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We construct a new global, fully analytic, approximate spacetime which accurately describes the
dynamics of nonprecessing, spinning black hole binaries during the inspiral phase of the relativistic merger
process. This approximate solution of the vacuum Einstein’s equations can be obtained by asymptotically
matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the
two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave
zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead
of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long
term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of
circumbinary gas accretion which requires hundreds of binary orbits.
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I. INTRODUCTION

The recent announcement of GW150914 [1] from the
Laser Interferometer Gravitational Wave Observatory
(LIGO) [2] has provided the first strong evidence of a
black hole binary (BHB) coalescence due to the emission of
gravitational waves (GWs). This discovery kicks off the era
of gravitational wave astronomy, and provides further
justification to the study of the inspiral and merger of
BHBs. The mergers of stellar-mass black holes (BHs), such
as GW150914 and other BHB potential LIGO sources, are
not expected to have any electromagnetic (EM) counter-
parts [3]. However, Ref. [4] reported a potential γ-ray EM
counterpart observed by the Gamma-Ray Burst Monitor [5]
on Fermi which is consistent with the sky localization of
GW150914.
The existence of supermassive BHs residing in the

centers of galaxies [6] indicates another type of possible
BHB, one for which EM counterparts are not only possible,
but are also frequent. Galaxies will undergo mergers as the
Universe evolves [7,8]. In the process of the galactic
merger, the supermassive BHs will form a bound pair
due to torques exerted by the surrounding gas and stars,
dynamical friction, and gravitational slingshots that eject
stars from the nucleus of the merging system. Gravitational
radiation becomes the dominant energy loss mechanism as
the BHBs become closely separated, eventually driving the
two BHs to the full merger. The consequences of such
mergers for galactic evolution can be far reaching, as strong
correlations between galactic structure and central BHmass
indicate tight feedback between BH and galaxy growth.

Future space-based GW missions, like the proposed
European New Gravitational Wave Observatory (NGO)
[9–11] and the DECi-hertz Interferometer Gravitational
Wave Observatory (DECIGO) [12], will be sensitive to
such events, but are decades away from launch.
Fortunately, in the case of supermassive BHBs, highly
relativistic magnetized gas could flow around the pair, as
well as around each BH companion. Therefore, powerful
EM signals should accompany the inspiral and merger of
BHBs [13,14].
The main research focus of the authors is to simulate the

effects of spinning supermassive BHB mergers on nearby
gas in sufficient detail to enable EM observations of these
events. This paper represents a major step forward in
achieving this goal by providing an analytic spacetime
that can handle spinning BHBs. Since 2005 [15–17], a
handful of numerical relativity simulations of BHBs have
been successfully carried on for nearly a hundred orbits
[18,19], providing the necessary waveforms for current and
future GW detectors [20,21].
However, in the case of BHBs in a gaseous environment,

numerical magnetohydrodynamic (MHD) simulations are
still very expensive to carry out [22–31]. This is because we
need to resolve turbulences and shocks in the gas, as well as
secular variations in the circumbinary disk on the time scale
of hundreds to thousands of binary orbits (see Ref. [32] for
detailed discussion). In order to make long-term and
accurate MHD simulations possible, we developed a
complementary analytic approach to treat dynamical, non-
spinning, BHB spacetimes [32–35]. This spacetime is a
solution to the Einstein field equations in the approximation
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that the BHB is slowly inspiralling to merger. In this
situation, gravity is weak [rg=r ¼ GM=ðrc2Þ ≪ 1] and
motions are slow [v=c ≪ 1], so the post-Newtonian
(PN) approximation is a very good description of space-
time. Using a spacetime accurate to 2.5PN order [i.e.,
including terms up to ∼ðrg=rÞ5=2], and using the 3.5PN
equations of motion (EOM) to describe the GW driven
inspiral of the orbital evolution [36], we demonstrated that
circumbinary disks can track a supermassive BHB for
hundreds of orbits until the binary practically reaches the
relativistic merger regime [32].
In a more recent paper [33], we extended the metric all

the way down to the horizons of each BH. We did this by
broadening the framework introduced in Refs. [37–39] for
constructing a spacetime metric valid for initial data, to a
full dynamical spacetime metric valid for arbitrary times.
This metric is constructed by stitching together different
spacetime metrics valid in different regions of the full BHB
spacetime (see Sec. II). We extend this framework here to
include the effects of spinning BHs.
There are important spin-based effects which affect the

dynamics of the BHB that can also significantly alter the
dynamic of the surrounding gas. The mechanisms asso-
ciated with accretion at larger separations may drive the
spins into alignment with both the binary orbital axis and
the circumbinary disk axis [40–42]. In this case, another
mechanism due to spin-orbit coupling can delay or prompt
the merger of the BHB according to the sign of the spin-
orbit coupling [43]. This could have a significant effect on
the total premerger light output and its time dependence.
At closer BHB separations, little is known about the

effectiveness of these accretion driven spin-alignment
mechanisms. In this situation, spin-spin and spin-orbit
interactions can also cause the spins to precess, leading
to time dependence in nonplanar gas orbits [44].
Gravitomagnetic torques arising from the BH spins oblique
to the orbital axis may then push the accretion streams onto
the BHs out of the orbital plane and alter the tidal limitation
of the mini-disks, particularly for relatively small binary
separations. Another interesting spin effect is the recently
discovered spin-flip-flop phenomenon [18,45], where the
spin of one of the BHs completely reverses. This may cause
the gas in the neighborhood of the binary to be continually
disturbed in a manner that will produce a very distinct EM
signature from the disk. Finally, highly spinning BHBs may
recoil at thousands of km=s [46–49] due to asymmetrical
emission of gravitational radiation induced by the BH spins
[50,51]. The resulting ejected BH may carry along part of
the original accretion disk causing it to be bright enough to
be observable (see [52] for a review).
In this paper, we generalize [33] to spinning BHBs, with

spins aligned and counteraligned with the orbital angular
momentum of the binary, in a quasicircular inspiral. We
will address the case of oblique spins and spin precession
[53] in future work [54]. Our new spinning global metric

must, of course, approximately satisfy the Einstein equa-
tions, if it is to be considered a true spacetime metric
representing a BHB. For each zone, we check the validity
of the spacetime analytically in the black hole perturbation,
the PN and the post-Minkowski (PM) approximations by
computing the deviations from Einstein’s equations. We
can construct several curvature invariants to determine the
overall accuracy of the approximations. One such invariant
is the Ricci scalar, which can be compared against the exact
vacuum solution quantity of R ¼ 0. Another quantity is the
Hamiltonian constraint, which is used in the numerical
relativity community to measure the amount of “fake”mass
in the system caused by violations to the Einstein vacuum
field equations. Finally, we introduce an invariant quantity
related to the Kretschmann invariant RμνρδRμνρδ, which has
the benefit of being a normalized measure of the violation
of the global metric to the Einstein equations.
This paper is organized as follows. Section II outlines the

