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The electric permittivities and magnetic permeabilities for a relativistic electron gas are calculated from
quantum electrodynamics at finite temperature and density as functions of temperature, chemical potential,
frequency, and wave vector. The polarization and the magnetization depend linearly on both electric and
magnetic fields, and are the sum of a zero-temperature and zero-density vacuum part with a temperature-
and chemical-potential-dependent medium part. Analytic calculations lead to generalized expressions that
depend on three scalar functions. In the nonrelativistic limit, results reproduce the Lindhard formula. In the
relativistic case, and in the long wavelength limit, we obtain the following: (i) for ω ¼ 0, generalized
susceptibilities that reduce to known nonrelativistic limits; (ii) for ω ≠ 0, Drude-type responses at zero
temperature. The latter implies that both the electric permittivity ϵ and the magnetic permeability μ may be
simultaneously negative, a behavior characteristic of metamaterials. This unambiguously indicates that the
relativistic electron gas is one of nature’s candidates for the realization of a negative index of refraction
system. Moreover, Maxwell’s equations in the medium yield the dispersion relation and the index of
refraction of the electron gas. Present results should be relevant for plasma physics, astrophysical
observations, synchrotrons, and other environments with fast-moving electrons.
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Metamaterials evolved from a mathematical curiosity [1]
to real applications thanks to the nanoengineering that made
themaccessible in the laboratory [2].As a consequence, they
rekindled interest in the electromagnetic responses of
material media and led us to search for a reliable way to
calculate such responses for a relativistic electron gas. Thus,
we resorted to quantum field theory [3–6] to investigate a
system of relativistic electrons at finite temperature and
density. Besides providing a test of the treatment, the system
is a reasonable approximation to physical situations encoun-
tered in plasma physics, astrophysics, synchrotrons, and
other environments with fast-moving electrons.
One should note that no examples of naturally occurring

materials with ϵ electric permittivity and μ magnetic
permeability being simultaneously negative were ever
found [7]. As there seems to be no reason why this could
not occur in nature, we have decided to look for such effects
in the relativistic electron gas at finite density and finite
temperature for which analytic studies of electromagnetic
responses may be straightforwardly performed by using a
quantum field theoretical approach. Indeed, as we demon-
strate, for long-wavelength radiation, a finite density of
relativistic electrons exhibits Drude-type responses for both
ϵ and μ−1 at T ¼ 0, implying that they can be simulta-
neously negative for frequencies that are low when com-
pared to the electric plasmon frequency.
Let us first consider the partition function Z ¼

Tre−βðĤ−ξΔN̂Þ of quantum electrodynamics (QED) at finite
temperature and density, which describes an electron gas

with fixed ΔN ¼ Ne − Np (Ne is the number of electrons;
Np is the number of positrons) at temperature T ¼ β−1

(Boltzmann constant kB ¼ 1) and chemical potential ξ,
coupled to the electromagnetic field Aν. Z may be
expressed as a functional integral over gauge and fermion
fields [5]

Z ¼
I

½dΩ�δðGÞe−SA½A�Ze½A�; ð1Þ

where

Ze½A� ¼
I

½idψ†�½dψ �e−Se½ψ†;ψ ;A�; ð2Þ

½dΩ�≡ ½dAν� detðδG=δΛÞ, and the determinant is the
Jacobian of the gauge transformation Aν → Aν − ∂νΛ.
Notice that the delta function imposes the gauge condition
G½A� ¼ 0, typically G½A� ¼ ∂νAν; the actions SX ¼R β
0 dx4

R
d3xLX (X ¼ A, e) involve LA ¼ − 1

4
FμνFμν and

Le ¼ ψ̄ΓAψ ; ΓA ¼ G−1
A ¼ iD −m − iξγ4 is the inverse of

the electron propagator in the presence of the gauge field;
D≡ γ:ð∂ − ieAÞ; e andm are the electron charge and mass;
and ℏ ¼ 1, c ¼ 1, ψ̄ ¼ ψ†γ4. The integral

H
runs over

gauge fields obeying Aνð0; ~xÞ ¼ Aνðβ; ~xÞ, and electron
fields obeying ψð0; ~xÞ ¼ −ψðβ; ~xÞ [8].
In the lowest order of a semiclassical approximation (see

