p
dv
v2

eλv
2ð1 − v4e2λð1−v2ÞÞ−1

2

�

þ g

ffiffiffi
s
ν

r
ð ffiffiffiffiffi

πν
p

Erfið ffiffiffi
ν

p Þ − eν þ 3κe−2νÞ þ C: ð2:20Þ

As before, the normalization constant is given by C ¼ 3c.
A complete description has to include the gluing con-

ditions at the vertex. Such conditions are given by
Eq. (B12) with α1 ¼ α2 ¼ α and α3 ¼ π

2
. So, we have

2 sin αþ 1 ¼ 3κð1þ 4νÞe−3ν: ð2:21Þ

It is convenient to express λ as a function of ν. By
combining (2.21) and (A18), we get

λðνÞ ¼ −ProductLog
�
−

2ffiffiffi
3

p νe−νð1þ 2κð1þ 4νÞe−3ν

− 3κ2ð1þ 4νÞ2e−6νÞ−1
2

�
: ð2:22Þ

In summary, the three-quark potential is given by the
parametric equations (2.19) and (2.20). The parameter ν
takes values in the interval ½0; ν⋆�, where λðν⋆Þ ¼ 1.
The analysis of E3Q

ðLÞ in the two limiting cases, long
and short distances, is formally similar to that of the
previous section. The first step is to learn that LðνÞ is an
increasing function on the interval ½0; ν⋆�. Moreover, it goes
from zero to infinity. Having learned this, we can obtain the
short distance behavior by expanding LðνÞ and EðνÞ near
ν ¼ 0 and then reducing the two equations to a single one,

E3Q
ðLÞ ¼ −

5

2

α3Q
L

þ Cþ 2σ0Lþ oðLÞ; ð2:23Þ

where

α3Q ¼−
2

5
L0E0g; σ0¼

1

2L0

�
E1þ

L1

L0

E0

�
gs: ð2:24Þ

The Li’s and Ei’s are defined in Eqs. (C6) and (C7),
respectively.
To analyze the long distance behavior, we expand the

right-hand sides of Eqs. (2.19) and (2.20) near ν ¼ ν⋆, then
reduce these equations to

EðLÞ ¼ 2σLþ cþ oð1Þ; ð2:25Þ

where

c ¼ g
ffiffiffi
s

p � ffiffiffi
π

p
Erfið ffiffiffiffiffi

ν⋆
p Þ

þ 2

Z
1

0

dv
v2

ðev2ð1 − v4e2ð1−v2ÞÞ12 − 1 − v2Þ

þ 2

Z
1ffiffiffiffi
ν⋆

p
dv
v2

ev
2ð1 − v4e2ð1−v2ÞÞ12 þ 3κe−2ν⋆ − eν⋆ffiffiffiffiffi

ν⋆
p

�
þ C:

ð2:26Þ

ErfiðxÞ denotes the imaginary error function. As before, the
constant terms C and c turn out to be different.
Now, we wish to make some predictions. Otherwise, this

will remain as an academic exercise in gauge/string duality.
So far, there are no lattice data available for the symmetric
collinear geometry, and therefore we compare the results
with the phenomenological Ansätze and those from the
previous section.
In Fig. 5, we display the three-quark potential obtained

from Eqs. (2.19) and (2.20). Because the phenomenological
Δ and Y laws coincide for the collinear configuration, one
could expect that the potential is well described by12

E3Q
ðLÞ ¼ 2σLþ cY −

5

2

α3Q
L

: ð2:27Þ

FIG. 4. Typical collinear configurations. Left: A symmetric configuration. Right: A generic configuration. Here, l < L.

12We set cY ¼ 1.71 GeV to fit on the interval from 0.1 to
1.2 fm.

SOME ASPECTS OF THREE-QUARK POTENTIALS PHYSICAL REVIEW D 93, 105014 (2016)

105014-7



However, as seen from Fig. 5, this is not the case.
The Ansatz (2.27) seems very good for short and long
distances but not for intermediate ones. The picture is
similar to that of Fig. 3, on the right. In other words, E3Q

is a
more complicated function of L than the function given
by Eq. (2.27).
Let us make some estimates. In units of αQQ̄ and σ,

we get

α3Q
αQQ̄

≈ 0.475;
σ0
σ
≈ 0.926: ð2:28Þ

The last ratio shows that there is a deviation from the Δ law
defined by Eq. (1.1).
Looking again at Eq. (2.28) and back to Eq. (2.15), we

see that the coefficients in the short distance expansion
are not the same. It is a bit surprising but true that for the
triangle geometry the coefficients are larger,13

αc3Q
αt3Q

≈ 0.960;
σc0
σt0

≈ 0.920: ð2:29Þ

Thus, these expansion coefficients are geometry dependent.
The long distance expansion is also puzzling. Although

the physical string tension is universal (geometry indepen-
dent), the constant terms are not. A simple estimate yields

cc − ct ≈ 0.006 GeV: ð2:30Þ

Here, we have assumed that the normalization constants C
are equal in both cases.

This is one of the important aspects of the model. The
first that comes to mind when thinking about a possible
explanation for what we have found is that it has a stringy
origin. The point may be that a string junction affects
the shape of the three-quark potential not only at long but
even at short distances. As a result, the coefficients in the
short distance expansion become dependent of the geom-
etry in question. This is another objection to the Δ law
where α3Q ¼ 1

2
αQQ̄ for any geometry. Of course, it would be

very interesting to see what this means for heavy baryon
spectroscopy because neither the Δ nor Y law takes this
effect into account.

D. Generic collinear geometry

With the experience we have gained, it is straightforward
to generalize formulas such as Eqs. (2.19) and (2.20) and
determine the three-quark potential for a generic case of
collinear geometry.
Consider the symmetric configuration sketched in Fig. 4

on the left. To get further, we need to modify it by moving
the first quark to a new position, say at x1 ¼ −l. Without
loss of generality, we may move it closer to the origin such
that l ≤ L. The resulting configuration will be a deforma-
tion of the initial one, as shown in Fig. 4 on the right.
First, we will describe the gluing conditions, which is the

easier thing to do. From Eq. (B12), we immediately obtain

cos α1 − cos α2 − cos α3 ¼ 0;

sin α1 þ sin α2 þ sin α3 ¼ 3κð1þ 4νÞe−3ν: ð2:31Þ

Here, we have abbreviated αþi to αi.
Next, we should mention an important subtlety that

arises when one tries to moveQ1 closer toQ3. This subtlety
is related to a flip of sign in α1, the slope of the first string at
the vertex. As a result, the shape of the first string changes
from that of Fig. 10 on the right to that on the left. In the
meantime, the other strings keep their shapes.

1. Configuration with α1 < 0

We will now make the discussion more concrete.
Consider a small deformation of the symmetric configu-
ration. In that case, we still have α1 < 0 and α2 < 0, but
with α3 ≠ π

2
, as shown in Fig. 4 on the right.

If we consider the third string, then, in virtue of Eq. (A6),
xþ can be written as an integral. We will thus have

xþ¼−cosα3

ffiffiffi
ν

s

r Z
1

0

dv3v23e
νð1−v2

3
Þð1−cos2α3v43e

2νð1−v2
3
ÞÞ−1

2:

ð2:32Þ

Notice that xþ is negative. The reason for this is a force
balance at the vertex.

FIG. 5. The potential E3Q
ðLÞ and Ansatz (2.27) (dashed) at

g ¼ 0.176, s ¼ 0.44 GeV2, κ ¼ −0.083, C ¼ 1.87 GeV, and
cY ¼ 1.71 GeV.

13We use the subscripts c and t to denote the following
geometries: collinear and triangle.
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Similarly, for the first and second strings, xþ þ l and
L − xþ can be expressed in terms of integrals by using
Eq. (A16). Combining those with Eq. (2.32) leads one to

l ¼
ffiffiffiffiffi
λ1
s

r �Z
1

0

dv1v21e
λ1ð1−v21Þð1 − v41e

2λ1ð1−v21ÞÞ−1
2

þ
Z

1ffiffiffi
ν
λ1

p dv1v21e
λ1ð1−v21Þð1 − v41e

2λ1ð1−v21ÞÞ−1
2

�

þ cos α3

ffiffiffi
ν

s

r Z
1

0

dv3v23e
νð1−v2

3
Þð1 − cos2α3v43e

2νð1−v2
3
ÞÞ−1

2

ð2:33Þ

and

L ¼
ffiffiffiffiffi
λ2
s

r �Z
1

0

dv2v22e
λ2ð1−v22Þð1 − v42e

2λ2ð1−v22ÞÞ−1
2

þ
Z

1ffiffiffi
ν
λ2

p dv2v22e
λ2ð1−v22Þð1 − v42e

2λ2ð1−v22ÞÞ−1
2

�

− cos α3

ffiffiffi
ν

s

r Z
1

0

dv3v23e
νð1−v2

3
Þð1 − cos2α3v43e

2νð1−v2
3
ÞÞ−1

2:

ð2:34Þ

The energies of the first and second strings can be read
from Eq. (A20), while that of the third can be read from
Eq. (A9). Combining those with the expression (2.3) for the
gravitational energy of the vertex, we find the total energy

E3Q
¼ g

X2
i¼1

ffiffiffiffi
s
λi

r �Z
1

0

dvi
v2i

ðeλiv2i ð1− v4i e
2λið1−v2i ÞÞ−1

2 − 1− v2i Þ

þ
Z

1ffiffiffi
ν
λi

p
dvi
v2i

eλiv
2
i ð1− v4i e

2λið1−v2i ÞÞ−1
2

�
þ g

ffiffiffi
s
ν

r �
3κe−2ν

þ
Z

1

0

dv3
v23

ðeνv23ð1− cos2α3v43e
2νð1−v2

3
ÞÞ−1

2 − 1− v23Þ
�

þC: ð2:35Þ

First, let us see what happens if α3 ¼ π
2
. In this case,

xþ vanishes, and l becomes equal to L. In addition, the
expression (2.35) reduces to that of Eq. (2.20). So, the
above formulas are consistent with those of Sec. II. C.
Now, let us try to understand how the potential can be

written parametrically as E3Q
¼ Eðλ1; λ2Þ, l ¼ lðλ1; λ2Þ,

and L ¼ Lðλ1; λ2Þ. It is easy to see from Eq. (A17) that

cos αi ¼
ν

λi
eλi−ν; ð2:36Þ

with i ¼ 1, 2. After a substitution into the first equation of
Eq. (2.31), we find

cos α3 ¼
�
eλ1

λ1
−
eλ2

λ2

�
νe−ν: ð2:37Þ

From this, it follows that λ1 and λ2 must obey λ1 ≤ λ2 if
λi ∈ ½0; 1�. Now, plugging Eqs. (2.36) and (2.37) into the
second equation of Eq. (2.31), we obtain

�
1 −

ν2

λ21
e2ðλ1−νÞ

�1
2 þ

�
1 −

ν2

λ22
e2ðλ2−νÞ

�1
2

−
�
1 − ν2e−2ν

�
eλ2

λ2
−
eλ1

λ1

�
2
�1

2 þ 3κð1þ 4νÞe−3ν ¼ 0:

ð2:38Þ

Unfortunately, we do not know how to explicitly express
one parameter as a function of two others. In practice, it is
convenient to choose the λ’s as independent parameters and
then solve Eq. (2.38) for ν numerically.
To summarize, the three-quark potential is given in

parametrical form by E3Q
¼ Eðλ1; λ2Þ, l ¼ lðλ1; λ2Þ, and

L ¼ Lðλ1; λ2Þ. The parameters take values on the interval
[0, 1] and obey the inequality λ1 ≤ λ2.

