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Relativistic electron gas: A candidate for nature’s left-handed materials
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The electric permittivities and magnetic permeabilities for a relativistic electron gas are calculated from
quantum electrodynamics at finite temperature and density as functions of temperature, chemical potential,
frequency, and wave vector. The polarization and the magnetization depend linearly on both electric and
magnetic fields, and are the sum of a zero-temperature and zero-density vacuum part with a temperature-
and chemical-potential-dependent medium part. Analytic calculations lead to generalized expressions that
depend on three scalar functions. In the nonrelativistic limit, results reproduce the Lindhard formula. In the
relativistic case, and in the long wavelength limit, we obtain the following: (i) for @ = 0, generalized
susceptibilities that reduce to known nonrelativistic limits; (ii) for @ # 0, Drude-type responses at zero
temperature. The latter implies that both the electric permittivity € and the magnetic permeability 4 may be
simultaneously negative, a behavior characteristic of metamaterials. This unambiguously indicates that the
relativistic electron gas is one of nature’s candidates for the realization of a negative index of refraction
system. Moreover, Maxwell’s equations in the medium yield the dispersion relation and the index of
refraction of the electron gas. Present results should be relevant for plasma physics, astrophysical

observations, synchrotrons, and other environments with fast-moving electrons.
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Metamaterials evolved from a mathematical curiosity [1]
to real applications thanks to the nanoengineering that made
them accessible in the laboratory [2]. As a consequence, they
rekindled interest in the electromagnetic responses of
material media and led us to search for a reliable way to
calculate such responses for a relativistic electron gas. Thus,
we resorted to quantum field theory [3—6] to investigate a
system of relativistic electrons at finite temperature and
density. Besides providing a test of the treatment, the system
is areasonable approximation to physical situations encoun-
tered in plasma physics, astrophysics, synchrotrons, and
other environments with fast-moving electrons.

One should note that no examples of naturally occurring
materials with ¢ electric permittivity and u magnetic
permeability being simultaneously negative were ever
found [7]. As there seems to be no reason why this could
not occur in nature, we have decided to look for such effects
in the relativistic electron gas at finite density and finite
temperature for which analytic studies of electromagnetic
responses may be straightforwardly performed by using a
quantum field theoretical approach. Indeed, as we demon-
strate, for long-wavelength radiation, a finite density of
relativistic electrons exhibits Drude-type responses for both
€ and pu~' at T = 0, implying that they can be simulta-
neously negative for frequencies that are low when com-
pared to the electric plasmon frequency.

Let us first consider the partition function Z =

Tre #(A=¢A%) of quantum electrodynamics (QED) at finite
temperature and density, which describes an electron gas
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with fixed AN = N, — N, (N, is the number of electrons;
N, is the number of positrons) at temperature 7" = p!
(Boltzmann constant kz = 1) and chemical potential ¢,
coupled to the electromagnetic field A,. Z may be

expressed as a functional integral over gauge and fermion
fields [5]

2= $dQl5(G)e Nz, ], 1)

where

Z, [A] = %[idyjﬂ [dw]e—sp[l,ﬁ,v,’A]’ (2)

[dQ] = [dA,] det(6G/5A), and the determinant is the
Jacobian of the gauge transformation A, - A, — 0, A.
Notice that the delta function imposes the gauge condition
G[A] =0, typically G[A] =0,A,; the actions Sy =
[V dx, [dxLy (X = A, e) involve £, = —1F,F,, and
L, =play; Ty = Gy = iP —m — iy, is the inverse of
the electron propagator in the presence of the gauge field;
D =y.(0—ieA); e and m are the electron charge and mass;
and A=1, ¢ =1, ¥ = y'ly,. The integral § runs over
gauge fields obeying A,(0,X) = A,(B,X), and electron
fields obeying w(0,X) = —y (S, %) [8].

