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We construct effective Lagrangians, and corresponding counting schemes, valid to describe the
dynamics of the lowest lying large N stable massive composite state emerging in strongly coupled
theories. The large N counting rules can now be employed when computing quantum corrections via an
effective Lagrangian description. The framework allows for systematic investigations of composite
dynamics of a non-Goldstone nature. Relevant examples are the lightest glueball states emerging in any
Yang-Mills theory. We further apply the effective approach and associated counting scheme to composite
models at the electroweak scale. To illustrate the formalism we consider the possibility that the Higgs
emerges as the lightest glueball of a new composite theory; the large N scalar meson in models of
dynamical electroweak symmetry breaking; the large N pseudodilaton useful also for models of near-
conformal dynamics. For each of these realizations we determine the leading N corrections to the
electroweak precision parameters. The results nicely elucidate the underlying large N dynamics and can be
used to confront first principle lattice results featuring composite scalars with a systematic effective
approach.
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I. INTRODUCTION

Strong dynamics continues to pose a formidable chal-
lenge. Several ingenious analytical and numerical tech-
niques have been invented, exploited, and are routinely
used to elucidate some of its physical properties. The large
number of underlying colors limit is a time-honored
example [1–3]. It has been extensively used in quantum
chromodynamics (QCD) and string theory, and it consti-
tutes the backbone of the gauge-gravity duality program.
We will further highlight here the power of the large N
expansion by introducing a four-dimensional calculable
framework permitting us to investigate the dynamics of the
lightest stable non-Goldstone large N composite state.
’t Hooft and Witten demonstrated that Yang-Mills

theories for a large number of colors admit an effective
description in terms of an infinite number of noninteracting
absolutely stable hadronic states of arbitrary spin [1–3]. By
capitalizing on this central result we focus on the physics of
the lightest massive scalar state that is known to play an
important role in QCD [4–13] and in various models of
dynamical electroweak symmetry breaking as summarized
in [14]. The framework can also be used to consistently
determine quantum corrections to compare with first
principle lattice simulations of composite dynamics featur-
ing scalars [15–18].
The paper is organized as follows. In Sec. II we introduce

the effective theory for the lightest massive glueball scalar
state emerging within a pure Yang-Mills theory, and
provide the associated counting scheme. Here we discuss

the intriguing interplay between momentum and large N
expansions. The framework goes beyond the glueball
example and lays the foundation of the subsequent analy-
ses. We then extend the framework to several models of
composite electroweak dynamics in Sec. III where the
Higgs is identified with the lightest composite state. In
Sec. IV we determine the large N dependence, for each
model, of the electroweak precision parameters [19] stem-
ming from different dynamical Higgs realizations. We
summarize our results in Sec. V.

II. LARGE N EFFECTIVE THEORY FOR THE
LIGHTEST GLUEBALL STATE

Consider the lightest scalar state stemming from an
SUðNÞ pure Yang-Mills theory, which is also expected to
be the lowest lying state of the full theory. At an infinite
number of colors the effective Lagrangian for this state is
simply the one with a free scalar field [1–3],

LGB ¼ 1

2
∂μh∂μh −

m2
h

2
h2 þOðN−1Þ: ð1Þ

It is possible to go beyond the free-field limit by first
defining with ΛH the intrinsic composite scale of the theory
that permits us to expand the effective Lagrangian in both
1=N and ∂2=Λ2

H as follows:
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Here Vq;p are dimensionless coefficients of order unity with
the tree-level values V0;0 ¼ 1 and V1;0 ¼ 0 ensuring
canonically normalized mass and kinetic terms. The
expansion in 1=N takes care of the large N suppression
of higher point correlators, while the higher derivative
terms take into account integrating out heavier states. The
notation for the higher order derivative terms schematically
indicates all possible Lorentz invariant operators one can
construct, acting over the h field, for a given exponent q. To
leading order in the double expansion we have

LGB ¼ 1

2
∂μh∂μh −

m2
h

2

�
1þ V0;1

N
h
ΛH

�
h2: ð3Þ

This shows that the trilinear coupling of the scalar is
naturally suppressed in this limit. Expanding a little further
we have

LGB ¼ 1

2
∂μh∂μh −
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h
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h
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In our schematic representation of higher derivatives terms
we have it, for example, that ∂2h3 represents the operator
h∂μh∂μh. The other superficially different operator con-
taining the same number of fields and derivatives, i.e.
h2□h, is not independent because it is related to h∂μh∂μh
via an integration by parts.
We have ordered the terms in such a way that the 1=N

order counts as ∂2=Λ2
H.

