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Several models of gamma-ray burst progenitors suggest that the gamma-ray event may be followed by
gravitational wave signals of 103–104 s duration (possibly accompanying the so-called x-ray afterglow
“plateaus”). We term these signals “intermediate duration” because they are shorter than continuous wave
signals but longer than signals traditionally considered as gravitational wave bursts and are difficult to
detect with most burst and continuous wave methods. The cross-correlation technique proposed by
[S. Dhurandhar et al., Phys. Rev. D 77, 082001 (2008)], which so far has been used only on continuous
wave signals, in principle unifies both burst and continuous wave (as well as matched filtering and
stochastic background) methods, reducing them to different choices of which data to correlate on which
time scales. Here, we perform the first tuning of this cross-correlation technique to intermediate-duration
signals. We derive theoretical estimates of sensitivity in Gaussian noise in different limits of the cross-
correlation formalism and compare them to the performance of a prototype search code on simulated
Gaussian-noise data. We estimate that the code is likely able to detect some classes of intermediate-duration
signals (such as the ones described in [A. Corsi and P. Mészáros, Astrophys. J. 702, 1171 (2009)]) from
sources located at astrophysically relevant distances of several tens of Mpc.
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I. INTRODUCTION

Over the last decade, the LIGO and Virgo gravitational
wave (GW) detectors have carried out triggered (or
targeted) GW searches in coincidence with gamma-ray
bursts (GRBs) and other electromagnetic transients [1–15]
as well as persistent electromagnetic sources [16–28].
These searches have traditionally been optimized to detect
well-modeled “chirp” signals from neutron star (NS)-NS
and/or black hole-NS binary inspirals, unmodeled short
(≲1–10 s) duration bursts of GWs in association with
electromagnetic transients, and persistent (continuous)
GWs from nearby rotating NSs. Searches based on methods
for a stochastic background have also been adapted to
continuous wave targets [23,29].
Methods targeting an as of yet largely unexplored class of

“intermediate-duration” GW signals have also been devel-
oped [30–32], and two so far have led to a search on real data
[13,33].1 Intermediate-durationGWs are of special interest in

several astrophysical scenarios (e.g., Refs. [13,35–43]), and
their detectability over a large parameter space remains
mostly unexplored compared to themore traditional inspiral,
burst, or continuous wave signals.
In this work, we focus on the possibility of detecting

103–104 s duration GWs in coincidence with GRBs. Our
study is motivated by the need for a data analysis technique
that is optimized to probe some of the long-lived progenitor
scenarios for (long and short) GRBs, such as the so-called
“magnetar model.” The magnetized NS (magnetar) sce-
nario has been invoked to explain x-ray “plateaus”
(102–104 s long periods of relatively constant emission)
observed in ≳50% of long, and in several short, GRB
afterglows [44–51]. Gravitational collapse leading to the
formation of a NS, in turn, has long been considered an
observable source of GWs. In a rotating, newly born NS,
nonaxisymmetric instabilities such as the secular
Chandrasekhar-Friedman-Schutz [52,53] instabilities can
yield GW emission with high efficiency [54]. If the newly
born GRB magnetar emits GWs over the plateau time scale
(∼103 s), GW detectors such as the advanced LIGO
(aLIGO) and Virgo detectors may be able to directly probe
the source of the observed prolonged energy injection and
clarify one of the key open questions on the nature of GRB
central engines [38,55].
Detecting intermediate-duration GW signals, such as the

ones possibly associated with GRB plateaus, requires
search techniques that can bridge the gap (both in terms

*rob.coyne@ttu.edu
1Those works use “long” to refer to signals of Oð102Þ s

duration, because these durations are long compared to the
Oð≲1Þ s duration signals traditionally targeted in burst data
analyses. The term “very long duration” signals has also been
adopted to refer to GWs lasting from hours to weeks, e.g.,
Ref. [34]. Here, we use “intermediate” to put the discussion in the
broader context, which includes the substantially longer con-
tinuous wave signals.
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of science reach and signal detection strategies) between
traditional inspiral/burst searches and continuous wave or
stochastic ones. Traditional short-duration inspiral and
long-duration continuous wave searches make use of
highly sensitive coherent (and computationally limited
semicoherent) techniques that leverage accurate knowledge
of the expected GW waveform (as a function of a set of
physical parameters). Traditional burst and stochastic
searches, on the other hand, assume little a priori knowl-
edge of the signal and depend respectively on excess signal
power (above the background noise) and cross-correlation
of power between interferometers for detection.
Here, we address the problem of searching for inter-

mediate duration, large frequency bandwidth signals by
adapting the cross-correlation method of Ref. [56]. While
originally developed in the context of continuous waves,
the method by Ref. [56] encompasses all of the afore-
mentioned traditional search techniques when various
parameters are taken to the appropriate limits, and it shows
how to make the best use of the information available about
each type of signal. (A Bayesian framework of similarly
broad relevance was developed later by Cornish and
Romano [57], but here, like Dhurandhar et al. [56], we
present an essentially frequentist analysis.) We correct
some small errors in the original formalism of Ref. [56]
and apply it for the first time to intermediate-duration
signals by developing a code, the performance of which we
test on simulated data. We restrict ourselves to
intermediate-duration signals with large frequency band-
width (such as the ones described in Ref. [38]), since
intermediate-duration narrow band signals have different
astrophysical origins and are treated with adaptations of
continuous wave searches (see, e.g., Ref. [58]).
Our paper is organized as follows. In Sec. II, we motivate

the application of Dhurandhar et al’s [56] cross-correlation
technique to intermediate-duration GWs. In Sec. III, we
describe our notation and assumptions. In Sec. IV, we briefly
rederive the general statistical behavior of the cross-
correlation method, discuss explicitly its limits and inter-
mediate regimes, and showhow several assumptionsmade in
Ref. [56] need to be modified for the search of non-well-
modeled GW transients evolving on 103–104 s time scales.
In Sec. V, we apply the cross-correlation technique to the
model of secularly unstable GRB-magnetars described in
Ref. [38], thus providing an example of applicability to
astrophysically motivated waveforms of intermediate
duration. Finally, in Sec. VI, we compare our results with
other data analysis techniques that have been proposed to
search for intermediate-duration GW signals and give our
conclusions.

II. MOTIVATION FOR A CROSS-CORRELATION
SEARCH

GWs signals are typically predicted to have strengths so
close to the level of noise in the detectors that it is necessary

to filter the interferometer data streams to detect the real
GW events among spurious noise events. When the func-
tional form of the predicted GW signal is very well known
(as a function of a set of physical parameters), matched
filtering with template waveforms is the optimal strategy
(e.g., Refs. [59,60]). Matched filtering involves computing
the cross-correlation between the interferometer output and
a template waveform, weighted inversely by the noise
spectrum of the detector. The signal-to-noise ratio (SNR) is
defined as the cross-correlation of the template with a
particular stretch of data divided by the rms value of the
cross-correlation of the template with pure detector noise.
Usually, a family of templates spanning the possible range

of parameter values (a so-called template bank) is used in real
data analyses. A template bank adds to the search statistics a
trial factor, which has to be taken into account when
estimating the detection sensitivity. A template bank also
involves more computational cost since each template must
be cross-correlated with the data. While the parameters
describing the search templates typically vary continuously
throughout a finite range of values, a realistic template bank
is composed of templates, the parameter values ofwhich vary
in discrete steps within the allowed range. The “mismatch”
between the signal and nearest of the discrete templates
causes some reduction in the expected matched-filter SNR.
Thus, the number of templates to be used in a search is a
compromise between the maximum computational cost one
can sustain and themaximummismatch that one is willing to
tolerate (e.g., Refs. [61–64]).
When the maximum sustainable computational cost

implies a mismatch such that the loss in SNR reduces the
sensitivity of the search to a very limited portion of the
parameter space, modifications to the matched-filtering
strategy toward suboptimal techniques are mandatory. In
addition, in many cases, the GW signal waveform is not
known well enough for matched filtering. Indeed, even if a
very finely spaced discrete template bank is used, a search
may fail to detect a signal if the templates do not represent
with sufficient accuracy the relevant physics. In other words,
a realistic search is affected not only by themismatch but also
by the so-called “fitting factor” [65–68], the fractional loss in
SNRcaused by the fact that even the best template in a family
is only a “fit” to a hypothetical exact gravitational waveform.
In the context of GWs from compact binaries, where
numerical relativity can be used to quantify the fitting factor
of phenomenological waveforms used to construct template
banks for matched-filter searches (e.g., Ref. [69]), it has been
estimated that fitting factors < 3% are needed to achieve
detection efficiencies > 90% (see, e.g., Refs. [65,70]).
Indeed, matched filtering is by construction highly likely
to miss a signal even for moderately bad fitting factors. On
the other hand, suboptimal (less sensitive) detection tech-
niques are more robust against the intrinsic uncertainties in
the underlying physics [71–73].
In the case of secular bar-mode GW signals from GRB

afterglow plateaus, given the uncertainties related to the
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physics of GRB central engines, the derived gravitational
waveforms are to be considered as simplified phenomeno-
logical models. Thus, a more robust (when compared to
matched filtering) search is necessary. A very robust
approach against signal uncertainties consists of using
the cross-correlation between the output of different,
noncolocated detectors. This approach (which, differently
from matched filtering, requires no a priori knowledge
of the signal waveform and its properties) is typically
used for stochastic GW background searches (e.g.,
Refs. [29,74,75]). The cross-correlation between different,
noncolocated detectors only relies on the fact that, in the
presence of a GW signal, the output from distinct detectors
(at the same times, after correcting for the light-travel time
between detectors) should be correlated, while pure noise
would remain uncorrelated. Of course, this technique also
implies a poor resolution in the parameter space and more
expensive followups to verify possible detections [56].
It is important to note that the cross-correlation is at the

basis of two opposite search strategies: the (highly sensi-
tive) matched filtering (cross-correlation of the data with a
template) and the (very robust) “stochastic search” (cross-
correlation of different detectors’ outputs). Indeed, by
noticing this fundamental fact, Dhurandhar et al [56] have
provided an elegant formulation of the cross-correlation
statistic for periodic GW searches such that, depending on
the maximum duration over which one believes phase
coherence is preserved by the signal, the statistic can be
tuned to go from a “stochastic-type” search using data from
distinct detectors to the semicoherent time-frequency
methods with increasing coherent time baselines (e.g.,
Ref. [62]) and all the way to a fully coherent search (nearly
recovering the matched-filtering statistic).
Dhurandar et al’s formulation of the cross-correlation

statistic [56] leads to a unified framework that can be
used to make informed tradeoffs between computational
cost, sensitivity, and robustness against signal uncertainties.
Studies based on the cross-correlation statistic as formu-
lated by Ref. [56] have focused on continuous GW
emission from Supernova 1987a and Scorpius X-1
[76,77], and a number of refinements to the cross-
correlation method have also been published in recent
years, particularly for the treatment of spectral leakage
[77,78]. In what follows, we present a strategy tuned for the
detection of intermediate-duration (≲104 s) quasiperiodic
GW signals and discuss its application to the case of
secularly unstable GRB magnetars (Sec. V).

