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We present a new BF-type action for complex general relativity with or without a cosmological constant
resembling Plebanski’s action, which depends on an SOð3;CÞ connection, a set of 2-forms, a symmetric
matrix, and a 4-form. However, it differs from the Plebanski formulation in theway that the symmetric matrix
enters into the action. The advantage of this fact is twofold. First, as compared to Plebanski’s action, the
symmetric matrix can now be integrated out, which leads to a pure BF-type action principle for general
relativity; the canonical analysis of the new action then shows that it has the same phase space of the Ashtekar
formalism up to a canonical transformation induced by a topological term. Second, a particular choice of the
parameters involved in the formulation produces aBF-type action principle describing conformally anti-self-
dual gravity. Therefore, the new action unifies both general relativity and anti-self-dual gravity.
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I. INTRODUCTION

The Plebanski formulation [1] has played a major role in
understanding the classical and quantum aspects of general
relativity (GR) [2–4]. Having been the first BF-type formu-
lation (even when the terminology BF had not been invented
yet) for Einstein’s theory, it establishes that instead of the
metric tensor, the fundamental variables to describe the
gravitational field are (self-dual) 2-forms. More precisely,
the variables involved in the Plebanski formulation are,
besides the 2-forms (B fields) and the gauge connection, a
symmetric matrix Ψ which plays the role of a Lagrange
multiplier and that imposes the so-called simplicity constraint
on the B fields, and a 4-form imposing a constraint on TrΨ.
It turns out that by following a systematic procedure in which
someof thesevariables are integrated out, the pure connection
formulation for GR is obtained [5], which was originally
introduced following a different approach [6]. All of this
shows that GR is a special type of diffeomorphism-invariant
gauge theory. Since gauge theories admit a pure
BF-type formulation with the gauge connection and the B
fields as the only fundamental variables [7–9], it is desirable
to have an analogous action principle for GR. In this line
of thought, a new BF-type action principle for GR with
a nonvanishing cosmological constant was reported in
Ref. [10]. Nevertheless, the origin of such an action principle
is unclear since it cannot be obtained from the Plebanski
formulation, which stems from the fact that it is not possible
to integrate out Ψ while keeping both the gauge connection
and the B fields.
On the other side, conformally anti-self-dual gravity

[11–14] describes solutions to (Euclidean) Einstein’s

equations (also known as gravitational instantons) with a
vanishing self-dual Weyl curvature. As shown in Ref. [12],
solutions of this type with a nonvanishing cosmological
constant come from the Samuel ansatz [15], which is the
covariant version of the Ashtekar-Renteln ansatz [16],
introduced as a possible solution to the constraints of the
Ashtekar formalism for GR. Later, this ansatz is traduced
into a quadratic constraint on the self-dual curvature known
as instanton equation [11], for which an action functional
involving 2-forms is given afterwards [17]. However, the
relation between this action and Plebanski’s action has not
been established yet.
In this paper we present a new Plebanski-like action

principle forGRwith orwithout a cosmological constant that
(i) clarifies the origin of theBF-type action principle reported
in Ref. [10] and (ii) provides a BF-type action for anti-self-
dual gravity which leads to the action reported in Ref. [17].
It involves the same variables of Plebanski’s action but has a
different functional form. Remarkably, the new dependency
makes the fieldΨ an auxiliary field from the very beginning
and thus can be integrated out in the action before integrating
out any other field. By doing so, we obtain a generalization
of the BF-type action reported in Ref. [10] that also holds
for the case with a vanishing cosmological constant, and
that reduces to the action of Ref. [10] after integrating out
the 4-form. Furthermore, for a particular choice of the
parameters involved, the Plebanski-like action describes
conformally anti-self-dual gravity, and, by eliminating the
B field and the 4-form from it, we make contact with
the action reported in Ref. [17]. In this sense, the action
we present unifies both complex GR and conformally
anti-self-dual gravity.
The outline of this paper is as follows. First, in Sec. II we

set up the new action principle and show that the equations
of motion arising from it imply the Plebanski equations
of motion for GR. Second, in Sec. III we proceed to
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integrate out the auxiliary fields appearing in the action and
show that the action of Ref. [10] as well as the pure
connection formulation of GR arise; particularly, we realize
that the proposed action contains an intrinsic topological
term. Afterwards, in Sec. IV we perform the Hamiltonian
analysis of the proposed action and find that the phase
space is described by the Ashtekar variables subject to the
same constraints of GR up to a canonical transformation
induced by the already mentioned topological term. Later,
in Sec. V we show how the new action describes con-
formally anti-self-dual gravity. Finally, our conclusions are
collected in Sec. VI.

