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Compton scattering of polarized radiation in a strong magnetic field is considered. The recipe for
calculation of the scattering matrix elements, the differential and total cross sections based on quantum
electrodynamic second-order perturbation theory is presented for the case of arbitrary initial and final
Landau level, electron momentum along the field and photon momentum. Photon polarization and electron
spin state are taken into account. The correct dependence of natural Landau level width on the electron spin
state is taken into account in a general case of arbitrary initial photon momentum for the first time. A
number of steps in the calculations were simplified analytically making the presented recipe easy to use.
The redistribution functions over the photon energy, momentum and polarization states are presented and
discussed. The paper generalizes already known results and offers a basis for the accurate calculation of
radiation transfer in a strong B field, for example, in strongly magnetized neutron stars.

DOI: 10.1103/PhysRevD.93.105003

I. INTRODUCTION

Compton scattering is one of the most important proc-
esses of the interaction between radiation and matter in a
number of astrophysical objects. A strong external mag-
netic field significantly affects the properties of the scatter-
ing [1]: the interaction cross section becomes strongly
dependent on energy, direction of photon momentum and
polarization. It also depends on the magnetic field strength.
A number of resonances corresponding to the electron
transition between the Landau levels appear. The resonant
cross section value may exceed the Thomson scattering
cross section σT by more than a factor of 106. All these
factors have to be taken into account in the studies of
radiation transfer and interaction between radiation and
matter in a strongly magnetized medium. Finally, Compton
scattering plays a key role in formation of spectra from
magnetized neutron star atmospheres [2–7] and dynamics
of accretion onto magnetized neutron stars [8–12].
The simplest expressions for the Compton scattering

cross section in a strong B field was derived in non-
relativistic limit by Canuto [13] and by Blandford and
Scharlemann [14]. The nonrelativistic treatment is limited
to dipole radiation and therefore only scattering at the
cyclotron fundamental is allowed. The nonrelativistic
approach works well when kγ ≪ mec2, where k is a photon

energy, me and γ are the electron rest mass and the Lorentz
factor respectively. At higher energies the relativistic effects
become important for calculations of the scattering cross
section [15,16] and kinematics [17]. The nonrelativistic
treatment is also limited to the magnetic field strength of
B≲ 1012 G because the electron recoil becomes significant
for a higher B [18].
The relativistic quantum electrodynamics (QED) treat-

ment allows us to describe scattering at higher harmonics
and also consider the scattering which leads to electron
transition to higher levels (so-called Raman scattering). It is
the only way to describe scattering at high energies and
strong magnetic field B≳ 1012 G, which is typical for
young neutron stars.
The motion of electrons normal to the magnetic field is

quantized in discrete Landau levels, whereas the longi-
tudinal momentum can change continuously. The particular
case of Compton scattering with both initial and final
electrons on the ground Landau level of zero initial velocity
was discussed by Herold [19]. The scattering cross section
from the ground to the arbitrary exited state was calculated
by Daugherty and Harding [20] and by Meszaros [21].
However, these QED calculations assume an infinitely
long-lived intermediate state and, therefore, are more
relevant to photon energies far from the resonances. In
order to calculate the resonant cross section one has to
introduce a finite lifetime or decay width to the virtual
electrons for cyclotronic transitions to lower Landau levels
[22]. For the specific case of ground-state-to-ground-state
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transition in the electron rest frame, when incident photons
are parallel to the B field, Gonthier et al. [23] showed that
the commonly used spin-average width of Landau levels
does not correctly account for the spin dependence of the
temporal decay and results in a wrong value of the cross
section at the resonance as well as at very low photon
energies, where the level width becomes comparable to the
energy of the initial photon.
Scattering from the ground Landau level is commonly

used as a basic approach in the case of a strong field:
ℏeB=ðmecÞ > kBT, where kB is the Boltzmann constant
and T is the electron temperature, when the majority of
electrons occupy the ground energy level [2,4,6,10,24–28].
For the case of an initial electron on the ground Landau
level and the initial photon with momentum parallel to
the magnetic field direction, the cross section has only
one resonance and takes the simplest form. A simple
approximation for the scattering cross section in this case
was found by Gonthier et al. [29]. Their approximation
represents the exact cross section quite well below the
resonance and above it even for extremely strong
fields (B < 1015 G).
Moving electrons scatter the photons differently because

of relativistic effects. As a result, the electron distribution
over momentum affects the exact cross section and broad-
ens the resonance features. This effect could be important
for the formation of spectral features in X-ray pulsars
[30,31] and for the estimations of radiation pressure [8–10],
because the resonant scattering increases the effective
interaction cross section dramatically. It is also important
to use correct Landau level width and calculate correctly
the exact resonant cross section here. The influence of
electron distribution varies much with the photon momen-
tum direction because electrons take part mostly in a
motion along the B-field lines and the corresponding
Doppler broadening varies a lot [32,33]. The scattering
cross section for the case of thermal electrons was calcu-
lated and compared with cyclotron absorption by Harding
and Daugherty [32]. However, only polarization-averaged
cross section for the case of an initial electron at rest in the
ground state was explored and an incorrect width of Landau
levels based on Johnson-Lippmann wave functions [34]
was taken into account (see [35] and [23] for detailed
discussions).
Description of additional effects such as vacuum polari-

zation, two-photon scattering [36], pair creation [37]
demands the use of high order perturbation theory. They
are beyond the scope of the present work. However, it has
to be pointed that the multiple photon scattering might be
considered approximately as a chain of several elementary
scatterings [38]. Nevertheless, true scattering with an
emission of two or more photons is a possibility which
is given by QED treatment solely and the correct scattering
cross section can be obtained only with relativistic treat-
ment [39,40].

According to QED, the scattering process is described
completely by its scattering matrix (S matrix) [14,36],
which contains the information about the probability
amplitudes for the scattering. The transition probabilities
and the effective cross sections of the various possible
scattering are obtained from the S-matrix elements (which
are complex numbers in general) as its squares, and
therefore contain less information. The scattering cross
sections are sufficient for a number of aims though, but the
complete S matrix is needed for the general relativistic
kinetic equation obtained recently by Mushtukov
et al. [33].
In this paper we give a detailed scheme of calculation of

Compton scattering S-matrix elements, the differential and
the total cross section based on the QED second-order
perturbation theory. Some steps were done analytically
simplifying the calculations significantly and making them
easy to use. The scheme is valid for an arbitrary initial and
final Landau level, though we focused on the scattering
from the ground Landau level only. For the first time
calculations do not assume restrictions on the photon
momentum and electron distribution over momentum.
As a result, the scheme could be applied to direct
calculations of scattering by moving electrons, which is
important for modeling of the interaction between radiation
and matter in the vicinity of accreting highly magnetized
neutron stars [10,41–43]. The correct electron spin depen-
dent Landau level width [22,35,44] based on the Sokolov
and Ternov electron eigenfunctions of the magnetic Dirac
equation [45,46] for the first time is taken into account in a
general case of arbitrary initial photon momentum. The
correct spin dependent width was already used in calcu-
lations of the Compton scattering cross section for the
particular case of photons initially propagating along the
magnetic field and ground-state-to-ground-state transition
of the electron [23]. In our calculations we generalize this
result. The correct Landau level width is shown to be
particularly important if we are interested in the polariza-
tion of scattered photons and an accurate scattering cross
section at the resonant energies [23]. The obtained relations
are valid in the case of the magnetic field strength up to
∼1016 G according to methods of particle description
which are used in this paper (see Sec. II). We also
discuss the redistribution function for the scattering (see
Sec. VIII B), which traditionally is used in radiation
transfer equations and has a key role for studying the
formation of spectral features near the cyclotron funda-
mental and its harmonics [47,48]. We provide a scheme of
calculation of the cross section for the case of scattering by
an ensemble of electrons described by any distribution
function over momentum. The results could be used for the
solution of the kinetic equation for Compton scattering
obtained by Pavlov et al. [24] and generalized by
Mushtukov et al. [33]. Since the general relativistic kinetic
equation can be expressed via S-matrix elements only, we
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discuss some properties of scattering matrix elements
which are important for the kinetic theory (see
Sec. VII). The paper describes the most general scheme
for a Compton scattering calculation in a strong magnetic
field based on the second order of QED perturbation theory
and provides a ground for detailed investigation in a field
of radiation transfer in the case of a strong external
magnetic field.
We do not discuss here an influence of plasma effects on

Compton scattering. The description of plasma effects was
given in a number of works [49,50].
For simplicity we use the relativistic quantum system of

units where the Planck constant, speed of light and the
electron mass are equal unity: ℏ ¼ c ¼ me ¼ 1. In this case
the length unit is the Compton wavelength ƛC ¼ ℏ=mec,
the unit of energy is the electron rest mass energymec2, the
frequency unit is mec2=ℏ and the momentum is measured
in mec. The electron charge is e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=137.036
p

. The
classical electron radius re is equal to the fine-structure
constant αfs in using a system of units: re ¼ e2=ðmec2Þ ¼
e2=ðℏcÞ ¼ αfs ¼ 1=137.036.

II. PARTICLE DESCRIPTION

Let us consider a constant and uniform magnetic field.
The field is directed along the z axis and could be
represented by the three-dimensional vector Be ¼
Beð0; 0; 1Þ, where Be > 0 is the field strength. Let us also
use dimensionless magnetic field strength b ¼ Be=Bcr,
which is a strength measured in units of the Schwinger
critical value Bcr ¼ m2

ec3=eℏ ¼ 4.412 × 1013 G.

A. Electron in a strong magnetic field

According to quantum mechanics the kinetic energy of
the transverse motion is quantized in Landau levels [51],
since the particles gyrate in circular orbits. Each electron is
described by a set of quantum numbers which includes the
Landau level number n ¼ 0; 1; 2;…; z projection of elec-
tron momentum pz, y projection of electron momentum py

and electron spin projection onto the z axis measured in
ℏ=2 units s ¼ �1. We also use quantum number ε to
describe the electron antiparticle/positron, ε ¼ 1 for elec-
trons and ε ¼ −1 for positrons. All Landau levels except
the ground one (n ¼ 0) are degenerate with the spin
projection s ¼ �1. For the ground Landau level the spin
degeneracy is one: s ¼ −1.
The total electron energy in a B field with strength b is

defined by the Landau level number n and z projection of
the electron momentum pz:

EnðZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ 2bn
q

: ð1Þ

According to relativistic quantum theory the electron
states in an external magnetic field are described by
solutions of the Dirac equation Ψε

nsðr; py; pzÞ enumerated

by given quantum numbers (see Appendix D). The sol-
utions could be written in different ways. They could be
found via the eigenfunctions of a spin operator in the
reference frame where the spin direction is fixed [52]. In
this case it is impossible to construct the Lorentz invariant
amplitude for the processes with a definite electron spin
state since the spin direction is fixed. At the same time
the amplitudes which are summed over the electron
spin states are Lorentz invariant. The solutions could
be also found as the eigenfunctions of the operator
μ̂z ¼ meΣz − iγ0γ5½Σ × p̂�z, where p̂ ¼ −i∇ − eAe is the
generalized momentum operator and Ae ¼ Beð0; 0; x; 0Þ is
a 4-potential in Landau gauge [46] (see Appendix C for all
necessary definitions). In this case the amplitudes for spin
dependent processes are manifestly Lorentz invariant [53].
Nevertheless, one could use both ways in cases when we
are interested only in the state averaged over the electron
spin state. We discuss how to construct the electron wave
function in Appendix D.
Further we will use the following designations:

bn ¼
ffiffiffiffiffiffiffiffi
2bn

p
; sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2n

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2bn
p

;

EnðpzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2n þ p2

z

q
: ð2Þ

Let us choose the laboratory reference frame as a frame
where the initial electron has zero velocity. Lorentz trans-
formation along the magnetic field direction provides the
conversion from one inertial system to another.

