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Compton scattering of polarized radiation in a strong magnetic field is considered. The recipe for
calculation of the scattering matrix elements, the differential and total cross sections based on quantum
electrodynamic second-order perturbation theory is presented for the case of arbitrary initial and final
Landau level, electron momentum along the field and photon momentum. Photon polarization and electron
spin state are taken into account. The correct dependence of natural Landau level width on the electron spin
state is taken into account in a general case of arbitrary initial photon momentum for the first time. A
number of steps in the calculations were simplified analytically making the presented recipe easy to use.
The redistribution functions over the photon energy, momentum and polarization states are presented and
discussed. The paper generalizes already known results and offers a basis for the accurate calculation of
radiation transfer in a strong B field, for example, in strongly magnetized neutron stars.

DOI: 10.1103/PhysRevD.93.105003

I. INTRODUCTION

Compton scattering is one of the most important proc-
esses of the interaction between radiation and matter in a
number of astrophysical objects. A strong external mag-
netic field significantly affects the properties of the scatter-
ing [1]: the interaction cross section becomes strongly
dependent on energy, direction of photon momentum and
polarization. It also depends on the magnetic field strength.
A number of resonances corresponding to the electron
transition between the Landau levels appear. The resonant
cross section value may exceed the Thomson scattering
cross section or by more than a factor of 10°. All these
factors have to be taken into account in the studies of
radiation transfer and interaction between radiation and
matter in a strongly magnetized medium. Finally, Compton
scattering plays a key role in formation of spectra from
magnetized neutron star atmospheres [2—7] and dynamics
of accretion onto magnetized neutron stars [8—12].

The simplest expressions for the Compton scattering
cross section in a strong B field was derived in non-
relativistic limit by Canuto [13] and by Blandford and
Scharlemann [14]. The nonrelativistic treatment is limited
to dipole radiation and therefore only scattering at the
cyclotron fundamental is allowed. The nonrelativistic
approach works well when ky < m.c?, where k is a photon
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energy, m, and y are the electron rest mass and the Lorentz
factor respectively. At higher energies the relativistic effects
become important for calculations of the scattering cross
section [15,16] and kinematics [17]. The nonrelativistic
treatment is also limited to the magnetic field strength of
B < 10'? G because the electron recoil becomes significant
for a higher B [18].

The relativistic quantum electrodynamics (QED) treat-
ment allows us to describe scattering at higher harmonics
and also consider the scattering which leads to electron
transition to higher levels (so-called Raman scattering). It is
the only way to describe scattering at high energies and
strong magnetic field B > 10'> G, which is typical for
young neutron stars.

The motion of electrons normal to the magnetic field is
quantized in discrete Landau levels, whereas the longi-
tudinal momentum can change continuously. The particular
case of Compton scattering with both initial and final
electrons on the ground Landau level of zero initial velocity
was discussed by Herold [19]. The scattering cross section
from the ground to the arbitrary exited state was calculated
by Daugherty and Harding [20] and by Meszaros [21].
However, these QED calculations assume an infinitely
long-lived intermediate state and, therefore, are more
relevant to photon energies far from the resonances. In
order to calculate the resonant cross section one has to
introduce a finite lifetime or decay width to the virtual
electrons for cyclotronic transitions to lower Landau levels
[22]. For the specific case of ground-state-to-ground-state
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transition in the electron rest frame, when incident photons
are parallel to the B field, Gonthier et al. [23] showed that
the commonly used spin-average width of Landau levels
does not correctly account for the spin dependence of the
temporal decay and results in a wrong value of the cross
section at the resonance as well as at very low photon
energies, where the level width becomes comparable to the
energy of the initial photon.

Scattering from the ground Landau level is commonly
used as a basic approach in the case of a strong field:
heB/(m.c) > kgT, where kg is the Boltzmann constant
and T is the electron temperature, when the majority of
electrons occupy the ground energy level [2,4,6,10,24-28].
For the case of an initial electron on the ground Landau
level and the initial photon with momentum parallel to
the magnetic field direction, the cross section has only
one resonance and takes the simplest form. A simple
approximation for the scattering cross section in this case
was found by Gonthier et al. [29]. Their approximation
represents the exact cross section quite well below the
resonance and above it even for extremely strong
fields (B < 10" G).

Moving electrons scatter the photons differently because
of relativistic effects. As a result, the electron distribution
over momentum affects the exact cross section and broad-
ens the resonance features. This effect could be important
for the formation of spectral features in X-ray pulsars
[30,31] and for the estimations of radiation pressure [8—10],
because the resonant scattering increases the effective
interaction cross section dramatically. It is also important
to use correct Landau level width and calculate correctly
the exact resonant cross section here. The influence of
electron distribution varies much with the photon momen-
tum direction because electrons take part mostly in a
motion along the B-field lines and the corresponding
Doppler broadening varies a lot [32,33]. The scattering
cross section for the case of thermal electrons was calcu-
lated and compared with cyclotron absorption by Harding
and Daugherty [32]. However, only polarization-averaged
cross section for the case of an initial electron at rest in the
ground state was explored and an incorrect width of Landau
levels based on Johnson-Lippmann wave functions [34]
was taken into account (see [35] and [23] for detailed
discussions).

Description of additional effects such as vacuum polari-
zation, two-photon scattering [36], pair creation [37]
demands the use of high order perturbation theory. They
are beyond the scope of the present work. However, it has
to be pointed that the multiple photon scattering might be
considered approximately as a chain of several elementary
scatterings [38]. Nevertheless, true scattering with an
emission of two or more photons is a possibility which
is given by QED treatment solely and the correct scattering
cross section can be obtained only with relativistic treat-
ment [39,40].
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According to QED, the scattering process is described
completely by its scattering matrix (S matrix) [14,36],
which contains the information about the probability
amplitudes for the scattering. The transition probabilities
and the effective cross sections of the various possible
scattering are obtained from the S-matrix elements (which
are complex numbers in general) as its squares, and
therefore contain less information. The scattering cross
sections are sufficient for a number of aims though, but the
complete S matrix is needed for the general relativistic
kinetic equation obtained recently by Mushtukov
et al. [33].

In this paper we give a detailed scheme of calculation of
Compton scattering S-matrix elements, the differential and
the total cross section based on the QED second-order
perturbation theory. Some steps were done analytically
simplifying the calculations significantly and making them
easy to use. The scheme is valid for an arbitrary initial and
final Landau level, though we focused on the scattering
from the ground Landau level only. For the first time
calculations do not assume restrictions on the photon
momentum and electron distribution over momentum.
As a result, the scheme could be applied to direct
calculations of scattering by moving electrons, which is
important for modeling of the interaction between radiation
and matter in the vicinity of accreting highly magnetized
neutron stars [10,41-43]. The correct electron spin depen-
dent Landau level width [22,35,44] based on the Sokolov
and Ternov electron eigenfunctions of the magnetic Dirac
equation [45,46] for the first time is taken into account in a
general case of arbitrary initial photon momentum. The
correct spin dependent width was already used in calcu-
lations of the Compton scattering cross section for the
particular case of photons initially propagating along the
magnetic field and ground-state-to-ground-state transition
of the electron [23]. In our calculations we generalize this
result. The correct Landau level width is shown to be
particularly important if we are interested in the polariza-
tion of scattered photons and an accurate scattering cross
section at the resonant energies [23]. The obtained relations
are valid in the case of the magnetic field strength up to
~10'® G according to methods of particle description
which are used in this paper (see Sec. II). We also
discuss the redistribution function for the scattering (see
Sec. VIIIB), which traditionally is used in radiation
transfer equations and has a key role for studying the
formation of spectral features near the cyclotron funda-
mental and its harmonics [47,48]. We provide a scheme of
calculation of the cross section for the case of scattering by
an ensemble of electrons described by any distribution
function over momentum. The results could be used for the
solution of the kinetic equation for Compton scattering
obtained by Pavlov et al. [24] and generalized by
Mushtukov et al. [33]. Since the general relativistic kinetic
equation can be expressed via S-matrix elements only, we
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discuss some properties of scattering matrix elements
which are important for the kinetic theory (see
Sec. VII). The paper describes the most general scheme
for a Compton scattering calculation in a strong magnetic
field based on the second order of QED perturbation theory
and provides a ground for detailed investigation in a field
of radiation transfer in the case of a strong external
magnetic field.

We do not discuss here an influence of plasma effects on
Compton scattering. The description of plasma effects was
given in a number of works [49,50].

For simplicity we use the relativistic quantum system of
units where the Planck constant, speed of light and the
electron mass are equal unity: 7 = ¢ = m, = 1. In this case
the length unit is the Compton wavelength - = A/m.c,
the unit of energy is the electron rest mass energy m.c?, the
frequency unit is m.c?/h and the momentum is measured

in mgc. The electron charge is e = 4/1/137.036. The
classical electron radius r. is equal to the fine-structure
constant ag in using a system of units: r, = e?/(mqc?) =
e?/(hc) = ag = 1/137.036.

II. PARTICLE DESCRIPTION

Let us consider a constant and uniform magnetic field.
The field is directed along the z axis and could be
represented by the three-dimensional vector B, =
B.(0,0, 1), where B, > 0 is the field strength. Let us also
use dimensionless magnetic field strength b = B./B.,,
which is a strength measured in units of the Schwinger
critical value B, = m2c®/eh = 4.412 x 1013 G.

A. Electron in a strong magnetic field

According to quantum mechanics the kinetic energy of
the transverse motion is quantized in Landau levels [51],
since the particles gyrate in circular orbits. Each electron is
described by a set of quantum numbers which includes the
Landau level number n =0, 1,2, ..., z projection of elec-
tron momentum p., y projection of electron momentum p,,
and electron spin projection onto the z axis measured in
7/2 units s = £1. We also use quantum number & to
describe the electron antiparticle/positron, € = 1 for elec-
trons and € = —1 for positrons. All Landau levels except
the ground one (n =0) are degenerate with the spin
projection s = +1. For the ground Landau level the spin
degeneracy is one: s = —1.

The total electron energy in a B field with strength b is
defined by the Landau level number n and z projection of
the electron momentum p.:

E,(Z) =\/1+ p? +2bn. (1)

According to relativistic quantum theory the electron
states in an external magnetic field are described by
solutions of the Dirac equation W;,(r, py, p.) enumerated
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by given quantum numbers (see Appendix D). The sol-
utions could be written in different ways. They could be
found via the eigenfunctions of a spin operator in the
reference frame where the spin direction is fixed [52]. In
this case it is impossible to construct the Lorentz invariant
amplitude for the processes with a definite electron spin
state since the spin direction is fixed. At the same time
the amplitudes which are summed over the electron
spin states are Lorentz invariant. The solutions could
be also found as the eigenfunctions of the operator
i, = meX, — iyoys[Z x p., where p = —iV —eA, is the
generalized momentum operator and A, = B, (0,0, x,0) is
a 4-potential in Landau gauge [46] (see Appendix C for all
necessary definitions). In this case the amplitudes for spin
dependent processes are manifestly Lorentz invariant [53].
Nevertheless, one could use both ways in cases when we
are interested only in the state averaged over the electron
spin state. We discuss how to construct the electron wave
function in Appendix D.
Further we will use the following designations:

s, =/1+b2=+1+2bn,

s+ p2. (2)

b, = V2bn,
En(pz) =

Let us choose the laboratory reference frame as a frame
where the initial electron has zero velocity. Lorentz trans-
formation along the magnetic field direction provides the
conversion from one inertial system to another.