Appendix A), we take Aμ to be a classical field, and
integrate over the electron field, to obtain
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Ze½A� ¼ det½−βγ4ΓA� ¼ expTr ln½−βγ4ΓA�: ð3Þ

This leads to a modified action for the Aμ field,
Ssc½A� ¼ SA½A� − Tr ln½−βγ4ΓA�, which takes into account
the response of the electrons. The extremal condition
δSsc=δAν ¼ 0 gives the equation of motion

∂μFμν ¼ −Tr½eγνGA� ¼ Jν: ð4Þ

Splitting J into free Jð0Þ (for A ¼ 0) and induced JðIÞ
currents, we may rewrite the equation of motion as

∂μðFμν þ PμνÞ ¼ Jð0Þν ; ð5Þ

− ∂μPμν ¼ JðIÞν ¼ Tr½eγνGA� − Tr½eγνG0�; ð6Þ

with G0 the free electron propagator. Pμν defines the

polarization ~P (P4j ¼ iPj) and magnetization ~M
(Pij ¼ −ϵijkMk) vectors. Expanding the current in the field
Aν yields an infinite series of one-loop graphs, which is
equivalent to the RPA approximation [9] of condensed
matter physics. If we only retain the linear term, which
amounts to the linear response approximation, we obtain
the momentum space equation

iqμ ~PμνðqÞ ¼ ~ΠνσðqÞ ~AσðqÞ; ð7Þ

where

~Πνσ ¼ −
e2

β

Xþ∞

n¼−∞

Z
d3p
ð2πÞ3 Sp½γνG0ðpÞγσG0ðp − qÞ�: ð8Þ

The sum is over Matsubara frequencies p4 ¼ ð2nþ 1ÞπT,
with Sp denoting the trace over Dirac matrices. The
solution to Eq. (7),

~Pμν ¼
~Πμσ

q2
Fνσ −

~Πνσ

q2
Fμσ; ð9Þ

relates polarization and magnetization to the fields ~E
(F4j ¼ iEj) and ~B (Fij ¼ ϵijkBk), thus yielding electric
and magnetic susceptibilities and, ultimately, electric per-
mittivities and magnetic permeabilities. One may write
~Πνσ ¼ ~ΠðvÞ

νσ þ ~ΠðmÞ
νσ to separate vacuum (T ¼ ξ ¼ 0) and

medium contributions. The vacuum gives

−
~ΠðvÞ
νσ

q2
¼

�
δνσ −

qνqσ
q2

�
Cðq2Þ: ð10Þ

The medium, however, introduces a preferred reference
frame (that of its center of mass). The symmetry is
then reduced to three-dimensional rotation and gauge
invariance, leading to

−
~ΠðmÞ
ij

q2
¼

�
δij −

qiqj
j~qj2

�
Aþ δij

q24
j~qj2 B; ð11Þ

−
~ΠðmÞ
44

q2
¼ B; −

~ΠðmÞ
4i

q2
¼ −

q4qi
j~qj2 B; ð12Þ

where Aðq4; j~qjÞ, Bðq4; j~qjÞ, and Cðq2Þ are determined
from the Feynman graph in Eq. (8), which corresponds to
the QED polarization tensor at finite temperature and
density, computed long ago [10]. A and B are calculated
from the trace ~Πμμ and ~Π44, once we subtract the vacuum
part, i.e.,

A ¼ −e2

2π3q2
Re

Z
d3p
ωp

nFðpÞ
p:ðpþ qÞ
q2 − 2p:q

þ
�
1 −

3q2

2j~qj2
�
B;

ð13Þ

and

B ¼ −e2

2π3q2
Re

Z
d3p
ωp

nFðpÞ
p:q − 2p4ðq4 − p4Þ

q2 − 2p:q
; ð14Þ

where p4¼iωp¼i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þm2

p
and nFðpÞ¼ðeβðωp−ξÞþ

1Þ−1þðeβðωpþξÞþ1Þ−1. Expressions (13) and (14) may be
integrated over angles [10] (Appendix B). C is obtained
from the vacuum polarization contribution [11].
The Euclidean space ~Πμν is a function of the Euclidean

q4. As Πμνðx; yÞ may be expressed as a current-current
correlation hjμðxÞjνðyÞi, jμ ¼ ψ†γ4γμψ , it may be written
in terms of a spectral density ~ρμν,