different approximate metrics, and details of their con-
struction and matching to obtain the global metric.
Section III discusses the numerical analysis of this global
metric by the calculation of several spacetime invariants
that impress upon us the validity of the global metric.
Finally, Sec. IV contains useful discussion, conclusions,
and future work. The Appendixes A, B, C and D describe
the choice of transition functions that are utilized in the
global metric, the details of the ingoing Kerr to Cook-
Scheel coordinate transformation, the innermost stable
circular orbit (ISCO) and an effective evaluation of the
inner zone metric.
Throughout this paper, we follow the notation of Misner

et al. [55], specifically, greek letters (α; β; γ;…) used as
indices are indicative of spacetime coordinates, and latin
letters (i; j; k;…) are used in discussions of spatial coor-
dinates only. The covariant metric is then written as gμν, and
has a signature of ð−;þ;þ;þÞ. We use the geometric unit
system, where G ¼ c ¼ 1, with the useful conversion
factor 1M⊙ ¼ 1.477 km ¼ 4.926 × 10−6 s.

II. CONSTRUCTION OF APPROXIMATE
GLOBAL METRIC

We are concerned with the construction of the
approximate global metric with spin for a BHB pair on
a quasicircular inspiral, in the inspiral regime. To find this
global metric for the BHBs, we first consider the individual
regions where different approximations and assumptions
hold (see Table I): the inner zone (IZ) around BH1 (IZ1)
and around BH2 (IZ2), the near zone (NZ) around the two
BHs, and the far zone (FZ) or wave zone farthest out.

A. Subdividing spacetime

In the inner region very close to the individual BHs, we
treat the spacetime as a vacuum Kerr solution with linear
perturbations as in Ref. [58]. The PN metric subdivision
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that was briefly discussed above is known as the NZ. This
metric is valid in the slow motion, weak field limit. The
addition of spins to the NZ will add terms to the PN
expansion which, to lowest order, are the 1.5PN1 leading
order spin-orbit coupling and 2PN leading order spin-spin
terms. The NZ is defined to be valid in a region far away
from the individual BHs (to not violate the weak field
approximation), but not farther away than a gravitational
wavelength [λ ∼ 2π=ωGW ∼ π=ωorb ∼ πðr312=MÞ1=2, where
M ¼ m1 þm2 is the total mass] from the center of mass of
the binary system. The region even farther out than a
gravitational wavelength from the center of mass can be
described as the FZ, in which the metric takes the form of
flat (Minkowski) space, with outgoing GWs perturbing the
spacetime. The FZ is modeled with a PM (or multipolar)
formalism [59]. Unlike in PN formalism, PM expansions
correctly treat the retardation of the gravitational field,
which is essential for understanding the FZ. This sub-
division of the spacetime into different regions will only
be valid as long as the slow motion approximation holds,
and will break down around an orbital separation r12 ≈
10M [60,61].
Once we have the individual metrics for the different

zones, we need to stitch them all together into a global
metric, asymptotically matching the IZ, NZ, and FZ to each
other in buffer zones (BZs). The procedure of matching
adjacent metrics to one another requires the metrics to be in
the same coordinate system. In other words, one of the
metrics (and its parameters) will be related to the next door
metric via some coordinate transformations, constructed
such that the transformed metric asymptotes to the adjacent
metric in the BZ. Asymptotic matching in GR has been
successfully done in Refs. [37–39,56,62–65], but in all of
these papers, the authors asymptotically matched in the

context of initial data for BHB simulations, which implies
that their focuses were on a particular spatial hypersurface.
However, in the context of this work, this restriction must
be lifted if there is to be any hope of dynamic, long time
evolutions of BHBs. Reference [33] successfully removed
this restriction in the context of nonspinning BHs. The task
now is to do this in the context of spinning BHs. The
extension to spinning BHs should be more astrophysically
relevant than the nonspinning BHB case covered in
Ref. [33], because it is thought that most astrophysical
BHs have spin [66].
Once the metrics have been asymptotically matched, we

construct a global metric by introducing transition func-
tions that take us from one metric to the next in the BZs
without introducing artificial errors [65] into the metric that
are larger than the errors already incurred in the approx-
imations used in construction of the individual metrics.
The different zones and their associated BZs are sum-

marized in Fig. 1 and Table I. The cyan shells indicate the
BZs between the individual subdivided metrics, where both
of the adjacent metrics are valid. We note that the figure is
purely schematic; in general, there is no inherent symmetry

FIG. 1. A schematic diagram detailing the different zones for
the approximate analytic spacetime looking down the z-axis at a
particular instant in time. The black dots on the x-axis represent
the two BHs, with an orbital separation of r12. The cyan shells
indicate the BZs—regions where two adjacent metrics have
overlapping regions of validity. The outermost shell is the NZ-
FZ BZ, with both the IZ1-NZ and IZ2-NZ BZs labeled around the
individual BHs. The IZ, NZ, and FZ are denoted as the regions
contained by the BZs. Note that the circular nature of the BZs is
not physical, only schematic, and in general it is expected that
they will have some distortions. (This was also presented in
Refs. [33,56,57].)

TABLE I. Regions of validity for the different zones and BZ
locations. Here r1 and r2 are the distances from the first or second
BH with mass m1 or m2, r is the distance from the center of mass
to a field point, r12 is the orbital separation, and λ is the
gravitational wavelength. For BZs to exist, the system must
satisfy m1;2 ≪ r12, though we expect that the metric will break
down before this condition is violated. (This was also presented
in Refs. [33,56,57].)

Zone Region of validity

IZ1 0 < r1 ≪ r12
IZ2 0 < r2 ≪ r12
NZ mA ≪ rA ≪ λ
FZ r12 ≪ r < ∞
IZ1-NZ BZ m1 ≪ r1 ≪ r12
IZ2-NZ BZ m2 ≪ r2 ≪ r12
NZ-FZ BZ r12 ≪ r ≪ λ

1A PN order N is said to be a term of order ðv=cÞ2N for the
slow motion expansion [e.g., 1.5PN is order ðv=cÞ3].
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that would cause the BZs to be like the spherical shells
depicted, so in reality these BZs would be distorted. It is in
these BZs that asymptotic matching of the individual
metrics takes place. Finally, the resulting matched metrics
are stitched together with the proper transition functions
satisfying the Frankenstein theorems [65], yielding a global
analytic approximate spacetime. The construction of the
asymptotically matched global metric has been calculated
in Ref. [56], but only in the context of initial data and not
for long time evolutions of the BHB system.