B. Photon description

Each photon is described by its energy k, the
momentum direction defined by the unit vector ® =
(sin@cos @, sin@sin@,cosP) and its polarization state.
The three-dimensional photon momentum in Cartesian
coordinates is k = (ky, k. k,) = k and the corresponding
photon 4-momentum is k = {k,k}.

The photon propagation in a strong magnetic field is
affected by vacuum polarization effects. Since photons may
temporarily convert into virtual electron-positron pairs,
which are polarized by the B field, the dielectric and
permeability tensors of the magnetized vacuum are non-
trivial. As a result the photon phase and group velocity
depends on the polarization [21,52], and it is natural
to consider photons of two linear polarizations: O-mode
(or ||-mode) photons which are linearly polarized in a plane
containing ® and B and X-mode (or _L-mode) photons
which are polarized perpendicularly.

The 4-vector potential for the photon can be defined as

Al(r) = gekr,

gl:{O,el}, | = 1,2 (3)

The photon polarization is described in the coordinates
which are specified by unit vector ® and two additional
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basis vectors: e; = (sing, —cos,0) and e, = (cos  cos ¢,
cos @sin ¢, —sin @). It is convenient to use so-called cyclic
coordinates instead of Cartesian ones. The z projection
would be the same in this case, but

e, =sing F icosp =F ie?,

€5+ = cosO(cos @ £ ising@) = cos Pe** (4)

are used instead of x and y projections. Thus, the coor-
dinates of the polarization basic vectors (e,, e, e_) in
cyclic coordinates are

e (k) = (0,—ie, ie™™*),
eZ(k) = (—sin#, cos fe'? cos Ge—ffﬂ),

e;(k) = (cos @, sin0e', sin Qe=?). (5)

The condition of orthonormality is e;(k)e; (k) = Jy,.

The photons are described here in the same manner as in
a case when the magnetic field is absent, i.e. we assume that
the dispersion relation for the photons in a magnetized
vacuum does not differ from the dispersion relation for a
field absent case. This approximation constrains the
strength of the field. For estimations one needs to know
the vacuum dielectric tensor and the inverse permeability
tensor for the case of a magnetized vacuum [54,55] but it is
known that the indices of refraction differ from unity by
more than 10% only for the fields a hundred times stronger
than the critical magnetic field, b > 300 [56]. Thus, it
restricts application of the developed formalism
to B<10'° G.

III. CONSERVATION LAWS AND THEIR
CONSEQUENCES

There are only three conservation laws for Compton
scattering in a strong B field. They are the energy con-
servation law and the laws of longitudinal and transversal
momentum conservation:

E; + ki =E; + ky,
Pzi T kicosO; = p_ s+ kgcosty,
pyi+kisin®;sing; = p,  +kysinfysingy,  (6)

where quantities which are corresponding to the initial
particle states are denoted with the index i while the
quantities which are describing the final particle states
are indexed with f.

In order to define the scattering event one has to define
all quantum numbers which correspond to the particles in
the initial and final states. The quantum numbers should
comply with conservation laws (6). One possible way is
to define all initial particle parameters and some final
parameters. The initial condition of a system could be
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defined by p,; n;, k;, two angles 0;, ¢;, and also by
photon and electron polarization states. All other quan-
tum numbers can be found from conservation laws (6). If
one specifies the final Landau level ny, then the final
photon energy k and the zenith angle 6, comply with
the following relation:

kacsinzef - 2kj(ET - ZT CcoS 9]()
+ [Ef - Z3 — (1 +2bny)] =0,
where Ep =E; +k; = E; + k; is the total energy and
Zy=Z;+ kicosO; =Z; + kgcosf; is the total longi-

tudinal momentum of the electron-photon system. In this
case, the energy of the final photon is

B k;lk;sin?0; + 2(E; — p,; cos 0;)] + 2b(n; — ny)
~ Ep—ZypcosO; + (Epcosy — Zp)? + spsin€;
(7)

Because the photon energy should be positive, there
exists a limit on the final Landau level number:

ny <nY = n; + |kg/2b], (8)

k¢

where | x| is a floor function of x and kg = k;(k;sin’0; +
2(E; = p_,;cos0;)). Thus, the given initial photon (k;, ;)
and electron (p,;, n;) parameters with the final Landau
level number 7, define uniquely the final photon energy
in any direction.

IV. MATRIX ELEMENTS FOR COMPTON
SCATTERING

According to QED, Compton scattering is a second-
order process and is described by two Feynman
diagrams (Fig. 1). Both of them contain a photon and
an electron before and after the interaction. The dia-
grams also contain so-called a virtual electron/positron
for which energy and momentum are not strictly
conserved.

(a) (b)
U Ag Us
1 2
U; 0; A;

FIG. 1. Two second-order Feynman diagrams for Compton
scattering. Wavy and straight lines depict photons and electrons/
positrons correspondingly. The straight lines between two ver-
tices (depicted by 1 and 2) correspond to a virtual electrons/
positrons. Initial and final electrons/positrons are described by
solutions of the Dirac equation ¥; and W, while the initial and
final photons are described by 4-vector potentials A; and A
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Following the Feynman rules one gets elements of the
S matrix for the process, which is the first step towards
obtaining a cross section [36]. The initial electron is
described by a particular solution of the Dirac equation
for the electron in an external magnetic filed ¥/ (r;) =
Wi (r1.pyip.;) (see Sec. D5). The final electron
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and W/ (r), while the final ones give ezé"f'(z) and
Ui (r)y® =V (r).

An internal electron line corresponds to the virtual
electron state. The line begins in point r;, and ends in

point r,. The virtual particle is described by the relativistic
propagator G(r,r;), which is a Green’s function of the

is also described by one of the solutions \I/;F(Lz) =  Dirac equation:

\I!,J{fs f(zz, Pyf-Pzf)- The photons are described by
4-vectors of potential: A;(r), A;(r) [see Eq. (3)]. The
interaction in a point r gives us ey A(r)¥"(r) according

[(iV + eAl)y = 1]G(r.1y) = 6(r — 1y). )

It takes the following form for the case of an electron in a
to the Feynman rules. The initial states give eyA;(r)  strong B field:

G(KZ’KI) = _iZ/dpy dpz‘st(rZ’ Zvaw pz)‘ijfzs(rl’ Iy, Py, pz)‘e@(s(tZ - tl))’ (10)

where ©(x) is the Heaviside step function. The same expression could be written in detail as

i o ie - *© i€ o — C —1
Glr) = = Goms [ dpein ) [“ap e 32 3 s
—0 —00 n 4

n=0 s==+1 e==+1

x BP0 =R) gl (ep., x + epy /) Vil (ep2, x + £py /D) €®(e(1, — 1)), (11)

where the terms without any indexes correspond to the virtual electron/positron and one has to sum over the quantum
numbers n (Landau level) and s (spin state).

Finally, the matrix element for Compton scattering which corresponds to the first two Feynman diagrams takes the
following form:

Sy = —4mire / d4r1d4”2‘I"?(K2){[ZA_;(KQHG(KLKl)[ZAi(ll)} + [Zéi(lz)]G(Kz,K1)[ZA_;(K1)]}‘I’;r(I1)- (12)

The first term in curly brackets corresponds to the Fig. 1(a) diagram, while the second one corresponds to the Fig. 1(b)
diagram.

V. SIMPLIFICATION AND SOME ALGEBRA

The general expression for the S-matrix element (12) has to be specified. A new expression for the elements will
contain integrals over time and space variables and sums over the discrete virtual electron/positron quantum
numbers. It will be shown that the integrals could be calculated analytically as well as some sums. As a result we
will get a relatively simple expression for the elements of the S matrix, which would be suitable for a further
analysis.

A. First steps and integration over momentum and time variables

Using the expression for the electron propagator (11) and the general expression for the S-matrix elements (12) we
rewrite S-matrix elements in the following form:

Sfi = _4”re / d4r1 d4r22 / dpy dpz\I]"Jr/TY,/(I_ﬁZv Py.f> pz,f){[J/OZA;(KZ)]\IJES(K% Py> pz)\llﬂ(lh Py, PZ)[J/OZA,'(IJ}

n.es

+ PO A(2) Vs (2. Py P W (r1. Py P POYAN )} (11 Py o) eO(e(t — 1)), (13)
We have also changed Dirac conjugated functions with the Hermitian conjugated and y° matrix has appeared as a

result (see Appendix C). Using the expressions which are describing the electron (see Appendix D) and photon states
we get
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_ 4. w, Olt-n) 1 (Ety—poryaep. 2
o= —4ﬂreg;/dpy dpz/d rdn (27)*R, 2n\/R; Ungsy (Pzgs X2 + py g/ b)e Ermprrpere)

x {[0re;, e 0m) vt (ep., x; + £py /b)Vii(ep., X1 + €y /b) [ ye, |~ hili=om)

+[},0Zgli]e—iki(t2—mirz)vfm(gz, Xy + 8py/b)vf£(8pz,x1 + gpy/b)[yozgl‘[]eikf(ll_(ﬂfrl)}
1
2n\E;

Taking the integrals over y;, y,, z;, 2, we get two products of (27)* with four & functions which are correspond to the
momentum conservation in the Feynman diagram vertices. For the first term [the Fig. 1(a) diagram] we set
S(epy = py s —kpy)d(py; +kiy —ep,)(ep. — p. s — kr,)6(p.;i + ki, — €p.), while for the second one [the Fig. 1(b)
diagram] we have 6(ep, — py s + kiy)8(py; — kpy — €py)8(ep, — p, y + ki,)8(p,; — kg, — €p;). (2x)* has vanished. The
integrals over p,, and p, could be taken easily because of 6 functions under the integrals. Finally, we are left with the product
of the two & functions 8(py; + p, = kiy — ks )6(p.; + p. s — ki, — ky,), which describe the conservation laws for the
momentum. The values of eép_ and ep, for the virtual electron are different for two Feynman diagrams. Let us denote them
with indexes a and b respectively:

X v’t’si(pah X1+ py‘l'/b)e_i(Eitl_p_v.iYI_Pz.izl)egi[_En(IZ_II)J"P_V()"Z_)’I)+p:(z2_zl)]' (14)

Za = Pzi + kiz =Dzf + kfzv Ya = Dy.i + kiy = Py.f + kf}”
Zy=p.i—kp =Dy — ki Yy = pyi—kpy = Py y = kiy- (15)

The virtual electron energy would be also different for the two diagrams: E,, = \/s3 + Z2 and E,, = \/s3 + Z%.
Thus, the expression for the matrix element (14) takes the form

eO(e(ty —t
Spi = —4”’”e5(Py,f +kpy = pyi— kiy)5<pz$f +kp,—poi— kiz)z / dxldXQdZIdIQ%
Ly

n,e,s
+t i[(Ef+k—€E, ;) tr+(eE,.u—ki—E; )t : et i(kixx1—k rx
X vnfsf(pz,f’XZf){el[( STE Jitle )I]levfzs(za’x2a)vn5(za7xla)Ml,-el( T )

+ ei(k,-xxz—kfxxl)ei[(Ef—k,'—SEnb)l‘2+(£Enb+kf_Ei)]Mli Vi (Zy, Xzb)UiTs' (Zy, xlb)Mz, }Un+is,» (P2is*1i)- (16)

Here

0 0 e —e
M, = —"ye, = ae; = R, (17)
elz e 0 0

€+ € 0 0

where [ = 1, 2 corresponds to the photon polarization state and a is given by Eq. (C3). In the particular cases of X- and O-
mode photons the matrices take the form