B. Photon description

Each photon is described by its energy k, the
momentum direction defined by the unit vector ω ¼
ðsin θ cosφ; sin θ sinφ; cos θÞ and its polarization state.
The three-dimensional photon momentum in Cartesian
coordinates is k ¼ ðkx; ky; kzÞ ¼ kω and the corresponding
photon 4-momentum is k ¼ fk; kg.
The photon propagation in a strong magnetic field is

affected by vacuum polarization effects. Since photons may
temporarily convert into virtual electron-positron pairs,
which are polarized by the B field, the dielectric and
permeability tensors of the magnetized vacuum are non-
trivial. As a result the photon phase and group velocity
depends on the polarization [21,52], and it is natural
to consider photons of two linear polarizations: O-mode
(or ∥-mode) photons which are linearly polarized in a plane
containing ω and B and X-mode (or ⊥-mode) photons
which are polarized perpendicularly.
The 4-vector potential for the photon can be defined as

AlðrÞ ¼ ele−ik r; el ¼ f0; elg; l ¼ 1; 2: ð3Þ

The photon polarization is described in the coordinates
which are specified by unit vector ω and two additional
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basis vectors: e1¼ðsinφ;−cosφ;0Þ and e2 ¼ ðcos θ cosφ;
cos θ sinφ;− sin θÞ. It is convenient to use so-called cyclic
coordinates instead of Cartesian ones. The z projection
would be the same in this case, but

e1;� ¼ sinφ ∓ i cosφ ¼∓ ie�iφ;

e2;� ¼ cos θðcosφ� i sinφÞ ¼ cos θe�iφ ð4Þ

are used instead of x and y projections. Thus, the coor-
dinates of the polarization basic vectors (ez, eþ, e−) in
cyclic coordinates are

e1ðkÞ ¼ ð0;−ieiφ; ie−iφÞ;
e2ðkÞ ¼ ð− sin θ; cos θeiφ; cos θe−iφÞ;
e3ðkÞ ¼ ðcos θ; sin θeiφ; sin θe−iφÞ: ð5Þ

The condition of orthonormality is elðkÞe�l1ðkÞ ¼ δll1 .
The photons are described here in the same manner as in

a case when the magnetic field is absent, i.e. we assume that
the dispersion relation for the photons in a magnetized
vacuum does not differ from the dispersion relation for a
field absent case. This approximation constrains the
strength of the field. For estimations one needs to know
the vacuum dielectric tensor and the inverse permeability
tensor for the case of a magnetized vacuum [54,55] but it is
known that the indices of refraction differ from unity by
more than 10% only for the fields a hundred times stronger
than the critical magnetic field, b > 300 [56]. Thus, it
restricts application of the developed formalism
to B≲ 1016 G.

III. CONSERVATION LAWS AND THEIR
CONSEQUENCES

There are only three conservation laws for Compton
scattering in a strong B field. They are the energy con-
servation law and the laws of longitudinal and transversal
momentum conservation:

Ei þ ki ¼ Ef þ kf;

pz;i þ ki cos θi ¼ pz;f þ kf cos θf;

py;i þ ki sin θi sinφi ¼ py;f þ kf sin θf sinφf; ð6Þ

where quantities which are corresponding to the initial
particle states are denoted with the index i while the
quantities which are describing the final particle states
are indexed with f.
In order to define the scattering event one has to define

all quantum numbers which correspond to the particles in
the initial and final states. The quantum numbers should
comply with conservation laws (6). One possible way is
to define all initial particle parameters and some final
parameters. The initial condition of a system could be

defined by pz;i, ni, ki, two angles θi, φi, and also by
photon and electron polarization states. All other quan-
tum numbers can be found from conservation laws (6). If
one specifies the final Landau level nf, then the final
photon energy kf and the zenith angle θf comply with
the following relation:

k2fsin
2θf − 2kfðET − ZT cos θfÞ

þ ½E2
T − Z2

T − ð1þ 2bnfÞ� ¼ 0;

where ET ≡ Ei þ ki ¼ Ef þ kf is the total energy and
ZT ¼ Zi þ ki cos θi ¼ Zf þ kf cos θf is the total longi-
tudinal momentum of the electron-photon system. In this
case, the energy of the final photon is

kf ¼ ki½kisin2θi þ 2ðEi − pz;i cos θiÞ� þ 2bðni − nfÞ
ET − ZT cos θf þ ðET cos θf − ZTÞ2 þ s2f sin θf

:

ð7Þ
Because the photon energy should be positive, there
exists a limit on the final Landau level number:

nf ≤ n0f ¼ ni þ ⌊kR=2b⌋; ð8Þ
where ⌊x⌋ is a floor function of x and kR ¼ kiðkisin2θi þ
2ðEi − pz;i cos θiÞÞ. Thus, the given initial photon (ki, θi)
and electron (pz;i, ni) parameters with the final Landau
level number nf define uniquely the final photon energy
in any direction.

IV. MATRIX ELEMENTS FOR COMPTON
SCATTERING

According to QED, Compton scattering is a second-
order process and is described by two Feynman
diagrams (Fig. 1). Both of them contain a photon and
an electron before and after the interaction. The dia-
grams also contain so-called a virtual electron/positron
for which energy and momentum are not strictly
conserved.

FIG. 1. Two second-order Feynman diagrams for Compton
scattering. Wavy and straight lines depict photons and electrons/
positrons correspondingly. The straight lines between two ver-
tices (depicted by 1 and 2) correspond to a virtual electrons/
positrons. Initial and final electrons/positrons are described by
solutions of the Dirac equation Ψi and Ψf while the initial and
final photons are described by 4-vector potentials Ai and Af

MUSHTUKOV, NAGIRNER, and POUTANEN PHYSICAL REVIEW D 93, 105003 (2016)

105003-4



Following the Feynman rules one gets elements of the
S matrix for the process, which is the first step towards
obtaining a cross section [36]. The initial electron is
described by a particular solution of the Dirac equation
for the electron in an external magnetic filed Ψþ

i ðr1Þ ¼
Ψþ

nisiðr1; py;i; pz;iÞ (see Sec. D 5). The final electron
is also described by one of the solutions Ψþ

f ðr2Þ ¼
Ψþ

nfsfðr2; py;f; pz;fÞ. The photons are described by

4-vectors of potential: AiðrÞ, AfðrÞ [see Eq. (3)]. The
interaction in a point r gives us eγ AðrÞΨþðrÞ according
to the Feynman rules. The initial states give eγAiðrÞ

and Ψþ
i ðrÞ, while the final ones give eγA†

fðrÞ and

Ψþ†
f ðrÞγ0 ¼ Ψ̄þ

f ðrÞ.
An internal electron line corresponds to the virtual

electron state. The line begins in point r1, and ends in
point r2. The virtual particle is described by the relativistic
propagator Gðr; r1Þ, which is a Green’s function of the
Dirac equation:

½ði▽þ eAeÞγ − 1�Gðr; r1Þ ¼ δðr − r1Þ: ð9Þ

It takes the following form for the case of an electron in a
strong B field:

Gðr2; r1Þ ¼ −i
X
n;ε;s

Z
dpy dpzΨε

nsðr2; t2; py; pzÞΨ̄ε
nsðr1; t1; py; pzÞεΘðεðt2 − t1ÞÞ; ð10Þ

where ΘðxÞ is the Heaviside step function. The same expression could be written in detail as

Gðr2; r1Þ ¼ −
i

ð2πÞ2
Z

∞

−∞
dpz eiεpzðz2−z1Þ

Z
∞

−∞
dpy eiεpyðy2−y1Þ

X∞
n¼0

X
s¼�1

X
ε¼�1

1

EnðpzÞ
× eiεEnðpzÞðt1−t2Þvεnsðεpz; xþ εpy=bÞvε†nsðεpz; xþ εpy=bÞγ0εΘðεðt2 − t1ÞÞ; ð11Þ

where the terms without any indexes correspond to the virtual electron/positron and one has to sum over the quantum
numbers n (Landau level) and s (spin state).
Finally, the matrix element for Compton scattering which corresponds to the first two Feynman diagrams takes the

following form:

Sfi ¼ −4πire
Z

d4r1d4r2Ψ̄
þ
f ðr2Þf½γA†

fðr2Þ�Gðr2; r1Þ½γAiðr1Þ� þ ½γAiðr2Þ�Gðr2; r1Þ½γA†
fðr1Þ�gΨþ

i ðr1Þ: ð12Þ

The first term in curly brackets corresponds to the Fig. 1(a) diagram, while the second one corresponds to the Fig. 1(b)
diagram.

V. SIMPLIFICATION AND SOME ALGEBRA

The general expression for the S-matrix element (12) has to be specified. A new expression for the elements will
contain integrals over time and space variables and sums over the discrete virtual electron/positron quantum
numbers. It will be shown that the integrals could be calculated analytically as well as some sums. As a result we
will get a relatively simple expression for the elements of the S matrix, which would be suitable for a further
analysis.

A. First steps and integration over momentum and time variables

Using the expression for the electron propagator (11) and the general expression for the S-matrix elements (12) we
rewrite S-matrix elements in the following form:

Sfi ¼ −4πre
Z

d4r1 d4r2
X
n;εs

Z
dpy dpzΨ

þ†
nfsfðr2; py;f; pz;fÞf½γ0γA†

fðr2Þ�Ψε
nsðr2; py; pzÞΨε†

nsðr1; py; pzÞ½γ0γAiðr1Þ�

þ ½γ0γAiðr2Þ�Ψε
nsðr2; py; pzÞΨε†

nsðr1; py; pzÞ½γ0γA†
fðr1Þ�gΨþ

nisiðr1; py;i; pz;iÞεΘðεðt2 − t1ÞÞ: ð13Þ

We have also changed Dirac conjugated functions with the Hermitian conjugated and γ0 matrix has appeared as a
result (see Appendix C). Using the expressions which are describing the electron (see Appendix D) and photon states
we get
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Sfi ¼ −4πre
X
n;ε;s

Z
dpy dpz

Z
d4r1 d4r2

εΘðεðt2 − t1ÞÞ
ð2πÞ2Rn

1

2π
ffiffiffiffiffiffi
Rf

p vþ†
nfsfðpz;f; x2 þ py;f=bÞeiðEft2−py;fy2−pz;fz2Þ

× f½γ0γelf �eikfðt2−ωfr2Þvεnsðεpz; x2 þ εpy=bÞvε†nsðεpz; x1 þ εpy=bÞ½γ0γeli �e−ikiðt1−ωir1Þ

þ½γ0γeli �e−ikiðt2−ωir2ÞvεnsðεZ; x2 þ εpy=bÞvε†nsðεpz; x1 þ εpy=bÞ½γ0γelf �eikfðt1−ωfr1Þg

×
1

2π
ffiffiffiffiffi
Ei

p vþnisiðpz;i; x1 þ py;i=bÞe−iðEit1−py;iy1−pz;iz1Þeεi½−Enðt2−t1Þþpyðy2−y1Þþpzðz2−z1Þ�: ð14Þ

Taking the integrals over y1, y2, z1, z2 we get two products of ð2πÞ4 with four δ functions which are correspond to the
momentum conservation in the Feynman diagram vertices. For the first term [the Fig. 1(a) diagram] we set
δðεpy − py;f − kfyÞδðpy;i þ kiy − εpyÞδðεpz − pz;f − kfzÞδðpz;i þ kiz − εpzÞ, while for the second one [the Fig. 1(b)
diagram] we have δðεpy − py;f þ kiyÞδðpy;i − kfy − εpyÞδðεpz − pz;f þ kizÞδðpz;i − kfz − εpzÞ. ð2πÞ4 has vanished. The
integrals over py and pz could be taken easily because of δ functions under the integrals. Finally, we are left with the product
of the two δ functions δðpy;i þ py;f − kiy − kfyÞδðpz;i þ pz;f − kiz − kfzÞ, which describe the conservation laws for the
momentum. The values of εpz and εpy for the virtual electron are different for two Feynman diagrams. Let us denote them
with indexes a and b respectively:

Za ¼ pz;i þ kiz ¼ pz;f þ kfz; Ya ¼ py;i þ kiy ¼ py;f þ kfy;

Zb ¼ pz;i − kfz ¼ pz;f − kiz; Yb ¼ py;i − kfy ¼ py;f − kiy: ð15Þ

The virtual electron energy would be also different for the two diagrams: Ena ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2n þ Z2

a

p
and Enb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2n þ Z2

b

p
.