B. Inner zone

The IZs in Fig. 1 and Table I are constructed following
the work laid out in Ref. [58], and applied to BHB initial
data on a single spatial hypersurface in Ref. [56]. The IZ
metric is approximately described by the Kerr metric gKerrμν

plus a linearized vacuum perturbation hIZμν:

gIZμν ¼ gKerrμν þ hIZμν: ð1Þ

Here the Kerr metric is given by the mass of the Kerr BH
mKerr, and the dimensional spin parameter a, which can be
related to the dimensionless spin parameter χ by a ¼
χmKerr and the dimensional spin S ¼ χm2

Kerr. It is conven-
ient to work with χ in our calculations because it is a
normalized quantity (0 ≤ jχj ≤ 1), with zero being a non-
spinning (Schwarzschild) BH, and one being a maximally
spinning Kerr BH.
The metric perturbation hIZμν has been studied and applied

for Schwarzschild BHs, where we can use the Regge-
Wheeler-Zerilli-Moncrief formalism [67–70], which is
generally valid for static spherically symmetric spacetimes.
However, when looking at the case of the Kerr background,
this formalism is not applicable, because Kerr is not
spherically symmetric, and so there is not a multipole
decomposition of metric perturbations, and the Einstein
equations cannot be uncoupled into wave equations. A
reformulation due to Newman and Penrose [71] (from here
out referred to as the NP formalism) of the Einstein
equations and Bianchi identities projected along a null
tetrad coinciding with the null symmetries of the spacetime
(Kerr BHs are a type D algebraically special solution)
allowed Teukolsky [72] to write down a single master wave
equation for the perturbations of Kerr in terms of the Weyl
scalars (constructed from contracting the Weyl tensor with
the same conveniently chosen null tetrad, called the
Kinnersley tetrad) ψ0 or ψ4. Solutions to the Teukolsky
equation yield the perturbed Weyl scalars.
To obtain the metric perturbation from the Weyl scalar,

we must use the Chrzanowski procedure [73], which takes
the Weyl scalar ψ0 and acts as a differential operator on it to
yield a valid metric perturbation. This was later amended
by Wald [74] and Kegles and Cohen [75] to use a Hertz
potential Ψ instead of a Weyl scalar (ψ0 for ingoing

radiation, suitable for studying perturbations, or ψ4 for
outgoing radiation, suitable for GW studies [76]). A brief
description of the metric perturbation construction via the
Chrzanowski procedure is summarized in the following.
The metric perturbation hμν is constructed via the

Chrzanowski procedure by applying a certain differential
operator to the so-called Hertz potential. The Hertz potential
must satisfy a certain differential equation with a source
given by the NP scalar ψ0, and the differential equation can
be inverted to yield the potential Ψ totally in terms of ψ0

[74,77]. Therefore, the construction of the metric perturba-
tion hμν boils down to finding an appropriate solution for the
NP scalar ψ0. The metric perturbation is in the ingoing
radiation gauge, given by the perturbation contracted along
the tetrad components, hll ¼ hln ¼ hlm¼ hlm̄ ¼ hmm̄¼ 0,
where lμ and mμ are components of the Kinnersley null
tetrad, and m̄μ is the complex conjugate of mμ.
This NP scalar must, of course, satisfy the Teukolsky

equation [72]. However, when the external universe
(the source of the perturbation) is slowly varying (as is
the case of most interest to this work, when the external
universe is a second BH on a quasicircular inspiral with a
large separation), it is possible to solve this equation
perturbatively [58]. Thus, we can write ψ0 in terms of
the spin-2 weighted spherical harmonics 2Ylm as

ψ0 ¼
X
l;m

RlmðrÞzlmðvÞ2Ylmðθ;ϕÞ; ð2Þ

where the radial and time dependence are product-
decomposed into terms of unknown real functions
RlmðrÞ and complex functions zlmðvÞ. Here, v is the
advanced Kerr-Schild time coordinate. zlm can be written
in terms of electric and magnetic tidal tensors, which to
leading order in BH perturbation theory [78] can be
truncated at the l ¼ 2 quadrupolar deformation. The radial
functions Rlm must then satisfy the (time-independent)
Teukolsky equation, and can be solved in terms of hyper-
geometric functions. Solving the time-independent
Teukolsky equation implies that the zlm functions are
slowly varying or constant in time. This can then be
reconstructed into a functional form for ψ0.
With this NP scalar under control, it is possible to

compute the Hertz potential, and from that, the full metric
perturbation hμν. Reference [58] provides the full form of
hμν in Eddington-Finkelstein (ingoing Kerr) coordinates.
The final form of the IZ metric needs to have several

desirable features to be of use. One of which is horizon
penetrating, Cook-Scheel harmonic (CS-H) coordinates
(T, X, Y, Z) [79]. The details of taking the IZ from the
ingoing Kerr (IK) coordinates to the more useful CS-H
coordinates is left toAppendixB.From theCS-Hcoordinates,
it is simply a matter of applying yet another transformation to
take themetric from the IZcoordinates to the coordinates used
in the NZ, the PN harmonic (PNH) coordinates.
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C. Near zone

The NZ in Fig. 1 and Table I is the region sufficiently
distant from either BH that the metric can be described
through the PN metric:

gNZμν ¼ ημν þ hNZμν ; ð3Þ

where ημν is the Minkowski (flat space) metric, and hμν is a
PN metric perturbation [56]. In the PN approximation, the
Einstein equations are solved in an expansion of both
v=c ≪ 1 (slow motion) and GM=ðRc2Þ ≪ 1 (weak fields),
where M is the total mass of the BHs; R is the orbital
separation (r12) or the center of mass to one BH (r1;2); and
the G’s and c’s have been replaced for convenience. By
construction, the PN approximation models the BHs as
point particles.
The metric perturbation we use is specified in Ref. [80]

for the spin-independent terms and the first nonvanishing
spin terms are outlined in Refs. [81,82], giving us a 1.5PN
metric in PNH coordinates (which are a Cartesian-like,
rectangular coordinate system) to match the IZ to as

gNZ00 þ 1 ¼ 2m1

r1
þm1

r1
½4v21 − ðn1 · v1Þ2� − 2

m2
1

r21

−m1m2

�
2

r1r2
þ r1
2r312

−
r21

2r2r312
þ 5

2r2r12

�

þ 4m1m2

3r212
ðn12 · v12Þ

þ 4

r21
ϵijkvi1s

j
1n

k
1 þ ð1 ↔ 2Þ þOðv6Þ;

gNZ0i ¼ −
4m1

r1
vi1 −

2

r21
ϵijks

j
1n

k
1 þ ð1 ↔ 2Þ þOðv5Þ;