2. Configuration with α1 = 0

There is one important situation in which a transition
between the two types of profile occurs. This is the case
α1 ¼ 0. Although the calculations are simple, it is useful for
the purposes of the present paper to have explicit formulas.
A helpful observation which makes the analysis easy is

the following. If α1 ¼ 0, then ν ¼ λ1, which follows from
Eq. (2.36). Hence, there is only one independent parameter.
For λ1 ¼ ν, Eqs. (2.33) and (2.34) take the form

l ¼
ffiffiffi
ν

s

r �Z
1

0

dv1v21e
νð1−v2

1
Þð1 − v41e

2νð1−v2
1
ÞÞ−1

2

þ cos α3

Z
1

0

dv3v23e
νð1−v2

3
Þð1 − cos2α3v43e

2νð1−v2
3
ÞÞ−1

2

�
ð2:39Þ

and

L ¼
ffiffiffiffiffi
λ2
s

r �Z
1

0

dv2v22e
λ2ð1−v22Þð1 − v42e

2λ2ð1−v22ÞÞ−1
2

þ
Z

1ffiffiffi
ν
λ2

p dv2v22e
λ2ð1−v22Þð1 − v42e

2λ2ð1−v22ÞÞ−1
2

�

− cos α3

ffiffiffi
ν

s

r Z
1

0

dv3v23e
νð1−v2

3
Þ

× ð1 − cos2α3v43e
2νð1−v2

3
ÞÞ−1

2: ð2:40Þ

In the meantime, the expression for the total energy of the
configuration becomes
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E3Q
¼ g

ffiffiffi
s
ν

r �
3κe−2ν − 2

þ
Z

1

0

dv1
v21

ðeνv21ð1 − v41e
2νð1−v2

1
ÞÞ−1

2 − 1Þ

þ
Z

1

0

dv3
v23

ðeνv23ð1 − cos2α3v43e
2νð1−v2

3
ÞÞ−1

2 − 1Þ
�

þ g

ffiffiffiffiffi
s
λ2

r �Z
1

0

dv2
v22

ðeλ2v22ð1 − v42e
2λ2ð1−v22ÞÞ−1

2 − 1 − v22Þ

þ
Z

1ffiffiffi
ν
λ2

p
dv2
v22

eλ2v
2
2ð1 − v42e

2λ2ð1−v22ÞÞ−1
2

�
þ C: ð2:41Þ

For completeness, we include the corresponding equa-
tions for cos α3 and ν in our analysis. A short calculation
shows that Eq. (2.37) becomes

cos α3 ¼ 1 −
ν

λ2
eλ2−ν ð2:42Þ

and Eq. (2.38) becomes

�
1 −

ν2

λ22
e2ðλ2−νÞ

�1
2

−
�
1 −

�
1 −

ν

λ2
eλ2−ν

�
2
�1

2

þ 3κð1þ 4νÞe−3ν ¼ 0: ð2:43Þ

Even for this simplified form, we do not know how to
explicitly express ν as a function of λ2, but of course it can
be done numerically.

Thus, in the case α1 ¼ 0, the potential can be parametri-
cally written as E3Q

¼ Eðλ2Þ, l ¼ lðλ2Þ, and L ¼ Lðλ2Þ.
The parameter takes values on the interval [0, 1]. But one
important fact about such a configuration is that it occurs
only at specific values of l and L, as follows from the last
two equations.

3. Configuration with α1 > 0

Finally, to complete the picture, we need to consider the
configurations with α1 > 0. Such configurations exist for
smaller l. This can be done by slightly extending what we
have described so far. The novelty is that the first string has
a shape similar to that of Fig. 10, on the left.
First, xþ þ l is no longer expressed by Eq. (A16) but by

Eq. (A6). Since the third string keeps its shape, Eq. (2.32)
holds. From this, it follows that

l¼
ffiffiffi
ν

s

r X
i¼1;3

Z
1

0

dviv2i e
νð1−v2i Þcosαið1−cos2αiv4i e

2νð1−v2i ÞÞ−1
2:

ð2:44Þ

At the same time, L − xþ is expressed by Eq. (A16), which
makes Eq. (2.34) true for α1 > 0 as well.
Second, the energy of the first string is now given by

Eq. (A9) rather than by Eq. (A20). Making this replacement
in Eq. (2.35), we get the total energy

E3Q
¼ g

ffiffiffiffiffi
s
λ2

r �Z
1

0

dv2
v22

ðeλ2v22ð1 − v42e
2λ2ð1−v22ÞÞ−1

2 − 1 − v22Þ þ
Z

1ffiffiffi
ν
λ2

p
dv2
v22

eλ2v
2
2ð1 − v42e

2λ2ð1−v22ÞÞ−1
2

�

þ g

ffiffiffi
s
ν

r �
3κe−2ν þ

X
i¼1;3

Z
1

0

dvi
v2i

ðeνv2i ð1 − cos2αiv4i e
2νð1−v2i ÞÞ−1

2 − 1 − v2i Þ
�
þ C: ð2:45Þ

Now, let us see how the potential can be written para-
metrically as E3Q

¼Eðν;λ2Þ, l ¼ lðν; λ2Þ, and L ¼ Lðν; λ2Þ.
From Eqs. (A17) and (2.31), it follows that

cos α1 ¼ cos α3 þ
ν

λ2
eλ2−ν: ð2:46Þ

Plugging this into the second equation of Eq. (2.31) gives

�
1 −

ν2

λ22
e2ðλ2−νÞ

�1
2

−
�
1 −

�
cos α3 þ

ν

λ2
eλ2−ν

�
2
�1

2

− ½1 − cos2α3�12 þ 3κð1þ 4νÞe−3ν ¼ 0: ð2:47Þ

This equation can be used to solve, at least numerically, for
cos α3 under the given values of ν and λ2.

At this point, it is worth noting that at α1 ¼ 0 all the above
formulas reduce to those of the previous section. This fact
can be used as a self-consistency check of the results.
To summarize, the three-quark potential is given in para-

metric form byE3Q
¼Eðν;λ2Þ, l¼ lðν;λ2Þ, andL ¼ Lðν; λ2Þ.

Theparameters ν andλ2 takevalues on the intervals ½0; ν0� and
[0, 1], where ν0 is a solution to Eq. (2.43) at λ2 ¼ 1.

4. What we have learned

In Fig. 6, we display our result for the potential E3Q
ðl; LÞ

obtained from the three different types of configurations.
For simplicity, we restrict to the case L ≥ l. Since the
function E3Q

is symmetric under the exchange of l and L,
one can easily obtain E3Q

for the opposite case by a
reflection in the line l ¼ L.
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One lesson to learn from this example is that in the limit
λ2 → 1, along the curve given by α1 ¼ 0, the value of L
goes to infinity, while that of l stays bounded. Indeed, it
follows from Eq. (2.39) that lðλ2Þ is an increasing function
of λ2 of which the limiting value at λ2 ¼ 1 is given by

lmax ¼
ffiffiffiffiffi
ν0
s

r Z
1

0

dv½ðv−4e2ν0ðv2−1Þ − 1Þ−1
2

þ ðð1 − ν0e1−ν0Þ−2v−4e2ν0ðv2−1Þ − 1Þ−1
2�: ð2:48Þ

The same conclusion is true for the configuration with
α1 > 0. The separation l is bounded from above by lmax,
while L is not. This can also be seen from Fig. 6.
Let us make a simple estimate of lmax. For the same

parameter values as in Fig. 6, expression (2.48) yields
lmax ≈ 0.1 fm. This value is compatible with an estimate for
a size of the bb diquark obtained from l ∼ 2=mb.
Another lesson is that at large separations between the

quarks, when both L and l go to infinity, the potential
behaves like

E3Q
ðl; LÞ ¼ σðLþ lÞ þ cþ oð1Þ; ð2:49Þ

with c given by Eq. (2.26). To deduce this, we consider the
configuration with α1 < 0 and use the fact that this limiting
case corresponds to a small region near the point (1, 1) in
the parameter space ðλ1; λ2Þ. As in Sec. II. C, we expand
the right-hand sides of Eqs. (2.33), (2.34), and (2.35) near
(1, 1) and then reduce the three equations to the single
equation (2.49).
Besides looking for possible applications to phenom-

enology, it would be very interesting to confront our
predictions with future numerical simulations.

III. MORE ON LIMITING CASES

In Sec. II, we took the collinear geometry as the basic
example to illustrate the use of the string theory technique
in practice. There is more to say if we consider the situation
when two quarks get close to each other. In this case, a
simplified treatment is to consider a system of two particles,
the quark and diquark. The analysis of Sec. II allows us to
shed some light on that situation.

A. Quark-diquark potential

It is known that in the limit of large quark masses QCD
has a symmetry which relates hadrons with two heavy
quarks to analogous states with one heavy antiquark [33].
This implies that we should be able to reproduce the heavy
quark-antiquark potential from the results of Sec. II.
To show this, let us consider a collinear configuration

with L fixed and l → 0.14 In this case, we should pick the
configuration with α1 > 0. A short analysis shows that in
terms of the parameters what we need is to take the limit
ν → 0 with λ2 fixed.
Letting ν → 0 in Eqs. (2.46) and (2.47), we get

α1 ¼ α3; with α3 ¼ arcsin
1þ 3κ

2
: ð3:1Þ

These formulas mean that in this limit the angle α2 becomes
a right angle.
The result of taking ν → 0 in Eq. (2.44) is trivial, l ¼ 0.