1 However, in the following we will
work in the very low momentum regime and therefore we
drop the derivative terms and obtain
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2
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h
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h2
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H

�
: ð5Þ

The effective theory features small self-couplings, even
though it stems from a highly nonperturbative underlying
gauge theory. The glueball mass receives 1=N2 corrections
at the fundamental theory level. By computing the one loop
corrections to the h two-point function one can check that
the effective theory correctly reproduces the expected large
N corrections. Of course, the effective Lagrangian is not
renormalizable in the usual sense but due to the 1=N and
∂2=Λ2

H ordering it is possible to organize and subtract the
divergences order by order in this double expansion.
Furthermore the coefficients of this effective theory can
be determined, for a given underlying Yang-Mills gauge
theory, via lattice simulations [20].

III. LARGE N SCALARS FOR DYNAMICAL
HIGGS MODELS

We now extend the framework presented above in order
to introduce consistent effective descriptions of dynamical
Higgs models. We are not concerned with fitting the latest
experimental data but focus instead on elucidating the
associated large N dynamics and effective theory structure.
We shall first introduce different examples and then, for

each of these examples, we compute the electroweak
precision observables in Sec. IV, more specifically the S
and T parameters [19].

A. The dynamical Higgs as the lightest large N glueball

We start by considering the logical possibility that the
dynamical Higgs state is the lightest glueball of a new
fundamental composite theory. Besides pure Yang-Mills one
can also consider theories with matter. Let us consider as a
concrete example an SUðNÞ gauge theory with two Dirac
flavors transforming according to the two-index representa-
tion of the underlying gauge theory. Unlike the case in which
the underlying fermions transform according to the funda-
mental representation, like QCD, in the two-index case at a
large number of colors the axial anomaly is not suppressed
[21]. This implies that the eta prime does not become
massless in the large N limit and, besides the pions of the
theory, the lightest scalar of the theory behaves as a glueball
[22]. In fact in these theories mesons and glueballs at largeN
have the same large N properties. One could also imagine
theories displaying large distance conformality in which one
adds explicit sources of conformal breaking, such as fermion
masses. That the lightest states in this case are glueballs has
been shown to occur via lattice simulations [23] and via
controllable perturbative examples [24,25]. However, while
in the first explicit example (the one with fermions in higher-
dimensional representations) the large N limit is legitimate,
in the near-conformal cases one has also to consider the large
number of the flavor limit, which is beyond the scope of this
work. Of course, in the calculable case of [24,25] there is no
need to write an effective field theory.
Within this scenario one can envision the newly dis-

covered particle at the Large Hadron Collider (LHC) to be
the lightest glueball state of a new Yang-Mills theory with a
new N-independent string tension proportional to ΛH. The
scale is not automatically related, here, with the electro-
weak symmetry breaking scale v≃ 246 GeV or 4πv.
Therefore dynamical spontaneous breaking of the electro-
weak symmetry is triggered by either another strongly
coupled sector or, if within the same theory, via a distinct
dynamically induced chiral symmetry scale.2 Since the
state h is a singlet with respect to the standard model (SM)
symmetries we can write

1This means that the momentum expansion shell is taken to be
of the same order as the 1=N expansion.

2We remind the reader that in theories with an intact center
group the confining and the chiral scale are well separated [26].
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where LSM is the SM Lagrangian without Higgs and
Yukawa sectors, the ellipses denote Yukawa interactions
for SM fermions other than the top-bottom doublet
q≡ ðt; bÞ, and Oð1=ΛHÞ includes higher-dimensional op-
erators, which are suppressed by powers of 1=ΛH. In this
Lagrangian U is the usual exponential map of the Gold-
stone bosons produced by the breaking of the electroweak
symmetry, U¼ expði2πaTa=vÞ, with covariant derivative
DμU≡∂μU− igWa

μTaUþ ig0UBμT3, 2Ta are the Pauli
matrices, with a ¼ 1, 2, 3. The kinetic term and the
potential of the SM Higgs have been replaced by the
effective theory for the lightest glueball state. The tree-level

SM is recovered for rπ ¼ rt ¼ rb ¼ N ΛH
v and sπ ¼ N2 Λ2

H
v2 .