Thus, the expression for the matrix element (14) takes the form

Sfi ¼ −4πreδðpy;f þ kfy − py;i − kiyÞδðpz;f þ kfz − pz;i − kizÞ
X
n;ε;s

Z
dx1dx2dt1dt2

εΘðεðt2 − t1Þffiffiffiffiffiffiffiffiffiffi
EiEf

p
× vþ†

nfsfðpz;f; x2fÞfei½ðEfþkf−εEnaÞt2þðεEna−ki−EiÞt1�Mlfv
ε
nsðZa; x2aÞvε†nsðZa; x1aÞMlie

iðkixx1−kfxx2Þ

þ eiðkixx2−kfxx1Þei½ðEf−ki−εEnbÞt2þðεEnbþkf−EiÞ�Mliv
ε
nsðZb; x2bÞvε†nsðZb; x1bÞMlfgvþnisiðpz;i; x1iÞ: ð16Þ

Here

Ml ¼ −γ0γel ¼ αel ¼

0
BBB@

0 0 elz el−
0 0 elþ −elz
elz el− 0 0

elþ −elz 0 0

1
CCCA; ð17Þ

where l ¼ 1, 2 corresponds to the photon polarization state and α is given by Eq. (C3). In the particular cases of X- and O-
mode photons the matrices take the form

M1 ¼

0
BBB@

0 0 0 ie−iφ

0 0 −ieiφ 0

0 ie−iφ 0 0

−ieiφ 0 0 0

1
CCCA; M2 ¼

0
BBB@

0 0 − sin θ cos θe−iφ

0 0 cos θeiφ sin θ

− sin θ cos θe−iφ 0 0

cos θeiφ sin θ 0 0

1
CCCA:

In Eqs. (14) and (16) we also used notations for the spinor argument:

x2f ¼ x2 þ Yf=b; x2a ¼ x2 þ ðpy;f þ kfyÞ=b; x2b ¼ x2 þ ðpy;f − kiyÞ=b; ð18Þ

x1i ¼ x1 þ py;i=b; x1a ¼ x1 þ ðpy;i þ kiyÞ=b; x1b ¼ x1 þ ðpy;i − kfyÞ=b: ð19Þ
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The next step is taking the integrals over the time variables t1 and t2. Using the relation
R
∞
0 eixydy ¼ πδðxÞ þ i=x one gets

the following expression for the case of the Fig. 1(a) diagram:Z
∞

−∞
dt1

Z
∞

−∞
dt2ei½ðEfþkf−εEnaÞt2þðεEna−ki−EiÞt1�εΘðεðt2 − t1ÞÞ

¼ 2πδðEf þ kf − Ei − kiÞ
�

i
Ei þ ki − εEna

þ εδðEi þ ki − εEnaÞ
�
¼ 2πi

δðEf þ kf − Ei − kiÞ
Ei þ ki − εEna

;

and for Fig. 1(b) diagram,Z
∞

−∞
dt1

Z
∞

−∞
dt2ei½ðEf−ki−εEnbÞt2þðεEnbþkf−EiÞt1�εΘðεðt2 − t1ÞÞ

¼ 2πδðEf þ kf − Ei − kiÞ
�

i
Ei − kf − εEnb

þ εδðEi − kf − εEnbÞ
�
¼ 2πi

δðEf þ kf − Ei − kiÞ
Ei − kf − εEnb

:

The δ functions outside the square brackets correspond
to the energy conservation law. The δ-function arguments
inside the brackets (as well as the denominators) describe
the relation between the virtual particle energy and real
particle energies in the Feynman diagram vertexes. These
arguments are not equal to zero in general, but may have
values close to zero. It leads to the appearance of the
resonances and matrix elements as well as cross sections

becoming infinite. The infinities are removed by the
regularization procedure, when one takes into account
the natural width of the Landau levels [22,57] (see
Sec. VI and Appendix B). In this case the denominators
are small but nevertheless differ from zero and the cross
section values are not infinite.
After the integration over the time variable the S-matrix

elements (16) take the final form:

Sfi ¼ −8π2ireδðpy;f þ kfy − py;i − kiyÞδðpz;f þ kfz − pz;i − kizÞδðEf þ kf − Ei − kiÞ

×
X
n;ε;s

Z
dx1dx2ffiffiffiffiffiffiffiffiffiffi
EiEf

p vþ†
nfsfðpz;f; x2fÞ

�
Mlfv

ε
nsðZa; x2aÞvε†nsðZa; x1aÞMli

eiðkixx1−kfxx2Þ

Ei þ ki − εEna

1

Ena

þ 1

Enb

eiðkixx2−kfxx1Þ

Ei − kf − εEnb
Mliv

ε
nsðZb; x2bÞvε†nsðZb; x1bÞMlf

�
vþnisiðpz;i; x1iÞ; ð20Þ

where the spinors vεns are given by Eqs. (D15)–(D18) (see Appendix D) and matricesMl are defined by Eq. (17). The braces
in Eq. (20) contain 4 × 4 matrices, while the whole construction under the integral is reduced to the complex function. The
integration over x1 and x2 can be done analytically (see Sec. V B) as well as a summation over the energy sign ε and spin
state s (see Sec. V C). The summation over the electron spin states has to be done numerically.

B. An integration over space variable in S-matrix elements

Let us take the expressions for spinors vεns [(D15)–(D18)] (see Appendix D) and use them in a final expression for the S-
matrix elements (20). Then the product of matricesMl and spinors vεns under the integral in Eq. (20) is simplified and we are
coming to the integrals which contain the products of the χ function which are defined by Eq. (D8). All the integrals have
the same form and could be represented via the Hermite polynomials:

Il1l2 ¼
Z

∞

−∞
dxχ�l1ðxþ α1Þχl2ðxþ α2Þeiαx

¼
ffiffiffi
b

pffiffiffi
π

p il2−l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1l1!2l2l2!

p Z
∞

−∞
dxe−bðx2þ2α1xþα2

1
þx2þ2α2xþα2

2
Þ=2þiαxHl1ð

ffiffiffi
b

p
ðxþ α1ÞÞHl2ð

ffiffiffi
b

p
ðxþ α2ÞÞ: ð21Þ

With new variables u ¼ ffiffiffi
b

p ½xþ ðα1 þ α2 − iα=bÞ=2� the last expression could be rewritten as

Il1l2 ¼
eπiðl2−l1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2l1þl2l1!l2!

p exp

�
−
jβj2
4

− iα
α1 þ α2

2

�Z
∞

−∞
du e−u

2

Hl1

�
uþ β�

2

�
Hl2

�
u −

β

2

�
; ð22Þ

COMPTON SCATTERING S MATRIX AND CROSS … PHYSICAL REVIEW D 93, 105003 (2016)

105003-7



where β ¼ ffiffiffi
b

p ðα1 − α2 − iα=bÞ. The integrals of the Hermitian polynomials product could be taken analytically and have a
well-known expression through the Laguerre polynomials [58]:Z

∞

−∞
du e−u

2

Hnðuþ xÞHmðuþ yÞ ¼ 2n
ffiffiffi
π

p
m!xn−mLn−m

m ð−2xyÞ; n ≥ m:

In our case n ¼ maxðl1; l2Þ ¼ l̄, m ¼ minðl1; l2Þ ¼ l, n −m ¼ l̄ − l ¼ jl1 − l2j, xy ¼ −jβj2=4, xn−m ¼ ðjβj=2Þjl1−l2j×
eiðl2−l1Þ arg βe−πiðl2−l1þjl1−l2jÞ. Therefore the integrals (22) are transformed into a simple expression:

Il1l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jβj2

2

�
l̄−l

s ffiffiffiffi
l!

l̄!

r
exp

�
−
jβj2
4

− iα
α1 þ α2

2

�
exp

�
iðl2 − l1Þ arg β − πi

l̄ − l
2

�
Ll̄−l
l

�jβj2
2

�
: ð23Þ

Let us separate real factors from the phase factors using
the following designations:

Ξl1;l2ðβÞ ¼ exp

�
iðl2 − l1Þ arg β − πi

l̄ − l
2

�
;

Ll1;l2ðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jβj2

2

�
l̄−l

s ffiffiffiffi
l!

l̄!

r
Ll̄−l
l

�jβj2
2

�
;

so that

Il1l2 ¼ exp

�
−
jβj2
4

− iα
α1 þ α2

2

�
Λl1;l2ðβÞ;

Λl1;l2ðβÞ ¼ Ξl1;l2ðβÞLl1;l2ðβÞ: ð24Þ

The expression for the matrix elements (20)
contains four types of integrals over the space
variables x1 and x2. According to the notation which is
used in (21) the integrals over x1 contain the following
parameters:

x1;a; x1i∶ α1 ¼
py;i þ kiy

b
; α2 ¼

py;i

b
; α ¼ kix;

x1b; x1i∶ α1 ¼
py;i − kfy

b
; α2 ¼

py;i

b
; α ¼ −kfx;

while in the case of integrals over x2 the parameters are

x2f; x2a∶ α1 ¼
py;f

b
; α2 ¼

py;f − kiy
b

; α ¼ kix;

x2;f; x2b∶ α1 ¼
py;f

b
; α2 ¼

py;f þ kfy
b

; α ¼ −kfx:

In the first combination β ¼ βi, while in the second case
β ¼ βf, where

βi ¼ −iki sin θieiφi=
ffiffiffi
b

p
; βf ¼ ikf sin θfeiφf=

ffiffiffi
b

p
:

ð25Þ

The absolute value and the argument of βi and βf are

jβij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ix þ k2iy

q
ffiffiffi
b

p ¼ ki sin θiffiffiffi
b

p ¼ ki⊥ffiffiffi
b

p ; arg βi ¼ φi −
π

2
;

ð26Þ

jβfj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2fx þ k2fy

q
ffiffiffi
b

p ¼ kf sin θfffiffiffi
b

p ¼ kf⊥ffiffiffi
b

p ;

arg βf ¼ φf þ
π

2
: ð27Þ

Finally, we get the following set of integrals in the
expression for the S-matrix elements (20):

Z
∞

−∞
χ�l1ðx2fÞχl2ðx2aÞe−ikfxx2dx2 ¼ e−jβf j2=4þ½ikfxðpy;fþkfy=2Þ�=bΛl1l2ðβfÞ; ð28Þ

Z
∞

−∞
χ�l1ðx1aÞχl2ðx1iÞeikixx1dx1 ¼ e−jβij2=4−½ikixðpy;iþkiy=2Þ�=bΛl1l2ðβiÞ; ð29Þ

Z
∞

−∞
χ�l1ðx2fÞχl2ðx2bÞeikixx2dx2 ¼ e−jβij2=4−½ikixðpy;f−kiy=2Þ�=bΛl1l2ðβiÞ; ð30Þ

Z
∞

−∞
χ�l1ðx1bÞχl2ðx1iÞe−ikfxx1dx1 ¼ e−jβf j2=4þ½ikfxðpy;i−kfy=2Þ�=bΛl1l2ðβfÞ; ð31Þ
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where the first couple of expressions corresponds to the
Fig. 1(a) diagram, while the second couple to the Fig. 1(b)
diagram. Thus, the integration over the space variables is
completed.