gNZij − δij ¼
2m1

r1
δij þ ð1 ↔ 2Þ þOðv4Þ; ð4Þ

where mA, siA, y
i
A and viA denote the mass, spin angular

momentum, location and velocity of the Ath PN particle,
respectively. Other notations that have been introduced
above are r12 ¼ jy1 − y2j, n12¼ðy1−y2Þ=b, v12 ¼ v1 − v2,
rA ¼ jx − yAj, niA ¼ ðxi − yiAÞ=rA and ϵijk is the Levi-
Cività symbol.
In practice, we use higher order PN EOM than is strictly

allowed by matching. Since the IZ metric is a first order BH
perturbation theory, we cannot use any higher order than
linear for the NZ metric in the matching calculation. We
can, however, use a higher order PN EOM outside of the
matching to have more accurate PN dynamics in the NZ for
long time evolutions of BHB systems. The higher order
formulas are summarized in the appendix of Ref. [83], and
also in Ref. [36] (see also Sec. III F). More specifically, we
may use the energy function in Eq. (A.11), flux function in
Eq. (A.13), and mass loss in Eq. (A.14) given in Ref. [84]

and follow the procedure to derive the orbital phase
evolution presented in Sec. IX.3 of Ref. [36]. This gives
the aligned spinning version of Eq. (317) in Ref. [36],
which is for the nonspinning case.

D. Asymptotic matching

The IZ metric is described by the CS-H coordinates Xα

and the parameters Λα ¼ ðmKerr; a; zR;m; zI;mÞ, where zR;m
and zI;m are the real and imaginary parts of z2m respectively.
On the other hand, the NZ metric is written in PNH
coordinates xα with the parameters λα ¼ ðm1; m2; b; si1; s

i
2Þ.

We require that these two expressions be diffeomorphic to
each other, leading us to a set of equations that relate the
coordinates of the two metrics

gNZαβ ¼ ∂Xγ

∂xα
∂Xδ

∂xβ g
IZ
γδ; ð5Þ

and expressions that relate the parameters used in each
zone. We consider b ¼ r12 a constant in the matching
calculation here and recover the time dependence in the
final expression.
In the BZ in Fig. 1 and Table I, we use series expansions

with respect to ðm2=bÞ1=2 ¼ OðvÞ. The IZ coordinates and
parameters are expanded as

XαðxβÞ ¼
Xn
i¼0

�
m2

b

�
i=2
ðXαÞiðxβÞ þOðvnþ1Þ;

ΛαðλβÞ ¼
Xn
i¼0

�
m2

b

�
i=2
ðΛαÞiðλβÞ þOðvnþ1Þ; ð6Þ

where ðXαÞi and ðΛαÞi denote the ith expansion functions
of the NZ coordinates xβ and those of the NZ parameters λβ,
respectively.
In the asymptotic matching between the IZ1 and NZ

metrics to O½ðm2=bÞ1�, i.e., n ¼ 2 in the above equations,
we have already discussed in Ref. [56] that the nonspinning
matching transformation is sufficient, even if we consider
the matching of the spinning case. This is because the
spinning body effect arises from the n ¼ 3 matching.
Obtaining the mass mKerr ¼ m1 (also the dimensional spin
parameter a ¼ sz1=m1 for nonprecessing, spinning BHBs),
the quadrupolar field is

zR;0 ¼
2m2

b3
;

zR;2 ¼
6m2

b3
cos 2ωt; zR;−2 ¼

6m2

b3
cos 2ωt;

zI;2 ¼ −
6m2

b3
sin 2ωt; zI;−2 ¼

6m2

b3
sin 2ωt; ð7Þ

where ω ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=b3

p
to lowest PN order, and the other

components vanish.
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E. Expansion of the nonspinning part of
the IZ and NZ metrics

Using m1 ≪ r1 ≪ b in the BZ in Fig. 1 and Table I, we
expand the NZ and IZ metrics. First, the NZ metric is
expanded as in Ref. [39]:

gαβ ¼ ðgαβÞ0 þ
ffiffiffiffiffiffi
m2

b

r
ðgαβÞ1 þ

�
m2

b

�
ðgαβÞ2 þOðv3Þ; ð8Þ

where

ðgNZαβ Þ0 ¼ ηαβ; ðgNZαβ Þ1 ¼ 0;

ðgNZαβ Þ2 ¼
�
2m1

m2

b
ðr1Þ0

þ 2 −
2

b
fðr1Þ0 · ðb̂Þ0g

þ 1

b2
f3½ðr1Þ0 · ðb̂Þ0�2 − ½ðr1Þ0�2g

�
Δαβ: ð9Þ

Here, Δαβ ¼ diagð1; 1; 1; 1Þ, and ðb̂kÞ0 ¼ β̂k ¼ fcosωt;
sinωt; 0g is a unit vector. Note that there is no spin
contribution which is 1.5PN order.
Next, we treat the IZ metric in the BZ. The IZ metric up

to the second order is derived as

ðgIZαβÞ0 ¼ ηαβ ðgIZαβÞ1 ¼ 0;

ðgIZ00Þ2 ¼
2ðmKerrÞ0

m2

b
ðRÞ0

−
1

b2
ðĒklÞ0ðXkÞ0ðXlÞ0;

ðgIZ0i Þ2 ¼
1

3b2
ðXiÞ0
ðRÞ0

ðĒklÞ0ðXkÞ0ðXlÞ0

þ 2

3b2
ðRÞ0ðĒikÞ0ðXkÞ0;

ðgIZij Þ2 ¼
�
2ðmKerrÞ0

m2

b
ðRÞ0

−
1

3b2
ðĒklÞ0ðXkÞ0ðXlÞ0

�
δij

−
2

3b2
ðĒijÞ0ðRÞ20: ð10Þ

Here, the electric Ekl tidal tensor components are related to
the parameters zR;m and zI;m as

EXX ¼ −
1

8
zR;−2 −

1

4
zR;0 −

1

8
zR;2;

EXY ¼ −
1

8
zI;−2 þ

1

8
zI;2;

EXZ ¼ −
1

4
zR;−1 −

1

4
zR;1;

EYY ¼ 1

8
zR;−2 −

1

4
zR;0 þ

1

8
zR;2;

EYZ ¼ −
1

4
zI;−1 þ

1

4
zI;1;

EZZ ¼ 1

2
zR;0; ð11Þ

where EXX þ EYY þ EZZ ¼ 0, and Ekl is expanded as

Ekl ¼
m2

b3
ðĒklÞ0 þOðv3Þ: ð12Þ

Since the magnetic tidal tensor components, Bkl, are higher
order than Ekl, we ignore them when we discuss the
matching up to O½ðm2=bÞ1�, and ðĒijÞ0 is written as

ðĒijÞ0 ¼ δij − 3β̂iβ̂j: ð13Þ

We are using the notation β̂α ¼ f0; cosωt; sinωt; 0g above.