III. NOTATION AND ASSUMPTIONS

A. Short-time Fourier transform

The short-time Fourier transform (SFT) is a useful
tool when examining a signal in which the frequency
content is evolving with time. The time-domain output of
LIGO/Virgo detectors, xðtÞ, can be represented as the linear

combination of a GW signal hðtÞ and background noise
nðtÞ:

xðtÞ ¼ hðtÞ þ nðtÞ: ð3:1Þ

The SFT of the detector output is constructed by dividing
the time series xðtÞ into NSFT segments of duration ΔTSFT
(generally speaking, these segments may or may not
overlap) and by taking the discrete Fourier transform
(DFT) of each of these segments,

~xI½fk� ¼
1

fs

XNbin−1

l¼0

x½tl�e−2πifkðtl−TIþΔTSFT=2Þ; ð3:2Þ

where fs is the sampling frequency (typically fs ¼
16; 384 Hz for the LIGO detectors), Nbin ¼ ΔTSFT × fs
is the number of frequency bins of each SFT, and fk is the
frequency corresponding to the kth frequency bin:

fk ¼
k

ΔTSFT
for k ¼ 0;…; Nbin=2 − 1; ð3:3Þ

fk ¼
ðk − NbinÞ
ΔTSFT

for k ¼ Nbin=2;…; Nbin − 1. ð3:4Þ

Note that tl in Eq. (3.2) corresponds to the lth time
sample, i.e., tl ¼ TI − ΔTSFT=2þ l=fs. For each I ¼
0; 1;…Tobs=ΔTSFT (where Tobs is the total duration of
the signal) and l ¼ 0; 1;…; Nbin, tl spans the time interval
TI − ΔTSFT=2 ≤ tl ≤ TI þ ΔTSFT. Note also that we dis-
tinguish between continuous time series xð…Þ and their
associated discretely sampled time series x½…� by using
square brackets.
To reduce spectral leakage, a windowing function w½tl� is

often applied to the DFT [79]:

~xI½fk� ¼
XNbin−1

l¼0

w½tl�x½tl�e−2πifkðtl−TIþΔTSFT=2Þ: ð3:5Þ

For simplicity, and following Ref. [56], hereafter we
neglect the window function (but discuss some of the
related issues in Sec. IV D).

B. Detector noise and its PSD

In this section, we consider the detector output in the
absence of a signal. In the continuum limit of Eq. (3.1), the
frequency (f) content of the detector noise can be described
by its Fourier transform:

~nðfÞ ¼
Z

∞

−∞
dt nðtÞe−2πift: ð3:6Þ

The single-sided (f ≳ 0) power spectral density (PSD) of
the noise, SnðfÞ, is defined as
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SnðfÞ ≔ 2

Z
∞

−∞
dτ hnðtÞnðtþ τÞie−2πifτ; ð3:7Þ

where hnðtÞnðtþ τÞi is the autocorrelation function of the
noise and the expectation value h·i represents an average
over an ensemble of noise realizations. The noise auto-
correlation function thus forms a Fourier transform pair
with its PSD. Note that hereafter we assume the noise is
stationary and Gaussian (with zero mean), and thus its
autocorrelation function is independent of t.
From Eq. (3.6), it follows that (see also Ref. [80])

h ~n�ðf0Þ ~nðfÞi ¼
�Z

∞

−∞
dt0 n�ðt0Þe2πif0t0

Z
∞

−∞
dt nðtÞe−2πift

�
:

ð3:8Þ

This product of independent integrals can be recast as

h ~n�ðf0Þ ~nðfÞi ¼
�Z

∞

−∞
dt0

Z
∞

−∞
dt n�ðt0ÞnðtÞe2πif0t0e−2πift

�
:

ð3:9Þ

Noting that real detector output implies n�ðtÞ ¼ nðtÞ, and
given the linearity and limited multiplicativity2 of the
expectation value, we have

h ~n�ðf0Þ ~nðfÞi ¼
Z

∞

−∞
dt0

Z
∞

−∞
dt hnðt0ÞnðtÞie2πif0t0e−2πift:

ð3:10Þ

Setting t ¼ t0 þ τ yields

h ~n�ðf0Þ ~nðfÞi

¼
Z

∞

−∞
dt0 e−2πiðf−f0Þt0

Z
∞

−∞
dτ hnðt0Þnðt0 þ τÞie−2πifτ:

ð3:11Þ

Then, using Eq. (3.7), we replace the integral over dτ
with the PSD,

h ~n�ðf0Þ ~nðfÞi ¼ SnðfÞ
2

Z
∞

−∞
dt0 e−2πiðf−f0Þt0 : ð3:12Þ

The remaining integral over dt0 is simply a delta function,

h ~n�ðf0Þ ~nðfÞi ¼ 1

2
δðf − f0ÞSnðfÞ; ð3:13Þ

and using the finite-time approximation of the delta
function,

δΔTSFT
ðfÞ ¼ sinðπfΔTSFTÞ

πf
; ð3:14Þ

which reduces to ΔTSFT in the limit of f → 0, we can relate
the variance of the Fourier transformed detector output to
the PSD:

hj ~nI½fk�j2i ≈
ΔTSFT

2
Sn½fk�: ð3:15Þ

C. Short-duration Fourier transform of the signal

We make the hypothesis that the GW signal hðtÞ is
quasiperiodic (by taking a sufficiently small time interval,
the signal in such an interval can be considered mono-
chromatic) and assume that its time-frequency evolution is
described with sufficient physical accuracy, for a time
interval of Tcoh, via some known function of a given set of
parameters (although this function may not have a closed
form expression). By definition, this “coherence time
scale” is less than or equal to the total observation time
Tobs over which the signal is expected to last (e.g.,
Tcoh ≲ Tobs ≲ 104 s for the type of signals of interest in
the context of GRB afterglow plateaus).
Since the signal is quasiperiodic, we can define a SFT

baseline ΔTSFT ≤ Tcoh such that, within the baseline,
all of the signal power is concentrated in a single SFT
bin. More specifically, around each time TI , we can
approximate the signal received by the detector in the time
interval TI −

ΔTSFT
2

≲ t≲ TI þ ΔTSFT
2

as

hðtÞ ≈ h0ðTIÞAþFþ cosðΦðTIÞ þ 2πfðTIÞðt − TIÞÞ
þ h0ðTIÞA×F× sinðΦðTIÞ þ 2πfðTIÞðt − TIÞÞ;

ð3:16Þ

where Aþ, A× are amplitude factors dependent on the
physical system’s inclination angle ι (for on-axis GRBs, ι is
the angle between the jet axis and the line of sight),

Aþ ¼ 1þ cos2ι
2

; ð3:17Þ

A× ¼ cos ι; ð3:18Þ

and Fþ, F× are the antenna factors that quantify the
detector’s sensitivity to each polarization state. Note that
for triggered searches targeting GRBs (as is the case in
Sec. V), the line of sight is expected to be nearly aligned
with the jet axis,3 and thus ι ≈ 0 and Aþ ≈ A× ≈ 1.
In order for the approximation in Eq. (3.16) to be valid,

the following conditions should be satisfied:
2The expectation value hXYi of random variables X, Y is

multiplicative if CovðX; YÞ ¼ 0, that is, only if X and Y are
statistically independent.

3That is, the line of sight is within the jet-opening angle, which
is expected to be of the order 5–20 deg for long GRBs [81,82].
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(1) Tobs ≲ 104 s so that, for a given GW detector, Fþ
and F× can be treated as constants as a function of
time (see, e.g., Ref. [56]).

(2) If _fðtÞ is the timederivative of the signal frequency at a
given time t, then the effects of _fðtÞ on the signal
phase should be negligible during the time interval
ΔTSFT. Using the quarter-cycle criterion, this leads to

2πj _fðTIÞjðΔTSFT
2

Þ2 < π
2
. Thus, ΔTSFT < 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j _fðTIÞj

q
.

(3) ΔTSFT is small enough that h0ðtÞ ≈ h0ðTIÞ
(constant amplitude approximation) in the interval
TI − ΔTSFT=2≲ t≲ TI þ ΔTSFT=2. We consider
this condition satisfied if j _h0ðTIÞjΔTSFT=h0ðTIÞ≲
10%, based on typical LIGO amplitude calibration
errors (∼10% [83]; thus, any change of signal am-
plitude below 10% is not expected to significantly
affect the goodness of this approximation).

In addition, hereafter, we assume thatΔTSFT is large enough
that the corresponding frequency resolution, ðΔTSFTÞ−1, still
enables one to track the time-frequency evolution of the
signal.
Using Eq. (3.2), we can calculate the DFTof the signal in

Eq. (3.16) (see also Eq. (2.25) in Ref. [56]),

~hI½fk� ¼ h0ðTIÞeiπfk;IΔTSFT

×

�
eiΦðTIÞAþFþ;I − iA×F×;I

2
δΔTSFT

ðfk − fk;IÞ

þ e−iΦðTIÞAþFþ;I þ iA×F×;I

2
δΔTSFT

ðfk þ fk;IÞ
�
;

ð3:19Þ

or, equivalently,

~hI½fk� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þF2

þ;I þA2
×F2

×;I

q
2

h0ðTIÞeiπfk;IΔTSFT

× ½eiΦðTIÞeiφIδΔTSFT
ðfk − fk;IÞ

þ e−iΦðTIÞe−iφIδΔTSFT
ðfk þ fk;IÞ�; ð3:20Þ

where we have set

AþFþ;I � iA×F×;I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þF2

þ;I þA2
×F2

×;I

q
e∓iφI ð3:21Þ

and

φI ¼ arctanð−A×F×;I=AþFþ;IÞ: ð3:22Þ

Note that, while in our limit of intermediate-duration GW
signals the antenna response from one detector can be
considered constant over the observed duration of the
signal, for the multiple detector case, the antenna responses
refer to the specific GW detector from the output of which
the Ith SFT is taken.

IV. CROSS-CORRELATION STATISTIC

Following Ref. [56], we define the raw cross-correlation
statistic as

YIJ ¼
~x�I ½fk;I�~xJ½fk0;J�

ΔT2
SFT

; ð4:1Þ

where the frequency fk;I is the frequency at which all of the
signal power is concentrated during the Ith time interval
[see Eq. (3.19)] and is related to the frequency fk0;J at which
all of the signal power is concentrated during the Jth time
interval via the relation

fk0;J ¼ fk;I − ΔfIJ: ð4:2Þ

In the above relation, ΔfIJ is the frequency difference
predicted by the model’s time-frequency evolution (in this
analysis, the signal time-frequency evolution is assumed to
be known to some level of accuracy; see Sec. III C). Note
that, because for any Ith SFT the associated frequency bin k
is fixed by the model’s predictions, we omit the indexes k,
k0 from YIJ for simplicity.
For a signal embedded in stationary Gaussian noise with

zero mean, the fYIJg are themselves random variables with
mean and variance given by

μIJ ¼ h0ðTIÞh0ðTJÞ ~GIJ; ð4:3Þ

σ2IJ ¼
1

4ΔT2
SFT

Sn½fk;I�Sn½fk0;J�; ð4:4Þ

where we have used Eqs. (3.15) and (3.19) and the fact that

~h�I ½fk� ~hJ½fk þ ΔfIJ� ¼ h0ðTIÞh0ðTJÞ ~GIJδ
2
ΔTSFT

ðfk − fk;IÞ:
ð4:5Þ

In the above equations, ~GIJ is the signal cross-correlation
function, defined here as

~GIJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þF2

þ;I þA2
×F2

×;I

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þF2

þ;J þA2
×F2

×;J

q
2

e−iΔθIJ ;

ð4:6Þ

withΔθIJ ¼ θI −θJ ¼ πΔfIJΔTSFTþΔΦIJþΔφIJ. In gen-
eral, the subscripts ðIÞ; ðJÞ in the antenna responses refer to
the specific GW detector from the output of which the Ith
(or Jth) SFT is taken. Indeed, in the definition of the fYIJg,
there is total freedom to correlate pairs from one single
detector or from an arbitrary number of detectors.
Note that the e−iπΔfIJΔTSFT term that arises from ΔθIJ in

Eq. (4.6) is absent from the definition of the signal-cross-
correlation function given in Ref. [56]. This discrepancy
was first noted in Ref. [76] and is discussed there in detail.
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This term proves essential to properly tracking the fre-
quency evolution of a given signal across SFTs, so we call
attention to it here.
When cross-correlation pairs are only taken from the

output of a single detector over time scales of Tobs ≲ 104 s,
then Fþ;×;I ¼ Fþ;×;J ¼ Fþ;×. This simplifies Eq. (4.6)
considerably:

~G1D
IJ ¼ A2þF2þ þA2

×F2
×

4
e−iπΔfIJΔTSFTe−iΔΦIJ : ð4:7Þ

For two or more detectors, such as LIGO Hanford (H) and
LIGO Livingston (L), the indexes I and J are free to range
over SFTs from either detector, and so the above simpli-
fication does not generally apply (even if the antenna
factors for each detector are approximately constant within
the considered time interval).
Following Ref. [56], our detection statistic is then

constructed as a weighted sum of the YIJ,

ρ ¼
X
IJ

ðuIJYIJ þ u�IJY
�
IJÞ; ð4:8Þ

with nearly optimal weights4

uIJ ¼
~G�
IJ

σ2IJ
: ð4:9Þ

For stationary Gaussian-distributed white noise [see
Eq. (4.4)], σIJ does not depend on frequency nor on time,
but it might still depend on the detector. Thus,

σ2IJ ¼
1

4ΔT2
SFT

S2n ð4:10Þ

for IJ pairs from a single detector (or identical detectors), or

σ2IJ ¼
1

4ΔT2
SFT

SHn SLn ð4:11Þ

for, e.g., a LIGOHanford-Livingston IJ pair. Thus, using the
above equations and Eq. (4.6), we have in general

uIJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2þF2

þ;I þA2
×F2

×;IÞðA2þF2
þ;J þA2

×F2
×;JÞ

q
ΔT−2

SFTe
−iΔθIJSn½fk;I�Sn½fk;J�

;

ð4:12Þ

where, again, the antenna responses and detector’s noise
refer to the specific GW detector from the output of which
the Ith (or Jth) SFT is taken.