0 0 0 je” 0 0 —sinf cosBei?
0 0 —ie? 0 0 0 cos fei? sin @
M1 - . s M2 - .
0 e '? 0 0 —sin@ cos@e”'? 0 0
—ie’? 0 0 0 cos Qe sin @ 0 0

In Egs. (14) and (16) we also used notations for the spinor argument:
Xop =X+ Yy/D, Xpa = X3 + (Pys +kypy)/ b, Xop = X3 + (Py.p — kiy) /b, (18)

x1; =X + py.i/b, X1 = X1 + (Py; + kiy) /b, Xip = X1 + (pyi —kyy)/b. (19)
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The next step is taking the integrals over the time variables #; and 7,. Using the relation [° e”¥dy = z8(x) + i/x one gets
the following expression for the case of the Fig. 1(a) diagram:

/oo dr, /oo dtze,-[(Eerkf—sE,,a)tﬁ(eEm—k,-—E,-)t,]8®(S(t2 _ tl))

i
=218(E; + kp — E; — k;) [M—_gE

and for Fig. 1(b) diagram,

O(Ef+kp—E; —k;)

+eb(E; + k; — EEna)] = 2ri ,

Ei + ki - E'Ena

/oo dt, /Oo d[zei[(Ef—ki—EEnb)f2+(EEnb+kf—Ei)ll]g®<€([2 -1))

4
= 27T5<Ef + kf - Ei - kl) [m

The 6 functions outside the square brackets correspond
to the energy conservation law. The o-function arguments
inside the brackets (as well as the denominators) describe
the relation between the virtual particle energy and real
particle energies in the Feynman diagram vertexes. These
arguments are not equal to zero in general, but may have
values close to zero. It leads to the appearance of the
resonances and matrix elements as well as cross sections
|

Spi = —8ﬂ2ir55(py,f +kpy = Py

/EiEf NSy
1 ei(kixXZ_kfxxl>

Enb Ei — kf - 8Enb

+

+ e6(E; — ky — EE,,b)} = 2ni

- ki)’)é(pz,f + kfz — Dz

dx,dx,
X Z/ — 0, (Pz,f,xzf){szﬂfzs(zwxza)f’i(za’x1a)M1-
n.e.8

S(Ef+ky—E; —k;)
Ei - kf - gEnb ’

[
becoming infinite. The infinities are removed by the
regularization procedure, when one takes into account
the natural width of the Landau levels [22,57] (see
Sec. VI and Appendix B). In this case the denominators
are small but nevertheless differ from zero and the cross
section values are not infinite.

After the integration over the time variable the S-matrix
elements (16) take the final form:

— ki )0(Ef + ky — E; — k;)

ei(kixxl_kfxx2> 1

‘ Ei + ki - 8Ena Ena

M vy (Zy, x2b)”fl£(zbv xlb)Mz, }”f{,si (P2is X1i)5 (20)

where the spinors v, are given by Egs. (D15)-(D18) (see Appendix D) and matrices M, are defined by Eq. (17). The braces
in Eq. (20) contain 4 x 4 matrices, while the whole construction under the integral is reduced to the complex function. The
integration over x; and x, can be done analytically (see Sec. V B) as well as a summation over the energy sign & and spin
state s (see Sec. V C). The summation over the electron spin states has to be done numerically.

B. An integration over space variable in S-matrix elements

Let us take the expressions for spinors v, [(D15)—(D18)] (see Appendix D) and use them in a final expression for the S-
matrix elements (20). Then the product of matrices M; and spinors v, under the integral in Eq. (20) is simplified and we are
coming to the integrals which contain the products of the y function which are defined by Eq. (D8). All the integrals have
the same form and could be represented via the Hermite polynomials:

(69 .
1, :/ dy (x + ap)p, (x + a)e™™
\/B ik=h

ﬁ PR dxe_b(x2+2”‘x+"%+x2+2”2x+”§)/ZHalel(\/E(x+a]))le(\/E(x—l—az)). (21)
1- 2. -

With new variables u = \/E[x + (a1 + ap — ia/D)/2] the last expression could be rewritten as

7[[([2—1])/2 |ﬂ|2 _|_ ) ﬂ* ﬂ
e _wpm T3 - P _P
1, = iﬂzlﬁlzll!lz!exp( 1 T ila— ) /_oo due™H, (u + 2>H,2 (u 2), (22)
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where = Vb (a; — oy — i/ D). The integrals of the Hermitian polynomials product could be taken analytically and have a
well-known expression through the Laguerre polynomials [58]:

(5]

/ due™H,(u+ x)H,,(u+ y) = 2"/am!x""L="(=2xy), n > m.

In our case n =max(l;.l,) =1, m=min(l;,L) =1 n—m=1-1=|l; = L], xy =—|p|*/4, x"" = (|p]/2)lh~"Ix
eilb=argfp=ri(b=Li+|i-LI) Therefore the integrals (22) are transformed into a simple expression:

RN pE_, mta
T = (7 B\ T T

Let us separate real factors from the phase factors using
the following designations:

_ | T
=, 1. (8) = exp <l(12 1) arg i — ni )

2
PPN (1P
ﬁll.lz(ﬁ) = u ——Ll B u >
so that
p2 . ata
I,llzzexp <—%—la 12 2 All,lz(ﬁ)’
Ay, (B) =51, 1, (B) L1, 1, (B) (24)
The expression for the matrix elements (20)
contains four types of integrals over the space

variables x; and x,. According to the notation which is
used in (21) the integrals over x; contain the following
parameters:

_ py.i + kiy py.i

X1a> X1+ Q) b , ) = b a = ki
. Py~ kpy Dy.i
Xip, X157+ 01 = —b , Oy = b s a = _kf)m

while in the case of integrals over x, the parameters are
|

/oo)fz*l (o )21, (X0 e~ Kr2dxy = e~ WrP/A+iken(pysthp/DIB N (),

(5]

(o5}

(e8]

/ X (ra)x, () e ooy = eVl FA-liki otk I2V/D A | (B)),

i o o) ebendny = WA N, (),

/ X, (xlb))mz(xu)e_ik”x‘dh = e_wflz/“[ikf‘("»‘"’_k”‘/zwall12(ﬁf),

(23)

T\ - 2
> exp <i(12 —1)argf— m‘%)Lé_l <@)

Py, Py, k;
)sz',XQa: a ——yf, ay —7yf ly, a—kix;
) - p, K
x2,f’x2b: ay = —yf 5 ay = 7yf fy 5 a = _kflf'

In the first combination = f;, while in the second case
P = P, where

Bi = —ik;sin 6, /b, By = ikssin@ser/\Vb.

(25)

The absolute value and the argument of §; and S, are

Vk%x +k12y . ki Sinei o kiJ_

Bl = arg i = ¢, =
il \/Z; \/Z_J _\/l—)’ g i_(pi 2’
(26)
= V2K _kysindy kg
= Vb Vb
7
arg f; = @y —1—5. (27)

Finally, we get the following set of integrals in the
expression for the S-matrix elements (20):

(29)

(30)

(31)
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where the first couple of expressions corresponds to the
Fig. 1(a) diagram, while the second couple to the Fig. 1(b)
diagram. Thus, the integration over the space variables is
completed.

C. Summation over the energy sign € and spin state s in
the electron propagator

The summation over the Landau levels has to be
computed numerically, but the sums over the virtual
particle energy sign and spin state are finite, and it is
possible to find them analytically. Let us use an additional
variable V, which is different for the two Feynman

|

PHYSICAL REVIEW D 93, 105003 (2016)

diagrams: for the Fig. 1(a) diagram V =V, =FE,; +k;,

and for the Fig. 1(b) diagram V = Vy, = E; — k. Then the

term in the electron propagator corresponding to the nth

Landau level after summation over the energy sign and spin

state takes the form (for both diagrams)

V. v,ﬂ + vp_onl
V+E,

4+ +
M = Unt Ut + vi_vp

V-E,

(32)

The sums in the nominators could be expressed using the
commonly used matrices (see Appendix C for the desig-
nations). For the first term, we get

v:+(pz’x2)vn+i(pzvxl) + UI—(pz7x2>v;I(pz7xl)
1
= 5 b{n—l(XZ)ZZ—l(xl)(EnZ+ + pza+ + D+) +)(n(x2))(:;(xl)(EnZ_ - pza_ + D_)

+ bn()(n—l (XZ))(Z(XI)G+ +)(n(x2))(;kl_l (xl)a—)]’ (33)

and for the second term,

U;—F(pz’xZ)U;j.r(pz’xl) + v;—(pz’XZ)U;i(pz’xl)
1
= 5 1 () () (BT A+ pea® = D) o+ () (01 )(E,Z7 = poa™ = D7)

= by (n—1 ()i (x 1)y + xn ()i (1)) - (34)

At the same time, expression (32) could be reduced to

1 ) .
M = V2 _ E2 [VZU;SU;TX + EnZSUZ,SUZTS] ’ (35)
n S, s,

where the sums in the square brackets contain only eight matrices:

ZU;,s(pwa)vflTS(pz’xl) = Xn-1 (x2>)(;;—l (Xl)(EnZJF + pza+) +Xn(x2))(2<xl)(En2_ - pza_)’ (36)

> v (P X2V (pes x1) = 2umt (X2 (61) D 4 2 (5210 (1) D

S,€

+bnb(n—l(x2))(:l(xl)a+ +Zn(x2>)(;;—l(xl)a—]' (37)

However, the obtained expressions are not always applicable, since it was assumed that (V2 — E2) # 0, which is not
generally satisfied. In the case of (V2 — E2) =0, which corresponds to resonant scattering, the situation is more

complicated and is discussed separately (see Sec. VI).

VI. RESONANCES: THEIR POSITION AND REGULARIZATION

The differences V, — E,, and/or V, — E,;, in (32) can become zeros leading to the resonances in the cross sections. The
resonance position depends on the B-field strength, initial Landau level n;, electron momentum along the field direction p_ ;

and the direction of the photon momentum:

K2 (b) =

\/(E[ — p.icos;)? +2b(n — n;)sin’0; — (E; — p.;cos0;)

. k() > 0. (38)

sin%6;
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FIG. 2. Dependence of the resonance position on the direction. (a) Position of the first resonance as a function of initial photon
momentum direction 6; for different magnetic field strength ». The higher the field strength, the bigger the difference between the
resonant energy in the various directions. (b) The ratio of the second and the first resonant energy as a function of photon momentum

direction 6; for various magnetic field strengths b.

If the electron occupies the ground Landau level and has
zero velocity along the B field the expression for the
resonance position simplifies:

\/1+2nbsin?6—1
KDy ={ " wwg - for

b, for

0#0,n=1,2,...,
6=0.

(39)

The resonance position depends more strongly on the photon
momentum direction in the case of a stronger B field (Fig. 2).
It is also obvious that the ratio of the resonant energies
depends on the direction and the field strength (Fig. 2).

The resonances could be regularized if one takes into
account the natural width of the Landau levels [22,57]. The
width is defined by the electron transition rates from the
occupied Landau levels and depends on the magnetic field
strength, the Landau level number and the electron spin
state [22,35,44,59,60] (see Appendix B for a detailed
discussion). The spin dependence of the Landau level
width is particularly important if we investigate the
polarization of scattered photons. Thus, there are two
widths corresponding to each Landau level—TI', (p.).
The ground Landau level is an exceptional case. It has
only one possible spin state (s =—1) and its width
I'y_(p.) =0, since the spontaneous transition n; =0 —
ny = 0 is impossible with any p_. In order to regularize the
resonances one should replace the energies of the initial and
the final electrons E; and E; with E;—il;/2 and
E; —il'y/2, the energy of virtual electron E, should be
also replaced with E, + iT",,,/2 [22,57].