In the lowest order of a semiclassical approximation (see
Appendix A), we take A, to be a classical field, and
integrate over the electron field, to obtain
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Z[A] = det[-pyils] = expTrin[-frI4].  (3)

This leads to a modified action for the A, field,
Ss[A] = S4[A] — Trin[—py4I4], which takes into account
the response of the electrons. The extremal condition
88 /6A, = 0 gives the equation of motion

0,F, = =Trley,Gal = J,. (4)
Splitting J into free J© (for A =0) and induced JV)
currents, we may rewrite the equation of motion as

0,(Fu +Py) =, (5)
~9,P,, = J\) =Trley,G,] = Trler, Gy, (6)

with G, the free electron propagator. P,, defines the
polarization P (Py; = iP/) and magnetization M
(P = —e,-_,-kMk) vectors. Expanding the current in the field
A, yields an infinite series of one-loop graphs, which is
equivalent to the RPA approximation [9] of condensed
matter physics. If we only retain the linear term, which
amounts to the linear response approximation, we obtain
the momentum space equation

iq,P.(q) = T,,(q)A,(q). (7)
where
62 +0o0 3
f=-53 / %smympmco(p —ql 8

The sum is over Matsubara frequencies p, = (2n + 1)xT,
with Sp denoting the trace over Dirac matrices. The
solution to Eq. (7),
.0 1
P/w:fFua_ﬁFum (9)

relates polarization and magnetization to the fields E
(Fy; =iE’) and B (F;; = ¢;3B"), thus yielding electric
and magnetic susceptibilities and, ultimately, electric per-
mittivities and magnetic permeabilities. One may write
I, = Y + 11" to separate vacuum (T = & = 0) and
medium contributions. The vacuum gives

5 (v)
Hl/(f vlo

L (5“,—" a >c<q2>. (10)
q q

The medium, however, introduces a preferred reference
frame (that of its center of mass). The symmetry is
then reduced to three-dimensional rotation and gauge
invariance, leading to
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= (m)
- Y == 5,"— _l. 1>A+5l_,—48, (11)
7 ( T gl drils
= (m) = (m)
m it .
g s Mg (g
q q 9]

where A(q4.|q|), B(ga.|q|), and C(q*) are determined
from the Feynman graph in Eq. (8), which corresponds to
the QED polarization tensor at finite temperature and
density, computed long ago [10]. A and B are calculated
from the trace IZIW and fI44, once we subtract the vacuum

part, i.e.,

—e? dp p(p+4q 3q*
A= ZRe/—nF(p)#+ (1— ﬂ)B,
27q w, g —2p.q 2[q|

(13)
and
—e? &p p-q—2ps(qs—p
B—TRC/—”F(P) 3 4( 2 4), (14)
2n°q , q-—2p.q

where p,=iw,=i\/|p’+m? and np(p)=(ef@r~9+
1)~ 4 (e @+ 1 1)~1. Expressions (13) and (14) may be
integrated over angles [10] (Appendix B). C is obtained
from the vacuum polarization contribution [11].

The Euclidean space l:IW is a function of the Euclidean
g4 As I1,,(x,y) may be expressed as a current-current
correlation (j,(x)j,(y)), j, = w'vay,w, it may be written
in terms of a spectral density p,,,

Awnd) = [ 2 5 wa). (15
w\Pn>q) = . v—|—iw,,p”” v,q),

where p,, is expressible in terms of expectation values of
the eigenstates of the Hamiltonian. In order to obtain a
Minkowski space expression, we need the current-current
correlation for j* = y'y%y*y, with the corresponding
spectral density also given by expectation values [5,6].
Then, using our conventions for the relation between
Euclidean and Minkowski indices, we derive

I:[ji4 = iﬁOO; l:[j»k = ﬁOk; l:[/tl = —iﬁkl, (16)
where the asterisk means ¢, = w, — iw —0". Since
Euclidean  ¢> =¢qj + [ goes to  Minkowski
—q*> = —q}% + |q/*, our prescription takes Euclidean quan-
tities into the physical Minkowski ones through

My, —iM® I, -0% 0O, ik
7 2T 2

— D = ; (17)
q° q* 7 7 q q
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leading [cf. Eq. (9)] to the Minkowski expressions

I 3 OO L

P =" - E4ieM =B, (18)
q q q

B ) L L

=" B - B e E. (19)
7 7 7

We now introduce H,, = F,, + P,,, which defines

>
H4j :le and H,-jzeiijk, Wlth D:E+P and
H = B — M. The constitutive equations are derived from
Egs. (10), (11), and (12), and Egs. (18) and (19), i.e.,

D/ = e EF + tikBk, (20)

H = (/,Fl)jkék + o/kEX, (21)

where, by using §' = ¢'/|q|, one obtains

et = ed/k + €'9/gt, (22)
(W) = p 1o + Wy g (23)
b =zt gl ok = et gl (24)

One should stress that there are contributions to (b,fl)
along the directions of the fields (E , 173), of the wave vector