As we describe in more detail in what follows, the mean
and variance of ρ, as well its statistical distribution, depend
on the choice of which SFT pairs are cross-correlated.
Because of the freedom in choosing which data-segment
pairs to correlate, we can naturally consider one single
detector or an arbitrary number of detectors (with no need
to modify our statistic), and we can work in one of the
following limits [56]:
(1) We can choose to correlate only data segments taken

from distinct detectors at the same times (after
correcting for the light-travel time between different
detectors, Sec. IVA). This limit is analogous in spirit
to the methods of stochastic GW searches, such as
Refs. [84–87], and we hence refer to it as the
“stochastic limit.” In this case, the computational cost
of the search is small, and the search is very robust
against signal uncertainties. But the sensitivity is the
poorest, as is the resolution in parameter space.

(2) At the other extreme, we can correlate all possible
SFT segments (Sec. IV B): This (nearly) corre-
sponds to a full matched-filter statistic described
for coalescing compact binaries and continuous
waves in, e.g., Refs. [60,62,88,89]. The parameter
space resolution becomes very fine, and while this is
ideally the most sensitive method, is it also the most
computationally expensive (prohibitive for wide
parameter space searches) and the least robust
against signal uncertainties.

(3) In intermediate regimes, we can correlate data seg-
ments separated by a maximum coherence time
Tcoh ≲ Tobs (Sec. IV C). This “semicoherent” ap-
proach is similar to several methods used for
continuous waves [71,90–93] (though on signal
time scales much longer than what considered in
this work). Because in this limit the sensitivity and
robustness of the search can be tuned to the expected
accuracy of a given model, this is the regime of
greatest interest to us.

(4) Finally, one can consider all pairs except self-
correlations. This was the main focus of the analysis
presented in Ref. [56] (see their Sec. IV). Here, we do
not focus on this limit becausewe consider it a special
case of the ones above (with no particular advantages
for the detection of the type of signals considered in
our study and with some complications added to the
statistical properties of ρ). However, in what follows,
we do discuss the main differences of (1)–(3) above
with respect to this case (see also Sec. IVof Ref. [56]).

In discussing the above limits, it is useful to note that we
can rewrite Eq. (4.8) in terms of Eq. (4.1) as

ρ ¼ 1

ΔT2
SFT

X
IJ

uIJ ~x�I ½fk;I�~xJ½fk0;J� þ u�IJ ~xI½fk;I�~x�J½fk0;J�;

ð4:13Þ

4Strictly speaking, these weights are only optimal when self-
pairs are excluded, as in Ref. [56]. For sufficiently small
amplitude signals, these weights remain optimal, to first order,
even when self-pairs are considered. For situations where this
may not be the case, we refer the reader to the discussion in the
Appendix of Ref. [56].
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which is equivalent to

ρ ¼ 2

ΔT2
SFT

X
IJ

ℜfuIJ ~x�I ½fk;I�~xJ½fk0;J�g: ð4:14Þ

A. Stochastic limit (independent pairs only)

Consider the output of two different detectors, ~xH

and ~xL. Each detector’s output can be divided into
Tobs=ΔTSFT ¼ NSFT segments. Of the ð2NSFTÞ2 possible
SFT pairs that can contribute to ρ, we correlate only
pairs of SFTs from different detectors at the same time
(after correcting for the light-travel time between detec-
tors), so that Npairs ¼ NSFT. In this limit, Eq. (4.13)
becomes

ρ ¼ 2
X
I

ℜfuIIYIIg; ð4:15Þ

where the weights are described by, e.g., Eq. (4.11).
Written explicitly, this becomes

ρ ¼ 2

ΔT2
SFT

X
I

ℜfuII ~x�HI ½fk;I�~xLI ½fk0;I�g; ð4:16Þ

i.e., a weighted sum of completely independent random
variables that are each the product of two Gaussian
variables with mean and variance given by Eqs. (4.3)
and (4.4). Thus, ρ converges to a Gaussian distribution
(by the Central Limit Theorem) with mean (see
Eqs. (4.3), (4.6), (4.12), and Ref. [56]) and variance
(see also Eq. (4.4) and Dhurandhar et al. [56]):

μρ ¼ ðA2þF2
þ;H þA2

×F2
×;HÞðA2þF2

þ;L þA2
×F2

×;LÞ

×
ΔT2

SFT

2

X
I

h20ðTIÞ
SHn ½fk;I�SLn ½fk;I�

; ð4:17Þ

σ2ρ ¼ ðA2þF2
þ;H þA2

×F2
×;HÞðA2þF2

þ;L þA2
×F2

×;LÞ

×
ΔT2

SFT

2

X
I

1

SHn ½fk;I�SLn ½fk;I�
: ð4:18Þ

The detection threshold is easily derived in terms of
the cumulative distribution function (CDF) of a normal
distribution,

FN ðρÞ ¼ 1

2

�
2 − erfc

�
ρ − μρ

σρ
ffiffiffi
2

p
��

; ð4:19Þ

and its inverse (see also Ref. [56]), where erfc is the
complementary error function. For a false alarm probability
(FAP) α, the associated threshold is simply 1 − α ¼
FN ðρthÞ, and thus

ρth ¼
ffiffiffi
2

p
σρerfc−1ð2αÞ; ð4:20Þ

where we have used the fact that the background distribu-
tion is considered in the absence of a signal (μρ ¼ 0). When
a signal is present, the detection probability γ, or, equiv-
alently, the false dismissal probability (FDP) 1 − γ, is given
by γ ¼ FN ðρthÞ, i.e.,

γ ¼ 1

2
erfc

�
ρth − μρ

σρ
ffiffiffi
2

p
�
: ð4:21Þ

Thus, the detectability condition reads

μρ
σρ

≳ ffiffiffi
2

p
S; ð4:22Þ

where S ¼ erfc−1ð2αÞ − erfc−1ð2γÞ. In the case of white
Gaussian noise, using Eqs. (4.17)–(4.18), the detectability
condition implies

hrms ≳
ffiffiffi
2

p
S1=2ΔT−1=2

SFT N−1=4
SFT ðSHn SLn Þ1=4

½ðA2þF2
þ;H þA2

×F2
×;HÞðA2þF2

þ;L þA2
×F2

×;LÞ�1=4
;

ð4:23Þ

which generalizes Eq. (4.15) in Dhurandhar et al. [56] to
the case of a nonconstant signal amplitude for which [see
also Eq. (3.16)]:

hrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh20ðTIÞiI

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Ih

2
0ðTIÞ

NSFT

s
: ð4:24Þ

In Fig. 1, we show the distribution of ρ in the absence of
a signal for simulated Gaussian white noise and in the
presence of a GW signal of constant amplitude h0 and
constant frequency f0. (A signal with constant frequency
represents the simplest time-frequency evolution to which
the technique presented here can be applied and is
particularly useful for illustrative purposes.)
We stress that the independence of the pairs that are

added in ρ is essential for the validity of the conclusion
regarding the Gaussianity of ρ and for the validity of
Eqs. (4.23)–(4.24). While pairs are truly independent in the
stochastic limit analyzed in this section, this is not strictly
true for the combination of pairs considered in Sec. IV of
Ref. [56] (ρ includes all possible pairs but self-ones—see
also case 4 in Sec. IV) and in the Appendix of Ref. [56]
(ρ includes all possible SFT pairs—see also case 2 in
Sec. IV). In these cases, ρ is a sum of products that are not
all independent. Thus, while the expressions for the mean
and variance of ρ presented in Sec. IV of Ref. [56] [or,
equivalently, Eqs. (4.17) and (4.18) here] remain valid, we
caution the reader that the lack of independence affects the
shape of the background distribution, and in some limits
results in a distribution that cannot be reduced to a
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Gaussian. Thus, the detection threshold needs to be
modified accordingly. Some brief discussion of these
corrections to Ref. [56] is also presented in Appendix B
of Ref. [77]. In what follows, our in-depth discussion of
cases 2–3 (Sec. IV) shows explicitly that the corrections to
Ref. [56] are crucial for the detection of the family of
intermediate-duration GW signals that we target in this
analysis.

B. Matched filter limit (all pairs)

In this limit, we choose to correlate all possible SFT
segments (from one or multiple detectors). Starting from
Eq. (4.14), we replace the weights with their explicit form
given by Eq. (4.12),

ρ¼ 2ℜ

2
64XNpairs

I;J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2þF2

þ;IþA2
×F2

×;IÞ
q

Sn½fk;I�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2þF2

þ;JþA2
×F2

×;JÞ
q

Sn½fk;J�

× ~x�I ½fk;I�~xJ½fk;J�eiΔθIJ
3
75; ð4:25Þ

where Npairs ¼ N2
SFT and NSFT ¼ NdetTobs=ΔTSFT, with

Ndet being the number of detectors from which data are
taken. Under the change of variable

~xI 0½fk;I� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2þF2

þ;I þA2
×F2

×;IÞ
q

Sn½fk;I�
~xI½fk;I�e−iθI ; ð4:26Þ

Eq. (4.25) simplifies to

ρ ¼ 2

	XNSFT

I

j~x0I½fk;I�j2 þ 2
XNSFT

I>J

ℜ½~x0�I ½fk;I�~x0J½fk0;J��


: ð4:27Þ

It then follows that

ρ ¼ 2

����X
NSFT

I

~x0I½fk;I�
����2: ð4:28Þ

Or, alternatively,

ρ¼ 2

��XNSFT

I

ℜð~x0I½fk;I�Þ
�

2

þ
�XNSFT

I

ℑð~x0I½fk;I�Þ
�

2
�
: ð4:29Þ

For stationary Gaussian noise with zero mean, ~xI½fk�
follows a complex normal distribution. We note that the
scaling and complex rotation applied in Eq. (4.26) have no
effect on the shape of the distribution of the ~x0I when
compared to the ~xI (but they do change the mean and
variance of the distribution). Thus, the real and imaginary
parts of ~x0I are still Gaussian distributed as the ~xI, and so are
their sums. Indeed, in the absence of a signal, the sums of
the real and imaginary parts of the ~x0I are Gaussian variables
with zero mean and variance [see Eq. (3.15)]:

σ2Σ ¼
XNSFT

I

�
ΔTSFTðA2þF2

þ;I þA2
×F2

×;IÞ
4Sn½fk;I�

�
: ð4:30Þ

So we can rewrite the expression for ρ as

FIG. 1. Comparison between the simulated and predicted
distribution of ρ in the stochastic limit, for 2048 s of simulated
white Gaussian noise sampled at a rate of fs ¼ 2048 Hz, from
two detectors’ outputs xH½t�, xL½t�. We have used a SFT baseline
of ΔTSFT ¼ 2 s, and for simplicity, we assumed two idealized,
colocated, and optimally oriented detectors with aLIGO-
equivalent PSDs Sn ≈ 1.75 × 10−47 Hz−1; see Fig. 2. The simu-
lated signal is a line of constant frequency f0 ¼ 128 Hz and
constant amplitude h0 ≈ 10−24.