Here we will keep these couplings at order unity. Also we
have not speculated on the hidden sector providing the link
between the new glueball theory and the SM sector, but
required it to respect the large N counting for the insertion
of an extra glueball-Higgs interaction. We have also
ordered the higher derivatives on h such that they are
subleading when compared to the 1=N operators retained
here.
If we consider the infinite number of colors limit of the

new Yang-Mills theory we arrive first at a perturbative self-
interacting glueball state coupled to the SM also via
perturbative couplings. We have, therefore, at our disposal
an organization structure that allows us to go beyond the
tree level. We shall investigate the dependence on

the number of new colors N in the section dedicated to
the electroweak parameters.

B. The large N physics of the dynamical Higgs

In time-honored models of dynamical electroweak sym-
metry breaking [27,28] the Higgs can be identified with a
fermion-antifermion meson.3 Depending on the new fer-
mion representation with respect to the underlying gauge
group one can have different large N countings [14] such as
the Corrigan and Ramond one [21]. The counting is
incorporated directly into the pion decay constant F2

Π ¼
dðRÞΛ2

TC with dðRÞ being the dimension of the technicolor
theory and ΛTC an intrinsic scale not dependent on the
number of colors [29,30].
Let us assume for definitiveness that we have an SUðN̄Þ

underlying theory featuring a doublet of techniquarks
transformed according to the representation R of the
composite theory and therefore we can set v ¼ FΠðN̄Þ.
For a genericN it is sufficient to replace vwith v

ffiffiffiffiffiffiffiffi
d=d̄

p
. For

example for the fundamental representation d ¼ N and
d̄ ¼ N̄. Unlike the previous glueball-Higgs example here
also the pion sector is affected by the large N scaling since
the self-interactions among the composite pions are also
controlled by N. Choosing for definitiveness the underlying
fermions to belong to the fundamental representation
we have
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We have therefore

m2
W ¼ g2v2

N
4N̄

; mq ¼ yqv

ffiffiffiffiffiffiffi
N
2N̄

r
; ð8Þ

3This does not always have to be the case, meaning that the lightest state can be, in principle, made by multifermion states.
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with q a given quark, g the weak coupling, and yq the Yukawa coupling. The physical electroweak scale is now identified
with the following combination:

ffiffiffiffi
N
N̄

r
v ¼ 2

mW

g
: ð9Þ

In the effective Lagrangian we arrive at
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The 1=
ffiffiffiffi
N

p
cost of introducing an extra power of the composite field h is monitored nicely by the corresponding power in g.

C. The large N dynamical pseudodilaton

It is possible to imagine that the Higgs state of the SM is associated with the spontaneous breaking of a conformal
symmetry. There are several possible realisations according to which the breaking of the conformal dynamics can be
associated with either a nonperturbative sector [31,32] or a perturbative one [24,25].
The large N counting and the request to satisfy the conformal relations can both be ensured by imposing

NΛH ¼ f; rq ¼ rπ ¼ sπ ¼ 1; ð11Þ

with f an N-dependent scale. The Lagrangian in (12) then becomes
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This framework can be immediately extended to any dilatoniclike interpretation of the state h, such as the one coming from
a near conformal-like technicolor dynamics where f (ΛH) is identified with v. Because we would like to investigate the
explicit N dependence we hold fixed the N-independent scale ΛH. Clearly this limit corresponds to the glueball-Higgs case
with extra constraints for the h couplings.
We are now ready to investigate the first consequences of the large N counting.