~Πμνðωn; ~qÞ ¼
Z þ∞

−∞

dv
vþ iωn

~ρμνðv; ~qÞ; ð15Þ

where ~ρμν is expressible in terms of expectation values of
the eigenstates of the Hamiltonian. In order to obtain a
Minkowski space expression, we need the current-current
correlation for jμ ¼ ψ†γ0γμψ, with the corresponding
spectral density also given by expectation values [5,6].
Then, using our conventions for the relation between
Euclidean and Minkowski indices, we derive

~Π�
44 ¼ i ~Π00; ~Π�

4k ¼ ~Π0k; ~Π�
kl ¼ −i ~Πkl; ð16Þ

where the asterisk means q4 ¼ ωn → iω − 0þ. Since
Euclidean q2 ¼ q24 þ j~qj2 goes to Minkowski
−q2 ¼ −q20 þ j~qj2, our prescription takes Euclidean quan-
tities into the physical Minkowski ones through

~Π44

q2
→

−i ~Π00

q2
;

~Π4k

q2
→

− ~Π0k

q2
;

~Πjk

q2
→

i ~Πjk

q2
; ð17Þ
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leading [cf. Eq. (9)] to the Minkowski expressions

~Pj ¼ i ~Π00

q2
~Ej −

i ~Πjk

q2
~Ek þ iϵjkl

~Π0k

q2
~Bl; ð18Þ

~Mj ¼ i ~Πkk

q2
~Bj −

i ~Πjk

q2
~Bk − iϵjkl

~Π0k

q2
~El: ð19Þ

We now introduce Hμν ¼ Fμν þ Pμν, which defines

H4j ¼ iDj and Hij ¼ ϵijkHk, with ~D ¼ ~Eþ ~P and
~H ¼ ~B − ~M. The constitutive equations are derived from
Eqs. (10), (11), and (12), and Eqs. (18) and (19), i.e.,

~Dj ¼ ϵjk ~Ek þ τjk ~Bk; ð20Þ

~Hj ¼ ðμ−1Þjk ~Bk þ σjk ~Ek; ð21Þ

where, by using q̂i ≡ qi=j~qj, one obtains

ϵjk ¼ ϵδjk þ ϵ0q̂jq̂k; ð22Þ

ðμ−1Þjk ¼ μ−1δjk þ μ0−1q̂jq̂k; ð23Þ

τjk ¼ τϵjklq̂l; σjk ¼ σϵjklq̂l: ð24Þ

One should stress that there are contributions to ð ~D; ~HÞ
along the directions of the fields ð~E; ~BÞ, of the wave vector
~q, and of ð~q∧~B; ~q∧~EÞ; also note that bianisotropic crystals
satisfy similar relations [12].
The permittivities and permeabilities,

ϵ ¼ 1þ
�
2 −

ω2

q2

�
C� þA� þ

�
1 −

ω2

j~qj2
�
B�; ð25Þ

μ−1 ¼ 1þ
�
2þ j~qj2

q2

�
C� þA� − 2

ω2

j~qj2 B
�; ð26Þ

ϵ0 ¼ −μ0−1 ¼ j~qj2
q2

C� −A�; ð27Þ

τ ¼ σ ¼ ω

j~qj
�j~qj2
q2

C� − B�
�
; ð28Þ

are determined by three scalar functions A�, B�, and C�,
where again the asterisk means q4 → iω − 0þ. C� may be
obtained from the standard calculation at T ¼ ξ ¼ 0 [11],

C� ¼ −e2

12π2

�
1

3
þ 2

�
1þ 2m2

q2

�
½harccotðhÞ − 1�

�
ð29Þ

where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2=q2Þ − 1

p
and the renormalization con-

dition is e2=ð4πℏcÞ ¼ 1=137, with e2 ¼ e2ðω ¼ 0; ~q ¼ ~0Þ.
The vacuum contributions to permittivities and

permeabilities are obtained by setting A� ¼ B� ¼ 0. On
the other hand, medium susceptibilities may be defined as
χe ¼ ϵ − ϵv, χ0e ¼ ϵ0 − ϵ0v, χem ¼ τ − τv, χm ¼
−ðμ−1 − μ−1v Þ, χ0m ¼ −ðμ0−1 − μ0−1v Þ, and χme ¼
−ðσ − σvÞ. In the sequel, we will examine the long-
wavelength limit j~qj → 0 of nonrelativistic and relativistic
expressions, for ω ¼ 0 (the stationary case) and ω ≠ 0, for
various physical quantities of interest.
Nonrelativistic expressions [6,13] will follow whenever

jξ −mj ≪ m, βm ≪ 1, nF → n0F ¼ ðeβðεp−ξ0Þ þ 1Þ−1, with
ε~p ¼ j~pj2=2m and ξ0 ¼ ξ −m. In Euclidean space, q4=m∼
T=m, which leads toA → 0 and j~qj2=m2 ∼ T=m. Then,A�
vanishes and χe → B� reduces to