II. A PLEBANSKI-LIKE FORMULATION

We start by setting up the aforementioned action
principle. It its given by

S½A;B; ρ;Ψ� ¼
Z �

Bi ∧ Fi þ 1

2
ðΨij − λδijÞBi ∧ Bj

þ ðβTrΨ−1 − γÞρ
�
: ð1Þ

Here, Fi ≔ dAi þ ð1=2ÞεijkAj ∧ Ak is the curvature of the
SOð3;CÞ connection Ai, Bi represents three soð3;CÞ-
valued 2-forms, Ψij is a 3 × 3 complex invertible sym-
metric matrix that imposes certain constraints on Bi, and ρ
is a nonvanishing complex-valued 4-form. The parameters
λ, β, and γ are complex in principle and are related to the
cosmological constant. If the connection Ai is dimension-
less as a 1-form and ½Λ� stands for the dimension of the
cosmological constant, then λ, β, and γ have dimension ½Λ�,
½Λ�2, and ½Λ�, respectively (thus, the action has dimension
½Λ�−1). The group indices are raised and lowered with the
Kronecker delta δij, and εijk is the Levi-Civita symbol
(ε123 ¼ þ1).
The difference between the action (1) and Plebanski’s

action lies in the constraint imposed by the Lagrange
multiplier ρ; while in Plebanski’s action it imposes certain
restriction on the trace of Ψ, here it imposes a similar
restriction on the trace of Ψ−1 instead, and this simple
change allows us to integrate out Ψ in the action (1) from
the very beginning, which is not possible in the Plebanski
formulation. Furthermore, after integrating out some of the
auxiliary fields involved in (1), we find that this change
translates into the coupling of a topological term to gravity.
Notice that the metric tensor is not involved in the action
(1), but once we identify the (self-dual) 2-forms that satisfy
the simplicity constraint, it can be constructed from them
by using Urbantke’s formula [18].
Our claim is that the action principle (1) describes GR

with or without a cosmological constant for nonvanishing λ
and β. To prove this, we will show that the equations of
motion coming from (1) imply the Plebanski equations.

The variation of (1) with respect to the independent
variables leads to the following equations of motion:

δA∶ DBi ≔ dBi þ εijkAj ∧ Bk ¼ 0; ð2aÞ

δΨ∶ Bi ∧ Bj − 2βρðΨ−1ÞikðΨ−1Þjk ¼ 0; ð2bÞ

δB∶ Fi þ ðΨi
j − λδijÞBj ¼ 0; ð2cÞ

δρ∶ βTrΨ−1 − γ ¼ 0: ð2dÞ

Let us assume that β ≠ 0 and define the three 2-forms
Σi by

Σi ≔ β−1=2Ψi
jBj: ð3Þ

Then Eq. (2b) implies

Σi ∧ Σj − 2ρδij ¼ 0; ð4Þ

which means that Σi satisfies the simplicity constraint
involved in the Plebanski formulation. On the other hand,
Eqs. (2a) and (2c), together with the Bianchi identity
DFi ¼ 0, imply that Σi is covariantly constant, namely,

DΣi ¼ 0: ð5Þ

Now we need to relate the 2-forms Σi to the curvature Fi.
Let us define the symmetric matrix Φij by

Φ ≔ λβ−1=2
�
βΨ−1 −

γ

3
Id

�
; ð6Þ

where Id is the 3 × 3 identity matrix. An immediate
consequence of this definition and of Eq. (2d) is