IV. S AND T PARAMETERS

As a relevant application of the formalism introduced above we study two important correlators, i.e. the S and T
parameters [33] for the three different types of dynamical Higgs models discussed above.
Defining by S the difference between S in the full theory Stheory, and the value of S in the SM, i.e. SSM, we arrive at [34]

S ¼
�
1 −

κ21
4
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; ð13Þ

where κ1 is the coefficient of the linear term in h=vmultiplying the operator Tr½DμUDμU†�, which in the SM is equal to two,
and
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fðxÞ≡ 2x2 þ x4 − 3x6 þ ð9x4 þ x6Þ log x
ð1 − x2Þ3 : ð14Þ

The c term in (13) is a needed counterterm whose finite part
will be reabsorbed in the definition of the cutoff scale and
therefore will be set to zero in the following.
For the T parameter one obtains [34]

T ¼ −
3

16π cos2 θw

�
1 −

κ21
4

�
log

ð4πΛHÞ2
m2

h

þ Th
SMðmhÞ − Th

SMðmh;refÞ; ð15Þ

where, as for the S parameter, we have absorbed the finite
part of the counterterm in the actual value of ΛH. mh;ref is
the reference value of the Higgs mass, θw is the Weinberg
angle, and Th

SMðmhÞ is given in Eq. (22) of [34].
We can now determine the large N behavior of these

relevant parameters coming from the various large N
dynamical Higgs models introduced earlier.

A. S and T for the large N glueball
and dilaton-Higgs models

In the glueball case we have

κGB1 ¼ 2
vrπ
NΛH

; ð16Þ

and the SM limit is recovered when NΛH ¼ vrπ . The
precision parameters are then
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and

TGB ¼ −
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16πcos2θw
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m2

h
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SMðmh;refÞ: ð18Þ
We have chosen mh ¼ 125 GeV and mh;ref ¼ 117 GeV.
The first observation is that if the glueball-Higgs scale ΛH
is larger than the electroweak scale v there is a positive
contribution to the S parameter and an associated negative
one for the T parameter. On the other hand, we observe a
reduction (increase) of the S (T) parameter if ΛH is smaller
than v. This is an intriguing general result given the fact that
the scale of compositeness is 4πΛH can be kept above the
electroweak scale.
Increasing N while keeping ΛH and rπ fixed one arrives

at the following N-independent results:

lim
N→∞
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and

lim
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3
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log
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h
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SMðmhÞ − Th

SMðmh;refÞ: ð20Þ
The corrections appear at OðN2Þ.
In Fig. 1 we plot S and T as a function of the number of

colors for different values of ΛH. Because the corrections
are in 1=N2 the large N limit is approached quickly. We
have also assumed rπ ≈ 1, which is its natural order of
magnitude and, in any event, can be partially reabsorbed in
ΛH. We compare the result with the experimental value of
precision data in Fig. 2 for ΛH ¼ 200 GeV (blue curve) and

FIG. 1. We show the dependence on the number of underlying glueball-Higgs colors for the (left panel) S and (right panel) T for
ΛH ¼ 500 (blue curve), 200 (magenta curve), 100 (red curve), and 50 GeV (green curve). The composite scale 4πΛH is always higher
than the electroweak scale of 246 GeV, and rπ ≈ 1 is further assumed.
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N ¼ 1, 2. In red we have ΛH ¼ 100 GeV and N ¼ 2, 3, 4.
Finally we plot the 50 GeV (green curve) case forN ¼ 4, 5,
6. Although we expect the composite scale to be around
4πΛH, which even for this very low value of ΛH is higher
than the electroweak scale of 246 GeV, we need to consider
higher order terms in the effective Lagrangian for a more
consistent estimate for ΛH ¼ 50 GeV. The leftmost point
on each curve corresponds to the smallest N. The experi-
ments prefer smaller values of ΛH with N in the range 2–4.
Larger values of ΛH require N to be away from the large N
limit and therefore we cannot conclude on the viability of
the ΛH ¼ 200 GeV case. Increasing further ΛH it is clearly

not preferred by precision observables. If, therefore, a
glueball-Higgs model does describe the Higgs we expect
soon new states to be discovered with masses in the range
600–1200 GeV.
We stress that by requiring them to be in agreement with

precision measurements the couplings of the Higgs to the
standard model gauge bosons are also close to the exper-
imental values. This occurs because the product NΛH is
constrained to be near the electroweak scale.
For the dilaton-Higgs example we have

κDilaton1 ¼ 2
v

NΛH
; ð21Þ

which corresponds to the results above but now with rπ
exactly equal to one.

