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Scale-invariant theories are often used to address the hierarchy problem. However the regularization of
their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-
Villars, etc) which breaks this symmetry explicitly. We show how to avoid this problem and study the
implications of a manifestly scale-invariant regularization in (classical) scale-invariant theories. We use a
dilaton-dependent subtraction function μðσÞ which, after spontaneous breaking of the scale symmetry,
generates the usual dimensional regularization subtraction scale μðhσiÞ. One consequence is that
“evanescent” interactions generated by scale invariance of the action in d ¼ 4 − 2ϵ (but vanishing in
d ¼ 4) give rise to new, finite quantum corrections. We find a (finite) correction ΔUðϕ; σÞ to the one-loop
scalar potential for ϕ and σ, beyond the Coleman-Weinberg term. ΔU is due to an evanescent correction
(∝ ϵ) to the field-dependent masses (of the states in the loop) which multiplies the pole (∝ 1=ϵ) of the
momentum integral to give a finite quantum result. ΔU contains a nonpolynomial operator ∼ϕ6=σ2 of
known coefficient and is independent of the subtraction dimensionless parameter. A more general μðϕ; σÞ is
ruled out since, in their classical decoupling limit, the visible sector (of the Higgs ϕ) and hidden sector
(dilaton σ) still interact at the quantum level; thus, the subtraction function must depend on the dilaton only,
μ ∼ σ. The method is useful in models where preserving scale symmetry at quantum level is important.
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I. INTRODUCTION

There has recently been a renewed interest in the scale
invariance symmetry to address the hierarchy or the
cosmological constant problems. Scale symmetry is not
a symmetry of the real world since it requires that no
dimensionful parameters be present in the Lagrangian. One
can impose this symmetry on the Lagrangian at the
classical level, to forbid any mass scales. At the quantum
level, the anomalous breaking of scale symmetry is, in
general, expected. This is because regularization of the loop
corrections breaks this symmetry explicitly, either by
introducing a dimensionful coupling as in dimensional
regularization (DR) or a mass scale (Pauli-Villars, cutoff
regularizations, etc). Therefore, the presence of a subtrac-
tion (or renormalization) scale μ breaks explicitly the
(classical) scale invariance of the theory and ruins the
symmetry one actually wants to study. In DR the scale μ
relates the dimensionless couplings to the dimensionful
ones, once the theory is continued analytically from d ¼ 4
to d ¼ 4 − 2ϵ dimensions. For example, the quartic cou-
pling (λϕ) of a Higgs-like scalar field ϕ acquires a mass
dimension, since

λϕ ¼ μ2ϵ
�
λðrÞϕ þ

X
n

an=ϵn
�

ð1Þ

where renormalized λðrÞϕ is dimensionless. Thus, the DR
scale μ breaks scale invariance.1

To avoid this problem in theories in which scale
invariance must be preserved during regularization, we
use a scheme in which the couplings become field
dependent, something familiar in string theory. Indeed,
one can replace the scale μ by a function μðσÞ, μ → μðσÞ
[1,2] where the field σ is the dilaton2; for example,
μðσÞ ∝ σ. Of course, σ must subsequently acquire a non-
zero (finite) vacuum expectation value (vev); otherwise,
this relation does not make sense due to vanishing power
(ϵ → 0) in Eq. (1). Also, one cannot just replace μ by the
vev of the field σ, since this would simply bring back the
original problem. One therefore needs a spontaneous
breaking of the scale symmetry. When the (dynamical)
field σ acquires a nonzero vev, scale invariance is broken
with the dilaton σ as its Goldstone mode. This can happen
in a framework which includes (conformal) gravity in
which the dilaton vev is related to the Planck scale. In
this paper we shall not include gravity, but assume the
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1The exact S matrix is renormalization scale independent. But
in perturbation theory we truncate the series, so there is always a
residual renormalization scheme dependence, which must be
minimized.

2We also consider a more general dependence μ ¼ μðϕ; σÞ
where ϕ is our scalar (Higgs-like) field.
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dilaton acquires a vev spontaneously (fixed, e.g., by Planck
scale physics) and search for solutions hσi ≠ 0.
The goal of this paper is to investigate the quantum

implications of a manifestly scale-invariant regularization
of a theory that is classically scale invariant, using a dilaton-
dependent subtraction “scale.” This is important since
scale-invariant theories, see, e.g., [3–22], do not seem to
be renormalizable [23,24], in which case the regularization
of the loops should preserve all initial symmetries to avoid
regularization artifacts [25]. This motivated our work and is
relevant for theories which study scale invariance at the
quantum level.
This paper continues a previous study [2], with notable

differences and new results that we outline below. Consider
a scale-invariant theory of Higgs-like ϕ and dilaton σ (other
fields may be present). In “usual” DR, quartic couplings
become dimensionless by replacing λ → μ2ϵλ [see Eq. (1)]
and this changes also the scalar potential Vðϕ; σÞ. For a
field-dependent subtraction function μðσÞ, this change is
Vðϕ; σÞ → ~V ≡ μ2ϵðσÞVðϕ; σÞ, which is scale invariant in
d ¼ 4 − 2ϵ (as it should). So ~V acquired new “evanescent”
interactions3 due to the field dependence of μðσÞ. This step
generates new, finite corrections at the quantum level.
For example, we obtain a scale-invariant one-loop

potential Uðϕ; σÞ which contains a finite (quantum) cor-
rection ΔUðϕ; σÞ beyond the usual Coleman-Weinberg
(CW) term [26,27] for the Higgs ϕ and dilaton σ. ΔU is
a new correction overlooked by previous studies [2] and at
the technical level it arises when the evanescent correction
(∝ ϵ) to the field-dependent masses4 in the loop multiplies
the poles 1=ϵ of the loop integrals, thus giving a finite
contribution. Note that ΔU contains nonpolynomial oper-
ators like ϕ6=σ2 of the known coefficient; such new
operators generate, in turn, polynomial effective operators
when expanded about hσi ≠ 0 (hσi can be arranged to be
much larger than the electroweak vev hϕi, see later).
The subtraction function cannot also depend on the