Let us define the following linear combination of the
width of the Landau levels:

e Li+Iy
2 + 4

It = (40)

Then the terms with the resonances [which we get from
(32)] in the propagator could be rewritten in the regularized
form. Let us also take into account the level width in the
positron part. Since the positron energy is —E, and the level
width is positive, one should change E, by E, —il,;/2
[61]. Then the expression (32) can be rewritten as

PR S
V—-E,—il'ty V-E, —il',; V+E,—il}
v,‘,_v,ﬁ
= 41
+ V+E,—il; (41)

Useful relations for the spinor products in Eq. (41) are
given in Appendix E.

The Landau level natural width also determines the
scattering cross section of photons with energy well below
the cyclotron resonance, when k; < T',, [23]. In this case the
scattering cross section saturates at a small constant value
for the case of photons propagating along the magnetic
field direction and for the case of photons of X-mode
polarization of any angle between the B field and the
photon momentum (see Appendix B).

VII. THE S-MATRIX ELEMENTS: PHASE
FACTORS

The elements of the scattering matrix are complex
numbers in general and their phase factors are important
in some cases: in particular it was shown by Mushtukov
et al. [33] that the exact form of the relativistic kinetic
equation for polarized radiation demands the S-matrix
elements and the cross section is not enough. Since we
make a summation over the virtual electron Landau levels,

Sk = Z,,Sg' ), the phase factor depends on them.
Nevertheless one can extract the phase factor Cpy

(Sf = CﬁZnSt(—I")/Cﬁ), which does not depend on the
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variables describing the virtual electron [over which one
can make the summation and integration in Eq. (20)]:

o= np (11022000
2
kr— ki) (pyi+ Py
+i ( fx zx)(zpy,z + py,f)) ) (42)

The other phase factors are conjugated for the Figs. 1(a)
and 1(b) diagrams and depend on the virtual electron
Landau level number over which the summation should
be done. If we express the S-matrix elements with the
relation Sj; = CﬁZnX(ﬁ")Mg'), where |Xg| = 1 and My is a
real number (M € R), then

n . n;+n
Xgi) = exp (il <n - Tf> (of — i)

kikp . . .
F in sin @; sin 6 sin(¢p, — (pi)> . (43)

8nir,
EE,

5(pyf + kfv - py.i - kiy)ﬁ(pz,f + ku — Pzi

The obtained structure of the S-matrix elements, which
is given with (42) and (43), shows that the matrix elements
are real numbers in a case of scattering with only photon
polarization change. It conforms to the structure of a
general kinetic equation for Compton scattering in a
strong magnetic field obtained by Mushtukov et al. [33].
The equation describes evolution of a density matrix
kernel p¥ (k,r,t) [62] and contains three items on the
right-hand side: kVp!(k,r,t) =1, + 1,4+ 15, where
V = (0/0t,—-V). The first two items describe photon
redistribution over the polarization states only and the last
term describes general photon redistribution over the
energy, momentum and polarization states. It was pointed
that the first term contains the elements of the S matrix by
themselves, while the second and third terms contain the
|

do E7E}

— ki)8(Ef + ky— E; —

PHYSICAL REVIEW D 93, 105003 (2016)

The upper and lower signs correspond to the Figs. 1(a)
and 1(b) Feynman diagrams, respectively.

For the calculations of the matrix element one
should know the following parameters: the quantities
which define the energy and momentum of initial
particles—n;, p,; for the electron and k;, 6; for the
photon, the quantities defining the energy and momentum
for the final particles, n; for the electron and 6y,
(9s — @y) for the photon. Some final quantities can be
determined by the conservation laws (see Sec. III). The
final Landau level should comply with the condition (8).
It is also necessary to specify the quantities which define
the polarization state of the electrons in the final and
initial states, s, 5;, and for the photon states, I, ;. Then
the recipe developed in Sec. V allows us to transform
expression (20) and calculate the elements of the scatter-
ing matrix S.

The factors which are independent on the summation
variable n could be taken out from the summation sign.
Their product is

e~ B+ ?) /4
k;) )
4v/spsi(Ep +sp)(E; +5;)

(44)

|
usual products of matrix elements (as a result they could be
rewritten using the cross sections, which is impossible for
the first term). Here we have shown that the matrix
elements in the first term of the kinetic equation are real
numbers and it would simplify significantly the interpre-
tation of physics behind this term.

VIII. CROSS SECTIONS AND REDISTRIBUTION
FUNCTION

A. Total and differential cross section

As soon as one gets the S-matrix elements it is possible
to find the scattering cross section. The differential
Compton scattering cross section for the case of a fixed
initial electron state is

kf 0T|Sﬁ|2

(niv pz,ivsi|ki79i7 lhgfv lf7A(pﬁ) = Z

nysSy

dQ;

where Agg = (¢; — ¢). Then the total cross section is
obtained from the differential cross section after the
integration and summation over all possible final photon
parameters:

(E; 4+ 1)(Ep+ 1) k; (E; + k; — ky — cos 0(p,; + k;cos6; — k;cos6y))’

(45)

[
1 T 2 do

o1 (ki 030, Dy Si) = — / d@, sind / dop,——.
l,( z, ) 471,21/: o f f o fde

(46)
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FIG. 3. The exact cross section for the photons which propagate
initially along the B field: 8; = 0 (red solid lines). There is no
difference between polarizations in this case and only one
resonance exists. Its position is defined by the field strength
(39). Different curves correspond to various magnetic field
strengths: b = 0.1, 1, 10 (B=4.4x 102, x103, x10™ G).
The scattering cross section approximation obtained by Gonthier
et al. [29] is given by black circles. It works well, but over-
estimates the scattering cross section near the resonant energy and
underestimates the cross section after the resonance in a case of
extremely high magnetic field strength: b = 10.

Examples of a scattering cross section on the electron
at rest are given in Fig. 3 for the photon which
propagates along the magnetic field and in Fig. 4 for
the photons which propagate at some angle to the B field.
There are a number of resonances (38) for the case of
photons which propagate angularly to the magnetic field
direction, while there is only one resonance for the case
of photons which propagate along the field. The differ-
ence between X- and O-mode cross sections becomes

(a) 108

T T TTTTT T T

T T TTTTT T T

10—4 L1111l 1 1
0.01 0.1

E/mec2
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stronger as the angle between the field direction and the
photon momentum increases.

In a realistic situation, the electrons are distributed over
the momentum, Landau level numbers and spin states. In
the case of a sufficiently strong B field (kg7 < E¢y)
one could assume that all electrons occupy the ground
Landau level and therefore take part in one-dimensional
motion and have only one possible spin state (s = —1). In
this case the differential cross section is defined by the
electron distribution function f,(p.) [normalized as
Yons Jodp.fus(p;) =1] and the cross section corre-
sponding to the scattering by an electron with given
parameters (45) is

do*
T~ (kia 91'7 li’ 9f’ lf’ A(pﬁ)
dQ,

do
= Z/dpz.idgf(ni’pz,i’silkiveivliﬂefﬂ Iy, Agy;)

n;.s;

X fni..si(pz,i)' (47)
The total cross section in this case could be obtained from
the differential one using relation (46).

Since the electrons in a sufficiently strong magnetic field
take part in one-dimensional motion, the cross section near
the resonant energies has special features. The shape of the
cyclotron features depends on the direction of the initial
photon momentum [see Figs. 5(a) and 6(a)]. For the case of
longitudinal propagation, the ordinary Doppler broadening
takes place. For other photons, the Doppler broadening is
defined by the distribution of the projection of the electron
momentum. The transversal Doppler effect becomes more
important as the angle between the field direction and the
photon momentum increases. It provides asymmetrical

(b) 108

T T TTTTT T T T T TTTIT T T

0
6;=0 |

10—4 L1111l 1 1
0.01 0.1

E/mec2

FIG. 4. The cross section dependence on photon energy. (a) The cross section for the X- and O-mode photons which propagate across
the magnetic field (9; = x/2) are given by solid red and dashed blue lines correspondingly. The cross section below the first resonance
shows completely different behavior. The resonance positions are almost the same, but the cross section of the resonant scattering is also
different. (b) The dependence of the scattering cross section on the direction. For the case of O-mode photons of energies below the
cyclotron energy ¢ o (sin?0; + (k/b)*cos?0;) if b <1 and k < b. Here b = 0.1 (B =4.4 x 10'> G).
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FIG. 5. The cross section for the X-mode photons as a function of photon energy. (a) Dependence on incident angle 6; for the fixed
electron temperature 7 = 20 keV. (b) Dependence on electron temperature (for a fixed 8; = 60°). The scattering features around the
resonant energies are broadened with the width depending on the electron temperature and direction of photon momentum since the
electrons mostly take part in one-dimensional motion. As a result the usual Doppler broadening takes place only for the direction along
the B field, while in the perpendicular direction only the relativistic transversal Doppler broadening acts, and the scattering features are
asymmetrical. All results are given for b = 0.05 (B =2.2 x 10'> G).
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FIG. 6. Same as Fig. 5 but for the O mode.

-2 X+0-mode | 102F X+0-mode

2 X+0-mode

_ 3 L L
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0 10 20 30 40 50 60 70 80 107010 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
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FIG. 7. Polarization-averaged cross section for the case of magnetic field strength B = 1.7 x 10'> G, electron temperature T =
10 keV and various angles #; between the magnetic field direction and the momentum of the initial photon is given by red solid lines.
The black dashed line shows the results of the same calculations performed by Harding and Daugherty [32], where the Johnson-
Lippmann wave functions [34] were used.
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FIG. 8. The scattering cross section as a function of the initial
angle between the photon momentum and the magnetic field for a
few initial photon energies. Since the resonant energies value
depends strongly on the initial photon momentum in an extremely
high magnetic field, the cross section shows a strong direction
dependence as well even in case of the X-mode polarization. Here
b =100 (B=4.4x 10" G).

broadening of the cross section resonant features which
is more evident for higher electron temperatures [see
Figs. 5(b) and 6(b)]. The results of our calculations are
in agreement with the previously performed calculations
[32] of scattering by thermal electrons (see Fig. 7).
However, a small difference in the cross section at the
|

di, (k)
ds

= —(ay(k) + x;(k))1,(k) + & (k) + Z

I'=12

where I;(k) is an intensity in the given polarization / for the
photons of momentum k = k(sin @ cos ¢, sin 0 sin ¢, cos 0),
a;(k) and «;(k) are absorption coefficient due to the
scattering process (or scattering coefficient) and true
absorption correspondingly, &,(k) is a true emission co-
efficient. The last item in the right-hand side of the equation
describes an emission due to the scattering processes in a
given point and R(k,l—k’, ') is the redistribution func-
tion which defines the photon probability to change the 3-
momentum and the polarization state in a scattering event.
The redistribution function is normalized here in the
following way:

o0 7 27
> / di/ / do’ sin @ / dg R(k, I—k', ') = ay(k),
7 Jo 0 0
(49)
where the scattering coefficient o;(k) = n.o;(k, 0) and n, is

an electron concentration and o,(k, 0) is a scattering cross
section.

PHYSICAL REVIEW D 93, 105003 (2016)

resonance exists because the Sokolov-Ternov wave func-
tions are used in our calculations instead of the Johnson-
Lippmann wave functions [34] (see [23] for a detailed
discussion).