But in Eq. (2.34), it turns out to be

L ¼ 2

ffiffiffiffiffi
λ2
s

r Z
1

0

dv2v22e
λ2ð1−v22Þð1 − v42e

2λ2ð1−v22ÞÞ−1
2: ð3:2Þ

Notice that L is a continuously increasing function of λ2. It
vanishes at λ2 ¼ 0 and develops a logarithmic singularity
at λ2 ¼ 1.
Taking the limit ν → 0 in Eq. (2.45) requires some care.

Because of divergences at ν ¼ 0, we need a regulator that
renders E3Q

finite. The right procedure, which is consistent
with what we did before, is to first replace ν by its lower
bound. It is given by sϵ2 as it follows from the lower bound
on r. Then, the regularized expression for E3Q

is given by

ER ¼ g

ffiffiffiffiffi
s
λ2

r �Z
1

0

dv2
v22

ðeλ2v22ð1 − v42e
2λ2ð1−v22ÞÞ−1

2 − 1 − v22Þ

þ
Z

1 ffiffiffi
s
λ2

p
ϵ

dv2
v22

eλ2v
2
2ð1 − v42e

2λ2ð1−v22ÞÞ−1
2

�
þ g

ϵ

�
3κe−2sϵ

2

þ 2

Z
1

0

dv1
v21

ðesϵ2v21ð1 − cos2α1v41e
2sϵ2ð1−v2

1
ÞÞ−1

2

− 1 − v21Þ
�
þ C: ð3:3Þ

FIG. 6. The three-quark potential E3Q
ðl; LÞ at g ¼ 0.176,

s ¼ 0.44 GeV2, κ ¼ −0.083, and C ¼ 1.87 GeV. The solid
curve indicates where α1 ¼ 0. The dashed curve represents the
potential at l ¼ L.

14One can think of l as a diquark size.
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A little calculation reveals that the expansion in powers of ϵ
takes the form

ER ¼ g
ϵ
E0 þ EQD þ oð1Þ; ð3:4Þ

where E0 is given by Eq. (C10). Notice that the singular
term contains divergences coming from an infinitely
large quark mass as well as self-energies of the vertex
and strings. It is important that the coefficient E0 does
not depend on λ2 and, as a consequence, on L. This
allows one to deal with the divergence in a fashion
similar to the standard treatment of power divergences
in Wilson loops.
Subtracting the 1

ϵ term and letting ϵ ¼ 0, we get a finite
result,

EQD ¼ 2g

ffiffiffiffiffi
s
λ2

r Z
1

0

dv2
v22

ðeλ2v22ð1 − v42e
2λ2ð1−v22ÞÞ−1

2

− 1 − v22Þ þ C0: ð3:5Þ

Here, C0 is a normalization constant which is scheme
dependent.
Equations (3.2) and (3.5) provide a parametric repre-

sentation of the quark-diquark potential at distances much
larger than the diquark size. This parametric representation
coincides with that of Ref. [22] for the quark-antiquark
potential, as expected [33].

B. Quark-quark potential

We will describe a static potential which represents
a part of the interquark interaction inside heavy
diquarks of small size. As above, we pick the
configuration with α1 > 0. However, we now consider
the case when l is small but nonzero and L → ∞, as
sketched in Fig. 7. This means that one quark is
placed far away from the others such that its impact on
the diquark can be easily assessed. From Eqs. (2.34)
and (2.44), it follows that in terms of the parameters ν
and λ2 we need to consider a small region near the
point (0, 1) in the parameter space ðν; λ2Þ. The

difference with what we have done in Sec. II. A is
that in the expansions in powers of ν we should keep
track of small terms which give rise to a term linear in
l in the expression for the total energy.
With the help of the expansions (C8), one readily

sees that for small l and large L the three-quark potential
behaves like

E3Q
ðl;LÞ¼−

αQQ
l

þσ0lþσ

�
Lþ1

2
l

�
þcþoðlÞ; ð3:6Þ

where

αQQ ¼ −l0E0g;

σ0 ¼
1

l0

�
E1 þ

l1
l0
E0

�
gs;

c ¼ 2g
ffiffiffi
s

p Z
1

0

dv
v2

ðev2ð1 − v4e2ð1−v2ÞÞ12 − 1 − v2Þ þ C:

ð3:7Þ

The li’s and Ei’s are given by Eqs. (C9) and (C10),
respectively. Notice that in Eq. (3.7) the difference between
c and C is written as an integral which is equal to that
obtained in the quark-antiquark potential at long distances
[26]. This is consistent with the symmetry [33].
There is an important subtlety that arises when one

tries to extract the quark-quark potential from the above
expression. This subtlety is related to the fifth dimen-
sion. The point is that in the limit we are considering
the x coordinate of the vertex turns out to be xþ ¼ −l=2.
In other words, the vertex is located between the Q1 and
Q3 quarks, as shown in Fig. 7. In contrast, from the
four-dimensional perspective, it should be located at
xþ ¼ 0 because in the case of the collinear geometry the
vertex (the Fermat point) coincides with Q3.

15 Thus, we
have to subtract from E3Q

the term proportional to σ and
a constant term. Such a constant term has to include a
contribution from the integral on the right-hand side of
the last equation in Eq. (3.7). These two terms represent
the quark-diquark binding energy at large distances. As
a result, we get

EQQðlÞ ¼ −
αQQ
l

þ σ0lþ C0 þ oðlÞ; ð3:8Þ

with C0 a normalization constant. This is the main result
of this section.
Having derived the static quark-quark potential, we can

make some estimates of αqq and σ0. Using the fitted value
of κ, we get

FIG. 7. A collinear configuration for L ≫ l.

15Note that in the model we are considering a projection of V
on the boundary coincides with the Fermat point only in the
infrared limit, when the quarks are far away from each other [17].
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αQQ
αQQ̄

≈ 0.466;
σ0
σ
≈ 0.785: ð3:9Þ

Here, we have used αQQ̄ from the quark-antiquark potential.
Thus, our estimates suggest that the ratio αQQ=αQQ̄ is close
to 1

2
and that the effective string tension inside a heavy

diquark is approximately 20% less than the physical
tension.
In phenomenology,16 the quark-quark potential is usually

related to the quark-antiquark potential by Lipkin’s rule.
This is an Ansatz which says that EQQ ¼ 1

2
EQQ̄ [35]. Our

estimate of αQQ=αQQ̄ is relatively close to it, whereas that of
σ0=σ is somewhat larger.
It is also worth noting that in four dimensions a simple

estimate based on a string model yields a larger value for

the ratio σ0=σ. It is
ffiffi
3

p
2
≈ 0.866 [36]. The caution here is that

the reason for decreasing the string tension is geometric and
nothing similar happens once three quarks are placed on a
straight line.

IV. EXAMPLE OF HYBRID
THREE-QUARK POTENTIAL

Here, we will describe a special type of hybrid three-
quark potentials, namely, the potentials of which the
gluonic excitations are similar to those in the Σ−

u potential
for the quark-antiquark. For simplicity, we illustrate only
the case in which one string is excited. The question we
want to address is this: what is the impact of gluonic
excitations on the physical picture we found for the
ground state?
Consider the configuration of Fig. 2. We are going to

modify it by exciting one string via gluonic excitations so
that the quarks remain at the same positions, i.e., at the
vertices of the equilateral triangle. Unfortunately, we know
of no efficient way to describe all possible excitations
[25,37] within our model. The only exception is the so-
called Σ excitations which have zero angular momentum.
From the five-dimensional point of view, such excitations
may be modeled by cusps on the Nambu-Goto strings [26].
Importantly, cusps are allowed only in the radial direction
that has no impact on smoothness of a four-dimensional
picture.
One way to implement this is to insert a local object,

called the defect, on a string [26]. Technically, it is quite
similar to what we did before for the baryon vertex, with
the only difference being that two strings join at a defect in
the interior as shown in Fig. 11. By inserting the defect
on the third string of Fig. 2, we construct a new configu-
ration shown in Fig. 8. It is an example of a string picture
(five-dimensional) of hybrid baryons. Notice that the
configuration has a reflection symmetry with respect to
the y axis.

Let us begin our analysis with the gluing conditions.
As follows from the discussion in Appendix B, the only
condition to be satisfied at the defect is that

sin α3 − κdð1þ 4λÞe−3λ ¼ 0; ð4:1Þ

with κd ¼ n
2g. One can obtain it from Eq. (B7) by simply

replacing ν with λ and α1 with α3. The conditions at the
vertex are a bit more involved since there are two equations
for force equilibrium, in the y and r directions. From
Eq. (B14), it follows that

cos α03 ¼ 2 cos α1 sin β;

sin α03 − 2 sin α1 þ 3κð1þ 4νÞe−3ν ¼ 0; ð4:2Þ

where β is the angle shown in Fig. 8. Notice that α03 is
positive and is related by Eq. (A15) to α3 so that
eλ
λ cos α3 ¼ eν

ν cos α
0
3.

In Sec. II, we observed that a string shape can change as
a quark attached to its end point approaches another one. In
the example we are analyzing, there is a similar story. A
heuristic understanding of this can be obtained without
resorting to explicit calculations, as follows. For large L,
the configuration looks pretty much like that of Fig. 2
because a local defect has a little impact on very long
strings. This implies that α1 is negative. For small L, the
strings become short, and we might expect the opposite to
happen. It does happen when the defect has the dominant
effect. In this case, shown in Fig. 8, the third string is
stretched along the r axis from the boundary at r ¼ 0 to a
position of the defect at r ¼ r0þ, whereas the vertex is
located at r ¼ rþ such that rþ ≪ r0þ. It is obvious that α1 is
now positive. This means that a flip of sign in α1 occurs at
some value of L.

FIG. 8. A hybrid baryon configuration. The quarks Qi are
placed at the vertices of the equilateral triangle. V and D denote
the vertex and defect.