4. and of (§AB, §AE); also note that bianisotropic crystals
satisfy similar relations [12].
The permittivities and permeabilities,

2 2
e=1+ (2—%>C*+A*+ (1—%)8*, (25)

2

g s

=1+ <2+—2>C* + A =2=5B", (20)
q 4|
=12
€ =—y ! = |Z—|2C* — A%, (27)
=12
T—G—%('Z—LC*—B*), (28)

are determined by three scalar functions A*, B*, and C*,
where again the asterisk means g, — iw — 0. C* may be
obtained from the standard calculation at T =& =0 [11],

) 2

Cr = o2 {% +2 <1 —+ %) [harccot(h) — 1]} (29)

where h = /(4m?/q*) — 1 and the renormalization con-
dition is €2/ (4zhc) = 1/137, with €? = €*(w = 0,§ = 0).
The vacuum contributions to permittivities and
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permeabilities are obtained by setting A* = B* = 0. On
the other hand, medium susceptibilities may be defined as
Xe = € — €y, I;Ze/_elw Xem = T = Ty, Xm =
- =), =W =), and . =
—(6—0,). In the sequel, we will examine the long-
wavelength limit |g| — O of nonrelativistic and relativistic
expressions, for @ = 0 (the stationary case) and @ # 0, for
various physical quantities of interest.

Nonrelativistic expressions [6,13] will follow whenever
E—m| < m, pm < 1, np — nfp = (P&~ +1)71, with
e = |p[*/2m and & = & — m. In Euclidean space, g,/m ~
T /m, which leads to A — 0 and |g|>/m? ~ T/m. Then, A*
vanishes and y, — B* reduces to

—2¢? d?
Xe = B"=-=5Re P
4]
The above expression may easily be converted into the
Lindhard expression for the electric susceptibility,

J o B _—_ezRe/cP_p (P +4) = ()
¢ |é|2 4-77,’3 813+ZI —6‘]3 —(A)—i0+'

If one sets @ = 0 and goes to the long-wavelength limit,

e (P)

W e —m—i0F
g — @ i0

(30)

4’ e; — ¢

(31)

€2m

B =5z [T dpni(o), (32)
=*|q1* Jo

which is the Thomas-Fermi expression y, = m%g/|q|?,
with

Mg =~

= [ dpi(p) (33)

If, instead, @ # 0, in the long-wavelength limit, one obtains

. 2 .
the Drude expression ¢ = 1 — %, where the electric plas-
mon frequency is

_ez [se]
w: = -5 dPPZ”%(P)' (34)
n-m Jo
For T =0, with pp = /2mé, and the electron density
n=py/3z* (h=1),

o e2m? <&)3 :n_62' (35)

372 \m m

Since, in the nonrelativistic limit, A4 — 0 and
qs/m ~ |q|*/m?* ~ T/m, all other medium susceptibilities
vanish in lowest order.

The relativistic case sets in as |E — m| ~m, or T ~ m, or
both. Then, generalized expressions must be used to
investigate the stationary case, @ = 0, as well as the case
w #0, in the long-wavelength limit |g| — 0. In the
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stationary case @ = 0, one has y, = A* + B*, y, =y, =
Im = —A*. In the long-wavelength limit,
2 o B
A& [ _dpnr(p) (36)

VIBP+m?

e> (= dpngp(p) ( 3
B = —— r#+—ﬁ2) (37)
g Jo  \/|p]F + m? 217

For T =0, one obtains a closed relativistic expression

&/m=0),

2
e
Xe = Xm = Xm = ~—arccosh({). (38)
(1
In the nonrelativistic limit,

72 \/5’—”—57 LZPF (39)

67> m

Yo =Xm =Xm =

where pp = /2mé& is the Fermi momentum. In other
words,

2 2
¢ Pr_ ¢ Pr

, (40)
472 m 1271' m

Xe =Xm =Xm =

the sum of XPauli = (62/4ﬂ2h6) (pF/mc) and XLandau —
—(e?/12x*hc)(pr/mc), where we have restored the units
h and c. For y,, the long-wavelength limit yields the
relativistic generalization of the Thomas-Fermi expression

Xe = mig/|q|*, with

o dpng( 3.2
— 2F (2+—|p|2>. (41)
VPP +m?

For T = 0, one finds

’ o2
r:lnTzF =12 [arccosh(¢) + 3¢ \/Cz— (42)

with the nonrelativistic limit m2g/m? = (€?/n%)\/2& /m,
or mAg/m?* = (e*/n*hc)(pp/mc), which is the same as we
obtain from Eq. (33) at T = 0.