C. Summation over the energy sign ε and spin state s in
the electron propagator

The summation over the Landau levels has to be
computed numerically, but the sums over the virtual
particle energy sign and spin state are finite, and it is
possible to find them analytically. Let us use an additional
variable V, which is different for the two Feynman

diagrams: for the Fig. 1(a) diagram V ¼ Va ≡ Ei þ ki,
and for the Fig. 1(b) diagram V ¼ Vb ≡ Ei − kf. Then the
term in the electron propagator corresponding to the nth
Landau level after summation over the energy sign and spin
state takes the form (for both diagrams)

M≡ vþnþv
þ†
nþ þ vþn−v

þ†
n−

V − En
þ v−nþv

−†
nþ þ v−n−v

−†
n−

V þ En
: ð32Þ

The sums in the nominators could be expressed using the
commonly used matrices (see Appendix C for the desig-
nations). For the first term, we get

vþnþðpz; x2Þvþ†
nþðpz; x1Þ þ vþn−ðpz; x2Þvþ†

n−ðpz; x1Þ

¼ 1

2
½χn−1ðx2Þχ�n−1ðx1ÞðEnΣþ þ pzα

þ þDþÞ þ χnðx2Þχ�nðx1ÞðEnΣ− − pzα
− þD−Þ

þ bnðχn−1ðx2Þχ�nðx1Þαþ þ χnðx2Þχ�n−1ðx1Þα−Þ�; ð33Þ

and for the second term,

v−nþðpz; x2Þv−†nþðpz; x1Þ þ v−n−ðpz; x2Þv−†n−ðpz; x1Þ

¼ 1

2
½χn−1ðx2Þχ�n−1ðx1ÞðEnΣþ þ pzα

þ −DþÞ þ χnðx2Þχ�nðx1ÞðEnΣ− − pzα
− −D−Þ

− bnðχn−1ðx2Þχ�nðx1Þαþ þ χnðx2Þχ�n−1ðx1Þα−Þ�: ð34Þ

At the same time, expression (32) could be reduced to

M ¼ 1

V2 − E2
n

�
V
X
s;ε

vεn;sv
ε†
n;s þ En

X
s;ε

εvεn;sv
ϵ†
n;s

�
; ð35Þ

where the sums in the square brackets contain only eight matrices:X
s;ε

vεn;sðpz; x2Þvε†n;sðpz; x1Þ ¼ χn−1ðx2Þχ�n−1ðx1ÞðEnΣþ þ pzα
þÞ þ χnðx2Þχ�nðx1ÞðEnΣ− − pzα

−Þ; ð36Þ

X
s;ε

εvεn;sðpz; x2Þvε†n;sðpz; x1Þ ¼ χn−1ðx2Þχ�n−1ðx1ÞDþ þ χnðx2Þχ�nðx1ÞD−

þ bn½χn−1ðx2Þχ�nðx1Þαþ þ χnðx2Þχ�n−1ðx1Þα−�: ð37Þ

However, the obtained expressions are not always applicable, since it was assumed that ðV2 − E2
nÞ ≠ 0, which is not

generally satisfied. In the case of ðV2 − E2
nÞ ¼ 0, which corresponds to resonant scattering, the situation is more

complicated and is discussed separately (see Sec. VI).

VI. RESONANCES: THEIR POSITION AND REGULARIZATION

The differences Va − Ena and/or Vb − Enb in (32) can become zeros leading to the resonances in the cross sections. The
resonance position depends on the B-field strength, initial Landau level ni, electron momentum along the field direction pz;i

and the direction of the photon momentum:

kðnÞres ðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEi − pz;i cos θiÞ2 þ 2bðn − niÞsin2θi

q
− ðEi − pz;i cos θiÞ

sin2θi
; kðnÞres ðbÞ > 0: ð38Þ
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If the electron occupies the ground Landau level and has
zero velocity along the B field the expression for the
resonance position simplifies:

kðnÞres ðbÞ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2nbsin2θ

p
−1

sin2θ ; for θ ≠ 0; n ¼ 1; 2;…;

b; for θ ¼ 0.

ð39Þ
The resonance position depends more strongly on the photon
momentum direction in the case of a strongerB field (Fig. 2).
It is also obvious that the ratio of the resonant energies
depends on the direction and the field strength (Fig. 2).
The resonances could be regularized if one takes into

account the natural width of the Landau levels [22,57]. The
width is defined by the electron transition rates from the
occupied Landau levels and depends on the magnetic field
strength, the Landau level number and the electron spin
state [22,35,44,59,60] (see Appendix B for a detailed
discussion). The spin dependence of the Landau level
width is particularly important if we investigate the
polarization of scattered photons. Thus, there are two
widths corresponding to each Landau level—ΓnsðpzÞ.
The ground Landau level is an exceptional case. It has
only one possible spin state (s ¼ −1) and its width
Γ0−ðpzÞ ¼ 0, since the spontaneous transition ni ¼ 0 →
nf ¼ 0 is impossible with any pz. In order to regularize the
resonances one should replace the energies of the initial and
the final electrons Ei and Ef with Ei − iΓi=2 and
Ef − iΓf=2, the energy of virtual electron En should be
also replaced with En þ iΓns=2 [22,57].
Let us define the following linear combination of the

width of the Landau levels:

Γ�
n ¼ Γn�

2
þ Γi þ Γf

4
: ð40Þ

Then the terms with the resonances [which we get from
(32)] in the propagator could be rewritten in the regularized
form. Let us also take into account the level width in the
positron part. Since the positron energy is−En and the level
width is positive, one should change En by En − iΓns=2
[61]. Then the expression (32) can be rewritten as

M ¼ vþnþv
þ†
nþ

V − En − iΓþ
n
þ vþn−v

þ†
n−

V − En − iΓ−
n
þ v−nþv

−†
nþ

V þ En − iΓþ
n

þ v−n−v
−†
n−

V þ En − iΓ−
n
: ð41Þ

Useful relations for the spinor products in Eq. (41) are
given in Appendix E.
The Landau level natural width also determines the

scattering cross section of photons with energy well below
the cyclotron resonance, when ki ≲ Γn [23]. In this case the
scattering cross section saturates at a small constant value
for the case of photons propagating along the magnetic
field direction and for the case of photons of X-mode
polarization of any angle between the B field and the
photon momentum (see Appendix B).

VII. THE S-MATRIX ELEMENTS: PHASE
FACTORS

The elements of the scattering matrix are complex
numbers in general and their phase factors are important
in some cases: in particular it was shown by Mushtukov
et al. [33] that the exact form of the relativistic kinetic
equation for polarized radiation demands the S-matrix
elements and the cross section is not enough. Since we
make a summation over the virtual electron Landau levels,

Sfi ¼
P

nS
ðnÞ
fi , the phase factor depends on them.

Nevertheless one can extract the phase factor Cfi

(Sfi ¼ Cfi
P

nS
ðnÞ
fi =Cfi), which does not depend on the
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FIG. 2. Dependence of the resonance position on the direction. (a) Position of the first resonance as a function of initial photon
momentum direction θi for different magnetic field strength b. The higher the field strength, the bigger the difference between the
resonant energy in the various directions. (b) The ratio of the second and the first resonant energy as a function of photon momentum
direction θi for various magnetic field strengths b.
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variables describing the virtual electron [over which one
can make the summation and integration in Eq. (20)]:

Cfi ¼ exp

�
i
ðφi þ φfÞðni − nfÞ

2

þ i
ðkfx − kixÞðpy;i þ py;fÞ

2

�
: ð42Þ

The other phase factors are conjugated for the Figs. 1(a)
and 1(b) diagrams and depend on the virtual electron
Landau level number over which the summation should
be done. If we express the S-matrix elements with the

relation Sfi ¼ Cfi
P

nX
ðnÞ
fi MðnÞ

fi , where jXfij ¼ 1 and Mfi is a
real number (Mfi ∈ R), then

XðnÞ
fi ¼ exp

�
�i

�
n −

ni þ nf
2

�
ðφf − φiÞ

∓ i
kikf
2

sin θi sin θf sinðφf − φiÞ
�
: ð43Þ

The upper and lower signs correspond to the Figs. 1(a)
and 1(b) Feynman diagrams, respectively.
For the calculations of the matrix element one

should know the following parameters: the quantities
which define the energy and momentum of initial
particles—ni, pz;i for the electron and ki, θi for the
photon, the quantities defining the energy and momentum
for the final particles, nf for the electron and θf,
(φf − φf) for the photon. Some final quantities can be
determined by the conservation laws (see Sec. III). The
final Landau level should comply with the condition (8).
It is also necessary to specify the quantities which define
the polarization state of the electrons in the final and
initial states, sf, si, and for the photon states, lf, li. Then
the recipe developed in Sec. V allows us to transform
expression (20) and calculate the elements of the scatter-
ing matrix Sfi.
The factors which are independent on the summation

variable n could be taken out from the summation sign.
Their product is

−
8π2ireffiffiffiffiffiffiffiffiffiffi
EfEi

p δðpy;f þ kfy − py;i − kiyÞδðpz;f þ kfz − pz;i − kizÞδðEf þ kf − Ei − kiÞ
e−ðjβij2þjβf j2Þ=4

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sfsiðEf þ sfÞðEi þ siÞ

p : ð44Þ

The obtained structure of the S-matrix elements, which
is given with (42) and (43), shows that the matrix elements
are real numbers in a case of scattering with only photon
polarization change. It conforms to the structure of a
general kinetic equation for Compton scattering in a
strong magnetic field obtained by Mushtukov et al. [33].
The equation describes evolution of a density matrix
kernel ρs

0
s ðk; r; tÞ [62] and contains three items on the

right-hand side: k∇ ρs
0
s ðk; r; tÞ ¼ I1 þ I2 þ I3, where

∇ ¼ ð∂=∂t;−∇Þ. The first two items describe photon
redistribution over the polarization states only and the last
term describes general photon redistribution over the
energy, momentum and polarization states. It was pointed
that the first term contains the elements of the S matrix by
themselves, while the second and third terms contain the

usual products of matrix elements (as a result they could be
rewritten using the cross sections, which is impossible for
the first term). Here we have shown that the matrix
elements in the first term of the kinetic equation are real
numbers and it would simplify significantly the interpre-
tation of physics behind this term.