TrΦ ¼ 0: ð7Þ

By combining (2c), (3), and (6), we finally obtain

Fi ¼
�
Φi

j þ
1

3
Λδij

�
Σi; ð8Þ

where Λ ≔ λγβ−1=2 − 3β1=2 is the cosmological constant,
which involves the three parameters introduced in the
action principle (1). For λ ≠ 0, Eqs. (4), (5), (7), and (8)
constitute the Plebanski equations of motion for GR with a
cosmological constant, where Φ is identified as the self-
dual part of the Weyl curvature. Notice that γ is required
to allow a vanishing cosmological constant; in fact, for
γ ¼ 3β=λ, Λ vanishes. Therefore, we have shown that, for
λ ≠ 0 and β ≠ 0, the action principle (1) describes GR
with a vanishing or nonvanishing cosmological constant.
The case λ ¼ 0 and β ≠ 0 also deserves to be mentioned,
and it shall be analyzed below.
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III. INTEGRATING OUT THE AUXILIARY FIELDS

We now move to one of the purposes of this paper,
which is to show that the action principle (1) leads to the
BF-type action reported in [10]. Let us start by integrating
out Ψ from the action (1). From Eq. (2b), the solution
for Ψ involves the square root of the matrix ~N defined
by Bi ∧ Bj ≕ ~Nijd4x. Square roots of matrices always
do exist for invertible matrices [19], although, in general,
they are not unique. Since in our case we are dealing with
invertible matrices, solutions to (2b) do indeed exist.
Denoting by ~N1=2 the (symmetric) square root of ~N, the
solution of (2b) is

Ψ ¼
ffiffiffi
2

p
εβ1=2 ~ρ1=2 ~N−1=2; ð9Þ

where ~N−1=2 is the inverse of ~N1=2, ρ ≕ ~ρd4x, and ε ¼ �1

accounts for the branch of ~N1=2. Notice that here we are
taking one of the squares roots of ~N, but the procedure is
valid regardless of the root chosen. Plugging this back into
(1) yields

S½A;B; ρ� ¼
Z �

Bi ∧ Fi −
λ

2
Bi ∧ Bi

þ
ffiffiffi
2

p
εβ1=2 ~ρ1=2Tr ~N1=2d4x − γρ

�
: ð10Þ

This action principle, which cannot be obtained directly
from the Plebanski formulation, offers us two possibilities:
we can integrate out either the 2-forms Bi or the field ρ.
Since one of our aims is to arrive at the action principle of
Ref. [10], we proceed first to get rid of ρ, which requires
γ ≠ 0. If we make that assumption, the equation of motion
for ρ implies

~ρ ¼ β

2γ2
ðTr ~N1=2Þ2: ð11Þ

Then, by substituting this back into (10), we obtain

S½A;B� ¼
Z �

Bi ∧ Fi −
λ

2
Bi ∧ Bi þ β

2γ
ðTr ~N1=2Þ2d4x

�
:

ð12Þ

The action principle (12) is, as promised, the one
reported in Ref. [10]; hence, in this paper we have
established in a clean fashion that (12) emerges from the
action (1) through the elimination of some auxiliary fields.
We remind the reader that the action principle (12) only
addresses the case with a nonvanishing cosmological
constant, which also requires γ ≠ 3β=λ (see the details
in [10]); in contrast, a remarkable property of the action
principle (10) is that it supports Λ ¼ 0 and Λ ≠ 0 without
involving the field Ψ.

Following the second option, we integrate out the
2-forms Bi in (10) instead, which allows us to keep γ
arbitrary. The equation of motion for the 2-forms Bi yields

Fi þ
ffiffiffi
2

p
εβ1=2 ~ρ1=2ð ~N−1=2Þij Bj − λBi ¼ 0; ð13Þ

whose solution for Bi is

Bi ¼ 1

λ

h
ε

ffiffiffi
2

p
β1=2 ~ρ1=2

�
~M−1=2

�
i

j
þ δij

i
Fj; ð14Þ

where we have defined Fi ∧ Fj ≕ ~Mijd4x. Substituting
this solution into the action (10) yields