F. Matching calculation

We presented the formal expression of the asymptotic
matching in Sec. II D, and then the IZ and NZ metrics in the
BZ in Sec. II E. Using the results from Sec. II E, we
calculate the coordinate transformation for the asymptotic
matching. This consists of solving Eq. (5) order by order to
O½ðm2=bÞ1� with respect to ðm2=bÞ1=2.

1. Zeroth-order matching: O½ðm2=bÞ0�
At zeroth order, we have the matching equation

ðgNZαβ Þ0 ¼ ðAα
γÞ0ðAβ

δÞ0ðgIZγδÞ0; ð14Þ

with Aα
β ¼ ∂αXβ. Using ðgNZαβ Þ0 ¼ ðgIZαβÞ0 ¼ ηαβ, and

taking into account the position of BH1, the zeroth order
coordinate transformation is given by

ðXαÞ0 ¼ xα −
m2

M
bβ̂α ¼ ~xα: ð15Þ

We also understand ðri1Þ0 ¼ ~xi. Here, it is noted that β̂α has
a time dependence, i.e.,

∂tðXαÞ0 ¼ t̂α −
m2

M
bων̂α ¼ t̂α −

ffiffiffiffiffiffi
m2

b

r ffiffiffiffiffiffi
m2

M

r
ν̂α; ð16Þ

where t̂α ¼ f1; 0; 0; 0g and ν̂α ¼ f0;− sinωt; cosωt; 0g.
The last term in the above equation creates the difference
between Ref. [56] and this paper.

2. First-order matching: O½ðm2=bÞ1=2�
At first order, the matching equation becomes

ðgNZαβ Þ1 ¼ ðAα
γÞ0ðAβ

δÞ0ðgIZγδÞ1
þ 2ðAðαγÞ1ðAβÞδÞ0ðgIZγδÞ0; ð17Þ

where TðαβÞ denotes symmetrization about two indices.
Using ðgNZαβ Þ1 ¼ ðgIZαβÞ1 ¼ 0, ðgIZγδÞ0 ¼ ηαβ, ∂iðXαÞ0 ¼ δi

α

and Eq. (16), the above equation is written as
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ðAðαβÞÞ1 þ
ffiffiffiffiffiffi
m2

M

r
t̂ðαν̂βÞ ¼ 0: ð18Þ

One of the solutions can be obtained as

ðXαÞ1 ¼ −
ffiffiffiffiffiffi
m2

M

r
~yC t̂α; ð19Þ

where ~yC ¼ ν̂i ~xi ¼ ν̂α ~xα. We also use the notation ~xC ¼
β̂i ~xi ¼ β̂α ~xα in the following analysis. ~xC and ~yC are the
coordinates centered on BH1 that are corotating with the
binary.

3. Second-order matching: O½ðm2=bÞ1�
In the above leading and first order analysis, we have

derived

ðXαÞf1g ¼ ~xα −
ffiffiffiffiffiffi
m2

b

r ffiffiffiffiffiffi
m2

M

r
~yCt̂α; ð20Þ

where f1g denotes the leading þ first order quantity.
At second order, we have a formal expression for the
matching as

ðgNZαβ Þf2g ¼ðAα
γÞf2gðAβ

δÞf2gðgIZγδÞf2g: ð21Þ

Again, f2g means the leading þ first order þ second order
quantity, and ðAα

γÞf2g is written by

ðAα
γÞf2g ¼δα

γþ
ffiffiffiffiffiffi
m2

b

r � ffiffiffiffiffiffi
m2

M

r
t̂αν̂γ−

ffiffiffiffiffiffi
m2

M

r
ν̂αt̂γ

�

þm2

b

�
−
1

b

�
~xCþ

m2

M
b

�
t̂αt̂γþð∂αXγÞ2

�
: ð22Þ

Finding the solution for ðXγÞ2 is the remaining task to
complete.
Using the explicit expression of

½ðAα
γÞð2ÞðAβ

δÞð2Þηγδ�ð2Þ ¼ ηαβ þ
m2

b

�
−
2

b
~xCt̂αt̂β −

m2

M
t̂αt̂β −

m2

M
ν̂αν̂β þ 2ðAðαβÞÞ2

�
; ð23Þ

and Eq. (13) for ðĒkjÞ0, we may solve

2ðAðαβÞÞ2 ¼
��

2 −
2

b
~xC

�
Δαβ þ

2

b
~xCt̂αt̂β þ

m2

M
t̂αt̂β þ

m2

M
ν̂αν̂β

�
þ
�
δiαδ

j
β

2

b2
ð~x2Cδij − ðr1Þ20β̂iβ̂jÞ

�

þ
�
ðδiαt̂β þ δiβ t̂αÞ

1

3b2

�
3ðr1Þ0 ~xi −

3

ðr1Þ0
~x2C ~xi − 6ðr1Þ0 ~xCβ̂i

��
: ð24Þ

The second order coordinate transformation ðXαÞ2 is
derived as follows. From the first bracket in Eq. (24), we
obtain a particular solution,

ðXαÞ2;p1 ¼
�
1þ m2

2M

�
ð~xβ t̂βÞt̂α þ

�
1 −

~xC
b

�
Δαi ~xi

þ Δij ~xi ~xj

2b
β̂α þ

m2

2M
~yCν̂α; ð25Þ

and from the second bracket, a particular solution is

ðXαÞ2;p2 ¼ −
1

b2
ððr1Þ20 ~xCβ̂i − ~x2C ~xiÞδiα: ð26Þ

The third bracket gives a particular solution,

ðXαÞ2;p3 ¼
1

3b2
ððr1Þ30 − 3~x2Cðr1Þ0Þt̂α: ð27Þ

Finally, combining the above three particular solutions, the
coordinate transformation is written as

ðXαÞ2 ¼ðXαÞ2;p1 þ ðXαÞ2;p2 þ ðXαÞ2;p3; ð28Þ

where we have ignored the homogeneous solution which is
required in higher order matching. This means that the
resultant coordinate transformation is not unique. The series
expansion of ðXαÞ0 þ

ffiffiffiffiffiffiffiffiffiffiffi
m2=b

p ðXαÞ1 þ ðm2=bÞðXαÞ2 with
respect to t=b ≪ 1 gives the same coordinate transformation
as obtained in Ref. [56].
In practice, we use the following explicit expressions for

the coordinate transformation. Using the PN orbital phase
evolution ωt ¼ ϕ ¼ ϕðtÞ and the PN evolution of the
orbital separation b ¼ r12 ¼ r12ðtÞ, and introducing the
notations ~xα ¼ ft; ~x; ~y; zg and ~r1 ¼

ffiffiffiffiffiffiffiffi
~xi ~xi

p
ð¼ ðr1Þ0Þ,
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T ¼ t −
ffiffiffiffiffiffi
m2

r12

r ffiffiffiffiffiffi
m2

M

r
~yC þm2

r12

�
1

3

~r13 − 3~xC2 ~r1
r122

−
�
1þ 1

2

m2

M

�
t

�

¼ t −
ffiffiffiffiffiffi
m2

r12

r ffiffiffiffiffiffi
m2

M

r
~yC þm2

r12

�
1

3

~r13 − 3~xC2 ~r1
r122

�

þ 5

384

ð2M þm2Þðr312 − r12ð0Þ3Þ
M2m1

;