VIII. CROSS SECTIONS AND REDISTRIBUTION
FUNCTION

A. Total and differential cross section

As soon as one gets the S-matrix elements it is possible
to find the scattering cross section. The differential
Compton scattering cross section for the case of a fixed
initial electron state is

dσ
dΩf

ðni; pz;i; sijki; θi; li; θf; lf;ΔφfiÞ ¼
X
nf;sf

E2
i E

2
f

ðEi þ 1ÞðEf þ 1Þ
kf
ki

σTjSfij2
ðEi þ ki − kf − cos θfðpz;i þ ki cos θi − kf cos θfÞÞ

;

ð45Þ

where Δφfi ¼ ðφi − φfÞ. Then the total cross section is
obtained from the differential cross section after the
integration and summation over all possible final photon
parameters:

σliðki; θi; ni; pz;i; siÞ ¼
1

4π

X
lf

Z
π

0

dθf sin θf

Z
2π

0

dφf
dσ
dΩf

:

ð46Þ
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Examples of a scattering cross section on the electron
at rest are given in Fig. 3 for the photon which
propagates along the magnetic field and in Fig. 4 for
the photons which propagate at some angle to the B field.
There are a number of resonances (38) for the case of
photons which propagate angularly to the magnetic field
direction, while there is only one resonance for the case
of photons which propagate along the field. The differ-
ence between X- and O-mode cross sections becomes

stronger as the angle between the field direction and the
photon momentum increases.
In a realistic situation, the electrons are distributed over

the momentum, Landau level numbers and spin states. In
the case of a sufficiently strong B field (kBT ≪ Ecycl)
one could assume that all electrons occupy the ground
Landau level and therefore take part in one-dimensional
motion and have only one possible spin state (s ¼ −1). In
this case the differential cross section is defined by the
electron distribution function fn;sðpzÞ [normalized asP

n;s

R∞
−∞ dpzfn;sðpzÞ ¼ 1] and the cross section corre-

sponding to the scattering by an electron with given
parameters (45) is

dσ�

dΩf
ðki; θi; li; θf; lf;ΔφfiÞ

¼
X
ni;si

Z
dpz;i

dσ
dΩf

ðni; pz;i; sijki; θi; li; θf; lf;ΔφfiÞ

× fni;siðpz;iÞ: ð47Þ

The total cross section in this case could be obtained from
the differential one using relation (46).
Since the electrons in a sufficiently strong magnetic field

take part in one-dimensional motion, the cross section near
the resonant energies has special features. The shape of the
cyclotron features depends on the direction of the initial
photon momentum [see Figs. 5(a) and 6(a)]. For the case of
longitudinal propagation, the ordinary Doppler broadening
takes place. For other photons, the Doppler broadening is
defined by the distribution of the projection of the electron
momentum. The transversal Doppler effect becomes more
important as the angle between the field direction and the
photon momentum increases. It provides asymmetrical
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FIG. 4. The cross section dependence on photon energy. (a) The cross section for the X- and O-mode photons which propagate across
the magnetic field (θi ¼ π=2) are given by solid red and dashed blue lines correspondingly. The cross section below the first resonance
shows completely different behavior. The resonance positions are almost the same, but the cross section of the resonant scattering is also
different. (b) The dependence of the scattering cross section on the direction. For the case of O-mode photons of energies below the
cyclotron energy σ ∝ ðsin2θi þ ðk=bÞ2cos2θiÞ if b≲ 1 and k ≪ b. Here b ¼ 0.1 (B≃ 4.4 × 1012 G).
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FIG. 3. The exact cross section for the photons which propagate
initially along the B field: θi ¼ 0 (red solid lines). There is no
difference between polarizations in this case and only one
resonance exists. Its position is defined by the field strength
(39). Different curves correspond to various magnetic field
strengths: b ¼ 0.1, 1, 10 (B≃ 4.4 × 1012, ×1013, ×1014 G).
The scattering cross section approximation obtained by Gonthier
et al. [29] is given by black circles. It works well, but over-
estimates the scattering cross section near the resonant energy and
underestimates the cross section after the resonance in a case of
extremely high magnetic field strength: b≳ 10.
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FIG. 5. The cross section for the X-mode photons as a function of photon energy. (a) Dependence on incident angle θi for the fixed
electron temperature T ¼ 20 keV. (b) Dependence on electron temperature (for a fixed θi ¼ 60°). The scattering features around the
resonant energies are broadened with the width depending on the electron temperature and direction of photon momentum since the
electrons mostly take part in one-dimensional motion. As a result the usual Doppler broadening takes place only for the direction along
the B field, while in the perpendicular direction only the relativistic transversal Doppler broadening acts, and the scattering features are
asymmetrical. All results are given for b ¼ 0.05 (B≃ 2.2 × 1012 G).

10-3
10-2
10-1
100
101
102
103
104
105
106

0 10 20 30 40 50 60 70 80

X+O-mode

θi=300

σ /
σ T

10-3
10-2
10-1
100
101
102
103
104
105
106

σ /
σ T

10-3
10-2
10-1
100
101
102
103
104
105
106

σ /
σ T

E, keV
0 10 20 30 40 50 60 70 80

X+O-mode

θi=600

E, keV

0 10 20 30 40 50 60 70 80

X+O-mode

θi=850

E, keV

FIG. 7. Polarization-averaged cross section for the case of magnetic field strength B ¼ 1.7 × 1012 G, electron temperature T ¼
10 keV and various angles θi between the magnetic field direction and the momentum of the initial photon is given by red solid lines.
The black dashed line shows the results of the same calculations performed by Harding and Daugherty [32], where the Johnson-
Lippmann wave functions [34] were used.
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broadening of the cross section resonant features which
is more evident for higher electron temperatures [see
Figs. 5(b) and 6(b)]. The results of our calculations are
in agreement with the previously performed calculations
[32] of scattering by thermal electrons (see Fig. 7).
However, a small difference in the cross section at the

resonance exists because the Sokolov-Ternov wave func-
tions are used in our calculations instead of the Johnson-
Lippmann wave functions [34] (see [23] for a detailed
discussion).
In an extremely strong magnetic field (b > 10 or

B≳ 1015 G) some interesting features take place. The
resonance position and resonance energy ratios depend
strongly on the direction (see Sec. VI) and therefore the
cross section depends strongly on the direction as well
(Fig. 8). It makes the problem of radiation transfer in
magnetized plasma much more complicated. The depend-
ence of resonance position on the field strength exist also
for a relatively weak magnetic field, but it is not so
dramatic. The resonant energies for the case of a super-
strong field are comparable or larger than the electron
rest mass energy. As a result the decrease of the
relativistic cross section (“Klein-Nishina reduction”) takes
place.

B. The redistribution function

In order to use the results in astrophysical applica-
tions it is useful to construct the photon redistribution
function describing the Compton scattering in a strong
B field. The set of radiation transfer equations consists
of two equations, one for each polarization mode
(l ¼ 1, 2):

dIlðkÞ
ds

¼ −ðαlðkÞ þ κlðkÞÞIlðkÞ þ εlðkÞ þ
X
l0¼1;2

Z
∞

0

dk0
Z

π

0

dθ0 sin θ0
Z

2π

0

dφ0Rðk0; l0⟶k; lÞIl0 ðk0Þ; ð48Þ

where IlðkÞ is an intensity in the given polarization l for the
photons of momentum k ¼ kðsin θ cosφ; sin θ sinφ; cos θÞ,
αlðkÞ and κlðkÞ are absorption coefficient due to the
scattering process (or scattering coefficient) and true
absorption correspondingly, εlðkÞ is a true emission co-
efficient. The last item in the right-hand side of the equation
describes an emission due to the scattering processes in a
given point and Rðk; l⟶k0; l0Þ is the redistribution func-
tion which defines the photon probability to change the 3-
momentum and the polarization state in a scattering event.
The redistribution function is normalized here in the
following way:

X
l0

Z
∞

0

dk0
Z

π

0

dθ0 sin θ0
Z

2π

0

dφ0 Rðk; l⟶k0; l0Þ ¼ αlðkÞ;

ð49Þ

where the scattering coefficient αlðkÞ ¼ neσlðk; θÞ and ne is
an electron concentration and σlðk; θÞ is a scattering cross
section.

According to the conservation laws, there is only one or
several [for each admissible final Landau level (8)] possible
final photon energies corresponding to each final photon
direction in the case of an electron in a given quantum state,
i.e. the final photon energy (7) is defined completely in the
case of a fixed final scattering direction. The redistribution
function over the zenith and azimuthal angles and polari-
zation states is then

R�ðkijθi;φi; li⟶θf;φf; lfÞ≡
Z

∞

0

dkf Rðki; li⟶kf; lfÞ

¼ ne
4π

dσ
dΩf

; ð50Þ

where the differential cross section dσ=dΩf is given
by Eq. (45).
The general redistribution function, which corresponds

to the scattering by the electron ensemble with a given
distribution function over the momentum, Landau level
numbers and spin states fni;siðpz;iÞ is
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FIG. 8. The scattering cross section as a function of the initial
angle between the photon momentum and the magnetic field for a
few initial photon energies. Since the resonant energies value
depends strongly on the initial photon momentum in an extremely
high magnetic field, the cross section shows a strong direction
dependence as well even in case of the X-mode polarization. Here
b ¼ 100 (B≃ 4.4 × 1015 G).
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Rðki; li⟶kf; lfÞ ¼
ne
4π

X
ni;si

dσ
dΩf

ðni; pz;i; sijki; θi; li; θf; lf;ΔφfiÞfni;siðpz;iÞ
dpz;i

dkf
; ð51Þ

where the z projection of the electron momentum is defined
by the final photon energy, pz;i ¼ pz;iðkfÞ, and one could
get it from the conservation laws (see Sec. III). In the case
of scattering by electrons in a fixed state, the electron
distribution function has to be replaced with a δ function. It
is easy to see that the integration over the final photon
energy gives us the redistribution function over the direc-
tions only (50) as it should.
The photon redistribution over the energies and momen-

tum directions, which is given by the differential cross
section and redistribution function, is not trivial in a general
case and has to be studied carefully in each particular
situation. Additional properties are caused by electron
transitions between various Landau levels in a scattering
event. Photon redistribution over the directions depends on
the initial photon momentum direction, which is a special
feature of scattering in the external field, and on the photon
energy, which is typical even for the nonmagnetic scatter-
ing [15]: the scattering indicatrix becomes more elongated
in the direction of initial photon momentum as the photon
energy increases. The scattering in the external magnetic
field keeps this regularity but the scattering near the
resonant energies adds additional features (Fig. 9) corre-
sponding to an electron transition between Landau levels:
as soon as the photon energy reaches the resonant value, the
ratio of forward to backward scattering cross section
decrease steeply. It is potentially important for calculation
of the radiation pressure resulting from a resonant Compton
scattering and particularly important for constructing a

detailed theory of formation of a beam pattern in X-ray
pulsars near the cyclotron energy.