FIG. 2. Method for generating Gaussian-distributed noise with
aLIGO PSD. A frequency range is defined with respect to the
maximum and minimum value of an injected signal’s frequency
(blue dotted lines). The constant Gaussian PSD Sn (red dashed
line) is calculated so that the area underneath it (shaded red) is
equal to the area underneath the aLIGO PSD (shaded blue). For
signals of constant frequency f0 (e.g., Figs. 1, 3, and 4), the red
area is taken between 0.9f0 and 1.1f0.
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ρ¼Cχ ×

��PNSFT
I ℜð~x0I½fk;I�Þ

σΣ

�2

þ
�PNSFT

I ℑð~x0I½fk;I�Þ
σΣ

�2�
;

ð4:31Þ

which is the sum of the squares of two normally distributed
variables, scaled by a factor:

Cχ ¼ 2σ2Σ ¼
XNSFT

I

�
ΔTSFTðA2þF2

þ;I þA2
×F2

×;IÞ
2Sn½fk;I�

�
: ð4:32Þ

Thus, the resulting ρ statistic is distributed as a χ2 with 2
degrees of freedom (Fig. 3; see also Ref. [77]).
Continuing from Eq. (4.31), in the absence of a signal,

the variance of ρ is simply

σ2ρ ¼ 4Cχ ¼ 2
XNSFT

I

�
ΔTSFTðA2þF2

þ;I þA2
×F2

×;IÞ
Sn½fk;I�

�
: ð4:33Þ

In the presence of a signal, the distribution of ρ in
Eq. (4.31) becomes a noncentral χ2 with two degrees of
freedom, χ2NCð2; λÞ, of mean

μρ ¼ Cχð2þ λÞ: ð4:34Þ

The noncentrality parameter can be derived using the above
relation and noting that μρ can be easily calculated using
Eqs. (4.5), (4.6), and (4.25). This yields [see also Eq. (4.24)
and Fig. 3]

λ ¼
XNSFT

I

h20ðTIÞ
�
ΔTSFTðA2þF2

þ;I þA2
×F2

×;IÞ
Sn½fk;I�

�
: ð4:35Þ

Note that in this limit the number of SFT pairs only affects
the variance (and mean) of the two Gaussian variablesPNSFT

I ℜð~x0I½fk;I�Þ and
PNSFT

I ℑð~x0I½fk;I�Þ. It does not affect
the number of degrees of freedom in ρ, which remains two
independently of the number of SFTs. Thus, as NSFT
increases, the distribution of ρ does not approach a
Gaussian. This is a critical distinction to make, since it
changes the (false alarm and false dismissal) thresholds of ρ
significantly from the ones that were adopted in the
Appendix of Ref. [56], where a Gaussian distribution
was incorrectly assumed for ρ.
In the case in which all pairs come from a single detector

(or from colocated, equally oriented detectors, with iden-
tical Sn), the variance of ρ simplifies substantially to

σ2ρ ¼ 4Cχ ¼ 2Tobs

�ðA2þF2þ þA2
×F2

×Þ
Sn

�
; ð4:36Þ

where we have used Tobs ¼ NSFTΔTSFT. The noncentrality
parameter likewise simplifies, yielding

λ ¼ h2rmsTobsðA2þF2þ þA2
×F2

×Þ
Sn

; ð4:37Þ

where we have used Eq. (4.24).
In either case, the corresponding detection threshold for

a given false alarm and detection rate is now substantially
different than in the stochastic limit:

FIG. 3. We simulate 2048 s of white Gaussian noise for a single
optimally oriented detector with aLIGO-equivalent noise PSD
given by Sn ≈ 1.75 × 10−47 Hz−1. We use a sampling frequency
of fs ¼ 2048 Hz and a SFT baseline of ΔTSFT ¼ 2 s. All
possible pairs are included in the cross-correlation statistic ρ
which is thus distributed as a scaled χ2 distribution with 2 degrees
of freedom. The simulated signal is a line of constant frequency
f0 ¼ 128 Hz and constant amplitude h0 ≈ 3.30 × 10−25.

FIG. 4. Comparison between the simulated and predicted
distribution of ρ in the semicoherent limit, for 1024 s of simulated
white Gaussian noise sampled at a rate of fs ¼ 2048 Hz, from
one detector’s output xðtÞ. We have used a SFT baseline of
ΔTSFT ¼ 2 s, and we assumed an optimally oriented detector
with PSD Sn ≈ 1.91 × 10−47 Hz−1. The coherence time is
Tcoh ¼ 256 s for a total of Ncoh ¼ 4 coherent segments. The
simulated signal is a line of constant frequency f0 ¼ 128 Hz and
constant amplitude h0 ≈ 8.47 × 10−25.
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ρth ¼ CχF−1
χ ð1 − α; 2Þ; ð4:38Þ

γ ¼ FNCχðρth=Cχ ; 2; λÞ: ð4:39Þ

The CDF for the χ2ð2Þ is known in closed form (and is even
invertible), while the CDF for the noncentral case can be
calculated numerically, with results as shown in Fig. 5.
In this limit, the sensitivity approaches that of matched

filtering. However, there is one significant error in the
description in Ref. [56]: the limit approached is that of
filtering with an unknown overall phase constant, which is
commonly handled by summing the squares of two matched
filters a quarter-cycle out of phase with each other—e.g.,
Ref. [61]. Hence, the resulting statistic is distributed as a χ2

with 2 degrees of freedom rather than a Gaussian. Under
idealized circumstances, this reduces the sensitivity by
approximately 13% with respect to a Gaussian distribution
(with FAP ¼ 0.1% and FDP ¼ 50%).

C. Semicoherent regime

As discussed in Sec. II, the semicoherent regime is the
most relevant for an astrophysically motivated search

where the expected GW signal is known to limited
accuracy. In this regime, the total observation time Tobs
is broken up into Ncoh coherent segments, each of duration
Tcoh. The coherence time (Tcoh) is once again defined as the
length of time wherein the signal is expected to maintain
phase coherence (and therefore good agreement) with the
model predictions. All possible SFT pairs within each
coherent time segment are cross-correlated, and the results
for each segment are then combined incoherently.5

In order for the resulting sumof χ2ð2Þ distributed variables
to add to a χ2ð2NcohÞ distributed detection statistic, it is
essential that all coherent segments have identical scale
factors.6 This condition is satisfied for a detector network of
arbitrary size only if the detectors have similar antenna
factors for the given sky location of the event, and each
detector has (stationary) white Gaussian noise (although the
frequency independent Sn of the detectors need not be
identical). In the case of colored noise, the scale factors will
vary between coherence segments (since the frequency of the
signal is evolving with time, which causes Sn½fk;I� to change
from segment to segment). Thus, in the presence of colored
noise, whitening the data over the signal bandwidth prior to
analysis is desirable.
Changes in the antenna factorsFþ,F× over the duration of

a signal in a nonidealized search, i.e., deviations from
assumption 1 in Sec. III C, can also affect the statistic. For
theGRBx-ray plateaus of interest to Sec. V,> 50% of events
with sufficiently shallow plateau decays7 have plateau
durations ≲104 s [94]. For circularly polarized signals of
this duration, we tentatively estimate that time-varying
antenna factors will cause fluctuations of ≈ 15% in ampli-
tude sensitivity, comparable to LIGO amplitude calibration
uncertainties [83]. We leave to future work a more in-depth
examination of deviations from this assumption.
When all coherent segments have identical scale factors,

ρ is an incoherent sum of Ncoh independent variables,
each distributed as a scaled χ2ð2Þ distribution. The scale
parameter for each coherent segment is given by Eq. (4.32)
but now with NSFT ¼ Tcoh=ΔTSFT, so that

CSC
χ ¼ Cχ

Ncoh
: ð4:40Þ

FIG. 5. The smallest detectable GWamplitude hmin is plotted vs
FAP with a set FDP of 1 − γ ¼ 50%. A matched filter with
known initial phase (black dotted line, with gray shading) is the
idealized optimal search, and it provides an absolute limit on the
sensitivity of any real search. Hence, the shaded gray area is
forbidden. The matched-filter limit of the cross-correlation
method (dashed blue line) is expected to approach (but not
converge with) the black-dotted line. The semicoherent limit
(dash/dotted purple lines) becomes less sensitive for increasing
Ncoh, eventually approaching the stochastic limit (dotted red).
The Ncoh ¼ NSFT ¼ 512 limit of the cross-correlation method
(red dash/double-dot red line) differs from the stochastic limit in
that it includes self-pairs (autocorrelations). As discussed in the
text, the assumptions of Gaussian statistics and known phase
constant in Ref. [56] yield incorrect results as the resulting
sensitivity (green solid line) does better than the optimal matched
filter for sufficiently small FAP.

5An alternative, but equivalent, description is to define a
“coherence window” of duration Tcoh which is then stepped
across the SFT according to a given spacing criterion. All
segments in each step are cross-correlated and then combined
incoherently.

6In general, for random χ2 variables Xi, their linear combi-
nation Y ¼ P

iCiXi is itself a χ2 variable if and only if the scale
coefficients Ci are identical (or 0). However, if the normalized
coefficients Ci=hCii are close to unity, Y is reasonably approxi-
mated by a χ2 distribution.

7We consider specifically Type IIa GRBs as described in
Ref. [94] with plateau power law decay indices of magnitudes
≲0.5.
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The variance of the semicoherent ρ then reads

σ2ρ;SC ¼ 2CSC
χ ð2NcohÞ ¼ 4Cχ ; ð4:41Þ

which is identical to the variance in matched-filter limit;
see Eq. (4.33).
When a signal is present, the noncentrality parameter for

each coherent segment will, in general, vary from one
semicoherent chunk to the other due to the time-varying
amplitude of the signal in Eq. (4.35). But, since the total λ
for the semicoherent regime is additive across all coherent
segments, the total noncentrality parameter for the semi-
coherent ρ likewise remains unchanged from the matched-
filter limit. The resulting distribution thus has mean

μρ;SC ¼ CSC
χ ð2Ncoh þ λÞ: ð4:42Þ

The above equation reduces to (4.34) in the limit ofNcoh ¼ 1
(matched-filter limit). The detection threshold for a given
signal will differ from the matched filter limit due to the
higher number of degrees of freedomof the χ2 distribution of
the semicoherent ρ and can be calculated numerically as
shown in Fig. 5 (along with other limits).
In the limit of largeNcoh, the χ2ð2NcohÞ distribution tends

toward a Gaussian. Continuous wave searches using this
cross-correlation technique, e.g., Ref. [77], can have Ncoh

of order 104 and hence can set their thresholds based on
Gaussian statistics as assumed by Ref. [56]. However,
searches for intermediate-duration GW signals (such as
those of interest to this paper) can have Ncoh smaller by 1–2
orders of magnitude, so it is essential to correct the
corresponding detection thresholds to account for non-
Gaussianity. In particular, the Central Limit Theorem
reduces the skew of the χ2ð2NcohÞ distribution relatively
slowly as Ncoh grows.

We finally remark that, for simplicity, we have assumed
coherence segments that do not overlap and no windowing
function for the SFTs. For a more detailed discussion
of the effects of overlapping segments and windowing,
see Ref. [78].