S½A; ρ� ¼ 1

2λ

Z
Fi ∧ Fi

þ β1=2

λ

Z
d4x½

ffiffiffi
2

p
ε~ρ1=2Tr ~M1=2 − Λ~ρ�: ð15Þ

The first term on the rhs of (15) is topological and does
not affect the classical dynamics, while the second term is
the same term obtained after integrating out Σi and Ψ in
the Plebanki’s action and describes GR for both a
vanishing and a nonvanishing cosmological constant [5]
(see [20] for a heuristic approach). Therefore, the action
(15) makes it clear that (1) contains an intrinsic topologi-
cal term. In the case of Λ ≠ 0, the variable ~ρ can be
integrated out from (15), and this leads to the pure
connection description of general relativity (coupled to
a topological term):

S½A� ¼ 1

2λ

Z
Fi ∧ Fi þ β1=2

2λΛ

Z
d4xðTr ~M1=2Þ2: ð16Þ

It is worth pointing out that the action (16) depends on the
particular square root of ~M, but, because of the square in
the second term on the rhs, it does not depend on the
branch. Notice that, by eliminating the 2-forms Bi from
(12), we also arrive at (16).
One of the advantages of the action principle (1) is that it

provides a way to not only get rid of Ψ from the action but
also to eliminate Bi from the very beginning. Let us now
follow this second path. The equation of motion (2c) can be
(uniquely) solved for Bi only if detðΨ − λIdÞ ≠ 0, which is,
in general, satisfied. By substituting this solution into (1)
we obtain

S½A;Ψ; ρ� ¼
Z �

1

2
ðχ−1ÞijFi ∧ Fj þ ðβTrΨ−1 − γÞρ

�
;

ð17Þ

where χ ≔ λId −Ψ. Now we integrate out Ψ in (17). The
solution for Ψ due to its own equation of motion takes the
form
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Ψ ¼ λ

�
Idþ ϵffiffiffi

2
p β−1=2 ~ρ−1=2 ~M1=2

�
−1
; ð18Þ

where ϵ ¼ �1 accounts for the ambiguity in the branch of
~M1=2. Substituting this back into the action (17), we recover
the action (15), with ϵ taking the place of ε.

IV. CANONICAL ANALYSIS

We now perform the canonical analysis of the action (1).
To make things easier, it is convenient to integrate out the
variable Ψ from the action, which leads to the equivalent
action (10). We assume that the spacetime has the topology
R ×Ω, where Ω is a compact spatial 3-manifold without
a boundary. We denote the spatial indices by a; b;… ¼ 1,
2, 3, while the time component is referred to as the
0-component. The 3þ 1 decomposition of the action (10)
yields

S½A;B; ρ� ¼
Z
R
dt

Z
Ω
d3x½ ~Πai _Aai þ A0i

~Gi

þ B0ai
~Eai þ

ffiffiffi
2

p
εβ1=2 ~ρ1=2Tr ~N1=2 − γ ~ρ�; ð19Þ

where we have defined ~Πai ≔ ð1=2Þ~ηabcBbc
i, ~Eai ≔

~Bai − λ ~Πai for ~Bai ≔ ð1=2Þ~ηabcFbc
i, ~Gi ≔ Da

~Πai, with
Da being the SOð3;CÞ-covariant derivative and
~ηabc ðη

~
abcÞ the Levi-Civita symbol of weight 1 (-1).

Since the action (19) depends on ~N1=2, it is nonpolyno-
mial in the variable B0ai. However, this variable is not
dynamical because no time derivatives of it appear in (19).
Hence, we can use the equation of motion corresponding to
B0ai to eliminate it from the action. The variation of (19)
with respect to B0ai leads to

~Eai þ
ffiffiffi
2

p
εβ1=2ðφ−1Þij ~Πaj ¼ 0; ð20Þ

where the matrix φij ≔ ~ρ−1=2ð ~N1=2Þij is symmetric. This
equation must be solved for B0ai. Assuming that
detð ~ΠaiÞ ≠ 0, then Eq. (20) allows us to express φ in terms
of the variables Aai and ~Πai, which constitute the phase
space’s canonical pair according to the first term on the rhs
of (19). On the other hand, we can show from the
definitions of the matrices ~N and φ that the expression
Xa

i ~Yaj þ Xa
j ~Yai − ~ρδij ¼ 0, with Xai ≔ ðφ−1ÞijB0a

j and
~Yai ≔ ðφ−1Þij ~Πaj, is satisfied. This last equation can be

solved for Xai as Xai ¼ ½ð~ρ=2Þδij þ εijk ~N
k�Y

~
a
j, where Y

~
ai

is the inverse of ~Yai, and ~Nk is an arbitrary internal
three-vector of weight 1. Using this and (20), and denoting
by E