In an extremely strong magnetic field (b > 10 or
B 210" G) some interesting features take place. The
resonance position and resonance energy ratios depend
strongly on the direction (see Sec. VI) and therefore the
cross section depends strongly on the direction as well
(Fig. 8). It makes the problem of radiation transfer in
magnetized plasma much more complicated. The depend-
ence of resonance position on the field strength exist also
for a relatively weak magnetic field, but it is not so
dramatic. The resonant energies for the case of a super-
strong field are comparable or larger than the electron
rest mass energy. As a result the decrease of the
relativistic cross section (“Klein-Nishina reduction’) takes
place.

B. The redistribution function

In order to use the results in astrophysical applica-
tions it is useful to construct the photon redistribution
function describing the Compton scattering in a strong
B field. The set of radiation transfer equations consists
of two equations, one for each polarization mode
(=1, 2):

o0 T 2r
/ dr’ / ¢’ sin@ / dg/R(K, I'—sk, )1, (K'), (48)
0 0 0

According to the conservation laws, there is only one or
several [for each admissible final Landau level (8)] possible
final photon energies corresponding to each final photon
direction in the case of an electron in a given quantum state,
i.e. the final photon energy (7) is defined completely in the
case of a fixed final scattering direction. The redistribution
function over the zenith and azimuthal angles and polari-
zation states is then

R (kil0, i, li—07, 5, 1y) = /oo dk; R(k;, l;—k;,1;)
0

n., do
C 4rdQ,’ (50
where the differential cross section do/dQ, is given
by Eq. (45).

The general redistribution function, which corresponds
to the scattering by the electron ensemble with a given
distribution function over the momentum, Landau level
numbers and spin states f, ; (p,;) is
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FIG.9. The ratio of forward and backward parts of the total scattering cross sections as a function of photon energy (a) for the case of a
photon initially propagating along (8; = 0) the B field of different strengths and (b) across the field (6; = z/2) of given strength b = 0.1

(B = 4.4 x 1012 G) for both photon polarizations. Sharp features appear near the resonant energies, where the electrons are able to
change their Landau level. The ratio depends strongly on the initial photon momentum direction. The behavior near the resonant

energies also depends on the photon polarization.

n do
R(k;, l;i—ky, 1p) = = Zi(niv PirSilkin 011,00, L, Agg) fr 5. (P20)

4z
n;,s;

d€y

where the z projection of the electron momentum is defined
by the final photon energy, p.; = p,;(ks), and one could
get it from the conservation laws (see Sec. III). In the case
of scattering by electrons in a fixed state, the electron
distribution function has to be replaced with a ¢ function. It
is easy to see that the integration over the final photon
energy gives us the redistribution function over the direc-
tions only (50) as it should.

The photon redistribution over the energies and momen-
tum directions, which is given by the differential cross
section and redistribution function, is not trivial in a general
case and has to be studied carefully in each particular
situation. Additional properties are caused by electron
transitions between various Landau levels in a scattering
event. Photon redistribution over the directions depends on
the initial photon momentum direction, which is a special
feature of scattering in the external field, and on the photon
energy, which is typical even for the nonmagnetic scatter-
ing [15]: the scattering indicatrix becomes more elongated
in the direction of initial photon momentum as the photon
energy increases. The scattering in the external magnetic
field keeps this regularity but the scattering near the
resonant energies adds additional features (Fig. 9) corre-
sponding to an electron transition between Landau levels:
as soon as the photon energy reaches the resonant value, the
ratio of forward to backward scattering cross section
decrease steeply. It is potentially important for calculation
of the radiation pressure resulting from a resonant Compton
scattering and particularly important for constructing a

dpzi
=, 51

[
detailed theory of formation of a beam pattern in X-ray
pulsars near the cyclotron energy.

IX. SUMMARY

Compton scattering of polarized radiation in a strong
magnetic field is considered. A general recipe for the
calculation of a scattering cross section (both differential
and total) and S-matrix elements based on second-order
QED perturbation theory is given as well as a recipe for the
calculation of a photon redistribution function over photon
energy, momentum and polarization. The presented scheme
is adapted both for the scattering by an electron with a fixed
momentum and for the scattering by an ensemble of
electrons with a given distribution over momentum. A
number of calculations in our scheme were simplified
analytically. As a result the discussed recipe is sufficiently
easy to use. Because in our derivation we assume k = |k|c,
the obtained scheme is valid up to magnetic fields of a few
hundreds of the Schwinger critical value (~10'® G), which
covers the observed range of neutron star magnetic field
strengths including the extremely high field of magnetars.
The scheme is also valid for a relatively low magnetic field
strength—10°—10° G—which are typical for white dwarfs,
but corresponding calculations with our scheme demand a
large number of Landau levels which have to be taken into
account. The scheme can be used in modeling the atmos-
pheres of neutron stars, where the scattering cross section
defines the opacity [63]. The calculations do not assume
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any principal restrictions of electron momentum. It gives us
a possibility to analyze directly the scattering by moving
plasma, which is important for conceptions of X-ray
pulsars and accreting neutron stars in general [6,42,48],
where Compton scattering governs plasma dynamics in the
accretion channel near the stellar surface [41] and inter-
action between the radiation and matter in the accretion
column for the case of bright X-ray pulsars [10,64]. Our
scheme does not contain serious restrictions on the photon
energy. The correct Landau level width based on the
Sokolov and Ternov electron wave functions [45,46] is
taken into account in a general case of Compton scattering
for the first time, which generalizes calculations performed
earlier by Gonthier et al. [23], which were valid for the
particular case of an initial photon propagating along the
magnetic field and a ground-state-to-ground-state transition
of the electron. The exact spin dependent width of the levels
affect much of the resonant scattering cross section of
polarized radiation [23]. Therefore, it has to be taken into
account in models describing the formation of the cyclotron
features in a spectra of neutron stars [30,65].

We have discussed separately the elements of the
scattering matrix, which are important for the solution of
exact relativistic kinetic equation for Compton scattering in
a strong B field obtained in our resent work [33]. It was
shown that the S-matrix element is represented by real
number in a case when they describe scattering with
polarization changes only.

Potentially important astrophysical results arise from the
behavior of resonant scattering. The resonance position
depends on the direction. The stronger the B field, the
stronger the dependence (see Fig. 2, left panel). The
position of the fundamental resonance varies by =~ 20%
for B ~ 10" G and even more for a higher field strength. It
can be used in diagnostics of X-ray pulsars since this effect
would partly define the changes of the cyclotron absorption
line position during the pulse period [66]. The ratio of the

energies of first and second resonances kﬁﬁﬁ / kﬁéﬁ is also
dependent on the direction in a strong magnetic field (see
Fig. 2, right panel), and it can cause the change of the ratio
of cyclotron line energies during a pulse period [66] and
nonequidistance of the cyclotron line harmonics, which
was observed in the spectra of X-ray pulsars [11]. The
effect also causes the variations of scattering cross section
with the angle even for the case of X-mode photons (see
Fig. 8). It is particularly important for radiation transfer and
radiation pressure calculation in case of a high B field, since
the opacity would strongly depend on directions. It was
pointed that the photon redistribution over directions
changes as soon as the initial photon energy crosses the
resonant value (see Fig. 9). It is potentially important for
the formation of a beam pattern of X-ray pulsars near the
cyclotron line.

The presented scheme of the calculation provides a
ground for investigation of radiation transfer in strongly

PHYSICAL REVIEW D 93, 105003 (2016)

magnetized plasma. It can be readily applied to astrophysi-
cal problems, principally for the models of spectrum
formation in strongly magnetized neutron stars, calculation
of radiation pressure in a strong B field and modeling of an
X-ray pulsar beam pattern all over the spectrum. In this
way, the presented scheme is extremely relevant to further
investigation of strongly magnetized neutron stars.
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APPENDIX A: LONGITUDINAL
TRANSFORMATION OF ELECTRON
AND PHOTON MOMENTA

We are focusing here on the longitudinal Lorentz trans-
formation of the timelike component of the 4-momentum
Do, 1.e. the particle’s energy, and the z component of the
momentum p,, which corresponds to the particle momen-
tum along the magnetic field. The general form of the
longitudinal transformation is

1-p
(A1)

po = (po—Bp)/\J1-P* .= (p.—Ppo)/

where f is the velocity between the reference frames
along the magnetic field in units of speed of light. The
transformation (A1) can be rewritten in another form using
parameter j, which satisfies the relation f = tanhy.
Then

p. = p,coshy — pgsinhy.
(A2)

Thus the photon energy and the longitudinal momentum
are transformed as follows:

Py = pocoshy — p_sinhy,

k' = k(cosh y — sinh y cos 9),

k' cos @ = k(cos @ coshy —sinhy). (A3)
The transformation of the angle between the B-field
direction and the photon momentum is given by the
relations

cosd — cos @ coshy — sinh y

cosh y — sinhy cos @’
sin @

sin@ = (A4)

cosh y —sinhy cos @’
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The electron energy E, and the momentum along the magnetic field p, are transformed according to (Al):
E,, = E,coshy — p.sinhy, p. = p.coshy —E,sinhy. (AS)

Using relation dE, = p.dp./E, we get

d E,
dp!. = dp. coshy — dE, sinhy = <cosh P %sinh ;() dp. = B{’ £ (E, coshy = p-sinhy) = 2dp..  (A6)
n n n
Therefore the ratio dp./E, is conserved under a longitudinal Lorentz transformation.
If photon energy k and momentum along the field k, are given at the laboratory reference frame, where the electron

momentum along the field is p,, then the photon energy k' and momentum &, in the electron reference frame (where
p, =0) are

k k
k’ = sz (E” — P;COS 9), klz = Tp (E cosf — pz) (A7)
n Zz

Z

The angle ¢ between the photon momentum and the magnetic field direction satisfies the following relations:

— 2 _ 2 o 0
cos@ — Enc0sO0—p. oy VE = pisind (AS)
E,—p.cosf E,—p.cosf

APPENDIX B: LANDAU LEVEL NATURAL WIDTH
Landau level natural width for the particular case of p,; = 0 (see Fig. 10) is defined as a sum of the partial widths:
=> Tk (B1)
n'<n

The general expression for the partial width was obtained by Herold et al. [35] for the case of transition between arbitrary
Landau Levels and zero initial electron momentum p, ; = 0:

Fi,:E/”/zd ksin@
"2 o E,\/E:—2(n—n)bsin’@

X{[(En:Fl)(Enil—k>12 (1) + (B, £ 1)(E, F 1=K, ,_ (u)]sin’
+ (B, £ 1)(E, F1-k)I5_, ,(u)+ (E, T 1)(E, £1— k) 2 (@)](1 4 cos?0)

+2kx/ﬁ[[2 ()l w) + 1 ()l ()] sin Ocos®0

nn'—1

AV (2, 2, () + 1 (0, (u)]sin?6}, (B2)

where E, = /1 +2nb is the electron energy, k = [E, — (E2 — 2(n — n')bsin?@)'/?] /sin?@ is the energy of a photon
emitted at the angle € due to the electron transition n—n’,

1

Byt () = (1) ()2 explu /2= O u explu) (83)

and u = (k*sin®0)/2b [67]. The functions I, () can be constructed using the associated Laguerre polynomials LZ(x):

e x—* d"
— [p,=xyn+ta . B4
n! dx" =] (B4)

Ly (1) = (=1)"(n!/n')"/2 expl=u/20u"="2Ly=" (), Li(x) =
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(a) T T T T

10° F 1

PHYSICAL REVIEW D 93, 105003 (2016)
(b) T T T T

FIG. 10. Spin dependent Landau level width in the electron rest frame (in units of agb) as a function of dimensionless magnetic field
strength b = B/B,, is given for the first Landau level (a) and for the first, fifth and 25th Landau levels of spin state s = —1 (b).