D. Spectral leakage effects

Several of the assumptions made in the previous sections
are expected to lead to some amount of spectral leakage.
These include the finite-time approximation of the delta
function in Eq. (3.14), the quarter-cycle criterion, and SFT
windowing effects (that is, the simplification of using a
simple rectangular window). A full treatment of the effects
of spectral leakage is outside the scope of this paper but we
mention some of its effects here.
As shown in Fig. 6, spectral leakage is an issue any time

the signal frequency does not precisely correspond to the
center of one of the SFT frequency bins. In the simplest
case of a constant frequency periodic signal, spectral
leakage can cause a reduction of up to 50% in the SNR
(μρ;signal=σρ;noise) for the ρ statistic in each of the fully
coherent segments. This effect is worsened when one
considers time-varying frequencies; while the quarter-cycle
criterion restricts the leakage from first-order terms ( _f),

higher-order components of the frequency evolution (f̈, f
…
,

etc.) can lead to additional leakage. The net result is that,
on average, neglecting spectral leakage will result in a
reduced SNR that is roughly 75% of the idealized case; see
Figs. 6(a) and 6(b) also Ref. [78].
The typical solution for this problem is to introduce a

windowing function for the SFT, but this is not without
tradeoffs. Each windowing function (of which there are
many) has different strengths and weaknesses. The com-
monly used Hann window is well equipped to handle
spectral leakage and maintains good frequency resolution

(a) (b)

FIG. 6. The effects of spectral leakage on signals of the form hðtÞ ¼ h0 sinΦðtÞ with ΦðtÞ ¼ 2π
R
fðtÞdt and h0 ¼ 10−24 injected into

Gaussian noise with zero mean and Sn ≈ 1.75 × 10−47 Hz−1. Two frequency evolutions are considered: a line feature of constant
frequency fðtÞ ¼ f0 (a) and a pulsarlike evolution of the form fðtÞ ¼ f0 − f1t [here f1 ¼ 1=1024 Hz=s, (b)]. The SFT baseline used to
calculate the SNR is ΔTSFT ¼ 2 s, resulting in SFT bin widths of 1=2 Hz (e.g., the center of the bin located at f0 ¼ 128.0 Hz has edges
at 128.25 and 127.75, red vertical dashed lines). In all cases, the total duration of the signal is Tobs ¼ 512 s.
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but suffers in amplitude accuracy [78]. SFT windows must
then be overlapped in an attempt to regain some of the lost
amplitude information, increasing computational cost. The
Tukey window, commonly used in continuous wave
searches, is—by contrast—not as good at diminishing
the effects of spectral leakage but retains more of the
original power. Recent work within the cross-correlation
framework has examined the effects of different windowing
functions in detail [77,78].
Othermethods can also be used to reduce spectral leakage.

These include over-resolving each SFT by zero padding
(although this can still lead to some spectral leakage for
signals in which the frequency varies continuously with
time), sinc-interpolating between SFT bins (thus leveraging
the sampling theorem [95]), or simply adding contributions
from neighboring SFT bins. Including just the two adjacent
SFT binswhen cross-correlating can improve recovery of the
expected SNR from ≈ 77% to ≈ 90% [78].
In what follows, we acknowledge that spectral leakage

could lead to SNRs that are roughly ≈ 75% of the idealized
value for the ρ statistic (i.e., up to a factor of

ffiffiffiffiffiffiffi
:75

p
≈ 87%

in signal amplitude and/or distance reach for cases in which
f̈ and higher terms may not be negligible). This is
consistent with the estimate of 77.4% for rectangular
windowing described in Ref. [78] and related searches,
e.g., Ref. [77]. Signals for which a chosen baseline is
particularly close to the limit set by _f via the quarter-cycle
criterion (assumption 2 in Sec. III C) may experience
additional leakage [not to exceed the maximum loss offfiffiffiffi
:5

p
≈ 71% in amplitude sensitivity; see Fig. 6(a)].

V. GRB PLATEAU SEARCH SENSITIVITY

In this section, we apply the cross-correlation statistic to
the specific model of intermediate-duration GW signals
described in Ref. [38]. This model describes the scenario of
a secularly unstable GRB-magnetar possibly associated
with a GRB afterglow plateau (see also Sec. I).
In the Newtonian limit, the l ¼ m ¼ 2 f-mode becomes

secularly unstablewhen the ratio β ¼ T=jWj of the rotational
kinetic energy T to the gravitational binding energy jWj is
between 0.14 and 0.27. This mode has the shortest growth
time of all polar fluid modes, 1 s ≲ τGW ≲ 7 × 104 s for
0.24≳ β ≳ 0.15 [54], and may be an important source of
GWs. Under the hypothesis that a secular bar-mode insta-
bility does indeed set in for a magnetar left over after a GRB
explosion, Corsi and Mészáros [38] have followed the NS
quasistatic evolution under the effect of gravitational radi-
ation according to the analytical formulation given by
Ref. [54]. Since τGW is generally much longer than the
dynamical time of the star, the evolution is quasistatic; i.e.,
the star evolves along an equilibrium sequence ofRiemann-S
ellipsoids. Differently from what was done by Lai and
Shapiro [54], Corsi and Mészáros [38] added into the
evolution energy losses due to magnetic dipole radiation,
assuming that those will not substantially modify the

dynamics but will act to speed up the overall evolution
along the same sequence of Riemann-S ellipsoids that theNS
would have followed in the absence of radiative losses.
In the model proposed by Corsi and Mészáros 2009 [38],

the resulting quasiperiodic GW signal depends on five
parameters: β, the initial kinetic-to-gravitational potential
energy ratio of the magnetized NS [54]; n, the NS
polytropic index; M, the NS mass; R0, the unperturbed
NS radius; and B0, the initial dipolar magnetic field
strength at poles. For a typical parameter choice of
M ¼ 1.4 M⊙, R0 ¼ 20 km, n ¼ 1, B0 ¼ 1014 G, and
β ¼ 0.20 (Fig. 7, red), Ref. [38] has estimated a distance
reach (assuming a matched-filter search) of ≈ 100 Mpc for
the aLIGO-Virgo detectors (for FAP ≈ 5 × 10−5 and
FDP ¼ 50%).
We have tested the detectability of this class of signals

using the adaptation of the cross-correlation statistic
described in the previous sections and assuming
Gaussian noise with SnðfÞ ≈ 1.83 × 10−47 Hz−1 approx-
imately equal to that of whitened aLIGO-Virgo noise in the
signal’s frequency band (Fig. 2). The results are reported in
Table I for an optimally oriented GRB.8

A matched-filter analysis yields the highest sensitivity
and thus the largest horizon distance limits. For a typical
choice of model parameters (e.g., β ¼ 0.20, B0 ¼ 1014 G,
M ¼ 1.4M⊙, and R0 ¼ 20 km), if we assume that the
initial phase is known as in Ref. [38], we obtain a distance
limit of ≈ 139 Mpc for a FAP of 0.1% and a FDP of 50%

FIG. 7. Frequency evolution for two representative signals
generated via the Corsi and Mészáros model. The signals are
for a typical choice of parameters M ¼ 1.4 M⊙, R0 ¼ 20 km,
n ¼ 1, B0 ¼ 1014 G, and different β (β ¼ 0.20 is in the center of
the allowed range of 0.14 < β < 0.27). For more details on the
model used to generate these waveforms, see Ref. [38].

8Here, “optimally oriented” is taken to mean that the GRB jet
is aligned with the line of sight (so that ι ¼ 0 and the GW is
circularly polarized, i.e., Aþ ¼ A× ¼ 1; see Sec. III C) and the
GRB sky location is such that the line of sight is orthogonal to the
plane containing the detector (so that F2þ þ F2

× ¼ 1).
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using data from a single detector. This is consistent with the
estimate of ≈ 100 Mpc reported in Ref. [38] (which
assumed a smaller FAP). A real matched-filter search will
have an overall unknown phase constant (see the last
paragraph in Sec. IV B), which reduces the horizon dis-
tance to ≈ 118 Mpc (for the same model parameters).
Our cross-correlation matched-filter limit yields a horizon
distance of ≈ 103 Mpc, or 103 Mpc=

ffiffiffiffiffiffiffiffiffi
75%

p
≈ 119 Mpc

when correcting for spectral leakage (see Fig. 6), in
agreement with the (real) matched filter.
We finally note that signals with faster frequency

evolutions are affected more by spectral leakage, for a
fixed choice of ΔTSFT (satisfying the quarter cycle cri-
terion). For example, the GW signal from a magnetar with
β ¼ 0.26 would have a faster frequency evolution than that
from a source with β ¼ 0.20 (with other source parameters
unchanged, Fig. 7). The distance horizon we achieve in the
cross-correlation matched-filter limit for β ¼ 0.26 (and for
a ΔTSFT equal to the one used for the β ¼ 0.20 case) is
≈ 216 Mpc. This is ≈

ffiffiffiffiffiffiffiffiffi
57%

p
of the expected matched-filter

horizon of 287 Mpc (see Table I), worse than what we
would have expected for average spectral leakage losses offfiffiffiffiffiffiffiffiffi
75%

p
, but still within the maximum expected value offfiffiffiffiffiffiffiffiffi

50%
p

[see Fig. 6(a)]. Such extremal losses are consistent
with baselines very near to (but not exceeding) the
maximum value set by the quarter-cycle criterion. These
losses can be improved by optimizing the size of the
baseline, given each frequency evolution, which is planned
for future work. These results are summarized in Table I.
While a detailed study of the parameter space of the

model by Ref. [38] is beyond the scope of this paper, we
also carried out several simulations to demonstrate the
effectiveness of a semicoherent approach in (i) enhancing
the robustness of the search against signal uncertainties
when compared to a matched-filter limit and (ii) enhancing
the sensitivity of the search when compared to a “stochastic
approach.” We do so by calculating the distance horizons
for situations in which the assumed time-frequency track
differs from the actual signal by some amount. This

difference is quantified by an error (δM, δR, δB) on the
values of the true signal parameters (M, R, B). The sizes of
these errors help determine the parameter space resolution
for an effective search. The results of these tests are
summarized in Tables II and III.
Because an error in signal parameters implies a mis-

match between the true signal time-frequency evolution
and the time-frequency track adopted for the calculation of
the ρ statistic, we expect the cross-correlation search to
completely miss the signal in the limit of large coherence
time scales, Tcoh → Tobs (approaching the matched-filter
limit, which is not robust against such deviations). On the
other hand, in the limit of small coherence time scales,
Tcoh → ΔTSFT, while the search is expected to be robust
against signal uncertainties, the sensitivity is significantly
lower than the matched-filter case. Thus, for a given
parameter space resolution, one can define an optimal
coherence time scale, which can then be used to quantify
the distance reach of the semicoherent regime (for given
FAP and FDP).
We obtain the optimal coherence time (Topt) by calcu-

lating the detection efficiency for given FAP (here, 0.1%) as

TABLE I. Single-detector distance horizons for simulations in
which the search is performed on the “correct” frequency-time
track for with B0 ¼ 1014 G, M ¼ 1.4M⊙, R0 ¼ 20 km and
varying values of β using the model proposed by Ref. [38].
The search techniques used are matched filtering with unknown
phase (MF), the cross-correlation matched-filter limit (χ2 MF,
see Sec. IV B), and the cross-correlation stochastic limit (see
Sec. IVA). All errors are ofOð10Þ Mpc, except for the stochastic
limit, which are of Oð1Þ Mpc.

Distance horizon (Mpc)
β value MF χ2MF Stochastic

0.20 118 103 20
0.26 287 216 40

TABLE II. Single-detector distance horizons for large steps in
each of the model parameters with β ¼ 0.20, B0 ¼ 1014 Gþ
δB0, M ¼ 1.4M⊙ þ δM, and R0 ¼ 20 kmþ δR0. The resulting
distance horizons are approximately 20–30 Mpc, which is up to a
50% improvement over the stochastic limita but only ≈ 25% of
the matched-filter limit.