Higgs field ϕ (as in [2]) since this would bring the
nondecoupling quantum effects of the visible sector (ϕ)
to the hidden sector (σ) even in their classical decoupling
limit. As a result, we have a dilaton-only dependent
subtraction function which must be of the form μðσÞ ¼
zσ where z is an arbitrary dimensionless constant. Unlike
total Uðϕ; σÞ, ΔU is independent of the subtraction scale
(zhσi), being finite. Of course physics must be independent
of z (and thus of zhσi), so we check that our full potential
does respect the Callan-Symanzik equation in our
approach; see [5] for a discussion.
Assuming the couplings are initially tuned at the

classical level to enforce a hierarchy hϕi ≪ hσi, we show

the quantum correction to the mass of ϕ that is due to ΔU
remains small without additional tuning of the couplings.
Using this symmetry-preserving regularization and sponta-
neous breaking of scale symmetry, one can address the
hierarchy problem at higher loops.
In the case of a field-dependent subtraction function

there is no initial subtraction scale present in the theory, so
there is no dilatation anomaly. Note that it is possible that a
theory be quantum scale invariant and the couplings still
run with the momentum scale [5,6]. One first performs loop
calculations with a field-dependent regularization. After
spontaneous breaking of scale symmetry hσi ≠ 0, the
subtraction scale and all masses and vevs of the theory
are generated, proportional to5 hσi. After regularization and
renormalization one can eventually decouple the dilaton by
taking the limit of vanishing couplings for it, while keeping
the masses of the theory fixed [5].6

After introducing the model (Sec. II) we present the
scale-invariant result of the one-loop potential for a general
subtraction function (Sec. III); this function is shown to
depend on the dilaton only μ ¼ zσ (Sec. IV). The impli-
cations for the mass of ϕ are addressed (Sec. V) with
Callan-Symanzik equation verified in Sec. VI, followed by
Conclusions.

II. A GENERIC MODEL

Consider a Lagrangian with two real scalar fields

L ¼ 1

2
∂μϕ∂μϕþ 1

2
∂μσ∂μσ − Vðϕ; σÞ: ð2Þ

The potential in d ¼ 4 scale-invariant theories has the
structure Vðϕ; σÞ ¼ σ4Wðϕ=σÞ and is an homogeneous
function; therefore, it satisfies the relation7

ϕ∂V=∂ϕþ σ∂V=∂σ ¼ 4V. Using this and with the nota-
tion x ¼ ϕ=σ, the extremum conditions for V
(∂ϕV ¼ ∂σV ¼ 0) can be written as WðxÞ ¼ W0ðxÞ ¼ 0

if we assume that hσi; hϕi ≠ 0. One of these conditions
fixes the ratio of the fields vevs, while the second implies a
relation (tuning) among the couplings of the theory. If x0 ¼
hϕi=hσi is a solution to these two conditions, then hϕi is
proportional to hσi which means that a flat direction exists
[3] in this theory, along the line in the plane ðϕ; σÞ with
ϕ=σ ¼ x0. Also since Wðx0Þ ¼ 0 on the ground state, then
Vðhϕi; hσiÞ ¼ 0. Thus, in theories with spontaneous break-
ing of scale symmetry, a vanishing cosmological constant at
a given order of perturbation theory demands a tuning of
the relation among couplings, in that order.

3These are defined as interactions absent in d ¼ 4 (ϵ ¼ 0) but
generated in d ¼ 4 − 2ϵ by scale invariance.

4These masses are ∂2 ~V=∂α∂β, α; β ¼ ϕ; σ and contain cor-
rections ∝ ϵ from derivatives of μðσÞ; see later.

5In a scale-invariant setup, in the absence of gravity, one
can only predict ratios of fields’ vevs.

6With scale invariance broken by gravity, the dilaton couplings
to matter are expected to be very small.

7To find this relation, use that Vðαϕ; ασÞ ¼ α4Vðϕ; σÞ
(homogeneous), differentiate with respect to α, and set α ¼ 1.
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An example of a scale-invariant potential that we
consider below is

V ¼ λϕ
4
ϕ4 þ λm

2
ϕ2σ2 þ λσ

4
σ4 ð3Þ

where note that the couplings can depend on ϕ=σ, that more
fields be present, etc.
In the simple case the couplings are independent of ϕ=σ;

minimizing this V gives

hϕiðλϕhϕi2 þ λmhσi2Þ ¼ 0;

hσiðλmhϕi2 þ λσhσi2Þ ¼ 0: ð4Þ
One can distinguish the following situations:
Case (a): The ground state is hσi ¼ 0, hϕi ¼ 0 and both

fields are massless.
Case (b): A more interesting case that we study in this

paper is that of spontaneous breaking of the scale symmetry
when hσi ≠ 0. A solution to both equations in (4) then
exists for hσi < ∞ (finite). Then also hϕi ≠ 0, and a
nontrivial ground state exists provided that λ2m ¼ λϕλσ
and λm < 0, which we assume to be true in the following.
Then

hϕi2
hσi2 ¼ −

λm
λϕ

;⇒ V ¼ λϕ
4

�
ϕ2 þ λm

λϕ
σ2
�

2

;