X ¼ ~xþm2

r12

�
−
~r12 ~xC cosϕ − ~xC2 ~x

r122
þ ~x

�
1 −

~xC
r12

�

þ 1

2

~r12 cosϕ
r12

−
1

2

m2 ~yC sinϕ
M

�
;

Y ¼ ~yþm2

r12

�
−
~r12 ~xC sinϕ − ~xC2 ~y

r122
þ ~y

�
1 −

~xC
r12

�

þ 1

2

~r12 sinϕ
r12

þ 1

2

m2 ~yC cosϕ
M

�
;

Z ¼ zþm2

r12

�
~xC2z
r122

þ z

�
1 −

~xC
r12

��
: ð29Þ

Here, some terms with t in the T-component have been
rewritten via the rate of change of the orbital separation as
in Ref. [33],

t
r12

¼
Z

t

0

dt
r12

¼
Z

r12

r12ð0Þ
dr12

�
dr12
dt

�
−1 1

r12

¼ −
Z

r12

r12ð0Þ
dr12

5r212
64M3η

¼ −
5ðr312 − r12ð0Þ3Þ

192M3η
; ð30Þ

where r12ð0Þ is the initial orbital separation which we set in
the numerical calculation.

G. Global metric

With the asymptotic matching of IZA (A ¼ 1, 2) to the
NZ in hand, we can stitch the IZ metric to the NZ metric
(and similarly with the NZ to FZ) together via the proper
transition functions in the BZ in Fig. 1 and Table I. These
transition functions are specially selected to obey the
Frankenstein theorems of Ref. [65], and therefore will
not introduce any error into the metric calculation that is
larger than the error already generated in the individual
zones. The global metric is then a weighted average

gμν ¼ ð1 − ffarÞffnear½finner;1gNZμν þ ð1 − finner;1ÞgIZ1μν �
þ ð1 − fnearÞ½finner;2gNZμν þ ð1 − finner;2ÞgIZ2μν �g
þ ffargFZμν ; ð31Þ

where the transition functions ffar, fnear, finner;1, and finner;2
are summarized in Appendix A.
Here, it is noted that we have used various different type/

order approximations in the IZ, NZ, and FZmetrics, and the
EOM. Therefore, to choose the BZs, we need to take into
account the largest possible error which arises from the
finite order truncation in the approximations, for example,
O½ðm2=bÞ3=2� in the IZ1-NZ BZ. Using these BZs, we can
obey the Frankenstein theorems of Ref. [65], and avoid any
unphysical behavior due to different approximations.
To demonstrate that the matching and the construction of

the global metric do not introduce any pathological
behavior in the coordinate choice outside the horizon,
we show in Fig. [2] the volume element,

ffiffiffiffiffiffi−gp
, for the

global metric, which encodes, for example, the IZ metric in
the PN harmonic coordinates, after the coordinate trans-
formation and transition function have been carried out.

III. NUMERICAL ANALYSIS

To verify the correctness of the analytic metric approxi-
mating a spinning BHB spacetime, we developed a battery
of different and independent tests to judge the quality of the
analytic approximation as in Ref [33]. We are mainly
interested in identifying how much this analytic approxi-
mation deviates from the true solution to the Einstein’s
equations. In order to achieve a reasonable, independent
analysis of this approximation we resort then to the
computation of spacetime scalar invariants and their com-
parison against their expected values for vacuum space-
times. While these analyses might not be sufficient to judge
all aspects of this new metric it is definitely necessary to
assess its overall quality especially when compared against
other analytic, approximative metrics.

FIG. 2. Comparison of the volume element,
ffiffiffiffiffiffi−gp

, for the global
metric for differing values of the spin parameter χ, where both
black holes have spin aligned with the orbital angular momentum
of the binary.
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We summarize in the following subsections which scalar
invariants we have used in our analysis. We then present the
results for this analytic metric. Discussion on how these
scalar invariants are computed in our codes is left to the end
of Sec. III E.

A. Ricci scalar

Using this global approximate metric, we calculate the
Einstein tensor Gμν, the Ricci tensor Rμν, the Ricci scalar R
and the relative Kretschmann invariantK (see below) to test
the validity of the approximate metric. If the BHB
spacetime constructed is a valid vacuum solution, then it
naturally must satisfy the ten Einstein equations in vacuum,
Rμν ¼ 0. Therefore, any deviations from R ¼ gμνRμν ¼ 0

can be interpreted as a measure of the violation to the
Einstein equations that the global metric has incurred by the
approximate construction. In the following analysis, we use
the sign conventions laid out in Ref. [55] (see also Wald’s
General Relativity [85]) for all different geometric quan-
tities entering the computation of the Ricci scalar. Note also
that we have used projections of the Ricci tensor along the
hyperspace normal and into the time slices to compute the
Hamiltonian and momentum constraints, which are con-
sistent with the Ricci scalar analysis we present.

B. Relative Kretschmann

In principle, it is possible to construct many invariants
for the BHB problem. Here we present a new concept that
we can use to evaluate the validity of the approximate,
analytic metric. One of the pitfalls of using a quantity such
as the Ricci scalar in analysis of the violation to the Einstein
equations is that it is not a normalized quantity. The Ricci
scalar can be large without bound, and it is therefore
difficult to assign meaning to a numerical quantity in the
Ricci scalar without a scale to compare our results with.
The only scale that the Ricci scalar provides in vacuum is
how far it deviates from zero. A Ricci scalar value of 10−9 is
better than a value of 10−6, but that is all that we can really
say about it. If we wish to use this as an assessment of the
error, it becomes difficult to assign meaning to the results if
they are far from zero.
It would therefore be desirable to have a quantity that

both measured the violation of the Einstein equations and
provides a scale, so values could be compared directly and
we can easily interpret them.
For this purpose, we introduce an invariant that can still

give us a measure of the violation to the Einstein equations
and has the added benefit of being normalized: the relative
Kretschmann curvature scalar.
We start with the definition of theWeyl tensorCμνρδ from

Ref. [74],

Rμνρδ ¼ Cμνρδ þ ðgμ½ρRδ�ν − gν½ρRδ�μÞ −
1

3
Rgμ½ρgδ�ν: ð32Þ

From here, we contract the Weyl tensor with itself,
eventually yielding the Kretschmann curvature scalar:

RμνρδRμνρδ ¼ CμνρδCμνρδ þ 2RμνRμν −
1

3
R2: ð33Þ

We now can say that if the solution is exact, we know that
this contraction of the Riemann tensor should be equal
exactly to the contraction of the Weyl tensor. In exact
solutions to Einstein’s equations, contraction of the
Riemann tensor and the Ricci scalar are both zero.
Therefore, we can define a relative Kretschmann from
the remainder:

Krel ¼
���� 2RμνRμν − R2=3

RμνρδRμνρδ

����; ð34Þ

which is the remainder from the exact vacuum solution
normalized by the Kretschmann invariant RμνρδRμνρδ. We
expect that this value will be less than 1 anywhere in the
global spacetime for small violations from the vacuum
spacetime. For larger violations, it may be possible to have
Krel > 1. This is because there is no constraint for the
energy-momentum tensor which is converted from the
Ricci violation. We can now use this as a measure of
the exactness of the solution, and plot the residual that we
obtain to get an idea of what the relative violation is to the
true (exact) solution. Essentially this normalization intro-
duces a scale to which we can compare the errors our
approximation produces, giving us the desirable feature of
having a direct way achieve this task in our spacetime.

C. Accuracy of the global metric: The Ricci scalar

In Ref. [33], we showed how the violations of the Ricci
scalar change as we increase the order of approximation for
an equal mass nonspinning BHB spacetime. Fortunately as
expected from the analytical point of view, those violations
became smaller everywhere as we went from a first order
metric [with the quadrupole (IZ)-1PN (NZ) matching] to a
second order metric [with the octupole (IZ)-2PN (NZ)
matching]. We reproduce that result here in Fig. 3. Our
work in this paper is the first step towards a higher order of
approximation for spinning BHBs. As shown in Sec. II D,
the matching for the spacetime construction is first order
with the quadrupole order for the IZ and 1PN order for the
NZ. Since we do not have at the moment a higher order
spinning BHB spacetime to compare to, we use the first and
second order metrics for nonspinning BHB as a reference
for the spinning metric. The idea is make sure that the
spinning BHB metric does not introduce any larger
violations of the Ricci scalar than what we have already
seen in the nonspinning case. As we can see in Fig. 3 this is
fortunately the case. The first order matched spinning BHB
metric results in Ricci violations that follow most closely
the second order violations of the nonspinning metric for
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regions far away from the BHs and lies in between the first
and second order cases for regions closer to the BHs. The
reason we obtain much better results for the first order
spinning BHB metric than for the first order nonspinning
BHB metric is that we are indeed using higher order
spinning metric components here while keeping the match-
ing to first order only. The rationale is that while we would
like to have a consistent order counting in this work and a
future one for the second order one, we can already take
advantage of higher order metric pieces with smaller Ricci
violations right now for our upcoming gas and MHD
simulations.
As we increase the spin parameter value, χi, from its

nonspinning value, χi ¼ 0, to a very large spinning
configuration, χi ¼ 0.9, we observe very little variations
in the Ricci violations in the NZ and FZ. That indicates the
perturbation-by-spin addition to the system is small (see
Fig. 4). As we zoom in to the NZ (Fig. 5), the differences in
violation among all spinning cases become more evident.
Only at a small spacetime volume between the horizon
location and a radius set by an ISCO for an individual BH
do these violation differences span more than one order of
magnitude. While of great importance to accurately
describe the spacetime in the vicinity of a BH, it is not

so crucial in determining particle or gas dynamics since
they are expected to follow unstable circular orbits and
accrete into the BH. We hope in a future work to improve
on these violation differences between the spinning cases
by introducing a second order asymptotic matching
between the IZ and NZ.
Next we exploit the effects of spin antialignment with the

orbital angular momentum. We fix our attention to the large
spinning case, jχij ¼ 0.9. Again very little variation among
the aligned, antialigned and the zero-sum cases is observed
in the NZ and FZ (see Fig. 6). As we zoom in to the IZ

FIG. 3. The absolute value of the Ricci scalar along the x
coordinate, at an initial separation of 20M. We compare here the
violations of the Ricci scalar for the spinning BHB metric against
the nonspinning (NS) BHB first and second order metrics [33]. It
is interesting to note that the new spinning BHB metric has
violations of the same order of magnitude as the previous
nonspinning BHB metric. In this plot and the following plots,
the horizon is denoted by the grey dashed vertical line, discussed
in more detail in Fig. 5. The ISCO is the orange dashed vertical
line (see Appendix C for details). The green dash-dotted vertical
lines indicate the boundaries of the different zones, and are
consistent for all of the subsequent plots. It is good to note here
that the zone boundaries do change for differing spins, though not
by much, so here we picked the fiducial zone boundary for the
χi ¼ 0.9 (highly spinning) and aligned case.

FIG. 4. The absolute value of the Ricci scalar along x, at an
initial separation of 20M. The spin parameter is varied in this
plot. We see that there is little qualitative variation in changing χi.

FIG. 5. The absolute value of the Ricci scalar along x, for
aligned spins, zoomed in on the inner region near the horizon.
The horizon is denoted by the grey dashed vertical line, roughly at
a position of xh ¼ xBH;1 �M=2 on the x-axis, and is easier to
distinguish here than in the previous plots. The ISCO is the
orange dashed vertical line (see Appendix C for details). The inset
shows the behavior close to the horizon.
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(Fig. 7), we can distinguish better among the cases, but
none of them differ from one another by more than two
orders of magnitude at ISCO locus.
Finally we show snapshots of the Ricci scalar as the

binary evolves in time, starting from a separation of r12 ¼
20M up until r12 ¼ 8M roughly. We were careful to pick
the instants of time when the BHs cross the x-axis so that a
comparison would be meaningful. As the separation
decreases, the perturbation parameters become larger and
larger, leading to a poorer approximation of the spacetime.
As expected then, the violations of the Ricci scalar increase
with evolution time or decreasing binary separation as
Fig. 8 shows for the aligned χi ¼ 0.9 case. The take-home

lesson from that figure is that the violations do increase
with time, but in an orderly and smooth fashion.

D. Accuracy of the global metric:
The relative Kretschmann

In Figs. [9]–[13], we plot the accuracy of the metric with
respect to the relative Kretschmann invariant, to contrast
with the Ricci analysis above.
As we can see from Fig. 9, the Kretschmann invariant

becomes large near the BHs, and falls off as 1=r6 as we
move away from the BHs. This means that any error in the
FZ will be divided by a very small number, and so the
relative Kretschmann will be large in the FZ. Therefore, in
the weak gravitational field, the relative Kretschmann
cannot be used to meaningfully measure the accuracy.
On the other hand, it will be extremely small in the IZ
where it is being divided by a very big number. Thus, when
the true gravitational field is strong, the relative
Kretschmann can be used as a meaningful measure of
the spacetime accuracy.
We briefly discuss the FZ behavior in Figs. 10 and 12. In

the FZ, the solution does not follow the 1=r behavior that is
expected. This is because the coefficients are calculated in
the PN approximation. We can show this schematically as
follows. Imagine a schematic expression of the FZ metric,

hFZμν ∼
Hμν

r
expð−iωðt − rÞÞ þOð1=r2Þ; ð35Þ

where Hμν is evaluated from the PN multipole sources.
When we plot the Ricci scalar in the FZ, we have a 1=r
factor that will act as a damping term. However, in the

FIG. 6. The absolute value of the Ricci scalar along x, at an
initial separation of 20M. This plot shows the spin parameter χi
varied for antialigned spins.