Distance horizon (Mpc)
Parameter Step size ToptðsÞ Semicoherent Stochastic

δB0 1012 G 1 22 20
δM 5 × 10−3M⊙ 2 28 20
δR0 20 m 2 29 20
δAll As above 0.5 20 20

aA factor of 1.5 in distance horizon increases the expected
detection rate by a factor of 1.53 ≈ 3.

TABLE III. Single-detector distance horizons for small steps in
each of the model parameters with β ¼ 0.20, B0 ¼ 1014 Gþ
δB0,M ¼ 1.4M⊙ þ δM, and R0 ¼ 20 kmþ δR0. The simulation
used Tobs ¼ 1024 s and ΔTSFT ¼ 0.25 s. The resulting distance
horizons are approximately 60–80 Mpc, up to four times as large
as the stochastic limita and ≳75% of the matched-filter limit. All
errors are of order Oð1Þ Mpc.

Distance horizon (Mpc)
Parameter Step size Topt ðsÞ Semicoherent Stochastic

δB0 1010 G 64 61 20
δM 5 × 10−5M⊙ 256 73 20
δR0 0.2 m 256 76 20
δAll As above 64 58 20

aA factor of 4 in distance horizon increases the expected
detection rate by a factor of 43 ¼ 64.
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a function of Tcoh, for a signal at a fixed distance. The Tcoh
that is associated with the maximal detection efficiency is
then used for a series of injections of varying distance, but
fixed Tcoh. The distance that is associated with an efficiency
of 50% (which is equivalent to a FDP of 50%) is then taken
to be the distance horizon for that step size. The step sizes
taken for each model parameter inform the size of the
parameter space that a semicoherent cross-correlation
search should cover. We ran simulations with two classes
of step size: “large” steps that correspond to a coarse grid in

the parameter space and “small” steps that correspond to a
finer (and, subsequently, more computationally intensive)
grid in the parameter space.
The results for the large steps are shown in Fig. 8 and

summarized in Table II. Optimal coherence times, see
Fig. 8 (left), are ofOð1Þ s, which lead to maximal detection
distances around 20-30 Mpc (recovering only ≈ 25% of the
matched-filter limit); see Fig. 8 (right). In the case where all
three parameters are stepped simultaneously (δAll), the
optimal coherence time is only twice the SFT baseline of

FIG. 8. Efficiency (1-FDP) plots for large steps δB0 ¼ 1012 G (blue), δM ¼ 5 × 10−3M⊙ (green), δR0 ¼ 20 m (red), and all three
combined (purple). All plots assume FAP ¼ 0.1%, and distances are extracted using FDP ¼ 50% (black dotted line and gray shaded
area). On the left, optimal coherence time plots. The signal is injected at a constant distance, and Tcoh is then varied to find the value that
maximizes detection efficiency (Topt). On the right, Tcoh is fixed at the optimum value for each step, and then distance is varied. The
result is fit by an asymmetric sigmoid of the form sigðxÞ ¼ ½1þ expðp0fx − p1gÞ�−1=p2 (where p0, p1, p2 are constants to be fit), which
is then used to interpolate and determine the max distance (dmax).
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ΔTSFT ¼ 0.25 s and provides no significant gains over the
stochastic limit; see Table II.
The small step sizes produce optimal coherence times

as high as 256 s, see Fig. 9 (left), which lead to maximal
detection distances of ≈ 60–80 Mpc, roughly ≈ 75% of
the matched-filter limit; see Fig. 9 (right). For compari-
son, we note that nearest long GRB on record was GRB
980425, located at a distance of 40 Mpc [96,97]. These
results suggest that the large steps considered above are
indeed too large to adequately resolve the parameter

space, while the small steps represent a good starting
point for a finer exploration of the physically relevant
parameter space. We note that an in-depth discussion of
parameter space range and resolution must also include
the effect of the implied number of trials on the detection
statistic. This effect is expected to be more important for
longer coherence times. A full study of the parameter
space for intermediate-duration GWs, using the cross-
correlation search technique described here, is planned for
future work.

FIG. 9. Efficiency (1-FDP) plots for small steps in δB0 ¼ 1010 G (blue), δM ¼ 5 × 10−5M⊙ (green), δR0 ¼ 0.2 m (red), and all three
combined (purple). All plots assume FAP ¼ 0.1%, and distances are extracted using FDP ¼ 50% (black dotted line and gray shaded
area). On the left, optimal coherence time plots. The signal is injected at a constant distance, and Tcoh is then varied to find the value that
maximizes detection efficiency (Topt). On the right, Tcoh is fixed at the optimum value for each step, and then distance is varied. The
result is fit by an asymmetric sigmoid of the form sigðxÞ ¼ ½1þ expðp0fx − p1gÞ�−1=p2 (where p0, p1, p2 are constants to be fit), which
is then used to interpolate and determine the max distance (dmax).
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VI. DISCUSSION AND CONCLUSION

We have explored the application of the cross-correlation
technique described in Ref. [56] to a new class of
intermediate-duration GW signals of duration Tobs≲
104 s, specifically the bar-mode instability model for
millisecond magnetars developed in Ref. [38]. In doing
so, we have corrected the statistical properties of the cross-
correlation statistic reported in Ref. [56] for both the
semicoherent and fully-coherent matched-filter limits. In
addition, we have done a cursory exploration of the
parameter space for this model.
There are several parallels between limits of the cross-

correlation method and other search techniques used for
LIGO data analysis. Natural examples are the techniques
derived from efforts to quantify the stochastic GW back-
ground. Two such methods are the Stochastic Transient
Analysis Multi-detector Pipeline (STAMP), a cross-power
statistic widely used for LIGO all-sky searches [30,98], and
stochtrack, a seedless clustering algorithm that has been
tested on signal models comparable in duration to those
considered here [31]. Both these methods are similar (in
spirit, if not necessarily implementation) to the stochastic
limit of the cross-correlation approach.
Because of their significant robustness against signal

uncertainties (and relatively low computational costs),
stochastic-inspired methods (as the two described above)
are attractive for many search regimes and especially as a
first pass when searching for viable GW candidates with
wide parameter spaces. On the other hand, the improve-
ment in sensitivity (and therefore distance reach) enabled
by the semicoherent limit of the cross-correlation approach

lends itself to deeper searches. A potential way to leverage
the strengths of both regimes is to develop a framework in
which a stochastic-inspired search is used for discovery,
with a semicoherent cross-correlation followup for param-
eter estimation and refinement. This could be done entirely
within the cross-correlation method described in this work
or by using an established stochastic technique (e.g.,
STAMP) for discovery and cross-correlation for followup.
Overall, the results of our study are encouraging; the

tunable robustness vs sensitivity of the cross-correlation
technique is well suited for intermediate-duration GW
signals that evolve on time scales of 103–104 s and can
reach astrophysically relevant distance horizons with the
expected noise characteristics of GW detectors such as
aLIGO and Virgo. However, a full parameter space
exploration is yet to be completed, as is testing on real
instrument noise. Additionally, the trials factor for a full
parameter space search will reduce, to some extent, the
idealized horizon distances calculated here. We intend to
explore these aspects of the analyses in future work.

ACKNOWLEDGMENTS

This work is supported by NSF Grant No. PHY-1456447
(PI: Corsi). B. O. acknowledges support from NSF Grants
No. PHY-1206027, No. PHY-1544295, and No. PHY-
1506311. A. C. and B. O. thank P. Meszaros for useful
discussions in the early stages of this work. A. C. also
thanks C. Palomba for early discussions regarding con-
tinuous wave searches. This article has been assigned
LIGO Document No. LIGO-P1500226.

[1] B. Abbott et al., Search for gravitational waves associated
with the gamma ray burst GRB030329 using the LIGO
detectors, Phys. Rev. D 72, 042002 (2005).

[2] B. Abbott et al., Search for gravitational wave radiation
associated with the pulsating tail of the SGR 1806-20
hyperflare of 27 December 2004 using LIGO, Phys. Rev.
D 76, 062003 (2007).

[3] F. Acernese et al., Gravitational waves by gamma-ray bursts
and the Virgo detector: the case of GRB 050915a, Classical
Quantum Gravity 24, S671 (2007).

[4] B. Abbott et al., Search for gravitational waves associated
with 39 gamma-ray bursts using data from the second, third,
and fourth LIGO runs, Phys. Rev. D 77, 062004 (2008).

[5] B. Abbott et al., Implications for the Origin of GRB 070201
from LIGO Observations, Astrophys. J. 681, 1419 (2008).

[6] F. Acernese et al., Search for gravitational waves associated
with GRB 050915a using the Virgo detector, Classical
Quantum Gravity 25, 225001 (2008).

[7] B. P. Abbott et al., Stacked search for gravitational waves
from the 2006 SGR 1900þ 14 storm, Astrophys. J. Lett.
701, L68 (2009).

[8] B. P. Abbott et al., Search for gravitational-wave bursts
associated with gamma-ray bursts using data from LIGO
Science Run 5 and Virgo Science Run 1, Astrophys. J. 715,
1438 (2010).

[9] J. Abadie et al., Search for gravitational-wave inspiral
signals associated with short gamma-ray bursts during
LIGO’s fifth and Virgo’s first science run, Astrophys. J.
715, 1453 (2010).

[10] J. Abadie et al., Search for gravitational waves associated
with the August 2006 timing glitch of the Vela pulsar, Phys.
Rev. D 83, 042001 (2011).

[11] J. Abadie et al., Search for Gravitational Wave Bursts from
Six Magnetars, Astrophys. J. Lett. 734, L35 (2011).

[12] J. Abadie et al., Implications for the origin of GRB 051103
from LIGO observations, arXiv:1201.4413.

COYNE, CORSI, and OWEN PHYSICAL REVIEW D 93, 104059 (2016)

104059-16

http://dx.doi.org/10.1103/PhysRevD.72.042002
http://dx.doi.org/10.1103/PhysRevD.76.062003
http://dx.doi.org/10.1103/PhysRevD.76.062003
http://dx.doi.org/10.1088/0264-9381/24/19/S29
http://dx.doi.org/10.1088/0264-9381/24/19/S29
http://dx.doi.org/10.1103/PhysRevD.77.062004
http://dx.doi.org/10.1086/587954
http://dx.doi.org/10.1088/0264-9381/25/22/225001
http://dx.doi.org/10.1088/0264-9381/25/22/225001
http://dx.doi.org/10.1088/0004-637X/701/2/L68
http://dx.doi.org/10.1088/0004-637X/701/2/L68
http://dx.doi.org/10.1088/0004-637X/715/2/1438
http://dx.doi.org/10.1088/0004-637X/715/2/1438
http://dx.doi.org/10.1088/0004-637X/715/2/1453
http://dx.doi.org/10.1088/0004-637X/715/2/1453
http://dx.doi.org/10.1103/PhysRevD.83.042001
http://dx.doi.org/10.1103/PhysRevD.83.042001
http://dx.doi.org/10.1088/2041-8205/734/2/L35
http://arXiv.org/abs/1201.4413


[13] J. Aasi et al., Search for long-lived gravitational-wave
transients coincident with long gamma-ray bursts, Phys.
Rev. D 88, 122004 (2013).

[14] J. Aasi et al. (VIRGO and LIGO Scientific Collaborations),
Methods and results of a search for gravitational waves
associated with gamma-ray bursts using the GEO600,
LIGO, and Virgo detectors, Phys. Rev. D 89, 122004
(2014).

[15] J. Aasi et al. (VIRGO, IPN, and LIGO Scientific
Collaborations), Search for Gravitational Waves Associated
with γ-Ray Bursts Detected by the Interplanetary Network,
Phys. Rev. Lett. 113, 011102 (2014).