ðλ2m ¼ λσλϕ; λm < 0Þ: ð5Þ
Then a spontaneous breaking of the scale symmetry implies
electroweak symmetry breaking at tree level, with a
vanishing cosmological constant; it also demands the
existence of a finite (nonzero) scale hσi (unknown) in
the theory. All scales are then generated by hσi.8
Further, one shifts the fields ϕ → ϕþ hϕi and σ →

σ þ hσi and Taylor expands about the ground state. The
mass eigenstates are ~ϕ ¼ ϕ cos αþ σ sin α and ~σ ¼
−ϕ sin αþ σ cos α where tan2α ¼ −λm=λϕ > 0. A flat
direction exists, so one field (dilaton σ) is massless while
the second field ϕ, which would be the Higgs boson in a
realistic model, has a mass

m2
~ϕ
¼ 2λϕð1 − λm=λϕÞhϕi2 ¼ −2λmð1 − λm=λϕÞhσi2: ð6Þ

Ultimately, scale invariance is expected to be broken by
Planck physics; thus, σ will acquire a large vev,
hσi ∼MPlanck. If one would like to implement a hierarchy
with m ~ϕ ∼ hϕi ∼Oð100 GeVÞ ≪ hσi, one should tune
accordingly the couplings λσ ≪ jλmj ≪ λϕ. Such a

hierarchy of couplings is possible [15,28]. It was observed
[15] that the shift symmetry of the dilaton enables the
couplings λm;σ to remain ultraweak under renormalization
group evolution.
One would like to know if at the quantum level this tree-

level tuning is enough or if additional tuning (beyond that
of λm) is required to maintain this hierarchy and m ~ϕ light.
Indeed, at one-loop dangerous corrections can emerge,
such m2

~ϕ
∼ λ2ϕhσi2, that would require additional tuning (of

λϕ) and would reintroduce the hierarchy problem.

III. SCALE INVARIANCE OF ONE-LOOP
POTENTIAL AND EFFECTIVE OPERATORS

To compute the one-loop potential, consider the DR
scheme in d ¼ 4 − 2ϵ. Then, the mass dimensions are
½L� ¼ d, ½ϕ� ¼ ½σ� ¼ ðd − 2Þ=2; the couplings λϕ, λm, λσ
are dimensionful, ½λ� ¼ ½Vð4Þ� ¼ 4 − d. To render the cou-
plings dimensionless, one uses the DR scale μ and replaces
λ → λμ4−d. The scale μ breaks the classical scale invari-
ance. To avoid this problem and to preserve this symmetry
during regularization, replace μ by a field-dependent
function (unknown9) so μ4−d → μðϕ; σÞ4−d. Then the actual
Lagrangian is

L ¼ 1

2
∂μϕ∂μϕþ 1

2
∂μσ∂μσ − ~Vðϕ; σÞ;

~Vðϕ; σÞ≡ μðϕ; σÞ4−dVðϕ; σÞ; ð7Þ
L is scale invariant in d dimensions, ½ ~V� ¼ d, ½V� ¼ 2d − 4.
Denote by ~M2 the field-dependent mass matrix

ð ~M2Þαβ ¼
∂2 ~Vðϕ; σÞ
∂α∂β ; α; β ¼ ϕ; σ: ð8Þ

Then the one-loop potential, which manifestly respects
scale invariance, is found from10

U ¼ ~Vðϕ; σÞ − i
2

Z
ddp
ð2πÞd Tr ln½p

2 − ~M2ðϕ; σÞ þ iε� ð9Þ

¼ ~Vðϕ; σÞ − 1

2

1

ð2πÞd Γ½−d=2�Tr½π
~M2ðϕ; σÞ�d=2 ð10Þ

¼ ~Vðϕ; σÞ − 1

64π2
X
s¼ϕ;σ

~M4
s

�
2

4 − d
þ ln κ − ln ~M2

s

�
;

κ ≡ 4πe3=2−γE : ð11Þ

8Values hsi ¼ 0 and hsi ¼ ∞, with s ¼ ϕ; σ are excluded,
unless Eq. (4) is implemented in the sense of a limit (also the
couplings λm;ϕ;σ can depend on the ratio of the two fields but such
case requires assumptions about this dependence, not studied
here). Thus, although there are no scales in the initial theory,
infinite or vanishing values for the fields are excluded in
spontaneous breaking of scale symmetry.

9This function is assumed to be nonzero, finite, continuous,
differentiable and will be determined later (e.g., μ ∼ σ).

10Formula (9) is derived in the usual diagrammatic approach
(for ~V) and is valid at one loop (even in nonrenormalizable cases,
if no higher derivative operators exist and kinetic terms are
canonical). Beyond one loop more vacuum “bubble” diagrams
exist and then formula (9) receives corrections [29].

MANIFESTLY SCALE-INVARIANT REGULARIZATION AND … PHYSICAL REVIEW D 93, 105006 (2016)

105006-3



The sum is over the eigenvalues11 ~M2
s of the matrix ð ~M2Þαβ.