Compact approximate expressions for I';; and I’ fn, for
the particular cases of nb < 1 (nonrelativistic limit),
b~' < n< b3 (ultrarelativistic ~quasiclassical ~limit)
and n > b3 (ultrarelativistic quantum limit) were pro-
vided by Pavlov et al. [22]. The Landau level widths for
the case of nonzero momentum of the electron along the
field p.; # 0 can be obtained from those expressions for
p.i=0 by Lorentz transformation [35]: Ti(p,)=
TEy/1+2bn/E,(p.).

Cyclotron decay rates for transition to the ground state
and arbitrary initial electron momentum p,; were obtained
by Latal [44]. The simplified expressions were introduced
by Baring et al. [60]. Although the resonance linewidths
involve infinite sums over Landau levels, in the case of
fundamental resonance the sum is dominated by the n = 1

(a) 106 T T T T T T T T T

10°

o/oT

FIG. 11.

state. The width of this state is equal to the n—0 cyclotron
decay rate. As a result, the fundamental linewidth can be
well approximated by the particular cyclotron rate obtained
by Latal [44,60]. For the case of b > 1 cyclotron tran-
sitions to the ground Landau level dominate [68] and the
cyclotron decay rate for n—0 transitions approximate
well the widths of the excited states.

Landau level natural width becomes crucially important
at resonant photon energies (see Sec. VI) and at energies
well below the cyclotron energy, when the initial photon
energy becomes comparable to the Landau level width [23].
If k;, < T the cross section for the photons propagating
along the magnetic field saturates at a small value,

or GTFZb_z(] + 2b)_1. (B5)
(b) 105 E T T T 3
i b=3 ]
= 10* E E
o e 3
© r ]
10" 3
0.99 0.995 1 1.005 1.01
k./b

T

Compton scattering cross section calculated using the spin dependent Landau level width for the particular case of ground-

state-to-ground-state transition is given by the red solid lines in a wide photon energy range (a) and for a photon of energy close to the
fundamental (b). The magnetic field strength » = B/B_ = 3 and initial angle between the field direction and photon momentum 6; = 0.
Black dots represent calculations performed by Gonthier ef al. [23] for the same conditions. The Landau level width affects strongly the
cross section at low energies, where the level width becomes comparable to the photon energy and the cross section saturates at a small
constant value (BS5) given by the black dashed line (a). The level width also affects strongly the cross section at the resonance

energies (b).
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FIG. 12. Scattering cross section for the X-mode photons of
initial angle 8, = 90° in a wide range of initial photon energies.
The magnetic field strength b = B/B.. = 3. At low energies the
cross section saturates at a small constant value (B5) given by the
black dashed line similarly to the case of photons propagating
along the B field [see Fig. 11(a)].

The same happens with photons of X-mode propagating in
any direction (see Fig. 12).

APPENDIX C: SET OF USED MATRICES AND
USEFUL RELATIONS

In this section we present the matrices which we use in
our calculations. In general we are following the standard
designations [36,69,70].

We use a set of three 2 x 2 Pauli matrices, o, o,
and o3, which are Hermitian and unitary, in their standard

|

Zi - (I:t23)/2, Zi - (Z] Zl: 122)/2,

D* = (y° ¥ D%)/2.

D, = —(D' +iD%))/2,

PHYSICAL REVIEW D 93, 105003 (2016)

designation [70]. I is a unity 2 x 2 matrix. We also
use the following combinations of Pauli matrices:
ot =(+03)/2, 6. = (0, £ioy)/2.

The gamma (Dirac) matrices which compose the 4-
dimensional vector y = {7°, 7', 7% 7} could be expressed
via the 2 x 2 Pauli matrices:

0 _ . 1 0 P . 0 O; (Cl)
==y ) ==L o)

We also introduce matrices D = {D°, D}, where

O -1 . —0; 0
DY = , D' = , (C2)
1 0 O O;

and 3-dimensional vectors of matrices o and X:

0 O; O; 0
a; = < >, Zi: < ) (C3)
O; 0 0 o;

Let us designate the unity matrix 4 x 4 with 1, and the
product of four matrices with ys:

. 0 I
vs=—r =i’y'y’r’ = ( )

/o (C4)

We also use the following linear combination of the
matrices:

at = (rs ta3)/2, ap = () £imy)/2,

v+ = @' £iy?)/2.

(C5)

rt=(=D"%7%)/2, (Co6)

These matrices compose the set of 16 linearly independent 4 x 4 matrices. They could be expressed via 2 x 2 matrices in the

following way:

Gi 0 oL 0 0 U:t 0 O
S I B G Y )
0 (o 0 oL (2 0 oL 0
Gi 0 (o 0 0 Gi 0 (i
v ) ol 2) () ()
0 -0 0 -0y -0 0 -0, 0

The Dirac matrices are determined by relations of anticommutativity. For the 4-vectors of matrices they are

"y + it =2g", vsy +yrs =0,
and for the 3-vectors of matrices the relations are

(Zk(lj + ajak = 25kj’

Zij + ijk - 25/(/"

(C7)

(C8)

D*DY + D*D* = =2g,,.  ysD+ Dys =0, (C9)
Dij + ZjDk = —2705kj- (C10)
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Useful commutative relations are

DHy” = D = 2ysg,

PHYSICAL REVIEW D 93, 105003 (2016)

The useful dot products of the 4-vectors (a b=a’b° — Y7 | a'b’) of matrices are

yr=4, DD=-4

and for the 3-vectors (ab = "7 | a’b’) of matrices are

Tw=-3, ya=—ay=3/",
a =3, a =a =3y,
22 =3, DD=3,

APPENDIX D: ELECTRON IN THE EXTERNAL
MAGNETIC FIELD

In this section we discuss the description of an electron
in the external magnetic field which we use in this paper.
The different ways of electron description in such a case are
also discussed in the literature [21,35,46].

1. Dirac equation

The electron is described by the Dirac equation, which
has to be written for the case of an external magnetic field.
Let us choose a 4-vector of potential in the Landau gauge:
A. ={0,A.}, where A, = B.(0, x,0). Then the required
solutions W satisfy the equation

&

where A, = Ay = —B.xy?, y* is one of the Pauli matrices
(Cl)and p = py = ihVy.

Let us use a relativistic quantum system of units and find
the solution in the following form: ¥ =exp [i(—FEt+
p.2+ pyy)lw. It is useful to change the variables:
x = u — p,/b. Then the Dirac equation (D1) takes the form

oI

Ae—mc>\1/ =0, (D1)

d
(EYO +igr = prt —buy’ - 1) w(u) =0. (D2)

If it is multiplied by iy', then we get the ordinary system of
differential equations:

d
<d— —iEa) — buX; + p,%, — i}/l) w(u)=0. (D3)
u

2. From the system of equations to second-order
differential equations

Let us designate the components of the vector which
we want to find, w(u) = (w, w2, yw3,w4)", and rewrite

Y=

ykaj—aj]/k :Zyoékj (Cll)
yD=-Dy=—4y;s (C12)
Ty = —3D°, yD = —Dy = 3ys, (C13)
aD = —Da = —3D°, (C14)
D = DX = 3)°. (C15)

the ordinary system of differential equations (D3) in
detail:
dy/du = buy, + p.iw, + 0+ i(E+ 1)y,
dy,/du = —p iy, — buy, + i(E + 1)y + 0
dy3/du = 0+ i(E = D)y, + buys + poiyy
dyy/du = i(E = )y +0 = p_iys — buy,

(D4)

Then we can find equations for each function in (D4):
(1) The case of y; = 0 gives an equation for 3. Using
the designations { = (E+ 1)y and a=E*—1-p?,
we get y; =0, pyr+(E+ Dy, =0, yj=
—buy, +i¢, {' = iay, + bul. Therefore,

"= (b*u? +b-a)l. (D5)

(2) The case of y, = 0 gives a solution for 4. Defining
p=(E+1)yy, we gety, =0, —p.y +(E+1)y3=0,
v = buy + iy, ' = iay| — bup. Therefore,

p'= (b = b-a. (D6)

(3) The case of w3 =0 gives us a solution for .
Defining n=(E—1)y, we get y3=0, (E — 1)y, +
pwa =0, wy=—buy,+in, n =iay,+ bun.
Here we get the same equation as in the first case
(D5): " = (b*u* + b — a)n.

The case of y, =0 gives us a solution for y.
Defining « = (E — 1)y, and using similar designa-
tions as in the second case we get yw, =0,
(E-Dy1=Zy3=0, yy=buy;+ix, ¥ =iay;—
buk. And we get the same equation as in the second
case: K’ = (b*u* — b — a)xk.

Thus the system of equations (D4) is reduced to the pair
of equations of the same form: (D5) and (D6). Both of them
can be transformed to the equation of a quantum harmonic
oscillator. Its solutions are well known and enumerated
with integer numbers n > 0:

“
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[ g 0] = (n+ Do o7

2 d? 52

The eigenfunctions could be written via the Hermite
polynomials: ¢, (&) = z=V/4(2"n!)~""/2e~¢/2H,, (). Thus,
we find that the motion of electrons is quantized and they
occupy Landau levels.

The eigenfunctions form orthonormalized series. The
expressions for the derivative take the form

G(&) = V2ng, (&) — ().
(&) = V21, (&) + Ei (9.

Our solutions will be expressed through the functions
xn(u), which are defined by harmonic oscillator eigen-
functions ¢, (&) and comply with the relations:

|

PHYSICAL REVIEW D 93, 105003 (2016)
Kn(u) = b4, (b)2u),

2
@] - (14 3)me. o)
)(:z(u) = ibn)(n—l(u) - bu)(n(”)’
Los(6) = b1y (0) + bty W) b, = V2b, (D9)

Functions y, (1) are normalized: [y (E)y, (6)dé =5,

3. Solution of the system of equations

The solutions of the second-order equations (D5) and
(D6) give us a solution of the system of the equations (D4).
Let us enumerate the solutions with the upper index (/) and

gather them into the matrix (wli-l)(u)):

(E+ 1))(11—1 0 PXn-1 bn)(n—l
0 (E+1)x bux 2
l n n n
v = (W) = (D10)
PXn-1 bn)(n—l (E - l)ﬂfn—l 0
er(n —PXn 0 (E_ I)Zn

However, these solutions are linearly dependent: (E — 1)y = p.y®) 4+ by, (E—1)yp® = b,y - py®. In
order to get four independent solutions one have to use the ones with the negative energy E = +E,, E, = \/1 + b2 + pZ,
which correspond to the positrons. Let us write down the solutions. Two of them correspond to the electrons and have the

form
E,+ 1\1/2 —HE.1—pye .
\p;;(x7y’zap)rvpz) = < ZE ) U;ﬁ—j(pzvl’oe l(En[ Pyy P;Z)’ .] = 1’27 (Dll)
where
)(n—l(u) 0
0 ()
Va1 (peatt) = o n(peu) = !
nE pz)(n—l(u)/(En + 1) 2 bn)(n—l(u)/(En + 1)
buyn()/(E, +1) —pn(u)/(E, +1)
And two of them correspond to the positron states:
. E,+1\1/2 _ 4 .
V(X v, 2, py. p2) = ( oE > Vi (pou) e/ E PR =2, (D12)

where

—pin-1(u)/(E, + 1)
—byjn(u)/(E, +1)
Hn—1(u)

0

Uy (pz’ Lt) =

9

and u = x + p,/b.