B. S and T for the large N dynamical Higgs

It is interesting to explore what happens for the large N
dynamical Higgs. The main difference with respect to the
previous case is that the electroweak scale and the dynami-
cal Higgs scale are now identified. Among the possible
underlying models that can lead to this kind of effective
dynamics are time-honored examples such as minimal
models of (near-conformal) technicolor [35–37],
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FIG. 2. Comparison with the precision electroweak constraints
for the glueball-Higgs model for ΛH ¼ 200 GeV (blue curve)
and N ¼ 1, 2, ΛH ¼ 100 GeV (red curve) and N ¼ 2, 3, 4, and
ΛH ¼ 50 GeV (green curve) for N ¼ 4, 5, 6. The leftmost point
on each curve corresponds to the smallest N, and rπ ¼ 1 is further
assumed.
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FIG. 3. Comparison with the precision electroweak constraints for the dynamical Higgs for v ¼ 246 GeV and N ¼ 3, 4, 5, 6. The
leftmost point on each curve corresponds to the smallest N, and further assumed are rπ ¼ 0.9 (left panel), rπ ¼ 1 (center panel), rπ ≈ 1.1
(right panel). The estimates are obtained using the effective Lagrangian in (10). We also use (9) and rename the left-hand side of the
equation v to avoid introducing new symbols. Finally we have chosen the reference value N̄ ¼ 3.
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and

TTC ¼ −
3

16π cos2 θw

�
1 −

N̄
N
r2π

�
log

ð4πvÞ2
m2

h

þ Th
SMðmhÞ − Th

SMðmh;refÞ: ð24Þ
Unlike the glueball-Higgs case we have at our disposal only
the N dependence of the effective coupling, which goes to
1=N for the fundamental representation (chosen here) or to
1=NðN � 1Þ for two-index representations [29]. We show
in Fig. 3 the comparison to the precision electroweak
constraints for the dynamical Higgs for v ¼ 246 GeV and
N ¼ 3, 4, 5, 6. To avoid the introduction of yet another
symbol in this section the physical electroweak scale is
labeled by v. The leftmost point on each curve corresponds
to the smallest N, and further assumed are rπ ¼ 0.9 (left
panel), rπ ¼ 1 (center panel), and rπ ≈ 1.1 (right panel) It is
clear from the results that it is possible to abide the
electroweak precision constraints for a larger number of
colors provided that rπ is larger than in the SM.
The computations show that finite 1=N corrections

stemming from the nonstandard Higgs sector are relevant
and cannot be neglected. These were not taken into account
in [33]. The effects of heavier states such as these are
included in the cutoff dependence of the counterterms.

V. CONCLUSIONS AND TOP CORRECTIONS

We introduced effective field theories and associated
counting schemes to consistently describe the lightest
massive large N stable composite scalar state emerging
in any theory of composite dynamics. The framework
allows for systematic investigations of composite dynamics
featuring non-Goldstone (and Goldstone) scalars. As time-
honored examples we discussed the lightest glueball state

stemming from Yang-Mills theories. We further applied our
effective approach to models of (near-conformal) dynami-
cal electroweak symmetry breaking. In particular we
considered the following three possibilities: the Higgs is
the lightest glueball of a new composite theory; it is a large
N scalar meson in models of dynamical Higgs such as
technicolor; and finally that it is a large N pseudodilaton in
the form of a conformal compensator. For each of these
models, we provided the leading N corrections to the
precision parameters.
We observe that it is straightforward to show that in this

framework the top corrections to the glueball and dynami-
cal Higgs mass can be reliably estimated in the largeN limit
by rescaling rt in Eq. (4) of [38,39] by the opportune power
of N, for each model, and simultaneously replacing the
cutoff scale by either 4πΛH or 4πv.
The results provide useful insights stemming from the

large N dynamics of these models and can be viewed as the
stepping stone for a consistent determination of quantum
corrections at the effective Lagrangian level containing
massive scalar states. The effective approach is directly
applicable also to models of composite Goldstone Higgs
dynamics [40,41] when including the first massive scalar
state [39,42,43], as well as to investigate interesting flavor
properties [44,45]. Finally holographic studies of the
spectrum and large N properties of strongly coupled
theories [46–48] can benefit from a model independent
large N computation that can be performed with the
effective theories constructed here.
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