Up to O½ð4 − dÞ2� terms

ð ~M2Þαβ ¼ μ4−d½ðM2Þαβ þ ð4 − dÞμ−2Nαβ�;
α; β ¼ fϕ; σg; ð12Þ

where

ðM2Þαβ ¼ Vαβ;

Nαβ ≡ μðμαVβ þ μβVαÞ þ ðμμαβ − μαμβÞV; ð13Þ

and μα ¼ ∂μ=∂α, μαβ ¼ ∂2μ=∂α∂β, Vα ¼ ∂V=∂α,
Vαβ ¼ ∂2V=∂α∂β, are nonzero field-dependent quantities.
From the last two equations one finds, up to O½ð4 − dÞ2�
terms,

X
s¼ϕ;σ

~M4
s ¼ μ2ð4−dÞ½TrM4 þ 2ð4 − dÞμ−2TrðM2NÞ�: ð14Þ

Then

U¼ μðϕ;σÞ4−d
�
V −

1

64π2

�X
s¼ϕ;σ

M4
s

�
2

4−d
− ln

M2
s

κμ2ðϕ;σÞ
�

þ 4TrðM2NÞ
μ2ðϕ;σÞ

��
: ð15Þ

The last term is due to the field dependence of μ and its
origin is in the second evanescent term in the rhs of Eq. (12)
which cancels the pole to give a finite contribution. We
adopt the usual MS scheme here, in which case the
counterterms are12

δUct ¼
μðϕ; σÞ4−d

64π2
X
s¼ϕ;σ

M4
s

�
2

4 − d
þ ln κ −

3

2

�
; ð16Þ

where
P

s¼ϕ;σM
4
s ¼ V2

ϕϕ þ V2
σσ þ 2V2

ϕσ . Using

δUc:t: ≡ μ4−d½1=4ðZλϕ − 1Þλϕϕ4 þ 1=2ðZλm − 1Þλmϕ2σ2

þ 1=4ðλσ − 1Þλσσ4� ð17Þ
one finds the renormalization coefficients

Zλϕ ¼ 1þ 1

8π2ð4 − dÞ ð9λϕ þ λ2m=λϕÞ

Zλm ¼ 1þ 1

8π2ð4 − dÞ ð3λϕ þ 3λσ þ 4λmÞ

Zλσ ¼ 1þ 1

8π2ð4 − dÞ ð9λσ þ λ2m=λσÞ: ð18Þ

These Z’s have expressions identical to those obtained at
one loop with μ a constant.
After adding the counterterms δUc:t we can safely take

the limit d → 4 in the remaining terms (μ ≠ 0), so the
renormalized one-loop potential is

Uðϕ;σÞ¼Vðϕ;σÞþ 1

64π2

�X
s¼ϕ;σ

M4
sðϕ;σÞ

�
ln
M2

sðϕ;σÞ
μ2ðϕ;σÞ −

3

2

�

þΔUðϕ;σÞ
�

ΔU¼−4
μ2

fV½ðμμϕϕ−μ2ϕÞVϕϕþ2ðμμϕσ−μϕμσÞVϕσ

þðμμσσ−μ2σÞVσσ�þ2μðμϕVϕϕþμσVϕσÞVϕ

þ2μðμϕVϕσþμσVσσÞVσg: ð19Þ

In the aboveM2
s (s ¼ ϕ; σ) are the eigenvalues of the matrix

Vαβ given by the roots of equation ρ2 − ρðVϕϕ þ VσσÞþ
ðVϕϕVσσ − V2

ϕσÞ ¼ 0.13

Equation (19) is a scale-invariant one-loop result. It is a
modified version of the Coleman-Weinberg potential
(recovered if μ is a constant) and contains an additional
correction (ΔU). Note that ΔU is not exactly a counterterm
but a finite one-loop effect induced by scale invariance. It is
generated when the evanescent coefficient (4 − d) in the
field-dependent masses of Eq. (12) multiplies the pole
1=ð4 − dÞ of the one-loop integral.14 This effect is missed in11For any values of the fields, detðM2Þαβ is positive

provided that λ2m ∈ ½3λϕλσð3 − 2
ffiffiffi
2

p Þ; 3λϕλσð3þ 2
ffiffiffi
2

p Þ� and that
λϕ, λσ , λm have all the same sign. The eigenvalues are positive if
λϕ, λσ , λm are positive. If λm < 0, λϕ, λσ > 0 one eigenvalue is
negative. For λ2m outside this interval, restrictions apply to the
ratio ϕ2=σ2 for which the eigenvalues are both positive. Note that
even in the Standard Model (SM), the Goldstone mode (negative)
field-dependent squared mass leads to complex and infrared
divergent corrections and then only the real part of the potential is
included. A resummation of higher orders in V fixes this well-
known problem [30,31] (see also [16,32]). Here we proceed in
general and do not study this issue that affects the Coleman-
Weinberg term only, but refer the reader to [30,31].

12One can use other subtraction schemes, e.g., δUc:t:¼
μ4−d½a1ϕ4ð1=~ϵþc1Þþa2ϕ2σ2ð1=~ϵþc2Þþa3σ4ð1=~ϵþc3Þ� where
we denoted 1=~ϵ≡ 2=ð4 − dÞ þ ln κ − 3=2. The case of MS
corresponds to c1 ¼ c2 ¼ c3 ¼ 0.

13For the particular V of Eq. (3), the eigenvaluesMs (s ¼ ϕ; σ)
of ðM2Þαβ are

M2
s ¼ ð1=2Þ½ν�

ffiffiffiffi
Δ

p
�;

ν≡ ð3λϕ þ λmÞϕ2 þ ð3λσ þ λmÞσ2;
Δ ¼ ð3λϕ − λmÞ2ϕ4 þ ð3λσ − λmÞ2σ4

þ 2ϕ2σ2½3λmðλϕ þ λσÞ − 9λϕλσ þ 7λ2m�: ð20Þ
14In higher orders, an n-loop pole 1=ð4 − dÞn, upon multipli-

cation by the 4 − d coefficient, will actually generate a
1=ð4 − dÞn−1 pole, i.e., what we consider usually to account
for n − 1 loop effects. Thus, the order of the singularity is not
identical to the loop order in this case.
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calculations that are not scale invariant such as the usual
DR scheme. Note also that ΔU vanishes on the tree-level
ground state.15