IX. SUMMARY

Compton scattering of polarized radiation in a strong
magnetic field is considered. A general recipe for the
calculation of a scattering cross section (both differential
and total) and S-matrix elements based on second-order
QED perturbation theory is given as well as a recipe for the
calculation of a photon redistribution function over photon
energy, momentum and polarization. The presented scheme
is adapted both for the scattering by an electron with a fixed
momentum and for the scattering by an ensemble of
electrons with a given distribution over momentum. A
number of calculations in our scheme were simplified
analytically. As a result the discussed recipe is sufficiently
easy to use. Because in our derivation we assume k ¼ jkjc,
the obtained scheme is valid up to magnetic fields of a few
hundreds of the Schwinger critical value (∼1016 G), which
covers the observed range of neutron star magnetic field
strengths including the extremely high field of magnetars.
The scheme is also valid for a relatively low magnetic field
strength—106–109 G—which are typical for white dwarfs,
but corresponding calculations with our scheme demand a
large number of Landau levels which have to be taken into
account. The scheme can be used in modeling the atmos-
pheres of neutron stars, where the scattering cross section
defines the opacity [63]. The calculations do not assume
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FIG. 9. The ratio of forward and backward parts of the total scattering cross sections as a function of photon energy (a) for the case of a
photon initially propagating along (θi ¼ 0) the B field of different strengths and (b) across the field (θi ¼ π=2) of given strength b ¼ 0.1
(B≃ 4.4 × 1012 G) for both photon polarizations. Sharp features appear near the resonant energies, where the electrons are able to
change their Landau level. The ratio depends strongly on the initial photon momentum direction. The behavior near the resonant
energies also depends on the photon polarization.
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any principal restrictions of electron momentum. It gives us
a possibility to analyze directly the scattering by moving
plasma, which is important for conceptions of X-ray
pulsars and accreting neutron stars in general [6,42,48],
where Compton scattering governs plasma dynamics in the
accretion channel near the stellar surface [41] and inter-
action between the radiation and matter in the accretion
column for the case of bright X-ray pulsars [10,64]. Our
scheme does not contain serious restrictions on the photon
energy. The correct Landau level width based on the
Sokolov and Ternov electron wave functions [45,46] is
taken into account in a general case of Compton scattering
for the first time, which generalizes calculations performed
earlier by Gonthier et al. [23], which were valid for the
particular case of an initial photon propagating along the
magnetic field and a ground-state-to-ground-state transition
of the electron. The exact spin dependent width of the levels
affect much of the resonant scattering cross section of
polarized radiation [23]. Therefore, it has to be taken into
account in models describing the formation of the cyclotron
features in a spectra of neutron stars [30,65].
We have discussed separately the elements of the

scattering matrix, which are important for the solution of
exact relativistic kinetic equation for Compton scattering in
a strong B field obtained in our resent work [33]. It was
shown that the S-matrix element is represented by real
number in a case when they describe scattering with
polarization changes only.
Potentially important astrophysical results arise from the

behavior of resonant scattering. The resonance position
depends on the direction. The stronger the B field, the
stronger the dependence (see Fig. 2, left panel). The
position of the fundamental resonance varies by ≈ 20%

for B ∼ 1013 G and even more for a higher field strength. It
can be used in diagnostics of X-ray pulsars since this effect
would partly define the changes of the cyclotron absorption
line position during the pulse period [66]. The ratio of the

energies of first and second resonances kð2Þres=k
ð1Þ
res is also

dependent on the direction in a strong magnetic field (see
Fig. 2, right panel), and it can cause the change of the ratio
of cyclotron line energies during a pulse period [66] and
nonequidistance of the cyclotron line harmonics, which
was observed in the spectra of X-ray pulsars [11]. The
effect also causes the variations of scattering cross section
with the angle even for the case of X-mode photons (see
Fig. 8). It is particularly important for radiation transfer and
radiation pressure calculation in case of a high B field, since
the opacity would strongly depend on directions. It was
pointed that the photon redistribution over directions
changes as soon as the initial photon energy crosses the
resonant value (see Fig. 9). It is potentially important for
the formation of a beam pattern of X-ray pulsars near the
cyclotron line.
The presented scheme of the calculation provides a

ground for investigation of radiation transfer in strongly

magnetized plasma. It can be readily applied to astrophysi-
cal problems, principally for the models of spectrum
formation in strongly magnetized neutron stars, calculation
of radiation pressure in a strong B field and modeling of an
X-ray pulsar beam pattern all over the spectrum. In this
way, the presented scheme is extremely relevant to further
investigation of strongly magnetized neutron stars.
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APPENDIX A: LONGITUDINAL
TRANSFORMATION OF ELECTRON

AND PHOTON MOMENTA

We are focusing here on the longitudinal Lorentz trans-
formation of the timelike component of the 4-momentum
p0, i.e. the particle’s energy, and the z component of the
momentum pz, which corresponds to the particle momen-
tum along the magnetic field. The general form of the
longitudinal transformation is

p0
0 ¼ ðp0 − βpzÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
; p0

z ¼ ðpz − βp0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
;

ðA1Þ
where β is the velocity between the reference frames
along the magnetic field in units of speed of light. The
transformation (A1) can be rewritten in another form using
parameter χ, which satisfies the relation β ¼ tanh χ.
Then

p0
0 ¼ p0 cosh χ − pz sinh χ; p0

z ¼ pz cosh χ − p0 sinh χ:

ðA2Þ
Thus the photon energy and the longitudinal momentum

are transformed as follows:

k0 ¼ kðcosh χ − sinh χ cos θÞ;
k0 cos θ0 ¼ kðcos θ cosh χ − sinh χÞ: ðA3Þ

The transformation of the angle between the B-field
direction and the photon momentum is given by the
relations

cos θ0 ¼ cos θ cosh χ − sinh χ
cosh χ − sinh χ cos θ

;

sin θ0 ¼ sin θ
cosh χ − sinh χ cos θ

: ðA4Þ
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The electron energy En and the momentum along the magnetic field pz are transformed according to (A1):

E0
n ¼ En cosh χ − pz sinh χ; p0

z ¼ pz cosh χ − En sinh χ: ðA5Þ

Using relation dEn ¼ pzdpz=En we get

dp0
z ¼ dpz cosh χ − dEn sinh χ ¼

�
cosh χ −

pz

En
sinh χ

�
dpz ¼

dpz

En
ðEn cosh χ − pz sinh χÞ ¼

E0
n

En
dpz: ðA6Þ

Therefore the ratio dpz=En is conserved under a longitudinal Lorentz transformation.
If photon energy k and momentum along the field kz are given at the laboratory reference frame, where the electron

momentum along the field is pz, then the photon energy k0 and momentum k0z in the electron reference frame (where
pz ¼ 0) are

k0 ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n − p2

z

p ðEn − pz cos θÞ; k0z ¼
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
n − p2

z

p ðEn cos θ − pzÞ: ðA7Þ

The angle θ0 between the photon momentum and the magnetic field direction satisfies the following relations:

cos θ0 ¼ En cos θ − pz

En − pz cos θ
; sin θ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n − p2

z

p
sin θ

En − pz cos θ
: ðA8Þ

APPENDIX B: LANDAU LEVEL NATURAL WIDTH

Landau level natural width for the particular case of pz;i ¼ 0 (see Fig. 10) is defined as a sum of the partial widths:

Γ�
n ¼

X
n0<n

Γ�
nn0 : ðB1Þ

The general expression for the partial width was obtained by Herold et al. [35] for the case of transition between arbitrary
Landau Levels and zero initial electron momentum pz;i ¼ 0:

Γ�
nn0 ¼

re
2

Z
π=2

0

dθ
k sin θ

En

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n − 2ðn − n0Þbsin2θ

p
× f½ðEn ∓ 1ÞðEn � 1 − kÞI2n;n0 ðuÞ þ ðEn � 1ÞðEn ∓ 1 − kÞI2n−1;n0−1ðuÞ�sin2θ
þ ½ðEn � 1ÞðEn ∓ 1 − kÞI2n−1;n0 ðuÞ þ ðEn ∓ 1ÞðEn � 1 − kÞI2n;n0−1ðuÞ�ð1þ cos2θÞ
þ 2k

ffiffiffiffiffiffiffiffi
2nb

p
½I2n;n0 ðuÞI2n−1;n0 ðuÞ þ I2n;n0−1ðuÞI2n−1;n0−1ðuÞ� sin θcos2θ

þ 4b
ffiffiffiffiffiffiffi
nn0

p
½I2n−1;n0 ðuÞI2n;n0−1ðuÞ þ I2n;n0 ðuÞI2n−1;n0−1ðuÞ�sin2θg; ðB2Þ

where En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2nb

p
is the electron energy, k ¼ ½En − ðE2

n − 2ðn − n0Þbsin2θÞ1=2�=sin2θ is the energy of a photon
emitted at the angle θ due to the electron transition n⟶n0,

In;n0 ðuÞ ¼ ð−1Þnðn!n0!Þ−1=2 exp½u=2�uðn−n0Þ=2 ∂n

∂un ðu
n0 exp½−u�Þ ðB3Þ

and u ¼ ðk2sin2θÞ=2b [67]. The functions In;n0 ðuÞ can be constructed using the associated Laguerre polynomials Lα
nðxÞ:

In;n0 ðuÞ ¼ ð−1Þnðn!=n0!Þ1=2 exp½−u=2�uðn0−nÞ=2Ln0−n
n ðuÞ; Lα

nðxÞ≡ exx−α

n!
dn

dxn
½e−xxnþα�: ðB4Þ
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Compact approximate expressions for Γ�
n and Γ�

nn0 for
the particular cases of nb ≪ 1 (nonrelativistic limit),
b−1 ≪ n ≪ b−3 (ultrarelativistic quasiclassical limit)
and n ≫ b−3 (ultrarelativistic quantum limit) were pro-
vided by Pavlov et al. [22]. The Landau level widths for
the case of nonzero momentum of the electron along the
field pz;i ≠ 0 can be obtained from those expressions for
pz;i ¼ 0 by Lorentz transformation [35]: Γ�

n ðpzÞ ¼
Γ�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2bn

p
=EnðpzÞ.

Cyclotron decay rates for transition to the ground state
and arbitrary initial electron momentum pz;i were obtained
by Latal [44]. The simplified expressions were introduced
by Baring et al. [60]. Although the resonance linewidths
involve infinite sums over Landau levels, in the case of
fundamental resonance the sum is dominated by the n ¼ 1

state. The width of this state is equal to the n⟶0 cyclotron
decay rate. As a result, the fundamental linewidth can be
well approximated by the particular cyclotron rate obtained
by Latal [44,60]. For the case of b ≫ 1 cyclotron tran-
sitions to the ground Landau level dominate [68] and the
cyclotron decay rate for n⟶0 transitions approximate
well the widths of the excited states.
Landau level natural width becomes crucially important

at resonant photon energies (see Sec. VI) and at energies
well below the cyclotron energy, when the initial photon
energy becomes comparable to the Landau level width [23].
If ki ≪ Γ the cross section for the photons propagating
along the magnetic field saturates at a small value,

σ ≈ σTΓ2b−2ð1þ 2bÞ−1: ðB5Þ
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FIG. 11. Compton scattering cross section calculated using the spin dependent Landau level width for the particular case of ground-
state-to-ground-state transition is given by the red solid lines in a wide photon energy range (a) and for a photon of energy close to the
fundamental (b). The magnetic field strength b ¼ B=Bcr ¼ 3 and initial angle between the field direction and photon momentum θi ¼ 0.
Black dots represent calculations performed by Gonthier et al. [23] for the same conditions. The Landau level width affects strongly the
cross section at low energies, where the level width becomes comparable to the photon energy and the cross section saturates at a small
constant value (B5) given by the black dashed line (a). The level width also affects strongly the cross section at the resonance
energies (b).
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strength b ¼ B=Bcr is given for the first Landau level (a) and for the first, fifth and 25th Landau levels of spin state s ¼ −1 (b).
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The same happens with photons of X-mode propagating in
any direction (see Fig. 12).