16See, e.g., Ref. [34] and references therein.
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A. Configuration with α1 < 0

We begin with the case that the nonexcited strings have
negative slopes at the vertex. Equation (A16) tells how to
write the distance between the points Q1 and O via an
integral. It is

l1 ¼
ffiffiffiffiffi
λ1
s

r �Z
1

0

dv1v21e
λ1ð1−v21Þð1 − v41e

2λ1ð1−v21ÞÞ−1
2

þ
Z

1ffiffiffi
ν
λ1

p dv1v21e
λ1ð1−v21Þð1 − v41e

2λ1ð1−v21ÞÞ−1
2

�
; ð4:3Þ

with eλ1
λ1

¼ eν
ν cos α1.

Given Eqs. (A6) and (A11), we see that the distance
between the point Q3 and O can be represented as a sum of
integrals

l3¼ cosα3

ffiffiffi
λ

s

r �Z
1

0

dv3v23e
λð1−v2

3
Þð1−cos2α3v43e

2λð1−v2
3
ÞÞ−1

2

þ
Z

1ffiffi
ν
λ

p dv3v23e
λð1−v2

3
Þð1−cos2α3v43e

2λð1−v2
3
ÞÞ−1

2

�
: ð4:4Þ

Note that in order for the integrals to remain well defined
and finite the condition must hold that λ < λ−, where λ− is a
solution of equation cosα3 ¼ λe1−λ. In particular, in the
limit λ → λ−, one has l3 → ∞. In this limit, l1 also goes to
infinity with ν going to ν� which is defined by Eq. (2.9). For
κd ¼ 1300, the numerical calculation gives λ− ≈ 3.29334.
It is convenient to use the law of sines to complete the

calculation for L. In the triangle OQ1Q3, we have

l1 ¼
L

2 cos β
¼ l3ffiffiffi

3
p

cos β − sin β
; ð4:5Þ

which yields

L ¼ l1 cos β: ð4:6Þ

Coming back to the law of sines, we see that we must also
satisfy the constraint

l3 ¼ l1ð
ffiffiffi
3

p
cos β − sin βÞ: ð4:7Þ

The energies of the first and second strings can be read
from Eq. (A20), while that of the third can be read from
Eqs. (A9) and (A12). Combining those with Eqs. (2.3) and
(2.4) for the gravitational energies of the vertex and defect,
we find the total energy17

~E3Q
¼ 2g

ffiffiffiffiffi
s
λ1

r �Z
1

0

dv1
v21

ðeλ1v21ð1 − v41e
2λ1ð1−v21ÞÞ−1

2 − 1 − v21Þ

þ
Z

1ffiffiffi
ν
λ1

p
dv1
v21

eλ1v
2
1ð1 − v41e

2λ1ð1−v21ÞÞ−1
2

�

þ g

ffiffiffi
s
λ

r �Z
1

0

dv3
v23

× ðeλv23ð1 − cos2α3v43e
2λð1−v2

3
ÞÞ−1

2 − 1 − v23Þ

þ
Z

1ffiffi
ν
λ

p
dv3
v23

eλv
2
3ð1 − cos2α3v43e

2λð1−v2
3
ÞÞ−1

2

�

þ 3κg

ffiffiffi
s
ν

r
e−2ν þ 2κdg

ffiffiffi
s
λ

r
e−2λ þ C: ð4:8Þ

Now, let us try to understand how the potential can
be written parametrically as ~E3Q

¼ ~EðλÞ and L ¼ LðλÞ.
This is done in two steps. First, Eqs. (4.1) and (4.2)
imply that the angles can be determined in terms of ν
and λ. With this result, we have ~E3Q

¼ ~Eðλ; νÞ and
L ¼ Lðλ; νÞ. Finally, we use the constraint (4.7) to
write ν in terms of λ. Unfortunately, we know of no
ways to implement these steps analytically, but only
numerically.
To summarize, the hybrid three-quark potential is given

in parametrical form by ~E3Q
¼ ~EðλÞ and L ¼ LðλÞ. The

parameter takes values on the interval ½λ00; λ−�, where λ00
is defined below.

B. Configuration with α1 = 0

Now, we will discuss the case α1 ¼ 0. As in the
example of Sec. II, at α1 ¼ 0, a transition between the
two types of profiles occurs. Since there is only one
parameter in the problem, the additional condition should
be able to determine its value at the transition point,
namely, λjα1¼0 ¼ λ00.
In this case, it is easy to explicitly show that

sin α03 ¼ −3κð1þ 4νÞe−3ν;

sin β ¼ 1

2
½1 − 9κ2ð1þ 4νÞ2e−6ν�12 ð4:9Þ

and, as a consequence, the relation between λ and ν is
given by

eλ

λ
½1 − κ2dð1þ 4λÞ2e−6λ�12 ¼ eν

ν
½1 − 9κ2ð1þ 4νÞ2e−6ν�12:

ð4:10Þ

The additional relation is provided by Eq. (4.7). Then, at
least in principle, one can find ν and λ by solving the two
equations simultaneously at given values of κ and κd. In
practice, we can do it only numerically. For κ ¼ −0.08317We use a tilde to denote hybrid potentials.
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and κd ¼ 1300, we get ν0 ≈ 0.99997 and λ00 ≈ 3.29326.
Importantly, we have found that λ00 < λ−, as expected for
consistency. Finally, let us note that the value of L at the
transition point turns out to be quite large. For the
parameter values quoted above, it is about 2.83 fm.

C. Configuration with α1 > 0

Now, let us discuss the case α1 > 0. We can obtain the
hybrid potential by making a simple modification to what
we have described so far. The novelty here is that the shape
of the nonexcited strings changes. This is important for
understanding the short distance behavior of ~E3Q

.
In this case, l1 is expressed by Eq. (A6) and therefore

takes the form

l1 ¼ cos α1

ffiffiffi
ν

s

r Z
1

0

dv1v21e
νð1−v2

1
Þð1 − cos2α1v41e

2νð1−v2
1
ÞÞ−1

2:

ð4:11Þ

In addition, the energies of the nonexcited strings are now
expressed by Eq. (A9). Replacing the corresponding terms
in Eq. (4.8), we obtain the total energy of the configuration:

~E3Q
¼ g

ffiffiffi
s
ν

r �
3κe−2ν

þ 2

Z
1

0

dv1
v21

ðeνv21ð1− cos2α1v41e
2νð1−v2

1
ÞÞ−1

2 − 1− v21Þ
�

þ g

ffiffiffi
s
λ

r �
2κde−2λ

þ
Z

1

0

dv3
v23

ðeλv23ð1− cos2α3v43e
2λð1−v2

3
ÞÞ−1

2 − 1− v23Þ

þ
Z

1ffiffi
ν
λ

p
dv3
v23

eλv
2
3ð1− cos2α3v43e

2λð1−v2
3
ÞÞ−1

2

�
þC:

ð4:12Þ

At this point, we can complete the parametric description
of the three-quark potential. As before, the law of sines
yields the expression for L and the constraint on the
number of parameters. Thus, the hybrid three-quark
potential is given by ~E3Q

¼ ~EðλÞ and L ¼ LðλÞ, with the
parameter taking values in the interval ½λþ; λ00�. Here, λþ
is a solution of equation sinα3 ¼ 1. Note that in the limit
λ → λþ one has L → 0 and ν → 0. For κd ¼ 1300, the
numerical calculation gives λþ ≈ 3.27179, which is con-
sistent with λþ < λ00.

D. What we have learned from this example

Having derived the expression for the hybrid three-quark
potential, we can gain some understanding of what happens

to the physical picture we found for the ground state if
gluonic excitations are of string nature.18

It is simplest to begin with the limiting cases: short and
long distances L. To analyze the short distance behavior of
~E3Q

, we consider the limit λ → λþ. First, we expand the
right-hand sides of Eqs. (4.6) and (4.12) near λ ¼ λþ. Next,
we reduce these equations to a single equivalent equation,

~E3Q
ðLÞ ¼ −

αQQ
L

þ ~Cþ σ0Lþ 3

4
AL2 þ oðL2Þ; ð4:13Þ

where αQQ and σ0 are given by Eq. (3.7). In other words,
the odd-term coefficients coincide with those of the quark-
quark potential. The remaining even-term coefficients are

~C ¼ 2g

ffiffiffiffiffi
s
λþ

s
ðκde−2λþ − eλþ þ ffiffiffiffiffiffiffiffi

πλþ
p

Erfið ffiffiffiffiffi
λþ

p ÞÞ þ C;

A ¼ gs
3
2ð ffiffiffi

π
p

Erfð ffiffiffiffiffi
λþ

p Þ − 2
ffiffiffiffiffi
λþ

p
e−λþÞ−1: ð4:14Þ

These coincide with those of the Σ−
u hybrid potential [26].19

Note that the factor 3
4
is of geometric nature. The excited

string is perpendicular to the side of the triangle such that
the distance between its end points is equal to the height of

the triangle h ¼
ffiffi
3

p
2
L.

Equation (4.13) has some conceptual interest. Let us first
write it as

~E3Q
ðLÞ ¼ EQQðLÞ þ ~EQQ̄ðhÞ þ oðL2Þ: ð4:15Þ

This formula shows that at short distances the hybrid three-
quark potential is described by a sum of two-body
potentials. Using Eqs. (3.8) and (3.9) and keeping only
the leading terms, we obtain

~E3Q
ðLÞ ≈ 1

2
EQQ̄ðLÞ þ ~EQQ̄ðLÞ: ð4:16Þ

This result is notable because it suggests a relation between
the hybrid three-quark and quark-antiquark potentials. In
Appendix D, we give a more detailed and precise account of
this relation, which is in fact a generalization of the Δ law.
Another interesting conclusion one can draw from

Eq. (4.13) is that it suggests that the quark-quark potential
(3.8), which is defined when one starts with E3Q

and then
takes one quark away from the others, is universal
(geometry independent).20

18Alternatively, there may be an option of getting hybrid
potentials by exciting the baryon vertex.

19For the constant term, it only makes sense to speak of the
scheme-independent part ~C − C.