—buin-1()/(E, + 1)
pxn(u)/(E, +1)

0

In(u0)

”;2(19@ M) =
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The wave functions could also be presented in the following form:

E,+1\1/2 .
) i pe e, =1, (D13)

\P;j(xuy’ 2, =Dy, _pz) = (
where u = x — p,/b. In the case of n = 0 two solutions vanish: vg, (p..u) = vy, (p,. u) = 0.

4. The solutions for definite helicity

Let as find now the solutions in a form when they are eigenvectors of the helicity operators S and y (non-self-conjugated
and self-conjugated correspondingly) [69]. They would be the linear combinations of the solutions with indexes s = 1, 2.

The helicity operator S acts on the 4-vectors only and it does not act on the functions y. Therefore these functions are
multiplier factors in front of the eigenvectors of the operator S:

E,+s, 0 D 0
0 E,+s, 0 -p.
Ul(pz) = p > UZ(pz) = 0 > US(pz) = E +s > U4(pz) = OZ > (D14)
Z n n
0 -p, 0 E,+s,

where E, = \/1+ 2nb + p? is the particle energy and s, = +/1 + 2bn. Thus it is necessary to consider four linear
combinations.
(1) For the electron with the helicity +1 the following relation could be written down:

Clv:l (pz’ u) + Cz”:z@z’ I/t) = Ul-’l:'(pz’ u) = alUl)(n—l + a2U4)(n-

And therefore one finds out the relations for the coefficients:

E
C, = a ﬂy C2:—a2L,
2sn \/ 2srl(E” + Srl)
Cip.+Coby = ay(BEy + 1) ——Pi Cby— Cop. = ar(E, + 1) En+5n.
zsn(En +Sn) 2s”

From these relations we get a; = (s, + 1)ay, a» = b, &, where @, have to be found from the normalization
condition. Since the functions y are normalized, one can write down

/ [ (P2 )] YO0 (P2 w)du = ag[(s, + 1) = b] = ag2(s, + 1) = 1.
(2) For the electron with the helicity —1 we find the relations
Cyvgy(poou) + Covgy(poou) = vi_(poou) = o Usyyoy + aUsyy,

and then the relations for the coefficients:

pZ En+sn

C=0————, C=a )
: : Vv (En + Sn)zsn ’ ? 2Sn

|E, + s, p
C + Cyb, = —o(E, + 1)y | ———, Ccb,-C =wE,+1)——uw—.
1P; 2 1( ) 2s, 1 2P; 2( ) 2Sn(En+Sn)

Then a; = b,a, @, = (s, + 1)y and « is the same as for the previous case since
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/ [03= (P2 )]y vl (po. w)du = ag[by = (s, + 1)°] = ag2(s, + 1) = L.
(3) For the positron with the helicity —1:

Civ,, (=pou) + Covpy(=pu) = vy (pu) = Uy + Uy,

The relations for the coefficients are

E
Cl:al#’ G = n+sn’
(En + sn)zsn 2s"
Cop = Coby = ay (B, + 1)y 250 0, = CyZ = —ap(Ey 4+ 1) —e
1Pz 2Y%n 1 n 2Sn ) 1%n 2 2 n 2Sn(En+Sn)

and a; = b,ay, @ = —(s, + 1)ag.
(4) For the positron with the helicity +1,

Cl”;l(_pvu) + CZU;z(_pz’ ) = Uy (pz’ ) =a1Usyp1 + Usyy.

As a result we get the expressions for the fixed helicity in a form which we would use in the final expressions for the
solution of the Dirac equation:

n+ pz’ _7 V Sn + Ul(p X n— 1 )+ V Sn — 1U4(pz)){n(u)]’ (DIS)
pz7 - \/ U3 P )(n 1 ) + V Sn + 1U2<pz))(n<u)]’ (D16)

%\

U;+(_pz’ = \/ Sp+ U3 —P:z Zn 1 - VS U2( P )(n (D17)

ne(=pou) = —=[=\/5, = VU (=p )=t () + /5 + 1U4(=p_ )y, ()], (D18)

where U,(p) are defined by equations (D14). The spinors (D15)—(D18) are used in Eq. (20) for calculation of the S-matrix
elements.

5. Particular and total solution for electron in a strong magnetic field

The particular solutions of Eq. (D1) could be written in the following form:

1
e (r, py, = —————0,(ep.,x +€p,/bD)exp |—¢€i(E,t — - p.2), D19
(£ Py p2) = A (ep, py/b) exp [—ei( pPyy = p:2)] (D19)

where v%(ep., u) are defined by Eqgs. (D15)-(D18). This solution is used in construction of the S-matrix element (12)
and relativistic electron propagator (10). The spinors (D15)—(D18) compose an orthonormal system and

I, v (ep . u)v /,S,(epz, u)du = E, (p,)0,,6.+0,y. Therefore it is easy to find the relations of orthonormality for the
solutions of the Dirac equation:

/d3rl1]i-[‘(r’ L, Py, pz)\llf;/’s’ (I’, L, Y/’ plz) = 5(pv - p/y)é(pz - plz)énn’5se’553" (D20)

The condition of completeness of the system takes the form
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Z/dpydpz\IIZs(rv t’pwpz)\ljfli(r,?t’ Py, pz) :5(1'—"/). (DZI)

n,e,s

Therefore we can get the solution of the Cauchy problem with the initial function ®(r, #;) as an expansion over the
particular solutions:

(D(r7 t) = Z/dpydpz\l/is(r’t_t07py’pz)/d3r/\ll’6;§(rl’t_tO’py’pz)(I)(r/’IO)' (D22)

These wave functions given by (D19) satisfy the equations
0 0 0 0
. 0~ | 2 3 7 —-b 2_1\118 , , :0’
[l(r AR TR Rt az> Xy ] ns(r. Py P2)
while the spinors are the solution of the equations:

o, d
<l71 dun. bugyz + gEn(pz>70 - 6‘pz}/3 - 1) Ufls(&‘pz, ue) = 0.

APPENDIX E: EXPRESSIONS FOR SPINOR PRODUCTS

Expression (41) contains only separate spinor products and therefore there are more terms than in the nonregularized case
(33) and (34). Nevertheless the analytical expressions for the products can be found:

; 1 *
Vi (Pes X2) 0 L (P2s 1) = 2o [0+ Dpni ()r 1 (0) (B, 27 + pea® +5,D7)
+ (sn - 1))(,1()(2))(2()(1>(En2_ - pza_ - SnD_)
+ bn (Zn—l(XZ))(;; (xl)(Eny+ - pzD+ + Sna+) _Zn(XZ)Z;:—l (X])(En}/_ + pzD— - Sn“—))]’ (El)

1
K [(sn - 1))(11—1(x2))(2—1<x1)(En2+ =+ pza+ - SnD+)
+ (sn =+ 1)%11(x2))(;;(xl)(Enz_ - pza_ + S”D_)
+ bn()(n—l (XZ))(: (xl)(_Ener + pzD+ + SnaJr) +)(n(x2))(;—1 (xl)(Eny— + pzD— + sna—))]7
(E2)

v,’,L_(pz,x2)vﬂ(pz,x1) =

. 1 .
U;Jr(pz’xZ)vnl(pz’xl) = H [(sn - 1))(n—l ()CZ))(n—l(xl)(EnZJr + pzaJr + snD+)
+ (Sn + I)Xn(XZ))(;;(xO(EnZ_ - Pza_ - SnD_)
- bn()(n—l(x2))(:l(xl)(En7+ - pzD+ + sna+) +Zn(x2))(;—1(xl)(En7/— + pzD— - sna—)>]7 (E3)
_ 1
U;_<PZ, x2)vni<pz’ xl) = K [(Sn + I)Zn—l (x2>)(2—1(x1>(En2+ + pza+ - snD+)

+ (sn - 1))(,,()(?2))(;()61 )(Enz_ - pza_ + snD_)
+ bn ()(n—l (xZ)){Z (xl)(Ener - pZD+ - s11a+) —Xn (XZ)X:;—I (xl )(En}/— + pzD— + Sna—))] s (E4)
where the necessary designations are given in Appendix C. These expressions are valid for both Feynman diagrams, but one

should differentiate the values V, E,, p., x;, x, and I';, for each of them according to the specific arguments in the
expression for the S-matrix elements (20).

105003-24



COMPTON SCATTERING S MATRIX AND CROSS ...

[1] A.K. Harding and D. Lai, Rep. Prog. Phys. 69, 2631
(20006).

[2] F. Nagase, T. Dotani, Y. Tanaka, K. Makishima, T. Mihara,
T. Sakao, H. Tsunemi, S. Kitamoto, K. Tamura, A. Yoshida
et al., Astrophys. J. Lett. 375, L49 (1991).

[3] W.C.G. Ho and D. Lai, Mon. Not. R. Astron. Soc. 338, 233
(2003).

[4] A.L. Watts, C. Kouveliotou, A.J. van der Horst, E. Gogiis,
Y. Kaneko, M. van der Klis, R. A.M.J. Wijers, A.K.
Harding, and M. G. Baring, Astrophys. J. 719, 190 (2010).

[5] V. Suleimanov, A.Y. Potekhin, and K. Werner, Astron.
Astrophys. 500, 891 (2009).

[6] J. Poutanen, A.A. Mushtukov, V.F. Suleimanov, S.S.
Tsygankov, D.I. Nagirner, V. Doroshenko, and A.A.
Lutovinov, Astrophys. J. 777, 115 (2013).

[7]1 T. van Putten, A. L. Watts, C. R. D’ Angelo, M. G. Baring,
and C. Kouveliotou, Mon. Not. R. Astron. Soc. 434, 1398
(2013).

[8] Y. N. Gnedin and R. A. Sunyaev, Mon. Not. R. Astron. Soc.
162, 53 (1973).

[9] I. G. Mitrofanov and G. G. Pavlov, Mon. Not. R. Astron.
Soc. 200, 1033 (1982).

[10] A.A. Mushtukov, V. F. Suleimanov, S. S. Tsygankov, and J.
Poutanen, Mon. Not. R. Astron. Soc. 447, 1847 (2015).

[11] S.S. Tsygankov, A. A. Lutovinov, E. M. Churazov, and R.
A. Sunyaev, Mon. Not. R. Astron. Soc. 371, 19 (2006).

[12] R. Staubert, N.I. Shakura, K. Postnov, J. Wilms, R.E.
Rothschild, W. Coburn, L. Rodina, and D. Klochkov,
Astron. Astrophys. 465, L25 (2007).

[13] V. Canuto, J. Lodenquai, and M. Ruderman, Phys. Rev. D 3,
2303 (1971).

[14] R.D. Blandford and E.T. Scharlemann, Mon. Not. R.
Astron. Soc. 174, 59 (1976).

[15] O. Klein and Y. Nishina, Z. Phys. 52, 853 (1929).

[16] L. E. Tamm, Z. Phys. 62, 545 (1930).

[17] G.B. Rybicki and A.P. Lightman, Radiative Processes in
Astrophysics (Wiley, New York, 1979).

[18] J. K. Daugherty and J. Ventura, Phys. Rev. D 18, 1053
(1978).

[19] H. Herold, Phys. Rev. D 19, 2868 (1979).

[20] J. K. Daugherty and A. K. Harding, Astrophys. J. 309, 362
(1986).

[21] P. Mészéaros, High-Energy Radiation from Magnetized
Neutron Stars, Theoretical Astrophysics (University of
Chicago, Chicago, 1992).