APPENDIX C: SET OF USED MATRICES AND
USEFUL RELATIONS

In this section we present the matrices which we use in
our calculations. In general we are following the standard
designations [36,69,70].
We use a set of three 2 × 2 Pauli matrices, σ1, σ2

and σ3, which are Hermitian and unitary, in their standard

designation [70]. I is a unity 2 × 2 matrix. We also
use the following combinations of Pauli matrices:
σ� ¼ ðI � σ3Þ=2, σ� ¼ ðσ1 � iσ2Þ=2.
The gamma (Dirac) matrices which compose the 4-

dimensional vector γ ¼ fγ0; γ1; γ2; γ3g could be expressed
via the 2 × 2 Pauli matrices:

γ0 ¼ γ0 ¼
�
I 0

0 −I

�
; γi ¼ −γi ¼

�
0 σi

−σi 0

�
: ðC1Þ

We also introduce matrices D ¼ fD0;Dg, where

D0 ¼
�
0 −I
I 0

�
; Di ¼

�−σi 0

0 σi

�
; ðC2Þ

and 3-dimensional vectors of matrices α and Σ:

αi ¼
�

0 σi

σi 0

�
; Σi ¼

�
σi 0

0 σi

�
: ðC3Þ

Let us designate the unity matrix 4 × 4 with 1, and the
product of four matrices with γ5:

γ5 ¼ −γ5 ¼ iγ0γ1γ2γ3 ¼
�
0 I

I 0

�
: ðC4Þ

We also use the following linear combination of the
matrices:

Σ� ¼ ðI � Σ3Þ=2; Σ� ¼ ðΣ1 � iΣ2Þ=2; α� ¼ ðγ5 � α3Þ=2; α� ¼ ðα1 � iα2Þ=2; ðC5Þ
D� ¼ ðγ0 ∓ D3Þ=2; D� ¼ −ðD1 � iD2Þ=2; γ� ¼ ð−D0 � γ3Þ=2; γ� ¼ ðγ1 � iγ2Þ=2: ðC6Þ

These matrices compose the set of 16 linearly independent 4 × 4matrices. They could be expressed via 2 × 2matrices in the
following way:

Σ� ¼
�
σ� 0

0 σ�

�
; Σ� ¼

�
σ� 0

0 σ�

�
; α� ¼

�
0 σ�

σ� 0

�
; α� ¼

�
0 σ�
σ� 0

�
; ðC7Þ

D� ¼
�
σ� 0

0 −σ�

�
; D� ¼

�
σ� 0

0 −σ�

�
; γ� ¼

�
0 σ�

−σ� 0

�
; γ� ¼

�
0 σ�

−σ� 0

�
: ðC8Þ

The Dirac matrices are determined by relations of anticommutativity. For the 4-vectors of matrices they are

γμγν þ γνγμ ¼ 2gμν; γ5γ þ γγ5 ¼ 0; DμDν þDνDμ ¼ −2gμν; γ5DþDγ5 ¼ 0; ðC9Þ

and for the 3-vectors of matrices the relations are

αkαj þ αjαk ¼ 2δkj; ΣkΣj þ ΣjΣk ¼ 2δkj; DkΣj þ ΣjDk ¼ −2γ0δkj: ðC10Þ

10-9

10-6

10-3
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103

10-4 10-2 100

X-mode
θi=900

b=3

σ/
σ T

ki/b

FIG. 12. Scattering cross section for the X-mode photons of
initial angle θi ¼ 90° in a wide range of initial photon energies.
The magnetic field strength b ¼ B=Bcr ¼ 3. At low energies the
cross section saturates at a small constant value (B5) given by the
black dashed line similarly to the case of photons propagating
along the B field [see Fig. 11(a)].
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Useful commutative relations are

Dμγν − γνDμ ¼ 2γ5gμν; γkαj − αjγ
k ¼ 2γ0δkj: ðC11Þ

The useful dot products of the 4-vectors (a b≡a0b0 −
P

3
i¼1 a

ibi) of matrices are

γ γ ¼ 4; DD ¼ −4; γD ¼ −D γ ¼ −4γ5 ðC12Þ

and for the 3-vectors (ab≡P
3
i¼1 a

ibi) of matrices are

γγ ¼ −3; γα ¼ −αγ ¼ 3γ0; γΣ ¼ Σγ ¼ −3D0; γD ¼ −Dγ ¼ 3γ5; ðC13Þ
αα ¼ 3; αΣ ¼ Σα ¼ 3γ0; αD ¼ −Dα ¼ −3D0; ðC14Þ

ΣΣ ¼ 3; DD ¼ 3; ΣD ¼ DΣ ¼ 3γ0: ðC15Þ

APPENDIX D: ELECTRON IN THE EXTERNAL
MAGNETIC FIELD

In this section we discuss the description of an electron
in the external magnetic field which we use in this paper.
The different ways of electron description in such a case are
also discussed in the literature [21,35,46].

1. Dirac equation

The electron is described by the Dirac equation, which
has to be written for the case of an external magnetic field.
Let us choose a 4-vector of potential in the Landau gauge:
Ae ¼ f0;Aeg, where Ae ¼ Beð0; x; 0Þ. Then the required
solutions Ψ satisfy the equation�

p̂þ e
c
Âe −mc

�
Ψ ¼ 0; ðD1Þ

where Âe ¼ Aeγ ¼ −Bexγ2, γ2 is one of the Pauli matrices
(C1) and p̂ ¼ p γ ¼ iℏ∇ γ.
Let us use a relativistic quantum system of units and find

the solution in the following form: Ψ ¼ exp ½ið−Etþ
pzzþ pyyÞ�ψ . It is useful to change the variables:
x ¼ u − py=b. Then the Dirac equation (D1) takes the form�

Eγ0 þ i
d
du

γ1 − pzγ
3 − buγ2 − 1

�
ψðuÞ ¼ 0: ðD2Þ

If it is multiplied by iγ1, then we get the ordinary system of
differential equations:�

d
du

− iEα1 − buΣ3 þ pzΣ2 − iγ1
�

ψðuÞ ¼ 0: ðD3Þ

2. From the system of equations to second-order
differential equations

Let us designate the components of the vector which
we want to find, ψðuÞ ¼ ðψ1;ψ2;ψ3;ψ4ÞT, and rewrite

the ordinary system of differential equations (D3) in
detail:8>>><
>>>:

dψ1=du ¼ buψ1 þ pziψ2 þ 0þ iðEþ 1Þψ4

dψ2=du ¼ −pziψ1 − buψ2 þ iðEþ 1Þψ3 þ 0

dψ3=du ¼ 0þ iðE − 1Þψ2 þ buψ3 þ pziψ4

dψ4=du ¼ iðE − 1Þψ1 þ 0 − pziψ3 − buψ4

: ðD4Þ

Then we can find equations for each function in (D4):
(1) The case of ψ1 ¼ 0 gives an equation for ψ3. Using

the designations ζ≡ðEþ1Þψ3 and a≡E2−1−p2
z ,

we get ψ1 ¼ 0, pzψ2 þ ðEþ 1Þψ4 ¼ 0, ψ 0
2 ¼

−buψ2 þ iζ, ζ0 ¼ iaψ2 þ buζ. Therefore,

ζ00 ¼ ðb2u2 þ b − aÞζ: ðD5Þ
(2) The case of ψ2 ¼ 0 gives a solution for ψ4. Defining

μ≡ðEþ1Þψ4, we get ψ2¼0,−pzψ1þðEþ1Þψ3¼0,
ψ 0
1 ¼ buψ1 þ iμ, μ0 ¼ iaψ1 − buμ. Therefore,

μ00 ¼ ðb2u2 − b − aÞμ: ðD6Þ

(3) The case of ψ3 ¼ 0 gives us a solution for ψ1.
Defining η≡ðE−1Þψ1, we get ψ3¼0, ðE − 1Þψ2þ
pzψ4 ¼ 0, ψ 0

4 ¼ −buψ4 þ iη, η0 ¼ iaψ4 þ buη.
Here we get the same equation as in the first case
(D5): η00 ¼ ðb2u2 þ b − aÞη.

(4) The case of ψ4 ¼ 0 gives us a solution for ψ2.
Defining κ ≡ ðE − 1Þψ2 and using similar designa-
tions as in the second case we get ψ4 ¼ 0,
ðE−1Þψ1−Zψ3¼0, ψ 0

3¼buψ3þ iκ, κ0 ¼ iaψ3 −
buκ. And we get the same equation as in the second
case: κ00 ¼ ðb2u2 − b − aÞκ.

Thus the system of equations (D4) is reduced to the pair
of equations of the same form: (D5) and (D6). Both of them
can be transformed to the equation of a quantum harmonic
oscillator. Its solutions are well known and enumerated
with integer numbers n ≥ 0:
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1

2

�
−
dϕnðξÞ
d2ξ2

þ ξ2ϕnðξÞ
�
¼

�
nþ 1

2

�
ϕnðξÞ: ðD7Þ

The eigenfunctions could be written via the Hermite
polynomials: ϕnðξÞ ¼ π−1=4ð2nn!Þ−1=2e−ξ2=2HnðξÞ. Thus,
we find that the motion of electrons is quantized and they
occupy Landau levels.
The eigenfunctions form orthonormalized series. The

expressions for the derivative take the form

ϕ0
nðξÞ ¼

ffiffiffiffiffiffi
2n

p
ϕn−1ðξÞ − ξϕnðξÞ;

ϕ0
n−1ðξÞ ¼ −

ffiffiffiffiffiffi
2n

p
ϕnðξÞ þ ξϕn−1ðξÞ:

Our solutions will be expressed through the functions
χnðuÞ, which are defined by harmonic oscillator eigen-
functions ϕnðξÞ and comply with the relations:

χnðuÞ ¼ b1=4inϕnðb1=2uÞ;
1

2

�
−
1

b
d2χnðξÞ
dξ2

þ bξ2χnðξÞ
�
¼

�
nþ 1

2

�
χnðξÞ; ðD8Þ

χ0nðuÞ ¼ ibnχn−1ðuÞ − buχnðuÞ;
χ0n−1ðuÞ ¼ ibnχnðuÞ þ buχn−1ðuÞ; bn ¼

ffiffiffiffiffiffiffiffi
2bn

p
: ðD9Þ

Functions χnðuÞ are normalized:
R∞
−∞ χ�nðξÞχn0 ðξÞdξ ¼ δnn0 .

3. Solution of the system of equations

The solutions of the second-order equations (D5) and
(D6) give us a solution of the system of the equations (D4).
Let us enumerate the solutions with the upper index (l) and

gather them into the matrix (ψ ðlÞ
j ðuÞ):

ψ ¼ ðψ ðlÞ
j ðuÞÞ ¼

0
BBB@

ðEþ 1Þχn−1 0 pzχn−1 bnχn−1
0 ðEþ 1Þχn bnχn −pzχn

pzχn−1 bnχn−1 ðE − 1Þχn−1 0

bnχn −pzχn 0 ðE − 1Þχn

1
CCCA: ðD10Þ

However, these solutions are linearly dependent: ðE − 1Þψ ð1Þ ¼ pzψ
ð3Þ þ bnψ ð4Þ, ðE − 1Þψ ð2Þ ¼ bnψ ð3Þ − pzψ

ð4Þ. In
order to get four independent solutions one have to use the ones with the negative energy E ¼ �En, En ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2n þ p2

z

p
,

which correspond to the positrons. Let us write down the solutions. Two of them correspond to the electrons and have the
form

Ψþ
njðx; y; z; py; pzÞ ¼

�
En þ 1

2En

�
1=2

vþnjðpz; uÞe−iðEnt−pyy−pzzÞ; j ¼ 1; 2; ðD11Þ

where

vþn1ðpz; uÞ ¼

0
BBB@

χn−1ðuÞ
0

pzχn−1ðuÞ=ðEn þ 1Þ
bnχnðuÞ=ðEn þ 1Þ

1
CCCA; vþn2ðpz; uÞ ¼

0
BBB@

0

χnðuÞ
bnχn−1ðuÞ=ðEn þ 1Þ
−pzχnðuÞ=ðEn þ 1Þ

1
CCCA:

And two of them correspond to the positron states:

Ψ−
njðx; y; z; py; pzÞ ¼

�
En þ 1

2En

�
1=2

v−njðpz; uÞeiðEntþpyyþpzzÞ; j ¼ 1; 2; ðD12Þ

where

v−n1ðpz; uÞ ¼

0
BBB@

−pzχn−1ðuÞ=ðEn þ 1Þ
−bnχnðuÞ=ðEn þ 1Þ

χn−1ðuÞ
0

1
CCCA; v−n2ðpz; uÞ ¼

0
BBB@

−bnχn−1ðuÞ=ðEn þ 1Þ
pzχnðuÞ=ðEn þ 1Þ

0

χnðuÞ

1
CCCA

and u ¼ xþ py=b.