ΔU contains nonpolynomial operators. Even in the
minimal case of taking μ ∼ σ, then the terms in ΔU
proportional to VVσσ contain a ϕ6=σ2 term. Similar
effective operators are expected to be generated in higher
orders. Further, one can Taylor expand the expression of the
potential about the ground state, using σ ¼ hσi þ δσ, with
δσ a quantum fluctuation. When doing so, the operator
ϕ6=σ2 becomes a series of effective (polynomial) operators

ϕ6

σ2
¼ ϕ6

hσi2
�
1 −

2δσ

hσi þ
3δσ2

hσi2 þ � � �
�
: ð21Þ

To proceed further, one needs the general expression of
the function μ ¼ μðϕ; σÞ. Let us first take μ ¼ μðσÞ only,
which will be justified in the next section; in this case the
only possibility is

μðσÞ ¼ zσ ð22Þ

which, as a “DR scale,” requires hσi ≠ 0, hσi < ∞. To be
exact, we actually take μðσÞ ¼ zσ2=ðd−2Þ [5], which
accounts for the mass dimension of the field σ. For the
one-loop case only (as here) it is safe to use at this stage its
limit for d → 4, so μ ¼ zσ. Here z is an arbitrary dimen-
sionless parameter and the dependence of U on z is
equivalent to the familiar subtraction scale dependence
of U in the usual regularization. With Eq. (22), one obtains
the following form of ΔU, which is independent of z:

ΔU ¼ −
4

σ2
½Vσσð2σVσ − VÞ þ 2σVϕVϕσ� ð23Þ

and only the Coleman-Weinberg term depends on z. With V
of Eq. (3)

ΔU ¼ λϕλmϕ
6

σ2
− ð16λϕλm þ 6λ2m − 3λϕλσÞϕ4

− ð16λm þ 25λσÞλmϕ2σ2 − 21λ2σσ
4: ð24Þ

As anticipated, notice the presence of the nonpolynomial
operator ∼ϕ6=σ2. This operator is suppressed at large hσi or
for small mixing (λm) between ϕ and the dilaton σ. The sign
of this operator is controlled by λm, assuming λϕ > 0. When
λm < 0, the term λmϕ

6 destabilizes the potential for large
values of ϕ. A tuning jλmj ≪ λϕ can compensate to render
this term of similar size to ϕ4 terms; also higher loop orders
can generate similar effective operators that may stabilize
the potential globally.

For the special case of a nontrivial classical vacuum of
Eq. (5), when λ2m ¼ λϕλσ, Eq. (24) becomes

ΔU ¼ λm
λ2ϕσ

2
ðλϕϕ2 þ λmσ

2Þ

× ½λ2ϕϕ4 − 4λϕð4λϕ þ λmÞϕ2σ2 − 21λ2mσ
4�: ð25Þ

This expression vanishes on the tree-level ground state,16

when λϕhϕi2 þ λmhσi2 ¼ 0 (λm < 0, λϕ > 0).
In conclusion, the expression of U at one loop is

manifestly scale invariant

Uðϕ;σÞ¼Vðϕ;σÞþ 1

64π2

�X
s¼ϕ;σ

M4
sðϕ;σÞ

�
ln
M2

sðϕ;σÞ
z2σ2

−
3

2

�

þΔUðϕ;σÞ
�

ð26Þ

with ΔU as in Eqs. (24) or (25) and V of Eq. (3) and where
the “standard” Coleman-Weinberg term is modified into a
scale-invariant form. This is the main result of this section,
valid under our assumption μðσÞ ¼ zσ. Further, U can be
Taylor expanded about hσi. With no mass scale in the
theory, from minimizing U one can only predict ratios of
vevs, so all masses are generated by hσi after spontaneous
breaking of scale symmetry.

IV. MORE GENERAL μðϕ;σÞ
AND IMPLICATIONS

The subtraction function could, in principle, be more
general and could depend on ϕ too, μ ¼ μðϕ; σÞ. In this
section we show that such dependence is not physical and
conclude that μmust be a function on the dilaton only. First,
consider the following example:

μðϕ; σÞ ¼ zðξϕϕ2 þ ξσσ
2Þ1=2: ð27Þ

This was used in earlier similar studies [2,4] where scale-
invariant models had a nonminimal coupling to gravity,
with this expression to fix the Planck scale upon sponta-
neous breaking of scale symmetry.17 With this μ and V of
Eq. (3) one finds that ΔU contains leading power terms ϕ8

and σ8 as shown in

15In a scale-invariant theory ~VðαziÞ ¼ αd ~VðziÞ; after differ-
entiating with respect to α and setting α → 1 then
d × ~V ¼ P

izi∂ ~V=∂zi, zi∶ϕ; σ. From min conditions with respect
to ϕ; σ: ~Vϕ ¼ ~Vσ ¼ 0 ⇒ Vmin ¼ 0, ΔUmin ¼ 0 (d → 4).

16At the loop level the ground state is changed slightly, but we
ignore that effect here.