χe → B� ¼ −2e2

j~qj2 Re
Z

d3p
4π3

n0Fð~pÞ
ε~p − ε~p−~q − ω − i0þ

: ð30Þ

The above expression may easily be converted into the
Lindhard expression for the electric susceptibility,

χe → B� ¼ −e2

j~qj2 Re
Z

d3p
4π3

n0Fð~pþ ~qÞ − n0Fð~pÞ
ε~pþ~q − ε~p − ω − i0þ

: ð31Þ

If one sets ω ¼ 0 and goes to the long-wavelength limit,

B� ¼ e2m
π2j~qj2

Z
∞

0

dpn0FðpÞ; ð32Þ

which is the Thomas-Fermi expression χe ¼ m2
TF=j~qj2,

with

m2
TF ¼

e2m
π2

Z
∞

0

dpn0FðpÞ: ð33Þ

If, instead, ω ≠ 0, in the long-wavelength limit, one obtains

the Drude expression ϵ ¼ 1 − ω2
e

ω2, where the electric plas-
mon frequency is

ω2
e ¼

−e2

π2m

Z
∞

0

dpp2n0FðpÞ: ð34Þ

For T ¼ 0, with pF ¼
ffiffiffiffiffiffiffiffiffiffi
2mξ0

p
, and the electron density

n ¼ p3
F=3π

2 (ℏ ¼ 1),

ω2
e ¼

e2m2

3π2

�
pF

m

�
3

¼ ne2

m
: ð35Þ

Since, in the nonrelativistic limit, A → 0 and
q4=m ∼ j~qj2=m2 ∼ T=m, all other medium susceptibilities
vanish in lowest order.
The relativistic case sets in as jξ −mj ∼m, or T ∼m, or

both. Then, generalized expressions must be used to
investigate the stationary case, ω ¼ 0, as well as the case
ω ≠ 0, in the long-wavelength limit j~qj → 0. In the
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stationary case ω ¼ 0, one has χe ¼ A� þ B�, χ0e ¼ χm ¼
χ0m ¼ −A�. In the long-wavelength limit,

A� ¼ −
e2

6π2

Z
∞

0

dpnFð~pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þm2

p ; ð36Þ

B� ¼ e2

π2j~qj2
Z

∞

0

dpnFð~pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þm2

p
�
m2 þ 3

2
j~pj2

�
: ð37Þ

For T ¼ 0, one obtains a closed relativistic expression
(ξ=m≡ ζ),

χ0e ¼ χm ¼ χ0m ¼ e2

6π2
arccoshðζÞ: ð38Þ

In the nonrelativistic limit,

χ0e ¼ χm ¼ χ0m ¼ e2

6π2

ffiffiffiffiffiffiffiffiffiffi
2mξ0

p
m

¼ e2

6π2
pF

m
; ð39Þ

where pF ¼
ffiffiffiffiffiffiffiffiffiffi
2mξ0

p
is the Fermi momentum. In other

words,

χ0e ¼ χm ¼ χ0m ¼ e2

4π2
pF

m
−

e2

12π2
pF

m
; ð40Þ

the sum of χPauli ¼ ðe2=4π2ℏcÞðpF=mcÞ and χLandau ¼
−ðe2=12π2ℏcÞðpF=mcÞ, where we have restored the units
ℏ and c. For χe, the long-wavelength limit yields the
relativistic generalization of the Thomas-Fermi expression
χe ¼ m2