20This issue was raised by Ph. de Forcrand. In an effort to
provide more evidence, we have carried out the calculation using
the same geometry as that of Ref. [36]. See Appendix E for more
details.
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In a similar spirit, we can explore the long distance
behavior of ~E3Q

. Expanding now the right-hand sides near
λ ¼ λ−, we reduce the two equations to a single one:

~E3Q
ðLÞ ¼

ffiffiffi
3

p
σLþ cþ Δþ oð1Þ: ð4:17Þ

Here, c is the same constant as that in the expression (2.13)
for the ground state.
The basic fact about Eqs. (2.12) and (4.17) is a finite gap

between ~E3Q
and E3Q

at large L. Explicitly, it is given by

Δ ¼ lim
L→∞

~E3Q
ðLÞ − E3Q

ðLÞ

¼ 2g
ffiffiffi
s

p �
κdffiffiffiffiffi
λ−

p e−2λ− þ
Z ffiffiffiffi

λ−
p

1

dv
v2

ev
2ð1 − v4e2ð1−v2ÞÞ12

�
:

ð4:18Þ

The result agrees with the calculation of Ref. [26] for the
hybrid quark-antiquark potentials. This suggests that the
gap Δ, like the physical string tension σ, is universal
(geometry independent). It is one of the main results of
this paper.
Now a question arises: what happens in between? In

Fig. 9, we display our results for the three-quark potentials.
Here, in addition to the parameters of Fig. 3, there is

the parameter κd. We set κd ¼ 1300 by fitting the gap
to Δ ¼ 0.78 GeV.21 Notice that it deviates from the value
κd ¼ 2000 used in Ref. [26]. This might seem strange, but it
is easily explained. The point is that A is a slow varying

function of κd. Indeed, a numerical calculation shows
that Að2000Þ=Að1300Þ ≈ 0.99. This is the reason for the
deviation if κd is fitted to A.
For large L, our model reveals the Y law, as it follows

from the slope in Eq. (4.17). In contrast, the Δ law (4.13)
yields the smaller slope equal to that of Sec. II. It is worth
noting that ~E3Q

approaches the linear behavior at larger
separations than E3Q

does. The linear approximation is

accurate enough for ~E3Q
when L ≥ 1 fm compared to

L ≥ 0.6 fm for E3Q
[18]. For small L, the Δ law is a good

approximation to ~E3Q
. However, the deviation increases with

L, as seen from Fig. 9. Thus, our model predicts that for
hybrid potentials the physical picture remains essentially the
same: it incorporates two-body interactions at short distances
and a genuine three-body interaction at longer ones.
We conclude our discussion of this example by making a

couple of remarks. First, one can see from Fig. 9 that the
function ~E3Q

ðLÞ has an inflection point at L ¼ Li. The
expression (4.13) allows one to make an estimate of Li. It is
Li ≈ 0.34 fm. Interestingly, in Eq. (4.13), the 1=L and L2

terms cancel each other at L ¼ Li. Second, we have
considered the case when only one string is excited. The
generalization to the case in which two or three strings
are excited is straightforward, but technical and more
elaborate.

V. CONCLUDING COMMENTS

The purpose of this paper has been to make predictions
based on the success of previous work [18,22,26]. The
motivation was to gain some understanding of how baryons
are put together from quarks.
The model we are pursuing has led to a number of

interesting conclusions:
(1) The usual view on the three-quark potential is that the

potential can be well approximated by theΔ law (1.1)
at short distances and by the Y law (1.2) at long
ones.22 Mathematically, the point is that it is described
by a complicated function of which the asymptotic
behavior is given by those laws. We found that a
further refinement of this view should take into
account that in Eqs. (1.1) and (1.2) the coefficients
α3Q and c are not universal but dependent of a
geometry of sources (quarks). Translating into math-
ematical language, the coefficients depend on angular
variables. Physically, this is a signature of genuine
three-body interactions, even at short distances.

(2) The given example of a hybrid three-quark potential
suggests that one may regard the Δ and Y laws as

FIG. 9. The static three-quark potential and its hybrid excitation
obtained on an equilateral triangle of side length L. The dashed
curve corresponds to the Δ law (4.13), and the dotted one
corresponds to the Y law (4.17).

21This value was determined from the spectra of closed string
excitations [38]. It is quite close to that determined from the
hybrid potentials [25,26]. This fact also suggests the universality
of the gap.

22Interestingly, a similar pattern also occurs in three dimensions
[39]. Here, it was found that a Lüscher-like correction, which is
subleading to a constant term in the long-distance expansion of the
three-quark potential, is geometry dependent [40].
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good approximations to the hybrid potentials as
well.

(3) There are at least two possible ways to cross check
our findings. One way is by performing lattice
simulations, and another is by multiloop calculations
in perturbative QCD [41].

(4) The model we are developing is an effective string
theory based on the Nambu-Goto formalism in a
curved space. Therefore, it has some limitations. In
particular, an issue of the Lüscher-like correction
remains unclear. Another unclear issue is that a force
of attraction occurs between the vertex and the
boundary. What could be the reason for this? m is
a result of a resummation of infinitely many terms
(α0 corrections) in the 5-brane action. Is it negative
because the brane tension is negative, and if so, does
it lead to instability?23 These questions have no
obvious answers. The Green-Schwarz formalism,
already developed for strings on AdS5 × S5 [43],
seems more appropriate to address these issues.
However, this is still far from having been imple-
mented. It is even not clear whether the Ansatz (2.2),
which is a deformation of AdS5 × S5, is a solution of
the supergravity equations. If so, what role do the
other background fields play in QCD? What is clear
is that finding the way to the string description of
QCD is a challenging and difficult problem, and
along the way, we will see and experience a lot of
things [44]. In the meantime, lattice gauge theory
and effective string models will remain the main
tools of investigation.
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APPENDIX A: STATIC NAMBU-GOTO STRING
WITH FIXED END POINTS

In this Appendix, we will discuss a static Nambu-Goto
string in the curved geometry (2.2). The results provide the
grounds for building multistring configurations.

The Nambu-Goto action is given by

S ¼ 1

2πα0

Z
1

0

dσ
Z

T

0

dτ
ffiffiffi
γ

p
; ðA1Þ

with γ an induced metric on the string world sheet (with
Euclidean signature). Consider a string stretched between
the two fixed points Pðx−; r−Þ and Bðxþ; rþÞ in the xr
plane such that xþ ≥ x− and rþ ≥ r−. This implies the
following boundary conditions:

xð0Þ ¼ x−; xð1Þ ¼ xþ; rð0Þ ¼ r−; rð1Þ ¼ rþ:

ðA2Þ

In the static gauge, t ¼ τ and x ¼ aσ þ b, the action
takes the form

S ¼ Tg
Z

xþ

x−

dxwðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

q
; with wðrÞ ¼ esr

2

r2
:

ðA3Þ

For convenience, we use the shorthand notation g ¼ R2

2πα0

and ∂xr ¼ ∂r
∂x. Since the integrand in Eq. (A3) does not

depend explicitly on x, the Euler-Lagrange equation has the
first integral

I ¼ wðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

p : ðA4Þ

At the end points, I can be written as

I ¼ wðr�Þ cos α�; ðA5Þ

where tan α� ¼ ∂xrjx¼x� and α� ∈ ½− π
2
; π
2
�.

In general, αþ can be positive or negative. If αþ > 0,
then a function rðxÞ describing a string profile is increasing
on the interval ½x−; xþ�. If αþ < 0, then the situation is a
little bit more complicated. rðxÞ is increasing on the interval
½x−; xmax� and decreasing on the interval ½xmax; xþ� such
that it has a maximum at x ¼ xmax. Examples for both cases
are sketched in Fig. 10. First, we describe the case of
positive αþ.

1. Case αþ ≥ 0

We begin with the case in which P lies on the
boundary, which means ¼ 0. After expressing I in terms
of αþ and rþ, we get a differential equation wðrþÞ cos αþ ¼
wðrÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xrÞ2

p
that can be integrated over the variables

x and r. So, we have

23This is not so obvious because a baryonic configuration is
not a single brane but a bound state, and the value we need is quite
small. There has been an extensive discussion of negative tension
branes, but in other contexts [42].
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l ¼ xþ − x− ¼ cos αþ

ffiffiffiffiffiffi
νþ
s

r Z
1

0

dvv2eνþð1−v2Þ

× ð1 − cos2αþv4e2νþð1−v
2ÞÞ−1

2; ðA6Þ

where ν� ¼ sr2�. This integral is well defined for νþ < 1,
while for larger values of νþ, it becomes ill defined
unless νþe1−νþ ≥ cos αþ.
Having derived the expression for the string length along

the x axis, we can give a formal recipe for computing the
energy of the string. First, we reduce the integral over x in S
to that over r. This is easily done by using the first integral.
Since the integral is divergent at r ¼ 0, we regularize it by
imposing a cutoff ϵ such that r ≥ ϵ. Finally, the regularized
expression is given by

ER¼
SR
T
¼g

ffiffiffiffiffiffi
s
νþ

s Z
1 ffiffiffiffi

s
νþ

p
ϵ

dv
v2

eνþv
2ð1−cos2αþv4e2νþð1−v

2ÞÞ−1
2:

ðA7Þ

In the limit as ϵ → 0, it behaves like

ER ¼ g
ϵ
þ EþOðϵÞ: ðA8Þ

Subtracting the 1
ϵ term and letting ϵ ¼ 0, we get a finite

result,

E ¼ g

ffiffiffiffiffiffi
s
νþ

s Z
1

0

dv
v2

ðeνþv2ð1 − cos2αþv4e2νþð1−v
2ÞÞ−1

2

− 1 − v2Þ þ c; ðA9Þ

with c a normalization constant.
If we set αþ ¼ π

2
, then the string becomes straight. In that

case, we obtain

l ¼ 0; E ¼ g

ffiffiffiffiffiffi
s
νþ

s
ð ffiffiffiffiffiffiffiffi

πνþ
p

Erfið ffiffiffiffiffiffi
νþ

p Þ − eνþÞ þ c;

ðA10Þ

which is the form in which it is written in Ref. [45]. ErfiðxÞ
is the imaginary error function.
It is straightforward to extend this analysis to the case in

which the end point P is not on the boundary but in the
interior such that r− > ϵ. As before, we express I in terms
of αþ and rþ and then integrate the differential equation.
After doing so, we find

l ¼ cos αþ

ffiffiffiffiffiffi
νþ
s

r Z
1 ffiffiffiffi

ν−
νþ

p dvv2eνþð1−v2Þ

× ð1 − cos2αþv4e2νþð1−v
2ÞÞ−1

2: ðA11Þ
The integral is well defined for ν� > 1. It becomes ill
defined for smaller values unless cosαþ ≤ νþe1−νþ for
ν− < 1 and cos αþ ≤ νþ

ν−
eν−−νþ for ν� < 1.