[22] G. G. Pavlov, V. G. Bezchastnov, P. Meszaros, and S. G.
Alexander, Astrophys. J. 380, 541 (1991).

[23] P.L. Gonthier, M. G. Baring, M. T. Eiles, Z. Wadiasingh,
C. A. Taylor, and C.J. Fitch, Phys. Rev. D 90, 043014
(2014).

[24] G. G. Pavlov, Y. A. Shibanov, and P. Mészdros, Phys. Rep.
182, 187 (1989).

[25] M. G. Baring and A. K. Harding, Astrophys. Space Sci. 308,
109 (2007).

[26] L. Nobili, R. Turolla, and S. Zane, Mon. Not. R. Astron.
Soc. 389, 989 (2008).

[27] M. V. Chistyakov and D.A. Rumyantsev, arXiv:hep-ph/
0609192.

[28] A.A. Mushtukov, V.F. Suleimanov, S.S. Tsygankov, and
J. Poutanen, Mon. Not. R. Astron. Soc. 454, 2539 (2015).

PHYSICAL REVIEW D 93, 105003 (2016)

[29] P. L. Gonthier, A. K. Harding, M. G. Baring, R. M. Costello,
and C. L. Mercer, Astrophys. J. 540, 907 (2000).

[30] O. Nishimura, Astrophys. J. 672, 1127 (2008).

[31] O. Nishimura, Astrophys. J. 730, 106 (2011).

[32] A.K. Harding and J. K. Daugherty, Astrophys. J. 374, 687
(1991).

[33] A. A. Mushtukov, D. 1. Nagirner, and J. Poutanen, Phys.
Rev. D 85, 103002 (2012).

[34] M. H. Johnson and B. A. Lippmann, Phys. Rev. 76, 828
(1949).

[35] H. Herold, H. Ruder, and G. Wunner, Astron. Astrophys.
115, 90 (1982).

[36] V.B. Berestetskii, E. M. Lifshitz, and V.B. Pitaevskii,
Relativistic Quantum Theory, Part 1, Course of Theoretical
Physics Vol. 4 (Pergamon, New York, 1971).

[37] J. 1. Weise, Astrophys. Space Sci. 351, 539 (2014); 359, 45
(E) (2015).

[38] R. W. Bussard, S. B. Alexander, and P. Meszaros, Phys. Rev.
D 34, 440 (1986).

[39] S.G. Alexander and P. Meszaros, Astrophys. J. 372, 565
(1991).

[40] L. Semionova and D. Leahy, Astron. Astrophys. Suppl. Ser.
144, 307 (2000).

[41] M. M. Basko and R. A. Sunyaev, Astron. Astrophys. 42,
311 (1975).

[42] P.A. Becker and M.T. Wolff, Astrophys. J. 654, 435
(2007).

[43] A.A. Mushtukov, S.S. Tsygankov, A.V. Serber, V.F.
Suleimanov, and J. Poutanen, Mon. Not. R. Astron. Soc.
454, 2714 (2015).

[44] H. G. Latal, Astrophys. J. 309, 372 (1986).

[45] A. A. Sokolov and 1. M. Ternov, Synchrotron Radiation
(Akademie, Berlin, 1968).

[46] A.A. Sokolov and I. M. Ternov, Radiation from Relativistic
Electrons (American Institute of Physics, Melville, NY,
1986).

[47] M. Garasyov, E. Derishev, V. Kocharovsky, and V.
Kocharovsky, Astron. Astrophys. 531, L14 (2011).

[48] A.V. Serber, Astronomy Reports 44, 815 (2000).

[49] T. Bulik and M. C. Miller, Mon. Not. R. Astron. Soc. 288,
596 (1997).

[50] M. V. Chistyakov, D. A. Rumyantsev, and N. S. Stus’, Phys.
Rev. D 86, 043007 (2012).

[51] L.D. Landau and E.M. Lifshitz, Quantum Mechanics:
Non-relativistic Theory, Quantum Mechanics Vol. 3 (Butter-
worth-Heinemann, Oxford, 1991).

[52] A. V. Kuznetsov and N. V. Mikheev, Electroweak Processes
in External Electromagnetic Fields, Springer Tracts in
Modern Physics Vol. 197 (Springer, New York, 2003).

[53] A.V. Kuznetsov, D. A. Rumyantsev, and D. M. Shlenev,
arXiv:1312.5719.

[54] S.L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971).

[55] A.Y. Potekhin, D. Lai, G. Chabrier, and W.C.G. Ho,
Astrophys. J. 612, 1034 (2004).

[56] N.J. Shaviv, J.S. Heyl, and Y. Lithwick, Mon. Not. R.
Astron. Soc. 306, 333 (1999).

[57] D.1. Nagirner and E. V. Kiketz, Astronomical and Astro-
physical Transactions 4, 107 (1993).

[58] L. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products (Academic, New York, 1980).

105003-25


http://dx.doi.org/10.1088/0034-4885/69/9/R03
http://dx.doi.org/10.1088/0034-4885/69/9/R03
http://dx.doi.org/10.1086/186085
http://dx.doi.org/10.1046/j.1365-8711.2003.06047.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06047.x
http://dx.doi.org/10.1088/0004-637X/719/1/190
http://dx.doi.org/10.1051/0004-6361/200912121
http://dx.doi.org/10.1051/0004-6361/200912121
http://dx.doi.org/10.1088/0004-637X/777/2/115
http://dx.doi.org/10.1093/mnras/stt1093
http://dx.doi.org/10.1093/mnras/stt1093
http://dx.doi.org/10.1093/mnras/162.1.53
http://dx.doi.org/10.1093/mnras/162.1.53
http://dx.doi.org/10.1093/mnras/200.4.1033
http://dx.doi.org/10.1093/mnras/200.4.1033
http://dx.doi.org/10.1093/mnras/stu2484
http://dx.doi.org/10.1111/j.1365-2966.2006.10610.x
http://dx.doi.org/10.1051/0004-6361:20077098
http://dx.doi.org/10.1103/PhysRevD.3.2303
http://dx.doi.org/10.1103/PhysRevD.3.2303
http://dx.doi.org/10.1093/mnras/174.1.59
http://dx.doi.org/10.1093/mnras/174.1.59
http://dx.doi.org/10.1007/BF01366453
http://dx.doi.org/10.1007/BF01339679
http://dx.doi.org/10.1103/PhysRevD.18.1053
http://dx.doi.org/10.1103/PhysRevD.18.1053
http://dx.doi.org/10.1103/PhysRevD.19.2868
http://dx.doi.org/10.1086/164608
http://dx.doi.org/10.1086/164608
http://dx.doi.org/10.1086/170611
http://dx.doi.org/10.1103/PhysRevD.90.043014
http://dx.doi.org/10.1103/PhysRevD.90.043014
http://dx.doi.org/10.1016/0370-1573(89)90125-7
http://dx.doi.org/10.1016/0370-1573(89)90125-7
http://dx.doi.org/10.1007/s10509-007-9326-x
http://dx.doi.org/10.1007/s10509-007-9326-x
http://dx.doi.org/10.1111/j.1365-2966.2008.13627.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13627.x
http://arXiv.org/abs/hep-ph/0609192
http://arXiv.org/abs/hep-ph/0609192
http://dx.doi.org/10.1093/mnras/stv2087
http://dx.doi.org/10.1086/309357
http://dx.doi.org/10.1086/523782
http://dx.doi.org/10.1088/0004-637X/730/2/106
http://dx.doi.org/10.1086/170153
http://dx.doi.org/10.1086/170153
http://dx.doi.org/10.1103/PhysRevD.85.103002
http://dx.doi.org/10.1103/PhysRevD.85.103002
http://dx.doi.org/10.1103/PhysRev.76.828
http://dx.doi.org/10.1103/PhysRev.76.828
http://dx.doi.org/10.1007/s10509-014-1850-x
http://dx.doi.org/10.1007/s10509-015-2489-y
http://dx.doi.org/10.1007/s10509-015-2489-y
http://dx.doi.org/10.1103/PhysRevD.34.440
http://dx.doi.org/10.1103/PhysRevD.34.440
http://dx.doi.org/10.1086/170001
http://dx.doi.org/10.1086/170001
http://dx.doi.org/10.1051/aas:2000102
http://dx.doi.org/10.1051/aas:2000102
http://dx.doi.org/10.1086/509108
http://dx.doi.org/10.1086/509108
http://dx.doi.org/10.1093/mnras/stv2182
http://dx.doi.org/10.1093/mnras/stv2182
http://dx.doi.org/10.1086/164609
http://dx.doi.org/10.1051/0004-6361/201117240
http://dx.doi.org/10.1134/1.1327639
http://dx.doi.org/10.1093/mnras/288.3.596
http://dx.doi.org/10.1093/mnras/288.3.596
http://dx.doi.org/10.1103/PhysRevD.86.043007
http://dx.doi.org/10.1103/PhysRevD.86.043007
http://arXiv.org/abs/1312.5719
http://dx.doi.org/10.1016/0003-4916(71)90154-0
http://dx.doi.org/10.1086/422679
http://dx.doi.org/10.1046/j.1365-8711.1999.02509.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02509.x
http://dx.doi.org/10.1080/10556799308205369
http://dx.doi.org/10.1080/10556799308205369

MUSHTUKOV, NAGIRNER, and POUTANEN

[59] D.B. Melrose and V. V. Zhelezniakov, Astron. Astrophys.
95, 86 (1981).

[60] M. G. Baring, P. L. Gonthier, and A. K. Harding, Astrophys.
J. 630, 430 (2005).

[61] C. Graziani, Astrophys. J. 412, 351 (1993).

[62] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1,
Course of Theoretical Physics Vol. 5 (Butterworth-
Heinemann, Oxford, 1980).

[63] A.Y. Potekhin, Phys. Usp. 57, 735 (2014).

[64] M. M. Basko and R. A. Sunyaev, Mon. Not. R. Astron. Soc.
175, 395 (1976).

[65] C. Ferrigno, M. Falanga, E. Bozzo, P.A. Becker, D.
Klochkov, and A. Santangelo, Astron. Astrophys. 532,
A76 (2011).

PHYSICAL REVIEW D 93, 105003 (2016)

[66] A.A. Lutovinov, S.S. Tsygankov, V. F. Suleimanov, A. A.
Mushtukov, V. Doroshenko, D. I. Nagirner, and J. Poutanen,
Mon. Not. R. Astron. Soc. 448, 2175 (2015).

[67] V. Canuto and J. Ventura, Fundam. Cosm. Phys. 2, 203
(1977).

[68] A.K. Harding and R. Preece, Astrophys. J. 319, 939
(1987).

[69] N.N. Bogoli'ubov and D.V. Shirkov, Introduction to
the Theory of Quantized Fields (Interscience, New York,
1959).

[70] M.E. Peskin and D.V. Schroeder, An Introduction to
Quantum Field Theory (Westview Press, Boulder, CO,
1995).

105003-26


http://dx.doi.org/10.1086/431895
http://dx.doi.org/10.1086/431895
http://dx.doi.org/10.1086/172925
http://dx.doi.org/10.3367/UFNe.0184.201408a.0793
http://dx.doi.org/10.1093/mnras/175.2.395
http://dx.doi.org/10.1093/mnras/175.2.395
http://dx.doi.org/10.1051/0004-6361/201116826
http://dx.doi.org/10.1051/0004-6361/201116826
http://dx.doi.org/10.1093/mnras/stv125
http://dx.doi.org/10.1086/165510
http://dx.doi.org/10.1086/165510