TF=j~qj2, with

m2
TF ¼

e2

π2

Z
∞

0

dpnFð~pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þm2

p
�
m2 þ 3

2
j~pj2

�
: ð41Þ

For T ¼ 0, one finds

m2
TF

m2
¼ e2

4π2
½arccoshðζÞ þ 3ζ

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1

p
�; ð42Þ

with the nonrelativistic limit m2
TF=m

2 ¼ ðe2=π2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2ξ0=m

p
,

orm2
TF=m

2 ¼ ðe2=π2ℏcÞðpF=mcÞ, which is the same as we
obtain from Eq. (33) at T ¼ 0.
In order to access the long-wavelength relativistic limit

for ω ≠ 0, one takes j~qj → 0 and expands the expressions
for A� and B� after the angular integration (Appendix B).
Note that the last terms in Eqs. (25) and (26) now dominate,
whereas they do not contribute in leading order in the
nonrelativistic regime. In fact, for nonrelativistic systems in
thermal equilibrium with the radiation, we must have
ω ∼ ðj~qj2=2mÞ ≪ m, so that ðω2=j~qj2Þ ≪ 1. Taking the
long-wavelength limit after the nonrelativistic one yields a
Drude expression for ϵ, but not for μ−1.

For T ¼ 0, the ϵ electric response is given by a Drude-
type expression

ϵ ¼ 1 −
ω2
e

ω2
þ e2

3π2
geðζÞ þO

�
ω2

4m2

�
; ð43Þ

ω2
e

4m2
¼ e2

12π2
ðζ2 − 1Þ3=2

ζ
; ð44Þ

and so is the μ−1 magnetic response,

μ−1 ¼ 1 −
ω2
m

ω2
−
5e2

6π2
gmðζÞ þO

�
ω2

4m2

�
; ð45Þ

ω2
m

4m2
¼ 2e2

12π2
ðζ2 − 1Þ3=2

ζ
; ð46Þ

where ge and gm are given in the Appendix B. We note that
there is a relation between ωm and ωe, i.e., ωm ¼ ffiffiffi

2
p

ωe,
and that the vacuum contribution is Oðω2=4m2Þ. The
electron plasmon frequency Ωe is defined as the zero of
ϵ, Ω2

e ¼ ω2
e½1þ e2

3π2
geðζÞ�−1 ≃ ω2

e. The ζ → 1 limit of the
electric plasmon frequency coincides with the one given
in Eq. (35).
The Drude-type expressions imply that the electric and

magnetic responses may be simultaneously negative for
small ω. We should emphasize that the Drude-type behav-
ior comes solely from the medium contribution; the
vacuum part does not exhibit any singular behavior.
One might wonder about the effect of corrections on the

Drude result. Those coming from the interaction of
electrons with the classical fields will be nonlinear in
the fields, typically of order αðαE2=m4Þ or αðαB2=m4Þ.
Those coming from electron-electron interactions will have
a linear response term of order α2 and nonlinear contribu-
tions also of order αðαE2=m4Þ, αðαB2=m4Þ. For fields that
are not strong enough to invalidate the linear response
approximation, those corrections will, presumably, be small
compared to the leading contribution and therefore unable
to cancel the 1=ω2 terms.
Finally, we investigate how a wave propagates inside the

electron gas. That will lead to a dispersion relation, which
allows us to obtain the index of refraction. From the
equations qμ ~Hμν ¼ 0 and ϵμναβqν ~Fαβ ¼ 0, combined with
the constituent equations, one may proceed in the usual
way to derive

��
μ−1 þ ω

j~qj σ
�
j~qj2 −

�
ϵ −

j~qj
ω

τ

�
ω2

�
~Ei ¼ 0; ð47Þ

��
μ−1 þ ω

j~qj σ
�
j~qj2 −

�
ϵ −

j~qj
ω

τ

�
ω2

�
~Bi ¼ 0: ð48Þ

For a plane-wave solution, the dispersion relation is
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j~qj2 − ðμϵÞω2 þ 2ðμτÞωj~qj ¼ 0: ð49Þ

The relation j~qj ¼ j~qjðωÞ, which satisfies Eq. (49), leads to
the index of refraction nðωÞ ¼ j~qj=ω. For τ ¼ 0, we
recover the usual expression n ¼ ffiffiffi