COMPTON SCATTERING S MATRIX AND CROSS … PHYSICAL REVIEW D 93, 105003 (2016)

105003-21



The wave functions could also be presented in the following form:

Ψ−
njðx; y; z;−py;−pzÞ ¼

�
En þ 1

2En

�
1=2

v−nsð−pz; uÞeiðEnt−pyy−pzzÞ; s ¼ 1; 2; ðD13Þ

where u ¼ x − py=b. In the case of n ¼ 0 two solutions vanish: vþ01ðpz; uÞ ¼ v−01ðpz; uÞ ¼ 0.

4. The solutions for definite helicity

Let as find now the solutions in a form when they are eigenvectors of the helicity operators ~S and μ (non-self-conjugated
and self-conjugated correspondingly) [69]. They would be the linear combinations of the solutions with indexes s ¼ 1, 2.
The helicity operator ~S acts on the 4-vectors only and it does not act on the functions χ. Therefore these functions are
multiplier factors in front of the eigenvectors of the operator ~S:

U1ðpzÞ ¼

0
BBB@

En þ sn
0

pz

0

1
CCCA; U2ðpzÞ ¼

0
BBB@

0

En þ sn
0

−pz

1
CCCA; U3ðpzÞ ¼

0
BBB@

pz

0

En þ sn
0

1
CCCA; U4ðpzÞ ¼

0
BBB@

0

−pz

0

En þ sn

1
CCCA; ðD14Þ

where En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2nbþ p2

z

p
is the particle energy and sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2bn

p
. Thus it is necessary to consider four linear

combinations.
(1) For the electron with the helicity þ1 the following relation could be written down:

C1v
þ
n1ðpz; uÞ þ C2v

þ
n2ðpz; uÞ ¼ vþnþðpz; uÞ ¼ α1U1χn−1 þ α2U4χn:

And therefore one finds out the relations for the coefficients:

C1 ¼ α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þ sn
2sn

s
; C2 ¼ −α2

pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2snðEn þ snÞ

p ;

C1pz þ C2bn ¼ α1ðEn þ 1Þ pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2snðEn þ snÞ

p ; C1bn − C2pz ¼ α2ðEn þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þ sn
2sn

s
:

From these relations we get α1 ¼ ðsn þ 1Þα0, α2 ¼ bnα0, where α0 have to be found from the normalization
condition. Since the functions χ are normalized, one can write down

Z
∞

−∞
½vþnþðpz; uÞ�†γ0vþnþðpz; uÞdu ¼ α20½ðsn þ 1Þ2 − b2n� ¼ α202ðsn þ 1Þ ¼ 1:

(2) For the electron with the helicity −1 we find the relations

C1v
þ
n1ðpz; uÞ þ C2v

þ
n2ðpz; uÞ ¼ vþn−ðpz; uÞ ¼ α1U2χn−1 þ α2U3χn;

and then the relations for the coefficients:

C1 ¼ α1
pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEn þ snÞ2sn

p ; C2 ¼ α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þ sn
2sn

s
;

C1pz þ C2bn ¼ −α1ðEn þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þ sn
2sn

s
; C1bn − C2pz ¼ α2ðEn þ 1Þ pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2snðEn þ snÞ
p :

Then α1 ¼ bnα0, α2 ¼ ðsn þ 1Þα0 and α0 is the same as for the previous case since
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Z
∞

−∞
½vþn−ðpz; uÞ�†γ0vþn−ðpz; uÞdu ¼ α20½b2n − ðsn þ 1Þ2� ¼ α202ðsn þ 1Þ ¼ 1:

(3) For the positron with the helicity −1:

C1v−n1ð−pz; uÞ þ C2v−n2ð−pz; uÞ ¼ v−nþðpz; uÞ ¼ α1U1χn−1 þ α2U4χn:

The relations for the coefficients are

C1 ¼ α1
pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEn þ snÞ2sn

p ; C2 ¼ α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þ sn
2sn

s
;

C1pz − C2bn ¼ α1ðEn þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þ sn
2sn

s
; −C1bn − C2Z ¼ −α2ðEn þ 1Þ pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2snðEn þ snÞ
p

and α1 ¼ bnα0, α2 ¼ −ðsn þ 1Þα0.
(4) For the positron with the helicity þ1,

C1v−n1ð−pz; uÞ þ C2v−n2ð−pz; uÞ ¼ v−n−ðpz; uÞ ¼ α1U3χn−1 þ α2U2χn:

As a result we get the expressions for the fixed helicity in a form which we would use in the final expressions for the
solution of the Dirac equation:

vþnþðpz; uÞ ¼
1ffiffiffi
2

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sn þ 1

p
U1ðpzÞχn−1ðuÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
sn − 1

p
U4ðpzÞχnðuÞ�; ðD15Þ

vþn−ðpz; uÞ ¼
1ffiffiffi
2

p ½
ffiffiffiffiffiffiffiffiffiffiffiffi
sn − 1

p
U3ðpzÞχn−1ðuÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sn þ 1

p
U2ðpzÞχnðuÞ�; ðD16Þ

v−nþð−pz; uÞ ¼
1ffiffiffi
2

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sn þ 1

p
U3ð−pzÞχn−1ðuÞ −

ffiffiffiffiffiffiffiffiffiffiffiffi
sn − 1

p
U2ð−pzÞχnðuÞ�; ðD17Þ

v−n−ð−pz; uÞ ¼
1ffiffiffi
2

p ½−
ffiffiffiffiffiffiffiffiffiffiffiffi
sn − 1

p
U1ð−pzÞχn−1ðuÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sn þ 1

p
U4ð−pzÞχnðuÞ�; ðD18Þ

where UiðpÞ are defined by equations (D14). The spinors (D15)–(D18) are used in Eq. (20) for calculation of the S-matrix
elements.

5. Particular and total solution for electron in a strong magnetic field

The particular solutions of Eq. (D1) could be written in the following form:

Ψε
nsðr; py; pzÞ ¼

1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EnðpzÞ

p vεnsðεpz; xþ εpy=bÞ exp ½−εiðEnt − pyy − pzzÞ�; ðD19Þ

where vεnsðεpz; uÞ are defined by Eqs. (D15)–(D18). This solution is used in construction of the S-matrix element (12)
and relativistic electron propagator (10). The spinors (D15)–(D18) compose an orthonormal system andR
∞
−∞ vε†nsðεpz; uÞvε0n0s0 ðεpz; uÞdu ¼ EnðpzÞδnn0δεε0δss0 . Therefore it is easy to find the relations of orthonormality for the
solutions of the Dirac equation:

Z
d3rΨε†

nsðr; t; py; pzÞΨε0
n0s0 ðr; t; Y 0; p0

zÞ ¼ δðpy − p0
yÞδðpz − p0

zÞδnn0δεε0δss0 : ðD20Þ

The condition of completeness of the system takes the form
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X
n;ε;s

Z
dpy dpzΨε

nsðr; t; py; pzÞΨε†
nsðr0; t; py; pzÞ ¼ δðr − r0Þ: ðD21Þ

Therefore we can get the solution of the Cauchy problem with the initial function Φðr; t0Þ as an expansion over the
particular solutions:

Φðr; tÞ ¼
X
n;ε;s

Z
dpy dpzΨε

nsðr; t − t0; py; pzÞ
Z

d3r0Ψε†
nsðr0; t − t0; py; pzÞΦðr0; t0Þ: ðD22Þ

These wave functions given by (D19) satisfy the equations�
i

�
γ0

∂
∂tþ γ1

∂
∂xþ γ2

∂
∂yþ γ3

∂
∂z

�
− bxγ2 − 1

�
Ψε

nsðr; py; pzÞ ¼ 0;

while the spinors are the solution of the equations:�
iγ1

d
duε

− buεγ2 þ εEnðpzÞγ0 − εpzγ
3 − 1

�
vεnsðεpz; uεÞ ¼ 0:

APPENDIX E: EXPRESSIONS FOR SPINOR PRODUCTS

Expression (41) contains only separate spinor products and therefore there are more terms than in the nonregularized case
(33) and (34). Nevertheless the analytical expressions for the products can be found:

vþnþðpz; x2Þvþ†
nþðpz; x1Þ ¼

1

4sn
½ðsn þ 1Þχn−1ðx2Þχ�n−1ðx1ÞðEnΣþ þ pzα

þ þ snDþÞ

þ ðsn − 1Þχnðx2Þχ�nðx1ÞðEnΣ− − pzα
− − snD−Þ

þ bnðχn−1ðx2Þχ�nðx1ÞðEnγþ − pzDþ þ snαþÞ − χnðx2Þχ�n−1ðx1ÞðEnγ− þ pzD− − snα−ÞÞ�; ðE1Þ

vþn−ðpz; x2Þvþ†
n−ðpz; x1Þ ¼

1

4sn
½ðsn − 1Þχn−1ðx2Þχ�n−1ðx1ÞðEnΣþ þ pzα

þ − snDþÞ

þ ðsn þ 1Þχnðx2Þχ�nðx1ÞðEnΣ− − pzα
− þ snD−Þ

þ bnðχn−1ðx2Þχ�nðx1Þð−Enγþ þ pzDþ þ snαþÞ þ χnðx2Þχ�n−1ðx1ÞðEnγ− þ pzD− þ snα−ÞÞ�;
ðE2Þ

v−nþðpz; x2Þv−†nþðpz; x1Þ ¼
1

4sn
½ðsn − 1Þχn−1ðx2Þχ�n−1ðx1ÞðEnΣþ þ pzα

þ þ snDþÞ

þ ðsn þ 1Þχnðx2Þχ�nðx1ÞðEnΣ− − pzα
− − snD−Þ

− bnðχn−1ðx2Þχ�nðx1ÞðEnγþ − pzDþ þ snαþÞ þ χnðx2Þχ�n−1ðx1ÞðEnγ− þ pzD− − snα−ÞÞ�; ðE3Þ

v−n−ðpz; x2Þv−†n−ðpz; x1Þ ¼
1

4sn
½ðsn þ 1Þχn−1ðx2Þχ�n−1ðx1ÞðEnΣþ þ pzα

þ − snDþÞ

þ ðsn − 1Þχnðx2Þχ�nðx1ÞðEnΣ− − pzα
− þ snD−Þ

þ bnðχn−1ðx2Þχ�nðx1ÞðEnγþ − pzDþ − snαþÞ − χnðx2Þχ�n−1ðx1ÞðEnγ− þ pzD− þ snα−ÞÞ�; ðE4Þ

where the necessary designations are given in Appendix C. These expressions are valid for both Feynman diagrams, but one
should differentiate the values V, En, pz, x1, x2 and Γn for each of them according to the specific arguments in the
expression for the S-matrix elements (20).
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