17The nonminimal coupling is LG ¼ − 1
2
ðξϕϕ2 þ ξσσ

2ÞR, and
is added in some models to generate the Planck mass from
μðσ;ϕ…Þ in (spontaneously broken) scale-invariant theories
[2,4]. The relative signs of ξϕ, ξσ are important to ensure a positive
Newton constant (for a review see [33]). When going to the
Einstein frame, this coupling generates a suppression of the tree-
level potential by a factor 1=ðξϕϕ2 þ ξσσ

2Þ2, while in the case
discussed in the text (where no such coupling is included), such
suppression is shown to be generated in ΔU at one loop; see later.
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ΔU ¼ −ðξϕϕ2 þ ξσσ
2Þ−2½ð21λϕξϕ þ λmξσÞξϕλϕϕ8

þ ð21λσξσ þ λmξϕÞξσλσσ8 þ � � ��: ð28Þ

The dots stand for the remaining ϕ6σ2, ϕ4σ4, and ϕ2σ6

terms, which we do not display since their coefficients are
too long. The coefficients of ϕ8, σ8 are positive irrespective
of the values of ξϕ;σ , if λ2m ≥ 212λϕλσ, (with λϕ;σ > 0). This
condition is not respected on the ground state of V (with
λ2m ¼ λϕλσ). We thus encounter terms unbounded from
below, that otherwise vanish on the tree-level ground state.
A small fluctuation about the critical point can then
destabilize the potential.
It is intriguing that even if the classical V contains no

interaction terms between “visible” (ϕ) and “hidden” (σ)
sectors, i.e., λm ¼ 0, such terms are still generated by
quantum corrections, for μðϕ; σÞ of Eq. (27). Indeed, one
has

ΔUjλm¼0 ¼ −3½ξϕξσ½λϕð9λϕ þ λσÞϕ6σ2

þ λσðλϕ þ 9λσÞϕ2σ6� þ 7ðλ2ϕξ2ϕϕ8 þ λ2σξ
2
σσ

8Þ
− ðξ2ϕ þ ξ2σÞλϕλσϕ4σ4�ðξϕϕ2 þ ξσσ

2Þ−2: ð29Þ

This simplifies further if also λσ ¼ λ2m=λϕ → 0, but the term
∝ ξϕξσλ

2
ϕϕ

6σ2 does not vanish. Such terms ultimately arise

from the expression of the μ-dependent factor in ~V, via
terms like μϕVϕVϕϕ and ðμμϕϕ − μ2ϕÞVϕϕ in Eq. (19). The
two sectors still “communicate” at the quantum level, due
to scale invariance even if they are classically decoupled.
This concerning effect is only removed for vanishing ξϕ or
ξσ, which means μ ∝ σ.18

More generally, consider

μðϕ; σÞ ¼ zσegðϕ=σÞ: ð30Þ

Here, g is some arbitrary function of the ratio ϕ=σ. In this
case, in the classical “decoupling” limit λm → 0 also with
λσ ¼ λ2m=λϕ → 0, there are nonvanishing quantum inter-
actions terms:

ΔUjλm¼0 ¼ −3λ2ϕ

�
8
ϕ5

σ
g0ðϕ=σÞ þ ϕ6

σ2
g00ðϕ=σÞ

�
: ð31Þ

Again, the two sectors still communicate at the quantum
level only. To avoid such concerning behavior, we must
take g ¼ 0 or a constant.19 Therefore, the subtraction
function is independent of ϕ and thus μðσÞ ¼ zσ. This
result is the minimal scenario used in the previous section
and justifies our choice in Eq. (22) and our result in

Eq. (26). We conclude that it is the dilaton alone that
generates the subtraction scale after spontaneous breaking
of scale symmetry.

V. THE MASS SPECTRUM

Let us minimize the one-loop potential U. We restrict the
analysis to the simpler case of a hierarchy of the couplings
considered in [2,15]. We take

λσ ≪ jλmj ≪ λϕ; ð32Þ
To enforce this hierarchy, introduce λm ¼ ~λmε and
λσ ¼ ~λσε

2, where ε ∼ 1=M2
Planck ≪ 1, and λϕ, ~λm, and ~λσ

are now of similar magnitude. One then expands U up to
Oðε3Þ ∼Oðλ3mÞ,

U ¼ λϕ
4
ϕ4 þ λm

2
ϕ2σ2 þ λσ

4
σ4 þ 1

64π2

�
M4

1

�
ln

M2
1

z2σ2
−
3

2

�

þM4
2

�
ln

M2
2

z2σ2
−
3

2

�
þ λϕλm

ϕ6

σ2

− ð16λϕλm þ 6λ2m − 3λϕλσÞϕ4 − 16λ2mϕ
2σ2

�
þOðλ3mÞ:

ð33Þ

One can minimize U and find the solution for hϕi=hσi
that satisfies Uϕ ¼ Uσ ¼ 0; U being manifestly scale
invariant, these conditions ensure a flat direction exists
and also that vacuum energy vanishes in this order. One
finds

hϕi2
hσi2 ¼−

λm
λϕ

�
1−

6λϕ
64π2

ð4 ln3λϕ−17=3Þ
�
þOðλ2mÞ: ð34Þ

This brings a correction to the tree-level case, Eq. (5); here
λm < 0, λϕ > 0 and λ2m ¼ λϕλσ. To obtain Eq. (34) we fixed
the subtraction parameter z under the log term in U to

z ¼ hϕi=hσi; then μ → hϕi ð35Þ
on the ground state. This value for μ is the standard choice
for the subtraction scale, made to minimize the Coleman-
Weinberg log-term dependence on it. As mentioned, ΔU
itself is scheme independent (being independent of z).
The potential in (33) is scale invariant; the dilaton

remains massless at one loop while the Higgs-like scalar
ϕ has a mass

m2
~ϕ
¼ ½Uϕϕ þ Uσσ�min: ð36Þ

Let us consider only the contribution δm2
~ϕ
from ΔU alone

to the mass of ϕ. The interest is to examine if potentially
“dangerous” corrections of the type λ2ϕhσi2, etc. can emerge
from the new contribution ΔU. These would require an
additional tuning (of λϕ) beyond that of λm done at the tree

18up to a relabeling, see the symmetry ϕ ↔ σ, at which stage
one decides which field denotes the dilaton.