In order to access the long-wavelength relativistic limit
for @ # 0, one takes |¢| — 0 and expands the expressions
for A* and B* after the angular integration (Appendix B).
Note that the last terms in Egs. (25) and (26) now dominate,
whereas they do not contribute in leading order in the
nonrelativistic regime. In fact, for nonrelativistic systems in
thermal equilibrium with the radiation, we must have
w ~ (|q]*/2m) < m, so that (w?/|¢]*) < 1. Taking the
long-wavelength limit after the nonrelativistic one yields a
Drude expression for €, but not for y‘l
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For T = 0, the € electric response is given by a Drude-
type expression

a)2 62 (1)2
=l-—=+-— ol—), 43
¢ 3T 3290)+ Qw) (43)
w; _ ¢ (-1

= 7 44
am?> 1222 ¢ (44)

and so is the ! magnetic response,

w2, 56 w?
p! _l—y—ygm(f)+0<m>, (45)

a)_%nZZZLZQ”z_ 1)3/2’ (46)

4m 127 g
where g, and g,, are given in the Appendix B. We note that
there is a relation between w,, and w,, i.e., ®,, = V2w,,
and that the vacuum contribution is O(w?/4m?). The
electron plasmon frequency €, is defined as the zero of
e, Q2 = w2[l +£:9.(0)]" = w?. The ¢ — 1 limit of the
electric plasmon frequency coincides with the one given
in Eq. (39).

The Drude-type expressions imply that the electric and
magnetic responses may be simultaneously negative for
small @. We should emphasize that the Drude-type behav-
ior comes solely from the medium contribution; the
vacuum part does not exhibit any singular behavior.

One might wonder about the effect of corrections on the
Drude result. Those coming from the interaction of
electrons with the classical fields will be nonlinear in
the fields, typically of order a(aE?/m*) or a(aB?/m*).
Those coming from electron-electron interactions will have
a linear response term of order @? and nonlinear contribu-
tions also of order a(aE?/m*), a(aB*/m®). For fields that
are not strong enough to invalidate the linear response
approximation, those corrections will, presumably, be small
compared to the leading contribution and therefore unable
to cancel the 1/w? terms.

Finally, we investigate how a wave propagates inside the
electron gas. That will lead to a dispersion relation, which
allows us to obtain the index of refraction. From the
equations qMI:I w =0 and ewaﬂqyﬁa/; = 0, combined with
the constituent equations, one may proceed in the usual
way to derive

(GRS L A B R
[(u +m0>|q|2 <e—%1>wz]f3i:0. (48)

For a plane-wave solution, the dispersion relation is
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141 = (ne)w® + 2(ur)wlg| = 0. (49)

The relation |g| = |¢|(w), which satisfies Eq. (49), leads to
the index of refraction n(w)=|q|/w. For 7 =0, we
recover the usual expression n = ,/uy/e. Notice that, in
the long-wavelength limit, one has 7 = 0, n = \//7\/5, and
electric and magnetic responses that may be simultaneously
negative. It then follows that one may obtain negative
indices of refraction for the relativistic regime in such
a limit.

In conclusion, we have calculated electromagnetic
responses from quantum field theory at finite temperature
and density for a relativistic electron gas. We have shown
that, in the relativistic regime, the gas will exhibit Drude-
type responses for both ¢ and y~! in the |g| — 0 long-
wavelength limit, implying that such quantities may be
simultaneously negative. The generalized formula
[cf. Eq. (49)] obtained for the index of refraction for the
electron plasma reduces to the n = ,/u+/e usual one for
|gl = 0, so the plasma will exhibit a negative index of
refraction under those conditions.

Summing up, the electrodynamics of materials with
negative indices of refraction, with electrical permittivity
and magnetic permeability being simultaneously negative,
was investigated by Veselago [1] and remained a math-
ematical curiosity for many years, until split ring resonators
enhanced magnetic responses to simultaneously allow for
negative permeabilities and negative permittivities [2].
Relativistic systems, however, do not suffer from a v/c
damping of magnetic effects with respect to electric ones.
In fact, the last terms in Eqs. (25) and (26) dominate in the
relativistic limit (which explains the ,, = /2w, relation).
Those are the terms that lead to Drude-type responses. As
they are determined by symmetry, one may suggest that it is
a natural behavior, which will occur for other relativistic
systems, such as a gas of charged bosons. This problem is
currently under investigation and will be the subject of a
forthcoming article. Finally, this work suggests that the
relativistic electron gas is one of nature’s candidates for the
realization of a negative index of refraction system. Our
suggestion relies on the expectation that the RPA approxi-
mation, which does not take into account electron-electron
interactions, is still a reasonable description of the electron
gas (Appendix A), just as it is for simple metals. We are
currently exploring our results numerically using physical
parameters extracted from experimental data [14].