Then, we compute the energy

E ¼ g

ffiffiffiffiffiffi
s
νþ

s Z
1 ffiffiffiffi

ν−
νþ

p dv
v2

eνþv
2ð1 − cos2αþv4e2νþð1−v

2ÞÞ−1
2:

ðA12Þ

In that case, there is no need for regularization.
We could of course have defined the first integral in

terms of α− and r−. This gives an equivalent result,

l ¼ cos α−

ffiffiffiffiffi
ν−
s

r Z ffiffiffiffi
νþ
ν−

p
1

dvv2eν−ð1−v2Þ

× ð1 − cos2α−v4e2ν−ð1−v
2ÞÞ−1

2; ðA13Þ

E ¼ g

ffiffiffiffiffi
s
ν−

r Z ffiffiffiffi
νþ
ν−

p
1

dv
v2

eν−v
2ð1 − cos2α−v4e2ν−ð1−v

2ÞÞ−1
2:

ðA14Þ

FIG. 10. A string stretched between two points. α� denote the tangent angles at these points. We assume that rþ < 1=
ffiffiffi
s

p
. Left: The

case αþ > 0. Right: The case αþ < 0.
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It is easy to see that a rescaling v →
ffiffiffiffi
νþ
ν−

q
v reduces these

expressions to those in Eqs. (A11) and (A12). Another
useful formula is

cos α−
eν−

ν−
¼ cos αþ

eνþ

νþ
; ðA15Þ

which follows from Eq. (A5).

2. Case αþ ≤ 0

What we have done so far generalizes straightforwardly
to the case αþ ≤ 0. An important point, which applies to all
expressions written below, is that there are two contribu-
tions: one comes from the interval ½x−; xmax� on which rðxÞ
is increasing and the other from the interval ½xmax; xþ� on
which rðxÞ is decreasing (see Fig. 10). Since the case
r− ≠ 0 is not so important for our applications, we put the
string end point P on the boundary.
If we define the first integral at r ¼ rmax such that I ¼

wðrmaxÞ and then integrate the differential equation (A4)
over both intervals, we get

l ¼
ffiffiffi
λ

s

r �Z
1

0

dvv2eλð1−v2Þð1 − v4e2λð1−v2ÞÞ−1
2

þ
Z

1ffiffiffiffi
νþ
λ

p dvv2eλð1−v2Þð1 − v4e2λð1−v2ÞÞ−1
2

�
; ðA16Þ

with λ ¼ sr2max and νþ < λ. The integrals are well defined if
λ takes values in the interval [0, 1].
The alternative to what we have done is to directly use

Eqs. (A6) and (A11). The first term is obtained by setting
αþ ¼ 0 in Eq. (A6) and then replacing νþ by λ. By
combining this with ν− → νþ in Eq. (A11), one reaches
the desired result.
It is worth noting that λ, νþ, and αþ are not independent.

From Eq. (A4), it follows that

eλ

λ
¼ eνþ

νþ
cos αþ: ðA17Þ

Moreover, λ, as a function of νþ and αþ, can be written in
terms of the ProductLog function as

λ ¼ −ProductLogð−νþe−νþ= cos αþÞ; ðA18Þ

where ProductLogðzÞ is the principal solution for w in
z ¼ wew [31].
As in our previous case, the energy of the string can

computed by first replacing the integral over x in S to that
over r and then imposing the short distance cutoff on r. A
calculation along the above lines gives

ER ¼ g

ffiffiffi
s
λ

r �Z
1ffiffi
s
λ

p
ϵ

dv
v2

eλv
2ð1 − v4e2λð1−v2ÞÞ−1

2

þ
Z

1ffiffiffiffi
νþ
λ

p dv
v2

eλv
2ð1 − v4e2λð1−v2ÞÞ−1

2

�
: ðA19Þ

To obtain from ER a finite result, we need to subtract the 1
ϵ

term and then let ϵ ¼ 0. Finally, we are left with

E ¼ g

ffiffiffi
s
λ

r �Z
1

0

dv
v2

ðeλv2ð1 − v4e2λð1−v2ÞÞ−1
2 − 1 − v2Þ

þ
Z

1ffiffiffiffi
νþ
λ

p dv
v2

eλv
2ð1 − v4e2λð1−v2ÞÞ−1

2

�
þ c; ðA20Þ

where c is the normalization constant. By essentially the
same arguments that we have given for l, the expression for
E can be obtained directly from Eqs. (A9) and (A12).
We conclude this discussion with a couple of remarks.
First of all, in the case αþ ¼ 0, the expressions (A16) and

(A20) are equal to those obtained in the previous section.
Clearly, in this situation, the string profiles sketched in
Fig. 10 coincide with each other.
Although the case αþ ¼ π

2
is trivial, we have presented it

above for completeness reasons; the case αþ ¼ − π
2
needs a

special care. The key point is that the string end point B
approaches the boundary as αþ → − π

2
. Clearly, if I is finite,

then wðrþÞ has to be infinite. This means that νþ goes to
zero as αþ goes to − π

2
. There is no difficulty with Eq. (A16)

because both integrals are convergent. Thus, we have

l ¼ 2

ffiffiffi
λ

s

r Z
1

0

dvv2eλð1−v2Þð1 − v4e2λð1−v2ÞÞ−1
2: ðA21Þ

However, in Eq. (A20) the second integral becomes
divergent at v ¼ 0. We cut off the integral by placing a

lower bound
ffiffi
s
λ

q
ϵ. This is consistent with what we did

before. Indeed, a lower bound r ≥ ϵ implies a lower bound
for νþ of the form νþ ≥ sϵ2. As a result, the regularized
expression is simply

ER ¼ g

ffiffiffi
s
λ

r �Z
1

0

dv
v2

ðeλv2ð1 − v4e2λð1−v2ÞÞ−1
2 − 1 − v2Þ

þ
Z

1ffiffi
s
λ

p
ϵ

dv
v2

eλv
2ð1 − v4e2λð1−v2ÞÞ−1

2

�
þ c: ðA22Þ

It diverges for ϵ → 0 as g
ϵ. After subtracting the divergence,

we get a finite result,

E ¼ 2g

ffiffiffi
s
λ

r Z
1

0

dv
v2

ðeλv2ð1 − v4e2λð1−v2ÞÞ−1
2 − 1 − v2Þ þ 2c:

ðA23Þ
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Here, λ is a parameter taking values in [0, 1]. The
normalization constant is equal to 2c because of the double
subtraction of 1ϵ. Note that the expressions (A21) and (A23)
coincide with those obtained in Ref. [22] for a string
stretched between points on the boundary, as expected.

APPENDIX B: GLUING CONDITIONS

The string solutions discussed in Appendix A provide
the basic blocks for building multistring configurations.
What is also needed are certain gluing conditions for such
blocks. The goal here is to describe those conditions.
From the physical viewpoint, the gluing conditions arise

as follows. Strings meet at common junctions such as
baryon vertices or defects. Clearly, a static baryon con-
figuration must obey the condition that a net force vanishes
at any junction. It is straightforward to translate this into a
mathematical language. Extremizing the total action of a
system of Nambu-Goto strings and junctions with respect
to a location of the i junction, one gets a force balance
condition at that location.24 To illustrate how this works in
practice, we follow Refs. [17,26] and consider two basic
examples: two strings meeting at a defect and three strings
meeting at a baryon vertex.

1. Two strings meeting at a defect

It is simplest to begin with two strings meeting at a
defect. Such a defect results in a cusp formation in the r− ¼
direction that represents a kind of string excitation [26].
We take two Nambu-Goto strings beginning at the heavy

quark sources on the boundary and ending on the defect in
the interior, as shown in Fig. 11 on the left. In this case, the
total action of the configuration reads

S ¼
X2
i¼1

Si þ Sdef ; ðB1Þ

where Si is the action of the i string and Sdef is that of the
defect. It is given by Eq. (2.4).
Since we are interested in a static configuration, it is

convenient to choose gauge conditions

tiðτiÞ ¼ τi; xiðσiÞ ¼ aiσi þ bi; ðB2Þ

with ðτi; σiÞ the world sheet coordinates. Then the action of
the i string takes the form

Si ¼ Tg
Z

1

0

dσiw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ y02i þ r02i

q
; ðB3Þ

where a prime denotes a derivative with respect to σi.
For the configuration shown in Fig. 11, the boundary

conditions on the fields are given by

xið0Þ ¼ ∓l; xið1Þ ¼ xþ; yið0Þ ¼ 0;

yið1Þ ¼ yþ; rið0Þ ¼ 0; rið1Þ ¼ rþ: ðB4Þ

Using these conditions, one can find the coefficients ai and
bi. The result is ai ¼ xþ � l and bi ¼ ∓l.
A useful observation is that the Euler-Lagrange equa-

tions derived from Si have the first integrals

Ii ¼
wiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2i þ y02i þ r02i
p ; Pi ¼ y0i; ðB5Þ

which allows one to determine the yi’s. From Eq. (B4), it
follows that yiðσiÞ ¼ yþσi.
It is now straightforward to extremize the total action

with respect to the location of the defect. A short calcu-
lation gives

a1I1 þ a2I2 ¼ 0; ðI1 þ I2Þyþ ¼ 0;

r01ð1ÞI1 þ r02ð1ÞI2 þ g−1∂rþVðrþÞ ¼ 0; ðB6Þ

FIG. 11. String meeting at junctions. The gravitational force acting on junctions is directed in the upward vertical direction. Left: Two
strings meeting at a defect placed at D. Right: Three strings meeting at a baryon vertex placed at V.

24See also Ref. [46].
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with VðrÞ ¼ n e−2sr
2

r , as follows from Eq. (2.4). We have
defined the Ii’s at σi ¼ 1.
From the second equation, it follows that yþ ¼ 0. In

other words, the static configuration lies in the xr plane. In
that case, the first equation reduces to cosαþ1 ¼ cos αþ2,
with αþi the tangent angles at D. Its solution is simply
αþ1 ¼ αþ2.

25 Of course, all of this may be understood
using the symmetry analysis alone. The underlying sym-
metry is reflection about the y axis.
The remaining equation now reads

sin αþ1 − κdð1þ 4νþÞe−3νþ ¼ 0; ðB7Þ

where κd ¼ n
2g.