μ
p ffiffiffi

ϵ
p

. Notice that, in
the long-wavelength limit, one has τ ¼ 0, n ¼ ffiffiffi

μ
p ffiffiffi

ϵ
p

, and
electric and magnetic responses that may be simultaneously
negative. It then follows that one may obtain negative
indices of refraction for the relativistic regime in such
a limit.
In conclusion, we have calculated electromagnetic

responses from quantum field theory at finite temperature
and density for a relativistic electron gas. We have shown
that, in the relativistic regime, the gas will exhibit Drude-
type responses for both ϵ and μ−1 in the j~qj → 0 long-
wavelength limit, implying that such quantities may be
simultaneously negative. The generalized formula
[cf. Eq. (49)] obtained for the index of refraction for the
electron plasma reduces to the n ¼ ffiffiffi

μ
p ffiffiffi

ϵ
p

usual one for
j~qj → 0, so the plasma will exhibit a negative index of
refraction under those conditions.
Summing up, the electrodynamics of materials with

negative indices of refraction, with electrical permittivity
and magnetic permeability being simultaneously negative,
was investigated by Veselago [1] and remained a math-
ematical curiosity for many years, until split ring resonators
enhanced magnetic responses to simultaneously allow for
negative permeabilities and negative permittivities [2].
Relativistic systems, however, do not suffer from a v=c
damping of magnetic effects with respect to electric ones.
In fact, the last terms in Eqs. (25) and (26) dominate in the
relativistic limit (which explains the ωm ¼ ffiffiffi

2
p

ωe relation).
Those are the terms that lead to Drude-type responses. As
they are determined by symmetry, one may suggest that it is
a natural behavior, which will occur for other relativistic
systems, such as a gas of charged bosons. This problem is
currently under investigation and will be the subject of a
forthcoming article. Finally, this work suggests that the
relativistic electron gas is one of nature’s candidates for the
realization of a negative index of refraction system. Our
suggestion relies on the expectation that the RPA approxi-
mation, which does not take into account electron-electron
interactions, is still a reasonable description of the electron
gas (Appendix A), just as it is for simple metals. We are
currently exploring our results numerically using physical
parameters extracted from experimental data [14].
We hope that present results will be of relevance for

future studies in plasma physics, astrophysical observa-
tions, synchrotrons, and other environments with fast-
moving electrons. A specific experimental scenario where
relativistic T ¼ 0 results can be tested is in a synchrotron
accelerator. The electrons inside the beam are relati-
vistic and well separated (which favors an independent
particle approximation), and one can actually probe the
electromagnetic responses of the beam to externally applied

time-dependent fields by monitoring the fields inside the
beam. In astrophysical scenarios, relativistic electron gases
do occur [15], and their electromagnetic responses may be
probed by comparing incident and scattered radiation.
Finally, temperature effects may be tested in relativistic
electron gases ejected from stars.
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APPENDIX A: SEMICLASSICAL EXPANSION

In expression (1), we write Aμ ¼ AðcÞ
μ þ ℏaμ (ℏ ¼ 1),

where Aμ ¼ AðcÞ
μ is a classical solution of the sourceless

equation of motion for Aμ, which we identify with the
external classical field incident on the electron gas [16].
The Lagrangian for the EM field becomes

LA ¼
�
−
1

4
FðcÞ
μν F

ðcÞ
μν

�
þ
�
−
1

4
fμνfμν

�
: ðA1Þ

We then integrate over aμ before doing the fermion
integration

I
½daμ� detðδG=δΛÞδðGÞe−Sa½aμ;ψ ;ψ̄ � ðA2Þ

with Sa given by the quadratic form

Sa ¼
1

2

ZZ
dxdyaxμ½Gγ

μν�−1xy ayν þ e
Z

dxðψ̄γμψÞxaxμ; ðA3Þ

where we have used the shorthand
R
dx≡ R β

0 dx4
R
d3x,

and Gγ
μν is the photon propagator in the chosen gauge. The

quadratic integral may be performed. Taking minus its
logarithm,

Sinte ¼ −
e2

2

ZZ
dxdyðψ̄γμψÞxGγ

μνðx − yÞðψ̄γνψÞy: ðA4Þ

The integral over quantum fluctuations of the gauge field
leads to electron-electron interactions mediated by the
photon propagator. The remaining fermionic integral is
given by

RELATIVISTIC ELECTRON GAS: A CANDIDATE FOR … PHYSICAL REVIEW D 93, 105005 (2016)