~ ai
the inverse of ~Eai, the solution for B0ai takes the

form

B0ai ¼ 2β

�
1

2
~ρE
~
cjE

~
a
j þ ðdet ~EÞ−1η

~
abc

~Eb
j
~Nj

�
~Πc

i; ð21Þ

with det ~E ≔ detð ~EaiÞ. Plugging (21) back into (19), the
action becomes

S½Aai; ~Πai; A0i; Na; N
~
�

¼
Z
R
dt

Z
Ω
d3xð ~Πai

_Aai þ A0i
~Gi þ Na ~Va þ N

~

~~HÞ; ð22Þ

where Na ≔ 2βðdet ~EÞ−1 ~Ea
i
~Ni and N

~
≔ −ðdet ~EÞ−1 ~ρ.

Since A0i, Na, and N
~
are arbitrary and appear linearly in

the action, they play the role of Lagrange multipliers and
impose the following constraints:

~Gi ¼ Da
~Πai ≈ 0; ð23aÞ

~Va ≔ ~ΠbiFbai ≈ 0; ð23bÞ

~~H ≔ γBBB − 3ðγλ − βÞΠBB
þ 3λðγλ − 2βÞΠΠB − λ2ðγλ − 3βÞΠΠΠ ≈ 0; ð23cÞ

where we have used the shorthand ΠΠB ≔
ð1=6Þη

~
abcεijk ~Πai ~Πbj ~Bck, etc. It turns out that the constraints

(23a)–(23c) are the only ones of the theory and that they are
first class despite the complicated form of ~~H [21], which
implies that they generate the gauge symmetries of the
theory: the Gauss constraint ~Gi generates local SOð3;CÞ
rotations, while the vector and scalar constraints ( ~Va and

~~H,
respectively) generate spacetime diffeomorphisms. Since
we have nine configuration variables Aai and seven first-
class constraints, the number of physical (complex) degrees
of freedom per space point is two, as expected from a
theory describing GR. Notice that the constraint (23c) does
not have the same form of the scalar constraint as the
Ashtekar formalism, where only the terms ΠΠB and ΠΠΠ
show up (the latter only for a nonvanishing cosmological
constant); in fact, the terms BBB and ΠBB are the result of
the presence of an intrinsic topological term in action (1)
[which explicitly shows up in (15) after integrating out the
auxiliary fields B and Ψ in (1)], but we have the freedom
to perform the canonical transformation ðAai; ~ΠaiÞ →
ðAai; ~Πai þ θ ~BaiÞ to cancel the effect of this topological
term and bring the scalar constraint (23c) to the form of the
Ashtekar one [21,22].
Alternatively, one also can read the vector and scalar

constraints from the equation of motion (20). Indeed, the
fact that the matrix φ is symmetric gives rise to the vector

constraint ~Va, while the scalar constraint
~~H results from the
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combination of Trφ from (20) with the equation of motion
corresponding to ~ρ from (19).

V. ANTI-SELF-DUAL GRAVITY

Let us now consider the case with λ ¼ 0 and β ≠ 0 in the
action (1). Here, the equations of motion for A, Ψ, and ρ
remain unchanged, whereas the equation for B yields

Fi þΨi
jBj ¼ 0: ð24Þ

By introducing the definition (3), we still have (4) as a
consequence of (2b). Using (3) and (24), we obtain

Fi ¼ Λ
3
Σi; ð25Þ

where Λ ¼ −3β−1=2 is the cosmological constant. Notice
that, in Plebanski’s formulation, the curvature and the
2-forms satisfying the simplicity constraint are linearly
related via a matrix of the form Wi

j þ ðΛ=3Þδij, where Wi
j

is the self-dual Weyl curvature. In view of this, Eq. (25) has
as an immediate consequence thatWi

j vanishes; hence, the
Weyl tensor is purely anti-self-dual.
By combining (4) and (25), we obtain the instanton

equation [11,13]