What we have derived by extremizing the total action
with respect to the location of the defect is nothing else
but a force balance condition encoding the requirement
that in a static baryon configuration the net force must
vanish at a defect. It is instructive to see explicitly why it
is so. If we take ei to be a unit tangent vector at a string
end point which represents a force exerted by the i string
on the defect, as shown in Fig. 11, then a gravitation
force exerted on the defect is to be normalized as
f ¼ ð0; 0; ng ð1þ 4νþÞe−3νþÞ.26 Because there is no net
force acting on an object in equilibrium, one has

X2
i¼1

ei þ f ¼ 0: ðB8Þ

A solution to the equation for the y component is trivial.
It is eyi ¼ 0. Thus, the configuration is effectively two
dimensional that allows one to write e1 ¼ ð− cos αþ1; 0;
− sin αþ1Þ and e2 ¼ ðcos αþ2; 0;− sin αþ2Þ. Then, the
remaining two equations give cosαþ1 ¼ cos αþ2 and
sin αþ1 ¼ κdð1þ 4νþÞe−3νþ . This is exactly what we have
been looking for.
The approach based on the force balance condition is

effective and gives a practical recipe for writing the
gluing conditions at junctions. It can straightforwardly
be extended to include a baryon vertex.

2. Three strings meeting at baryon vertex

At this stage, we consider three Nambu-Goto strings
beginning at the heavy quark sources on the boundary and
ending on the baryon vertex in the interior, as shown in
Fig. 11, on the right. Because the action for the baryon
vertex (2.3) is of the form (2.4), with n replaced by m, we
may write

X3
i¼1

ei þ f ¼ 0; ðB9Þ

where f ¼ ð0; 0; mg ð1þ 4νþÞe−3νþÞ.
Let us now consider some examples.
The first example is a configuration in which the

quarks are placed at the vertices of an equilateral triangle,
as shown in Fig. 2. The symmetry of the problem is the
group D3. Hence, the projection of V onto the xy plane is
simply a center of the triangle, and all the tangent angles at
V are equal to one another, αþ1 ¼ αþ2 ¼ αþ3. In terms of
components, the first two of Eq. (B9) are trivially satisfied,
while the third gives

sin αþ1 ¼ κð1þ 4νþÞe−3νþ ; ðB10Þ

with κ ¼ m
3g. We have used that eri ¼ − sin αþi. It is

noteworthy that αþ may be positive or negative depending
on the direction of the gravitational force. Alternatively,
one could derive the gluing condition (B10) by varying the
total action with respect to the position of the baryon vertex,
but this way is longer.
The second example is a collinear configuration of the

quarks as shown in Fig. 4, on the right. Like in the case of
two quarks, the equation for the y component of (B9) yields
a trivial solution eyi ¼ 0, which means that the configu-
ration is two dimensional. Hence, one can choose

e1 ¼ ð− cos αþ1; 0;− sin αþ1Þ;
e2 ¼ ðcos αþ2; 0;− sin αþ2Þ;
e3 ¼ ð− cos αþ3; 0;− sin αþ3Þ: ðB11Þ

Then, the equations for the remaining components
become

cos αþ1 − cos αþ2 − cos αþ3 ¼ 0;

X3
i¼1

sin αþi ¼ 3κð1þ 4νþÞe−3νþ : ðB12Þ

Our final example is more complicated, but not by much.
Consider a configuration where the quarks are placed at the
vertices of an isosceles triangle as shown in Fig. 11. Since
the configuration has a reflection symmetry with respect to
the y axis, we have αþ1 ¼ αþ2. In this case, the unit vectors
ei are defined as

e1 ¼ ð− cos β cos αþ1;− sin β cos αþ1;− sin αþ1Þ;
e2 ¼ ðcos β cos αþ1;− sin β cos αþ1;− sin αþ1Þ;
e3 ¼ ð0; cos αþ3;− sin αþ3Þ; ðB13Þ

where β is the angle shown in Fig. 11.

25Note that the parameter used in Ref. [26] is given by
k ¼ tan2 αþ.

26We denote vectors by boldface letters.
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The equation for the x component of Eq. (B9) is trivial,
while the two others are given by

cos αþ3 ¼ 2 sin β cos αþ1;

2 sin αþ1 þ sin αþ3 ¼ 3κð1þ 4νþÞe−3νþ : ðB14Þ

The above examples hopefully make the general idea
clear. One writes force balance conditions at junctions and
interprets those as the gluing conditions for strings.
Moreover, this is a practical way which works for all
multistring configurations with an arbitrary number of
quark sources.

APPENDIX C: LIMITING CASES

This Appendix collects together some of the formulas
which are used to analyze the short distance behavior of the
potential in Secs. II–IV.
In the case of the equilateral triangle configuration, we

consider Eqs. (2.6) and (2.7). A simple analysis reveals that
small L corresponds to small ν. However, rather than using
expansions in powers of ν, it is somewhat more convenient
to expand L and E in terms of λ. This may be done using the
relation

ν ¼ ρ
1
2λþ ð1 − 2κ2 − ρ

1
2Þλ2 þOðλ3Þ; ðC1Þ

which follows from Eq. (2.9). Here, ρ ¼ 1 − κ2. As a
consequence, one can show that the behavior of L and E3Q

near λ ¼ 0 is given by

LðλÞ ¼
ffiffiffi
λ

s

r
ðL0 þ L1λþOðλ2ÞÞ;

E3Q
ðλÞ ¼ g

ffiffiffi
s
λ

r
ðE0 þ E1λþOðλ2ÞÞ þ C; ðC2Þ

with

L0 ¼
ffiffiffi
3

p

4
B
�
κ2;

1

2
;
3

4

�
;

L1 ¼
ffiffiffi
3

p

4

�
B
�
κ2;−

1

2
;
3

4

�
− B

�
κ2;−

1

2
;
5

4

�

− 2ρ
1
4jκj−1ð1 − 2κ2 − ρ

1
2Þ
�
; ðC3Þ

E0 ¼ 3κρ−
1
4 þ 3

4
B
�
κ2;

1

2
;−

1

4

�
;

E1 ¼ −6κρ1
4 þ 3

4
B
�
κ2;

1

2
;
1

4

�
þ

ffiffiffi
3

p
L1: ðC4Þ

Here, Bðz; a; bÞ ¼ Bða; bÞ þ Bðz; a; bÞ, and Bðz; a; bÞ is
the incomplete beta function.

In the case of the symmetric collinear configuration, we
consider Eqs. (2.19) and (2.20). Here, it is important to
know that if ν goes to zero then the integral (2.19) also
goes to zero, and as a consequence, small L corresponds to
small ν. As before, we expand L and E3Q

in terms of λ. In
this case, Eq. (C1) is replaced by

ν ¼ ζλþ
�
ζ2 − ζ þ 3

4
κð1 − 3κÞ

�
λ2 þOðλ3Þ; ðC5Þ

with ζ ¼
ffiffi
3

p
2
ð1þ 2κ − 3κ2Þ12, as it follows from Eq. (2.22).

The behavior of L and E3Q
near λ ¼ 0 is given by Eq. (C2)

but with the coefficients replaced by

L0 ¼
1

4
B
�
1 − ζ2;

1

2
;
3

4

�
;

L1 ¼
1

4

�
Bð1 − ζ2;−

1

2
;
3

4

�
− B

�
1 − ζ2;−

1

2
;
5

4

�

þ 4
1 − ζ

1 − 3κ
ζ
3
2 − 3κζ

1
2

�
; ðC6Þ

E0 ¼ ð3κ − 1Þζ−1
2 þ 1

2
B
�
1 − ζ2;

1

2
;−

1

4

�
;

E1 ¼ ð1 − 6κÞζ1
2 þ 1

2
B
�
1 − ζ2;−

1

2
;
1

4

�
þ 2L1: ðC7Þ

In the case of the collinear configuration with large L and
small l, we consider Eqs. (2.34), (2.44), and (2.45). One
important difference between this case and the ones we
have discussed so far is that there are now two parameters.
We have to analyze the behavior of the corresponding
equations in a small region near the point (0,1) in a two-
dimensional parameter space ðν; λ2Þ. A first step in doing so
is to choose a path from the point ðν; λ2Þ to (0,1). There is
an ambiguity in choosing the path. For definiteness, we
choose the path ν ¼ ε and 1 −

ffiffiffiffiffi
λ2

p ¼ ε, with ε a small
parameter. This enables us to have expansions in terms of ε
and also control path-dependent terms. Then, the expan-
sions are

l ¼
ffiffiffi
ν

s

r
ðl0 þ l1νÞ þ oðε32Þ;

L ¼ 1ffiffiffi
s

p ð− lnð1 −
ffiffiffi
λ

p
Þ þ L0Þ −

1

2

ffiffiffi
ν

s

r
l0 þ oðε12Þ;

E3Q
¼ g

ffiffiffi
s

p ð−e lnð1 −
ffiffiffi
λ

p
Þ þ E0Þ þ C

þ g

ffiffiffi
s
ν

r
ðE0 þ E1νÞ þ oðε12Þ; ðC8Þ

where
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l0¼
1

2
ξ−

1
2B

�
ξ2;

3

4
;
1

2

�
;

l1¼
1

2
ξ−

3
2

��
2ξþ3

4

κ−1

ξ

�
B

�
ξ2;

3

4
;−

1

2

�
−B

�
ξ2;

5

4
;−

1

2

��
;

ðC9Þ

E0 ¼ 1þ 3κ þ 1

2
ξ
1
2B

�
ξ2;−

1

4
;
1

2

�
;

E1 ¼ −1 − 6κ þ 1

2
ξ−

1
2B

�
ξ2;

1

4
;
1

2

�
þ ξl1; ðC10Þ

and

L0¼
Z

1

0

dv

�
2ðv−4e2ðv2−1Þ−1Þ−1

2−
1

1−v

�
;

E0¼2

Z
1

0

dv
v2

�
ev

2ð1−v4e2ð1−v2ÞÞ−1
2−1−v2−

ev2

2ð1−vÞ
�
:

ðC11Þ

Here, ξ ¼
ffiffi
3

p
2
ð1 − 2κ − 3κ2Þ12. In Eq. (C8), we indicate the

dependence on ν and λ rather than on ε when no ambiguity
arises. Notice that the integrals in Eq. (C11) can be
evaluated numerically with the result L0 ≈ −0.710 and
E0 ≈ −3.431.