105005-5



ZðscÞ
e ½AðcÞ� ¼

I
½idψ†�½dψ �e−SðscÞe ½ψ†;ψ ;AðcÞ�; ðA5Þ

where the fermionic semiclassical action is SðscÞe ¼ Seþ
Sinte . Expanding expðSinte Þ, the fermion integral reads

ZðscÞ
e ½AðcÞ� ≅

I
½idψ†�½dψ �e−Se½ψ†;ψ ;AðcÞ�½1þ Sinte �; ðA6Þ

where we have neglected a term Oðα4Þ.
The approximation in (3) only kept the leading term in

(A6). There, we dropped the superscript c with the under-
standing that A is a classical field. The fermion determinant
which results from the integration involves the electron
propagator in the presence of the background field. That
propagator can be expanded in the background, Fig. 1, so
that Tr ln½−βγ4ΓA� − Tr ln½−βγ4G−1

0 � is given as an infinite
sum of one-loop graphs: a fermion loop with an even
number (due to Furry’s theorem [11]) of insertions of the
classical field,

1

2
TrðG0AG0AÞ þ

1

4
TrðG0AG0AG0AG0AÞ þ � � � : ðA7Þ

The first term of the series is just

1

β

X
n

Z
d3q
ð2πÞ3

~AμðqÞ ~ΠμνðqÞ ~Aνð−qÞ; ðA8Þ

with ~ΠμνðqÞ given by (8), the one-loop vacuum polarization
tensor [11]. The next term, with four insertions, is still one-
loop, nonlinear in the fields, depending on ðT; ξÞ, and
typically of order αðαE2=m4Þ or αðαB2=m4Þ.
If we consider the first contribution from the electron-

electron interaction, we have to contract the four-fermion
term in Sinte with the electron propagator in the external
field. The resulting graph (Fig. 2) is a two-loop contribu-
tion. When we expand in the external field, the first
contribution that depends on the field is quadratic and of
order α2, and contributes in linear response. The next terms
in the expansion in the external field are nonlinear, ðT; ξÞ-
dependent contributions of order αðαE2=m4Þ, αðαB2=m4Þ.
In conclusion, restricting our attention to formula (3) is

equivalent to neglecting one-loop contributions that are
nonlinear, as well as a two-loop contribution to linear
response of order α2, and nonlinear ones that also come with
electron-electron interactions. Although nonlinear terms
might bring interesting effects [17], we restrict our analysis
to fields that are not strong enough to invalidate the linear

response approximation. Therefore, we only consider the
interaction of independent electrons with weak external
fields.

APPENDIX B: RELATIVISTIC DRUDE
EXPRESSIONS

Equations (13) and (14) may be integrated over angles
and continued to Minkowski space q4 → iω to give

B� ¼ −e2

π2q2M

Z
∞

0

dpp2nF
ωp

�
1þ 4ω2

p þ q2M
8pj~qj f1 −

ωpω

2pj~qj f2
�
;

ðB1Þ

D� ¼ −e2

π2q2M

Z
∞

0

dpp2nF
ωp

�
1þ 2m2 þ q2M

8pj~qj f1

�
; ðB2Þ

where D� ≡A� − ð1þ 3q2M
2j~qj2ÞB� and q2M ¼ ω2 − j~qj2. The

functions f1 and f2 are

f1 ¼ ln
ðq2M − 2pj~qjÞ2 − 4ω2

pω
2

ðq2M þ 2pj~qjÞ2 − 4ω2
pω

2
; ðB3Þ

f2 ¼ ln
ω4 − 4ðωωp þ pj~qjÞ2
ω4 − 4ðωωp − pj~qjÞ2 : ðB4Þ

Introducing the dimensionless variables x≡ ωp=m,
a≡ ω=2m, and b≡ j~qj=2m, and the functions

L1ða; bÞ≡ lnðaxþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
þ a2 − b2Þ; ðB5Þ

L2ða; bÞ≡ lnðaxþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
þ a2Þ; ðB6Þ

we may rewrite

f1 ¼ −L1ða; bÞ − L1ð−a; bÞ þ L1ða;−bÞ þ L1ð−a;−bÞ
ðB7Þ

f2 ¼ þL2ða; bÞ þ L2ð−a;−bÞ − L2ða;−bÞ − L2ð−a; bÞ:
ðB8Þ

These integrals may be performed for any values of a and b
[18]. In [14], we have numerically verified that the
extrapolation of relativistic expressions for ϵ (after angular
integration) to nonrelativistic parameters fits well the

FIG. 1. Expansion of the electron propagator in the external
field, represented by wiggly lines.