Fi ∧ Fj −
1

3
δijFk ∧ Fk ¼ 0; ð26Þ

which characterizes anti-self-dual gravitational instantons.
Notice that due to both Bianchi’s identity DFi ¼ 0 and
Eq. (26), the internal connection is still the self-dual part of
the spin connection. Therefore, we conclude that for λ ¼ 0
and β ≠ 0 the action (1) describes conformally anti-self-
dual gravity.
We point out that after eliminating ρ from the action (17)

with λ ¼ 0 and making the changeX ≔ −Ψ−1, the resulting
action is

S½A; X� ¼ 1

2

Z �
ðXtfÞijFi ∧ Fj −

γ

3β
Fi ∧ Fi

�
; ð27Þ

where Xtf is the trace-free part of X. This action corre-
sponds (up to the topological term) to the action introduced
in Ref. [17] to describe the moduli space of anti-self-dual
gravitational instantons. This fact strengthens the ability of
action (1) for supporting anti-self-dual gravity.
Moreover, in this case the Gauss and vector constraints

remain unchanged, while the scalar constraint takes the
form

~~H ≔ γBBBþ 3βΠBB ≈ 0; ð28Þ

which is dual to the one of the Ashtekar formalism in the
sense that it results from the Ashtekar scalar constraint

(with a cosmological constant) after interchanging ~Πai

and ~Bai. However, the first term on the rhs of (28) can
be canceled by performing the canonical transformation
~Πai → ~Πai − ðγ=3βÞ ~Bai, which leaves the Gauss and vector
constraints invariant; the scalar constraint for anti-self-dual
gravity then reads

~~H ¼ ΠBB ≈ 0; ð29Þ

where the constant factor has been dropped. This constraint
cannot be mapped to the Ashtekar scalar constraint by
using the aforementioned canonical transformation.

VI. CONCLUSIONS

We conclude this paper by making some remarks.
(i) We have presented a Plebanski-like action principle

(1) for GR with a vanishing or nonvanishing
cosmological constant. It allows us to obtain the
BF-type action (12) of Ref. [10] in a clean fashion,
which is not possible starting from Plebanski’s
action. We also show that by eliminating the
auxiliary fields in the action (1), it is possible to
obtain the pure connection action (16), pointing out
that the action (1) contains an intrinsic topological
term. Finally, the canonical analysis of the action (1)
leads to the phase space of the Ashtekar formulation
of GR up to a canonical transformation.

(ii) A consequence of having a functional dependence
on the variables different from that of the Plebanski
formulation is that the geometrical meaning of
the variables changes. Now the B fields do not
satisfy the simplicity constraints of the Plebanski
formulation, which means that we need to identify
the 2-forms that do [see Eq. (3)]; the Urbantke
metric is then constructed from them. Also, the
matrix Ψ is no longer the self-dual part of the Weyl
tensor, but Ψ−1 becomes a shifted self-dual part
of it [see Eq. (6)].

(iii) In the context of the formulations explored in
Ref. [23], the action principle (15) can alternatively
be written as S½A; ρ� ¼ R

ρ½ð1=λÞTrψ2 − γ�, where
ψ ≔ ~ρ−1=2 ~M1=2=

ffiffiffi
2

p þ εβ1=2Id. This indicates that
GR can be obtained from the invariant Trψ2 instead
of Trψ .

(iv) For λ ¼ 0 and β ≠ 0, the action (1) describes
conformally anti-self-dual gravity. In fact, by elimi-
nating the B field and ρ from it, we arrive at the
action of Ref. [17], which encodes the dynamics of
this theory.

(v) The case β ¼ 0 and λ arbitrary is worth mentioning
since, for that choice, the action (1) describes the
Husain-Kuchar model [24], which has a canonical
structure similar to that of GR but lacks the
Hamiltonian constraint.
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(vi) The Plebanski-like action (1), being of the BF type,
could be used as the starting point of the so-called
spin foam models [4], providing new insights into
the covariant quantization of the gravitational field.
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