19We disregard a second solution for which the rhs of Eq. (31)
vanishes, since it is not continuous at ϕ ¼ 0.
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level, in order to keep ϕ light compared to hσi ∼MPlanck. In
general, one has

δm2
~ϕ
¼ 1

64π2
ðΔUϕϕ þ ΔUσσÞmin

¼ −hσi2
32π2

½4λ2mð4þ 13ρÞ þ 18λσð7λσ − λϕρÞ
þ λm½25λσð1þ ρÞ − 3λϕρð−32þ 5ρþ ρ2Þ�� ð37Þ

where ρ ¼ hϕi2=hσi2. This mass correction contains terms
proportional to λm or λσ ¼ λ2m=λϕ ≪ λm but not to λϕ alone.
Therefore no extra tuning is needed beyond that at the
classical level of Eqs. (5) and (6), in order to maintain δm2

~ϕ

andm2
~ϕ
∼ hϕi2 ∼ λmhσi2 close to the electroweak scale. It is

possible that this nice behavior survives to higher or all
orders, as a result of the manifest scale invariance and
spontaneous breaking of this symmetry. This suggests that
the hierarchy problem could be solved with only one initial
(classical) tuning of λm (no tuning of λϕ).

VI. FURTHER REMARKS

The method we used to generate dynamically the
subtraction scale of the DR scheme, as the dilaton vev,
deserves further study.
First, note that the potential U must respect the Callan-

Symanzik equation, i.e., it must be independent of the
choice of the dimensionless parameter z and thus of the
subtraction scale zhσi after spontaneous scale symmetry
breaking [5]. In our one-loop approximation this demands
that

dU
d ln z

¼
� ∂U
∂ ln zþ βλj

∂
∂λj

�
U ¼ Oðλ3Þ ð38Þ

where U is that of Eq. (26) and ΔU of (24) and the
Coleman-Weinberg term is the only one that depends
explicitly on z. To check if condition (38) is respected,
we need the one-loop beta functions of the theory; these are
obtained from the condition that the “bare” couplings of the
Lagrangian are independent of subtraction scale zhσi,
where z is arbitrary: dðλjZλjÞ=d ln z ¼ 0, where j ¼
ϕ; m; σ (fixed) and Zλj are given in Eq. (17).20 One finds

βλϕ ¼
dλϕ
d ln z

¼ 1

8π2
ð9λ2ϕ þ λ2mÞ

βλm ¼ dλm
d ln z

¼ 1

8π2
ð3λϕ þ 4λm þ 3λσÞλm

βλσ ¼
dλσ
d ln z

¼ 1

8π2
ðλ2m þ 9λ2σÞ ð39Þ

which are the same as in the case where the theory was
regularized with μ ¼ constant.21 Using these beta functions
one easily checks that Eq. (38) is respected. This shows that
the change of parameter z is “moved” into the running
couplings22 of the potential and physics is indeed indepen-
dent of z: UðλjðzÞ; zÞ ¼ Uðλjðz0Þ; z0Þ, where j ¼ ϕ; m; σ
and z; z0 are different subtraction parameters (ultimately
corresponding to subtraction scales zhσi, z0hσi).
Regarding the renormalizability of scale-invariant mod-

els, previous studies [23] identified at three-loop order a
UV counterterm to the original Lagrangian L, of the form

1

ð16π2Þ3
1

ð4 − dÞ2
�

ξϕ
ξσσ

2

�
2

ð□ϕ2Þ2: ð40Þ

In [23] μ ∼ ðξϕϕ2 þ ξσσ
2Þ1=2, just like in Eq. (27). This

UV divergence was due to a new vertex generated by the
Taylor expansion of μðϕ; σÞ with respect to ϕ; this vertex is
ultimately due to new interactions that μðϕ; σÞ itself
brought in ~V but is absent in initial V. Given this counter-
term, the theory is then nonrenormalizable and nonlocal.
The same conclusion is expected for any subtraction
function that depends on additional fields other than
dilaton.
However, we showed that μ ¼ zσ (Sec. IV), so the above

three-loop counterterm is absent because we have ξϕ ¼ 0.
Despite this, the standard expectation is that higher loop
orders still generate higher dimensional counterterms and
the theory is nonrenormalizable, due to the presence inU of
the nonpolynomial term ϕ6=σ2. [One can still explore the
possibility that in a scale symmetry-preserving calculation,
all poles in quantum corrected L be those that renormalize
its initial couplings and fields only (i.e., renormalizability),
without other UV counterterms. This problem deserves
careful investigation and is beyond the goal of this paper.]
As a result of a manifestly scale-invariant regularization,

the ðmassÞ2 of ϕ contains quadratic contributions λmhσi2
and corrections suppressed by 1=hσi2, in addition to log-
like terms lnhσi ∼ ln μ present in the usual DR scheme. Our
method to generate the subtraction scale via spontaneous
breaking in a dilaton-modified DR can also be implemented
in other regularizations. Also note that the role of μ ∼ σ as a

20To be exact, in d ¼ 4 − 2ϵ, one actually imposes
dððzσÞ2ϵλjZλjÞ=d ln z ¼ 0, giving that beta functions are shifted
from those above, βλj ¼ −2ϵλj þ ð…Þ where ð…Þ denotes the
right-hand side in each of the equations in (39).

21This is expected since we only found new finite terms, but no
new counterterms.