FIG. 2. Graph for the electron-electron interaction expanded in
the external field (wiggly lines). The dashed wiggly lines
represent the photon propagator.
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experimental data for plasmon frequencies in condensed
matter systems at finite temperature. This is because we
have Drude expressions in both the relativistic and non-
relativistic regimes. That is not the case for μ−1, where a
Drude expression only appears in the relativistic regime.
However, as we are interested in the long-wavelength

limit, j~qj → 0, we expand f1 and f2 in powers of b,

f1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p ¼ −
2b
a
Fð1Þ
− −

2b3

3a3
½Fð1Þ

− þ aFð2Þ
þ þ ða2 − 1ÞFð3Þ

− �;

ðB9Þ
f2ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p ¼ þ 2b
a
Fð1Þ
þ þ 2b3

3a3
½Fð1Þ

þ − 2aFð2Þ
− þ ða2 − 1ÞFð3Þ

þ �;

ðB10Þ
where we have used

FðjÞ
� ≡ 1

ðxþ aÞj �
1

ðx − aÞj : ðB11Þ

In terms of the dimensionless variables introduced above,
we have

B� ¼ −
e2

4π2
1

a2 − b2

Z
∞

1

dxnFðxÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − 1
p

þ ðx2 þ a2 − b2Þ
4b

f1 −
2a
4b

f2

�
; ðB12Þ

D� ¼ −
e2

4π2
1

a2 − b2

Z
∞

1

dxnFðxÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − 1
p

þ ð1þ 2a2 − 2b2Þ
8b

f1

�
: ðB13Þ

Using (B9) and (B10), we obtain

a2

b2
B� ¼ e2

4π2

�
2

3a2
Ið0Þ þ 1þ 14a2

3a2
Ið1Þ þ 4a2Ið2Þ

�
; ðB14Þ

a2D� ¼ −
e2

4π2

�
Ið0Þ þ 1þ 2a2

2
Ið1Þ

�
; ðB15Þ

which lead to

A� ¼ −
3e2

2π2
½Ið1Þ þ a2Ið2Þ�; ðB16Þ

where the integrals IðjÞ, related to (B11), are given by

IðjÞða2Þ≡
Z

∞

1

dxnFðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

ðx2 − a2Þj ; ðB17Þ

with Ið2Þ ¼ ∂Ið1Þ=∂a2.
We may compute these integrals exactly at T ¼ 0, when

nFðxÞ ¼ Θðζ − xÞ. We use the Euler substitutionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − 1Þðxþ 1Þp ¼ tðxþ 1Þ and decomposition in partial
fractions to derive

Ið0Þ ¼ 1

2
½ζ

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1

p
− lnðζ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1

p
Þ�; ðB18Þ

Ið1Þ ¼ ln

�
ζ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1

p �
−

1

σðaÞ arctg
�
σðaÞ
σðζÞ

�
; ðB19Þ

where σðyÞ≡ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − y2j

p
. We have used q2M → ω2 > 0.

Since we are interested in ω → 0, we have also
taken a ≪ 1.
Using the expressions

ϵ ¼ 1þ C� þA� þ
�
1 −

a2

b2

�
B�; ðB20Þ

μ−1 ¼ 1þ 2C� þA� − 2
a2

b2
B�; ðB21Þ

and expanding (B14) and (B16) for a ≪ 1 [C� is Oða2Þ],
we obtain

ϵ ¼ 1 −
a2e
a2

þ e2

3π2
geðζÞ þOða2Þ; ðB22Þ

μ−1 ¼ 1 −
a2m
a2

−
5e2

6π2
gmðζÞ þOða2Þ; ðB23Þ

where a2m ¼ 2a2e,

a2e ¼
ω2
e

4m2
¼ e2

12π2
ðζ2 − 1Þ3=2

ζ
; ðB24Þ

and the OðαÞ corrections are given by

geðζÞ ¼ lnðζ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1

p
Þ − 1

σðζÞ −
7

6σ3ðζÞ ; ðB25Þ

gmðζÞ ¼ lnðζ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1

p
Þ − 1

σðζÞ −
14

15σ3ðζÞ : ðB26Þ
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