[16] B. Abbott et al. (LIGO Scientific Collaboration),
Setting upper limits on the strength of periodic gravitational
waves using the first science data from the GEO 600 and
LIGO detectors, Phys. Rev. D 69, 082004 (2004).

[17] B. Abbott et al. (LIGO Scientific Collaboration), Limits on
Gravitational Wave Emission from Selected Pulsars using
LIGO Data, Phys. Rev. Lett. 94, 181103 (2005).

[18] B. Abbott et al., Upper limits on gravitational wave
emission from 78 radio pulsars, Phys. Rev. D 76, 042001
(2007).

[19] B. Abbott et al., Searches for periodic gravitational waves
from unknown isolated sources and Scorpius X-1: Results
from the second LIGO science run, Phys. Rev. D 76, 082001
(2007).

[20] B. Abbott et al., Beating the spin-down limit on gravita-
tional wave emission from the Crab Pulsar, Astrophys. J.
Lett. 683, L45 (2008).

[21] J. Abadie et al., First search for gravitational waves from the
youngest known neutron star, Astrophys. J. 722, 1504
(2010).

[22] J. Abadie et al., Beating the spin-down limit on gravitational
wave emission from the vela pulsar, Astrophys. J. 737, 93
(2011).

[23] J. Abadie et al., Directional Limits on Persistent Gravita-
tional Waves Using LIGO S5 Science Data, Phys. Rev. Lett.
107, 271102 (2011).

[24] J. Aasi et al., Directed search for continuous gravitational
waves from the Galactic center, Phys. Rev. D 88, 102002
(2013).

[25] J. Aasi et al. (LIGO Scientific Collaboration), Gravitational
waves from known pulsars: results from the initial detector
era, Astrophys. J. 785, 119 (2014).

[26] J. Aasi et al., Narrow-band search of continuous gravita-
tional-wave signals from Crab and Vela pulsars in Virgo
VSR4 data, Phys. Rev. D 91, 022004 (2015).

[27] J. Aasi et al. (VIRGO and LIGO Scientific Collaborations),
Directed search for gravitational waves from Scorpius X-1
with initial LIGO data, Phys. Rev. D 91, 062008 (2015).

[28] J. Aasi et al., Searches for continuous gravitational waves
from nine young supernova remnants, Astrophys. J. 813, 39
(2015).

[29] B. Abbott et al., Upper limit map of a background of
gravitational waves, Phys. Rev. D 76, 082003 (2007).

[30] E. Thrane et al., Long gravitational-wave transients
and associated detection strategies for a network of
terrestrial interferometers, Phys. Rev. D 83, 083004
(2011).

[31] E. Thrane and M. Coughlin, Seedless clustering in all-sky
searches for gravitational-wave transients, Phys. Rev. D 89
(2014).

[32] E. Thrane, V. Mandic, and N. Christensen, Detecting very
long-lived gravitational-wave transients lasting hours to
weeks, Phys. Rev. D 91, 104021 (2015).

[33] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), An all-sky search for long-duration gravitational
wave transients with initial LIGO, Phys. Rev. D 93, 042005
(2016).

[34] E. Thrane, V. Mandic, and N. Christensen, Detecting very
long-lived gravitational-wave transients lasting hours to
weeks, Phys. Rev. D 91, 104021 (2015).

[35] M. H. van Putten, Proposed Source of Gravitational Radi-
ation from a Torus around a Black Hole, Phys. Rev. Lett. 87,
091101 (2001).

[36] S. Dall’Osso and L. Stella, Newborn magnetars as sources
of gravitational radiation: constraints from high energy
observations of magnetar candidates, Astrophys. Space
Sci. 308, 119 (2007).

[37] A. L. Piro and E. Pfahl, Fragmentation of collapsar disks
and the production of gravitational waves, Astrophys. J.
658, 1173 (2007).

[38] A. Corsi and P. Mészáros, Gamma-ray burst afterglow
plateaus and gravitational waves: Multi-messenger signa-
ture of a millisecond magnetar?, Astrophys. J. 702, 1171
(2009).

[39] M. H. P. M. van Putten, Gravitational waveforms of Kerr
black holes interacting with high-density matter, Astrophys.
J. Lett. 684, L91 (2008).

[40] C. D. Ott, TOPICAL REVIEW: The gravitational-wave
signature of core-collapse supernovae, Classical Quantum
Gravity 26, 063001 (2009).

[41] A. L. Piro and C. D. Ott, Supernova fallback onto magnetars
and propeller-powered supernovae, Astrophys. J. 736, 108
(2011).

[42] A. L. Piro and E. Thrane, Gravitational waves from
fallback accretion onto neutron stars, Astrophys. J. 761,
63 (2012).

[43] D. D. Doneva, K. D. Kokkotas, and P. Pnigouras,
A gravitational wave afterglow in binary neutron star
mergers, arXiv:1510.00673.

[44] J. A. Nousek et al., Evidence for a canonical gamma-ray
burst afterglow light curve in the Swift XRT data,
Astrophys. J. 642, 389 (2006).

[45] B. Zhang, Y. Z. Fan, J. Dyks, S. Kobayashi, P. Mészáros,
D. N. Burrows, J. A. Nousek, and N. Gehrels, Physical
processes shaping gamma-ray burst x-ray afterglow light
curves: Theoretical implications from the Swift x-ray tele-
scope observations, Astrophys. J. 642, 354 (2006).

[46] E. Liang, B. Zhang, and B. Zhang, A comprehensive
analysis of swift XRT data. II. Diverse physical origins
of the shallow decay segment, Astrophys. J. 670, 565
(2007).

[47] R. L. C. Starling et al., Swift captures the spectrally evolv-
ing prompt emission of GRB070616, Mon. Not. R. Astron.
Soc. 384, 504S (2008).

[48] M. G. Bernardini, R. Margutti, J. Mao, E. Zaninoni, and G.
Chincarini, The x-ray light curve of gamma-ray bursts:

CROSS-CORRELATION METHOD FOR INTERMEDIATE … PHYSICAL REVIEW D 93, 104059 (2016)

104059-17

http://dx.doi.org/10.1103/PhysRevD.88.122004
http://dx.doi.org/10.1103/PhysRevD.88.122004
http://dx.doi.org/10.1103/PhysRevD.89.122004
http://dx.doi.org/10.1103/PhysRevD.89.122004
http://dx.doi.org/10.1103/PhysRevLett.113.011102
http://dx.doi.org/10.1103/PhysRevD.69.082004
http://dx.doi.org/10.1103/PhysRevLett.94.181103
http://dx.doi.org/10.1103/PhysRevD.76.042001
http://dx.doi.org/10.1103/PhysRevD.76.042001
http://dx.doi.org/10.1103/PhysRevD.76.082001
http://dx.doi.org/10.1103/PhysRevD.76.082001
http://dx.doi.org/10.1086/591526
http://dx.doi.org/10.1086/591526
http://dx.doi.org/10.1088/0004-637X/722/2/1504
http://dx.doi.org/10.1088/0004-637X/722/2/1504
http://dx.doi.org/10.1088/0004-637X/737/2/93
http://dx.doi.org/10.1088/0004-637X/737/2/93
http://dx.doi.org/10.1103/PhysRevLett.107.271102
http://dx.doi.org/10.1103/PhysRevLett.107.271102
http://dx.doi.org/10.1103/PhysRevD.88.102002
http://dx.doi.org/10.1103/PhysRevD.88.102002
http://dx.doi.org/10.1088/0004-637X/785/2/119
http://dx.doi.org/10.1103/PhysRevD.91.022004
http://dx.doi.org/10.1103/PhysRevD.91.062008
http://dx.doi.org/10.1088/0004-637X/813/1/39
http://dx.doi.org/10.1088/0004-637X/813/1/39
http://dx.doi.org/10.1103/PhysRevD.76.082003
http://dx.doi.org/10.1103/PhysRevD.83.083004
http://dx.doi.org/10.1103/PhysRevD.83.083004
http://dx.doi.org/10.1103/PhysRevD.89.063012
http://dx.doi.org/10.1103/PhysRevD.89.063012
http://dx.doi.org/10.1103/PhysRevD.91.104021
http://dx.doi.org/10.1103/PhysRevD.93.042005
http://dx.doi.org/10.1103/PhysRevD.93.042005
http://dx.doi.org/10.1103/PhysRevD.91.104021
http://dx.doi.org/10.1103/PhysRevLett.87.091101
http://dx.doi.org/10.1103/PhysRevLett.87.091101
http://dx.doi.org/10.1007/s10509-007-9323-0
http://dx.doi.org/10.1007/s10509-007-9323-0
http://dx.doi.org/10.1086/511672
http://dx.doi.org/10.1086/511672
http://dx.doi.org/10.1088/0004-637X/702/2/1171
http://dx.doi.org/10.1088/0004-637X/702/2/1171
http://dx.doi.org/10.1086/592216
http://dx.doi.org/10.1086/592216
http://dx.doi.org/10.1088/0264-9381/26/6/063001
http://dx.doi.org/10.1088/0264-9381/26/6/063001
http://dx.doi.org/10.1088/0004-637X/736/2/108
http://dx.doi.org/10.1088/0004-637X/736/2/108
http://dx.doi.org/10.1088/0004-637X/761/1/63
http://dx.doi.org/10.1088/0004-637X/761/1/63
http://arXiv.org/abs/1510.00673
http://dx.doi.org/10.1086/500724
http://dx.doi.org/10.1086/500723
http://dx.doi.org/10.1086/521870
http://dx.doi.org/10.1086/521870
http://dx.doi.org/10.1111/j.1365-2966.2007.12763.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12763.x


Clues to the central engine, Astron. Astrophys. 539, A3
(2012).

[49] B. P. Gompertz, P. T. O’Brien, G. A. Wynn, and A.
Rowlinson, Can magnetar spin-down power extended
emission in some short GRBs?, Mon. Not. R. Astron.
Soc. 431, 1745 (2013).

[50] A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir,
and A. J. Levan, Signatures of magnetar central engines in
short GRB light curves, Mon. Not. R. Astron. Soc. 430,
1061 (2013).

[51] S. X. Yi, Z. G. Dai, X. F. Wu, and F. Y. Wang, X-Ray
afterglow plateaus of long gamma-ray bursts: Further
evidence for millisecond magnetars, arXiv:1401.1601.

[52] S. Chandrasekhar, Solutions of Two Problems in the
Theory of Gravitational Radiation, Phys. Rev. Lett. 24,
611 (1970).

[53] J. L. Friedman and B. F. Schutz, Secular instability of
rotating Newtonian stars, Astrophys. J. 222, 281 (1978).

[54] D. Lai and S. L. Shapiro, Gravitational radiation from
rapidly rotating nascent neutron stars, Astrophys. J. 442,
259 (1995).

[55] B. Zhang and P. Mészáros, Gamma-Ray burst afterglow
with continuous energy injection: Signature of a highly
magnetized millisecond pulsar, Astrophys. J. Lett. 552, L35
(2001).

[56] S. Dhurandhar, B. Krishnan, H. Mukhopadhyay, and J. T.
Whelan, Cross-correlation search for periodic gravitational
waves, Phys. Rev. D 77, 082001 (2008).

[57] N. J. Cornish and J. D. Romano, Towards a unified treat-
ment of gravitational-wave data analysis, Phys. Rev. D 87,
122003 (2013).

[58] R. Prix, S. Giampanis, and C. Messenger, Search method for
long-duration gravitational-wave transients from neutron
stars, Phys. Rev. D 84, 023007 (2011).

[59] B. F. Schutz, The Detection of Gravitational Waves
(Cambridge University Press, Cambridge, England, 1991).

[60] P. Jaranowski, A. Królak, and B. F. Schutz, Data analysis
of gravitational-wave signals from spinning neutron stars:
The signal and its detection, Phys. Rev. D 58, 063001
(1998).