22Thus, there is no dilatation anomaly, yet the couplings still
run as usual [5,6].
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finite, nonzero DR scale means that only nonzero, finite hσi
is allowed. In fixing its actual numerical value, Planck scale
physics (gravity) is expected to play a role.
Although we do not explore them here, our results can

have interesting applications to phenomenology, such as

model building beyond SM [13–15]. For reference only, we
provide below the one-loop potential in the scale-invariant
version of the SM23 extended by the dilaton. With the usual
CW part δUCW,

24 the one-loop scalar potential in the SM is
[with M2

ϕ, M
2
σ as in Eq. (20)]

U ¼ λϕ
4
ϕ4 þ λm

2
ϕ2σ2 þ λσ

4
σ4 þ δUCW þ 1

64π2

�
λϕλm

ϕ6

σ2
− ð16λϕλm þ 6λ2m − 3λϕλσÞϕ4 − ð16λm þ 25λσÞλmϕ2σ2 − 21λ2σσ

4

þM4
σ ln

M2
σ

z2σ2
−
3

2
½ð9λ2ϕ þ λ2mÞϕ4 þ 2λmð3λϕ þ 4λm þ 3λσÞϕ2σ2 þ ðλ2m þ 9λ2σÞσ4�

�
:

The last two lines give the new correction ΔU, while in
the CW term one uses μ ¼ zσ with z ¼ hϕi=hσi. This
equation can be used as the starting point in phenomeno-
logical studies.

VII. CONCLUSIONS

Scale-invariant theories are often considered to address
the hierarchy problem of the Standard Model. However, the
regularization of their quantum corrections breaks explicitly
the scale symmetry that one wants to study. This is because
all regularizations introduce a dimensionful parameter, e.g.,
the couplings in DR, the UV scale in other regularizations,
etc. One can avoid this problem by using a manifestly scale-
invariant regularization in which the Goldstone mode of
this symmetry (dilaton) plays a central role. We used a
dilaton-dependent subtraction function μ ¼ μðσÞ that repla-
ces the ordinary subtraction scale.We applied this procedure
to theDR scheme, to obtain a scale-invariant one-loop scalar
potentialUðϕ; σÞ for the (Higgs-like) scalar ϕ and dilaton σ.
After spontaneous breaking of scale invariance when
hσi ≠ 0, all mass scales of the theory, including the usual
subtraction scale, are generated from this single vev.
The scale invariance of the action in d ¼ 4 − 2ϵ and the

usual rescaling λ → μ2ϵλ that ensures dimensionless quartic
couplings change the potential Vðϕ; σÞ → μðσÞ2ϵVðϕ; σÞ
which now contains new (evanescent) interactions due to
the field dependence of μ. At the quantum level, these
interactions generate new, finite corrections.
We found a new (finite) one-loop correction ΔU to the

potential, overlooked by previous studies, that is present
beyond the usual Coleman-Weinberg term which is also

modified into a scale-invariant form. For the minimal case
μðσÞ ¼ zσ, it was shown that ΔU also contains a non-
polynomial operator ∝ ϕ6=σ2 with a known, finite cou-
pling. After spontaneous breaking of scale invariance, this
operator generates a series of (polynomial) terms sup-
pressed by powers of hσi ≠ 0. At higher loop orders, more
such operators are expected.
Technically,ΔU is generated from an evanescent correction

(∝ ϵ) to the field-dependent masses of the states “running” in
the loop correction to the potential, which cancels the pole
(∝ 1=ϵ) of the momentum integral, to give rise to a finiteΔU.
And since it is finite, ΔU was found to be independent of
the subtraction (dimensionless) parameter (z). Of course
physics must be independent of z and of the subtraction scale
μðhσiÞ ¼ zhσi after spontaneous breaking of scale symmetry.
To check this we showed that the full one-loop potential
Uðϕ; σÞ does respect the Callan-Symanzik equation.
Further, the correction fromΔU to the mass of the Higgs-

like scalar ϕ remains under control (small) without addi-
tional tuning beyond that done at the tree level to enforce the
hierarchy hϕi ≪ hσi. It is possible that this behavior
survives in higher orders, in a manifest scale-invariant
calculation. This could provide a solution to the hierarchy
problem beyond the one-loop order discussed here.
More general subtraction functions that depend on both σ

and ϕ were ruled out because in this case there are quantum
operators that force the visible sector (ϕ) and hidden sector
(σ) to interact in d ¼ 4 even in their classical decoupling
limit (λm ¼ 0). Avoiding this behavior dictates that only the
dilaton alone can generate the subtraction scale after
spontaneous breaking of scale symmetry. Thus μ depends
on σ only, as considered above. The above approach and the
scale-invariant regularization are of interest to theories that
study scale invariance at the quantum level.
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24δUCW¼ 1
64π2

P
iNiM4

i ½lnM2
i =μ

2ðϕ;σÞ−Ci�, i¼ðG;S;W;Z;tÞ
for Goldstone bosons, real scalars, gauge bosons, top, respec-
tively, with ðNG;NS; NW;NZ; NtÞ ¼ ð3; 1; 6; 3;−12Þ. Ci ¼ 3=2
for fermions or scalars and 5=6 for gauge bosons.
M2

G ¼ λϕϕ
2 þ λmσ

2, M2
W ¼ 1

4
g2ϕ2, M2

Z ¼ 1
4
ðg2 þ g02Þϕ2, M2

t ¼
1
2
y2tϕ2. The potential (3) of Higgs dilaton, V ¼ λϕjHj4 þ

λmjHj2σ2 þ ðλσ=4Þσ4 with H ¼ ð0;ϕÞ= ffiffiffi
2

p
(unitary gauge).

23This is just the SM with no classical mass term for the Higgs
in the Lagrangian.
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