APPENDIX D: MORE ON THE Δ LAW

The goal here is to discuss the relation between the three
and two-quark potentials,

E3Q
ðx1;x2;x3Þ

¼ 1

2
ðEQQ̄ðjx12jÞ þ EQQ̄ðjx23jÞ þ EQQ̄ðjx13jÞÞ; ðD1Þ

which is called the Δ law.27 This relation is valid at least to
order α2s in perturbation theory [8] and therefore at very
small separations between the quarks. However, it is no
longer valid at larger separations, where it is assumed to be
replaced by the inequality28

E3Q
ðx1;x2;x3Þ≥

1

2
ðEQQ̄ðjx12jÞþEQQ̄ðjx23jÞþEQQ̄ðjx13jÞÞ

ðD2Þ

that is consistent with the Y law for E3Q
ðx1;x2;x3Þ.

A natural question to ask at this point is what kind of
relations exist between hybrid potentials. Some relations
can be deduced by assuming a factorization in the large-T
limit such that

hW3Q
ðx1;x2;x3; TÞi ¼

Y3
i>j

hWQQ̄ðjxijj; TÞi12: ðD3Þ

This assumption seems reasonable for small jxijj.
The simplest case to consider is an equilateral triangle

configuration. For such a geometry, the factorization
equation becomes

hW3Q
ðL; TÞi ¼ hWQQ̄ðL; TÞi32; ðD4Þ

with L a triangle’s side length. In the limit T → ∞, the
expectation values of the Wilson loops are given by

hW3Q
ðL; TÞi ¼

X∞
n¼0

BnðLÞe−E
ðnÞ
3Q

ðLÞT
;

hWQQ̄ðL; TÞi ¼
X∞
n¼0

MnðLÞe−E
ðnÞ
QQ̄

ðLÞT: ðD5Þ

For our purposes, it is sufficient to consider the first three
energy levels. In that case, Eq. (D4) can be easily solved.

First, we assume that Eðnþ1Þ
3Q

> EðnÞ
3Q

and Eðnþ1Þ
QQ̄

> EðnÞ
QQ̄

hold

in the range of small L. In other words, the energy levels
are separated from each other. In addition, we assume that

gaps are subject to the constraint ΔEð2Þ
QQ̄

< 2ΔEð1Þ
QQ̄

, where

ΔEðiÞ
QQ̄

¼ EðiÞ
QQ̄

− Eð0Þ
QQ̄

. The factorization equation is then

simply

B0e
−Eð0Þ

3Q
T þ B1e

−Eð1Þ
3Q

T þ B2e
−Eð2Þ

3Q
T

¼ M
3
2

0e
−3
2
Eð0Þ
QQ̄

T
�
1þ 3M1

2M0

e−ΔE
ð1Þ
QQ̄

T þ 3M2

2M0

e−ΔE
ð2Þ
QQ̄

T
�
;

ðD6Þ

modulo terms decaying faster as T → ∞. Equating order by
order the two sides of the equation gives

Eð0Þ
3Q
ðLÞ ¼ 3

2
Eð0Þ
QQ̄

ðLÞ; EðiÞ
3Q
ðLÞ ¼ 1

2
Eð0Þ
QQ̄

ðLÞ þ EðiÞ
QQ̄

ðLÞ:
ðD7Þ

The first equation is nothing but the Δ law, whereas the
second is its generalization to excited levels. In practice
[25], the assumptions we made are valid if L < 0.7 fm. In

that case, Eð1Þ
QQ̄

corresponds to the Πu hybrid potential, and

Eð2Þ
QQ̄ corresponds to the Σ−

u one.

At this point, we should mention that for large L the Y
law suggests the inequalities

27It is sometimes also called the one-half rule.
28Interestingly, a similar inequality was discussed before in the

context of few-nucleon systems [2].
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Eð0Þ
3Q
ðLÞ ≥ 3

2
Eð0Þ
QQ̄ðLÞ; EðiÞ

3Q
ðLÞ ≥ 1

2
Eð0Þ
QQ̄ðLÞ þ EðiÞ

QQ̄ðLÞ:
ðD8Þ

These, in turn, suggest the following inequalities between
meson and baryon masses:

2MðQQQÞ ≥ 3MðQQ̄Þ;
2MðQQQgÞ ≥ MðQQ̄Þ þ 2MðQQ̄gÞ: ðD9Þ

While the first is known in the literature [2], the second is
new. It involves the masses of hybrids.
As a final comment, we note that the model we are

considering allows us to check two of these inequalities
numerically. Figure 12 shows the results for the ground
states and excited states corresponding to the Σ excitation.
Obviously, the three-quark potentials can be approximated
by a set of the two-quark potentials only at short distances.

APPENDIX E: ANOTHER CALCULATION OF
THE QUARK-QUARK POTENTIAL

Here, we will carry out a calculation of the static quark-
quark potential using the same geometry as that of
Ref. [36]. The result will be equivalent to what we had
before. This provides more evidence that the potential (3.8)
is geometry independent.
Consider a geometry in which the quarks are at the

vertices of an isosceles triangle. We are interested in the
limiting case when the base length l is much smaller than
the triangle’s height L, as shown in Fig. 13. Since the
configuration has a reflection symmetry with respect to
the y axis, the side strings have an identical profile, and the
projection of V on the xy plane lies on the y axis. Notice

that α1 is positive. This can be understood as follows.
Consider a configuration similar to the one shown in Fig. 7
such that Q3 lies on the x axis. Obviously, one can
smoothly move Q3 to the y axis along a circle of radius
L. In the limit l → 0 and L → ∞, this may not lead to a
radical change of the string’s profiles.
Given this, we can use the general formula (A6) to write

the distance between the points Q1 and O via an integral,

l1 ¼ cos α1

ffiffiffi
ν

s

r Z
1

0

dv1v21e
νð1−v2

1
Þð1 − cos2α1v41e

2νð1−v2
1
ÞÞ−1

2:

ðE1Þ

In a similar fashion, Eq. (A16) tells us how to do so for the
distance between the points Q3 and O. Here, we have

FIG. 13. A baryon configuration for L ≫ l. The quarks Qi are
placed at the vertices of the isosceles triangle. V is the vertex, and
O is its projection on the y axis.

FIG. 12. Left: E3Q
(solid curve) and 3

2
EQQ̄ (dashed curve). Right: ~E3Q

(solid curve) and 1
2
EQQ̄ þ ~EQQ̄ (dashed curve). In both cases, we

set g ¼ 0.176, s ¼ 0.44 GeV2, κ ¼ −0.083, κd ¼ 1300, and C ¼ 1.87 GeV. EQQ̄ and ~EQQ̄ are from Refs. [22] and [26], respectively.
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l3 ¼
ffiffiffi
λ

s

r �Z
1

0

dv3v23e
λð1−v2

3
Þð1 − v43e

2λð1−v2
3
ÞÞ−1

2

þ
Z

1ffiffi
ν
λ

p dv3v23e
λð1−v2

3
Þð1 − v43e

2λð1−v2
3
ÞÞ−1

2

�
; ðE2Þ

with eλ
λ ¼ eν

ν cos α3. If β is a base angle of the isosceles
triangle Q1Q2O, then a simple geometric analysis leads to

l ¼ 2 cos βl1; L ¼ sin βl1 þ l3: ðE3Þ
The energies of the two first strings can be read from

Eq. (A9), while that of the third can be read from
Eq. (A20). Combining those with Eq. (2.3) for the
gravitational energy of the vertex, we find the total
energy of the configuration

E3Q
¼ g

ffiffiffi
s
ν

r �
3κe−2ν

þ 2

Z
1

0

dv1
v21

ðeνv21ð1− cos2α1v41e
2νð1−v2

1
ÞÞ−1

2 − 1− v21Þ
�

þCþ g

ffiffiffi
s
λ

r �Z
1

0

dv3
v23

ðeλv23ð1− v43e
2λð1−v2

3
ÞÞ−1

2

− 1− v23Þ þ
Z

1ffiffi
ν
λ

p
dv3
v23

eλv
2
3ð1− v43e

2λð1−v2
3
ÞÞ−1

2

�
: ðE4Þ

To complete the picture, we would need the gluing
conditions at the vertex to show that the three-quark
potential is written parametrically as E3Q

¼ Eðν; λÞ,
l ¼ lðν; λÞ, and L ¼ Lðν; λÞ. These conditions include
two equations for force equilibrium, in the y and r
directions. From Eq. (B14), it follows that

cos α3 ¼ 2 sin β cos α1;

2 sin α1 þ sin α3 ¼ 3κð1þ 4νÞe−3ν: ðE5Þ
Notice that α3 is negative.

Just as in the case of the collinear configuration with
large L and small l, we have to analyze the behavior of the
parametric equations in a small region near the point (0,1)
in a two-dimensional parameter space ðν; λÞ. To this end,
we choose the path ν ¼ ε and 1 −

ffiffiffi
λ

p ¼ ε that enables us to
have expansions in terms of ε and control path-dependent
terms. A straightforward but somewhat tedious calculation
shows that

l ¼
ffiffiffi
ν

s

r
ðl0 þ l1νÞ þ oðϵ32Þ;

L ¼ 1ffiffiffi
s

p ð− lnð1 −
ffiffiffi
λ

p
Þ þ L0Þ þ oðϵ12Þ;

E3Q
¼ g

ffiffiffi
s

p ð−e lnð1 −
ffiffiffi
λ

p
Þ þ E0Þ þ C

þ g

ffiffiffi
s
ν

r
ðE0 þ E1νÞ þ oðϵ12Þ; ðE6Þ

with the same li’s, L0, E0, and Ei’s as in Eqs. (C9)–(C11).
As before, we indicate the dependence on ν and λ rather
than on ε when no ambiguity arises.
Finally, we reduce the parametric equations to a single

one,

E3Q
ðl; LÞ ¼ −

αQQ
l

þ σ0lþ σLþ cþ oðlÞ; ðE7Þ

with the same αQQ, σ0, σ, and c as in Eq. (3.6).
As in Sec. III, we have to be careful in extracting the

quark-quark potential from the above expression. In the
limit we are considering, the y coordinate of the vertex
behaves like yþ ∼ ε

3
2 ∼ l3. This means that to the approxi-

mation we are using the projection of V is located at the
origin. In contrast, from the four-dimensional perspective,
it should be located at y ¼ l=2

ffiffiffi
3

p
[36]. Thus, we have to

subtract from E3Q
the term proportional to σ and a constant

term. As a result, we arrive at the expression (3.8).
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