[61] B. J. Owen, Search templates for gravitational waves from
inspiraling binaries: Choice of template spacing, Phys. Rev.
D 53, 6749 (1996).

[62] P. R. Brady, T. Creighton, C. Cutler, and B. F. Schutz,
Searching for periodic sources with LIGO, Phys. Rev. D
57, 2101 (1998).

[63] B. J. Owen and B. S. Sathyaprakash, Matched filtering of
gravitational waves from inspiraling compact binaries:
Computational cost and template placement, Phys. Rev.
D 60, 022002 (1999).

[64] K. Wette et al., Searching for gravitational waves from
Cassiopeia A with LIGO, Classical Quantum Gravity 25,
235011 (2008).

[65] T. A. Apostolatos, Search templates for gravitational waves
from precessing, inspiraling binaries, Phys. Rev. D 52, 605
(1995).

[66] L. Lindblom, B. J. Owen, and D. A. Brown, Model wave-
form accuracy standards for gravitational wave data analy-
sis, Phys. Rev. D 78, 124020 (2008).

[67] L. Lindblom, J. G. Baker, and B. J. Owen, Improved time-
domain accuracy standards for model gravitational wave-
forms, Phys. Rev. D 82, 084020 (2010).

[68] T. Damour, A. Nagar, and M. Trias, Accuracy and effec-
tualness of closed-form, frequency-domain waveforms for
nonspinning black hole binaries, Phys. Rev. D 83, 024006
(2011).

[69] I. Hinder et al., Error-analysis and comparison to analytical
models of numerical waveforms produced by the NRAR
Collaboration, Classical Quantum Gravity 31, 025012
(2013).

[70] L. Sampson, N. Cornish, and N. Yunes, Mismodeling in
gravitational-wave astronomy: The trouble with templates,
Phys. Rev. D 89, 064037 (2014).

[71] P. R. Brady and T. Creighton, Searching for periodic sources
with LIGO. II. Hierarchical searches, Phys. Rev. D 61,
082001 (2000).

[72] B. Allen, χ2 time-frequency discriminator for gravitational
wave detection, Phys. Rev. D 71, 062001 (2005).

[73] C. Cutler, I. Gholami, and B. Krishnan, Improved stack-
slide searches for gravitational-wave pulsars, Phys. Rev. D
72, 042004 (2005).

[74] B. P. Abbott et al., An upper limit on the stochastic
gravitational-wave background of cosmological origin,
Nature (London) 460, 990 (2009).

[75] J. Aasi et al. (LIGO Scientific and Virgo Collaboration),
Searching for stochastic gravitational waves using data from
the two colocated LIGO Hanford detectors, Phys. Rev. D
91, 022003 (2015).

[76] C. T. Y. Chung, A. Melatos, B. Krishnan, and J. T. Whelan,
Designing a cross-correlation search for continuous-wave
gravitational radiation from a neutron star in the supernova
remnant snr 1987a, Mon. Not. R. Astron. Soc. 414, 2650
(2011).

[77] J. T. Whelan, S. Sundaresan, Y. Zhang, and P. Peiris,
Model-based cross-correlation search for gravitational
waves from scorpius x-1, Phys. Rev. D 91, 102005
(2015).

[78] S. Sundaresan and J. T. Whelan, Technical Report, LIGO
Technical Document, 2012, URL http://dcc.ligo.org/
LIGO‑T1200431‑v1/public.

[79] D. B. Percival and A. T. Walden, Spectral Analysis
for Physical Applications (Cambridge University Press,
Cambridge, England, 1993).

[80] J. D. Creighton and W. Anderson, Gravitational-
Wave Physics and Astronomy (Wiley-VCH, Weinheim,
Germany, 2011).

[81] D. A. Frail et al., Beaming in gamma-ray bursts: Evidence
for a standard energy reservoir, Astrophys. J. Lett. 562, L55
(2001).

[82] A. Panaitescu and P. Kumar, Fundamental physical
parameters of collimated gamma-ray burst afterglows,
Astrophys. J. Lett. 560, L49 (2001).

[83] J. Abadie et al. (LIGO Scientific Collaboration), Calibration
of the LIGO gravitational wave detectors in the fifth science
run, Nucl. Instrum. Methods Phys. Res., Sect. A 624, 223
(2010).

[84] E. E. Flanagan, The sensitivity of the laser interferometer
gravitational wave observatory (LIGO) to a stochastic

COYNE, CORSI, and OWEN PHYSICAL REVIEW D 93, 104059 (2016)

104059-18

http://dx.doi.org/10.1051/0004-6361/201117895
http://dx.doi.org/10.1051/0004-6361/201117895
http://dx.doi.org/10.1093/mnras/stt293
http://dx.doi.org/10.1093/mnras/stt293
http://dx.doi.org/10.1093/mnras/sts683
http://dx.doi.org/10.1093/mnras/sts683
http://arXiv.org/abs/1401.1601
http://dx.doi.org/10.1103/PhysRevLett.24.611
http://dx.doi.org/10.1103/PhysRevLett.24.611
http://dx.doi.org/10.1086/156143
http://dx.doi.org/10.1086/175438
http://dx.doi.org/10.1086/175438
http://dx.doi.org/10.1086/320255
http://dx.doi.org/10.1086/320255
http://dx.doi.org/10.1103/PhysRevD.77.082001
http://dx.doi.org/10.1103/PhysRevD.87.122003
http://dx.doi.org/10.1103/PhysRevD.87.122003
http://dx.doi.org/10.1103/PhysRevD.84.023007
http://dx.doi.org/10.1103/PhysRevD.58.063001
http://dx.doi.org/10.1103/PhysRevD.58.063001
http://dx.doi.org/10.1103/PhysRevD.53.6749
http://dx.doi.org/10.1103/PhysRevD.53.6749
http://dx.doi.org/10.1103/PhysRevD.57.2101
http://dx.doi.org/10.1103/PhysRevD.57.2101
http://dx.doi.org/10.1103/PhysRevD.60.022002
http://dx.doi.org/10.1103/PhysRevD.60.022002
http://dx.doi.org/10.1088/0264-9381/25/23/235011
http://dx.doi.org/10.1088/0264-9381/25/23/235011
http://dx.doi.org/10.1103/PhysRevD.52.605
http://dx.doi.org/10.1103/PhysRevD.52.605
http://dx.doi.org/10.1103/PhysRevD.78.124020
http://dx.doi.org/10.1103/PhysRevD.82.084020
http://dx.doi.org/10.1103/PhysRevD.83.024006
http://dx.doi.org/10.1103/PhysRevD.83.024006
http://dx.doi.org/10.1088/0264-9381/31/2/025012
http://dx.doi.org/10.1088/0264-9381/31/2/025012
http://dx.doi.org/10.1103/PhysRevD.89.064037
http://dx.doi.org/10.1103/PhysRevD.61.082001
http://dx.doi.org/10.1103/PhysRevD.61.082001
http://dx.doi.org/10.1103/PhysRevD.71.062001
http://dx.doi.org/10.1103/PhysRevD.72.042004
http://dx.doi.org/10.1103/PhysRevD.72.042004
http://dx.doi.org/10.1038/nature08278
http://dx.doi.org/10.1103/PhysRevD.91.022003
http://dx.doi.org/10.1103/PhysRevD.91.022003
http://dx.doi.org/10.1111/j.1365-2966.2011.18585.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18585.x
http://dx.doi.org/10.1103/PhysRevD.91.102005
http://dx.doi.org/10.1103/PhysRevD.91.102005
http://dcc.ligo.org/LIGO-T1200431-v1/public
http://dcc.ligo.org/LIGO-T1200431-v1/public
http://dcc.ligo.org/LIGO-T1200431-v1/public
http://dcc.ligo.org/LIGO-T1200431-v1/public
http://dx.doi.org/10.1086/338119
http://dx.doi.org/10.1086/338119
http://dx.doi.org/10.1086/324061
http://dx.doi.org/10.1016/j.nima.2010.07.089
http://dx.doi.org/10.1016/j.nima.2010.07.089


background, and its dependence on the detector orienta-
tions, Phys. Rev. D 48, 2389 (1993).

[85] B. Allen and J. D. Romano, Detecting a stochastic back-
ground of gravitational radiation: Signal processing strate-
gies and sensitivities, Phys. Rev. D 59, 102001 (1999).

[86] N. J. Cornish, Mapping the gravitational wave background,
Classical Quantum Gravity 18, 4277 (2001).

[87] S. W. Ballmer, A radiometer for stochastic gravitational
waves, Classical Quantum Gravity 23, S179 (2006).

[88] L. S. Finn, Detection, measurement and gravitational radi-
ation, Phys. Rev. D 46, 5236 (1992).

[89] P. Astone, S. D’Antonio, S. Frasca, and C. Palomba, A
method for detection of known sources of continuous
gravitational wave signals in non-stationary data, Classical
Quantum Gravity 27, 194016 (2010).

[90] B. Krishnan, A. M. Sintes, M. A. Papa, B. F. Schutz, S.
Frasca, and C. Palomba, The Hough transform search for
continuous gravitational waves, Phys. Rev. D 70, 082001
(2004).

[91] V. Dergachev, Technical Report, LIGO Technical Docu-
ment, 2006, https://dcc.ligo.org/LIGO‑T050186/public.

[92] V. Dergachev, Loosely coherent searches for sets of
well-modeled signals, Phys. Rev. D 85, 062003 (2012).

[93] E. Goetz and K. Riles, Coherently combining short data
segments for all-sky semi-coherent continuous gravitational
wave searches, Classical Quantum Gravity 33, 085007
(2016).

[94] R. Margutti et al., The prompt-afterglow connection in
gamma-ray bursts: a comprehensive statistical analysis of
Swift x-ray light curves, Mon. Not. R. Astron. Soc. 428, 729
(2013).

[95] C. E. Shannon, Communication in the presence of noise,
Proc. IEEE 86, 447 (1998).

[96] C. Tinney et al., GRB 980425, Int. Astron. Union, Circular
No. 6896 (1998).

[97] T. J. Galama et al., An unusual supernova in the error box of
the γ-ray burst of 25 April 1998, Nature (London) 395, 670
(1998).

[98] M.W. Coughlin (LIGO Scientific and Virgo Collabora-
tions), Identification of long-duration noise transients in
LIGO and Virgo, Classical Quantum Gravity 28, 235008
(2011).

CROSS-CORRELATION METHOD FOR INTERMEDIATE … PHYSICAL REVIEW D 93, 104059 (2016)

104059-19

http://dx.doi.org/10.1103/PhysRevD.48.2389
http://dx.doi.org/10.1103/PhysRevD.59.102001
http://dx.doi.org/10.1088/0264-9381/18/20/307
http://dx.doi.org/10.1088/0264-9381/23/8/S23
http://dx.doi.org/10.1103/PhysRevD.46.5236
http://dx.doi.org/10.1088/0264-9381/27/19/194016
http://dx.doi.org/10.1088/0264-9381/27/19/194016
http://dx.doi.org/10.1103/PhysRevD.70.082001
http://dx.doi.org/10.1103/PhysRevD.70.082001
https://dcc.ligo.org/LIGO-T050186/public
https://dcc.ligo.org/LIGO-T050186/public
https://dcc.ligo.org/LIGO-T050186/public
http://dx.doi.org/10.1103/PhysRevD.85.062003
http://dx.doi.org/10.1088/0264-9381/33/8/085007
http://dx.doi.org/10.1088/0264-9381/33/8/085007
http://dx.doi.org/10.1093/mnras/sts066
http://dx.doi.org/10.1093/mnras/sts066
http://dx.doi.org/10.1109/JPROC.1998.659497
http://dx.doi.org/10.1038/27150
http://dx.doi.org/10.1038/27150
http://dx.doi.org/10.1088/0264-9381/28/23/235008
http://dx.doi.org/10.1088/0264-9381/28/23/235008