We hope that present results will be of relevance for
future studies in plasma physics, astrophysical observa-
tions, synchrotrons, and other environments with fast-
moving electrons. A specific experimental scenario where
relativistic 7 = 0 results can be tested is in a synchrotron
accelerator. The electrons inside the beam are relati-
vistic and well separated (which favors an independent
particle approximation), and one can actually probe the
electromagnetic responses of the beam to externally applied
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time-dependent fields by monitoring the fields inside the
beam. In astrophysical scenarios, relativistic electron gases
do occur [15], and their electromagnetic responses may be
probed by comparing incident and scattered radiation.
Finally, temperature effects may be tested in relativistic
electron gases ejected from stars.
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APPENDIX A: SEMICLASSICAL EXPANSION

In expression (1), we write A, = A\ + fia, (h = 1),
where A, = Af,c) is a classical solution of the sourceless
equation of motion for A,, which we identify with the
external classical field incident on the electron gas [16].

The Lagrangian for the EM field becomes
1 () (e 1
[’A - (_ZFﬁw)Ffw)> + (_Zf;wfﬂv)' (Al)

We then integrate over a
integration

, before doing the fermion

7{ (da,] det(3G/50)5(G)eSlow#l  (A2)

with §, given by the quadratic form
1 X[ 1-1,Y = X
Sa = E dXdyaﬂ [Gﬂv]xy ay +e dx(l//yyl//>xaw (A3)

where we have used the shorthand [ dx = foﬂ dxy [ dx,
and G}, is the photon propagator in the chosen gauge. The
quadratic integral may be performed. Taking minus its
logarithm,

. 62
sm=-¢ // dxdy(Fy, ) Glu(x = V) Frw),.  (A4)

The integral over quantum fluctuations of the gauge field
leads to electron-electron interactions mediated by the
photon propagator. The remaining fermionic integral is
given by
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2890 = lidyayle AL (a3)

where the fermionic semiclassical action is S‘;C’ =S+
Sint, Expanding exp(S™), the fermion integral reads

2900 = i idylen S0 541 1 50, ()

where we have neglected a term O(a*).

The approximation in (3) only kept the leading term in
(A6). There, we dropped the superscript ¢ with the under-
standing that A is a classical field. The fermion determinant
which results from the integration involves the electron
propagator in the presence of the background field. That
propagator can be expanded in the background, Fig. 1, so
that TrIn[—fy,T'4] — Trln[—py4Gy'] is given as an infinite
sum of one-loop graphs: a fermion loop with an even
number (due to Furry’s theorem [11]) of insertions of the
classical field,

1 1
The first term of the series is just
1 dq - ~ ~
- A, (g)Il A, (-q), A8
32 | G @l@it-a. )

with l:Iﬂ,J(q) given by (8), the one-loop vacuum polarization
tensor [11]. The next term, with four insertions, is still one-
loop, nonlinear in the fields, depending on (7,¢&), and
typically of order a(aE?/m*) or a(aB*/m*).

If we consider the first contribution from the electron-
electron interaction, we have to contract the four-fermion
term in S with the electron propagator in the external
field. The resulting graph (Fig. 2) is a two-loop contribu-
tion. When we expand in the external field, the first
contribution that depends on the field is quadratic and of
order a?, and contributes in linear response. The next terms
in the expansion in the external field are nonlinear, (7, &)-
dependent contributions of order a(aE?/m*), a(aB*/m*).

In conclusion, restricting our attention to formula (3) is
equivalent to neglecting one-loop contributions that are
nonlinear, as well as a two-loop contribution to linear
response of order a2, and nonlinear ones that also come with
electron-electron interactions. Although nonlinear terms
might bring interesting effects [17], we restrict our analysis
to fields that are not strong enough to invalidate the linear

i SN EN

FIG. 1. Expansion of the electron propagator in the external
field, represented by wiggly lines.
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FIG. 2. Graph for the electron-electron interaction expanded in
the external field (wiggly lines). The dashed wiggly lines
represent the photon propagator.

response approximation. Therefore, we only consider the
interaction of independent electrons with weak external
fields.

APPENDIX B: RELATIVISTIC DRUDE
EXPRESSIONS

Equations (13) and (14) may be integrated over angles
and continued to Minkowski space g, — iw to give

—e? [odpp’n 4o’ + q3 ®,0
B*:zz/ F[l"' p—>Mf1— p-»fz},
qy o o, 8pl4q| 2plq|

(B1)
—e2 [eodpp?n 2m? + ¢
D= / PP r {1 + ~qu1]v (B2)
qy o o, 8plql

where D* = A" — (1 +%}B* and ¢3, = ®* — |¢|*>. The

functions f| and f, are

BN
NG Ao Y
am piq wpW
o ~ 40w, + i)
fr=In—; L (B4)

o' — 4o, - plg))*
Introducing the dimensionless variables x=w,/m,

a=w/2m, and b = |g|/2m, and the functions

Li(a,b) =In(ax + bVx* —1+a*-1b?), (BS)

Ly(a,b) =In(ax + bV x> =1+ a?), (B6)

we may rewrite

fi=-Li(a,b) - Li(=a,b) + L(a,—b) + L(~a,—b)
(B7)

f2=+Ly(a,b) + Ly(=a,=b) — Ly(a,—=b) — Ly(~a,b).
(B8)

These integrals may be performed for any values of a and b
[18]. In [14], we have numerically verified that the
extrapolation of relativistic expressions for e (after angular
integration) to nonrelativistic parameters fits well the

105005-6



RELATIVISTIC ELECTRON GAS: A CANDIDATE FOR ...

experimental data for plasmon frequencies in condensed
matter systems at finite temperature. This is because we
have Drude expressions in both the relativistic and non-
relativistic regimes. That is not the case for u~!, where a
Drude expression only appears in the relativistic regime.
However, as we are interested in the long-wavelength
limit, |g| — 0, we expand f, and f, in powers of b,

2b 2b3
J;' = -2 FW 37 FO + aF? + (a2 - 1)FO)),
2 — a a
(B9)
P 2b 1y 20° . 3
(B10)
where we have used
G 1 1
FY’' = . - Bl11
= (x+a) (x—a) (B11)

In terms of the dimensionless variables introduced above,
we have

e

2 1 0
B = ~ 24 b2/ dxnp(x)[ |

(x* + a> = b?) 2a
-~ - B12
+ 4b fl 4bf2 ) ( )
N ez 1 o
D :_r;ﬂm[ dxnp(x)[ X2 -1
(1 +2a* - 2b%)
—f1l. B13
+ 3h S (B13)
Using (B9) and (B10), we obtain
a? e?[2 1 + 14a?
—B=— |19 4 — 1O L 442]@ |, (Bl4
- T a2 [3a2 3d aa (B14)
2 1 + 24?
2pr =~ & |0 M|, (BI5
a 12 + 5 (B15)
which lead to
3 2
* — -2—62 10 + @210, (B16)
b4
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where the integrals I¢/), related to (B11), are given by

; 0 x> -1
I(l)(az) = [ anF(X)m, (B17)
with 1@ = 91V /9a?.

We may compute these integrals exactly at 7 = 0, when
np(x) =0(f —x). We use the Euler substitution

(x—1)(x+ 1) =t(x+ 1) and decomposition in partial
fractions to derive

= VB 1=+ VET)]

1n<§+\/c2—)—— g(%) (B19)

(B13)

where o(y) = y/+/|1 — ¥*|. We have used g3, — @* > 0.
Since we are interested in ®w — 0, we have also
taken a < 1.

Using the expressions

a2
e:1+C*+A*+<1——>B* (B20)
a2
= 1+2C*—|—A*—2?B*, (B21)
and expanding (B14) and (B16) for a < 1 [C* is O(a?)],
we obtain
a% e’
e=1- 2132 5 9.(8) + 0(a?), (B22)
azm 5¢?
= I_T_jgm(§)+0(a2), (B23)
a- 6m
where a2, = 242,
2 2 (72 1)3/2
2 Wy € (z.: 1)
— e ¢ L= B24
e 4m*  127° ¢ ’ ( )
and the O(a) corrections are given by
1 7
n(¢+ v - -——. (B2
o e PP
5 1 14
n(l 4+ - — (B26)
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