FIG. 7. The absolute value of the Ricci scalar along x, zoomed
in near the BH to show the violation near the horizon. This plot
shows the spin parameter χi varied for antialigned spins. The inset
shows the behavior close to the horizon.

FIG. 8. The absolute value of the Ricci scalar along x, at an
initial separation of 20M, 12M, and 8M, for spins χ1 ¼ χ2 ¼ 0.0
(top) and χ1 ¼ χ2 ¼ 0.9 aligned (bottom). Note that the violation
increases smoothly as we decrease in orbital separation. This
gives a good indication that the dynamics is not introducing any
spurious error into the metric.
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relative Kretschmann calculation, this 1=r dependence
cancels out due to the r dependence in the Kretschmann
invariant. Therefore, any error accumulated in the PN
expression for Hμν will become an important contribution

to the overall error in the FZ, leading to some large finite
amplitude of the Kretschmann at large r.
The Kretschmann invariant is not an independent mea-

sure of the error in the approximations, just another way to
look at the violation of the spacetime. The Ricci scalar
contains information about the spacetime violation, and
since the behavior of the Ricci scalar in the FZ is damped
as expected, the observed behavior in the relative
Kretschmann is not necessarily a concern given the issues
with this diagnostic discussed earlier due to the finite PN
expression being divided by a small value of the

FIG. 10. The relative Kretschmann for an initial separation of
r12 ¼ 20M, with a grid resolution of 0.0125. In this plot, we are
plotting aligned spinning BHs, and increasing the dimensionless
spin parameter χi from nonspinning to highly spinning. Observe
the normalized behavior that these plots exhibit. The violation to
this invariant is very good close to the horizon due to the way that
we are normalizing. See Fig. 9 for the normalization function.

FIG. 9. The Kretschmann invariant calculated for the BHB
spacetime for differing values of spin, all of which are aligned
with the orbital angular momentum of the binary, at an initial
separation of r12 ¼ 20M. The 1=r6 behavior seen far from the
two BHs (∼40M) is consistent with the value of the Kretschmann
in the single Schwarzschild BH case: K ¼ 48M2=r6, where M is
the total mass of the binary centered on the origin. The inset
shows the behavior close to the horizon, where the spin effects
become noticeable. The Kretschmann becomes large as it
approaches a BH, because the invariant blows up at a true
singularity.

FIG. 11. Zoomed-in view of Fig. 10 around the IZ. The inset
shows the behavior close to the horizon.

FIG. 12. The relative Kretschmann for an initial separation of
r12 ¼ 20M, with a grid resolution of 0.0125 for varying values of
the dimensionless spin parameter χi. In this plot, we are looking at
what the relative Kretschmann does for antialigned BHs with
high χi values. Observe the normalized behavior that these plots
exhibit. The violation to this invariant is very good close to the
horizon, due to the way that we are normalizing. See Fig. 9 for the
normalization function.
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Kretschmann. This is by no means a proof that the error in
the FZ is not dominated by noise that could be suppressed
by taking the code to a higher precision; however, because
the Ricci scalar shows good behavior in the FZ, it is not
worth the analysis that would be required since other
complementary invariants have shown excellent small
violations in the FZ.
For these reasons, although the relative Kretschmann is a

good way to measure errors in the IZ, where the fields are
strong and dynamical, it is a poor way to measure the
overall accuracy of the global metric in the weak field limit
far from the compact sources.

E. Numerical methods

In order to compute the several geometric quantities
needed for our analysis partial derivatives of the metric
components are needed. One could try to obtain these
derivatives analytically, in a closed form, for each piece of
the metric used when composing the global metric; however
this would result in extremely large expressions which could
potentially defeat the goal of obtaining analytic approxima-
tions of BHB spacetimes that are cheaper to compute than a
full general relativistic numerical computation. In addition
this fully analytic approach to the computation of the
derivatives would be extremely tricky to implement in the
BZs where we need to worry not only about the metric
matching but also the matching of its derivatives. These
analytic complications give us incentive to compute these
derivatives numerically. In all computations showed in
this paper we have discretized the partial derivatives
using a centered, fourth order finite difference stencil. In
Fig. 14 we show the Ricci scalar convergence factor
(Qðt¼0;xÞ¼ðR4h−R2hÞ=ðR2h−RhÞ¼2pþOðhÞ, where h
is the mesh spacing and p ¼ 4 in our case. See Ref. [33] for
more details) for several different resolutions demonstrating
convergence to the continuum solution to the fourth order of

approximation. Since the solution spans several scales of
length, different requirements in terms of mesh spacings are
needed to resolve the solution. For example, on the top panel
the highest resolutions used to compute the convergence
factor, hH=M ¼ f0.025; 0.0125; 0.00625g, do resolve well

FIG. 14. Convergence factor along x. Each of the panels show
the Ricci scalar convergence factor Q at t ¼ 0 along the
coordinate x-axis for different intervals in x, depending on the
set of mesh spacing used in the convergence factor computation.
On all panels the red dotted line represents the convergence factor
for the low resolution mesh spacing set used in that panel, while
the blue dashed and black solid lines represent the medium and
high resolution mesh spacing set, respectively. The green hori-
zontal dashed line at Q ¼ 16.0 is the theoretical solution at
infinite resolution h ¼ 0. On the top panel, the low resolution
mesh set, hL=M ¼ f0.1; 0.05; 0.025g, is used to compute QL,
while the medium and high resolution ones are hM=M ¼
f0.05; 0.025; 0.0125g and hH=M ¼ f0.025; 0.0125; 0.00625g,
respectively. We masked out QH outside the interval
½7M; 13M� to avoid noise due to round-off precision errors.
On the second panel from above, the low resolution set is
hL=M ¼ f0.8; 0.4; 0.2g, while the medium and high ones are
hM=M ¼ f0.4; 0.2; 0.1g and hH=M ¼ f0.2; 0.1; 0.05g, respec-
tively. We also mask out QH and QM for x > 25M and x > 35M,
respectively, to avoid round-off noise. On the third panel, we use
hL=M ¼ f6.4; 3.2; 1.6g, hM=M ¼ f3.2; 1.6; 0.8g and hL=M ¼
f1.6; 0.8; 0.4g. We mask out QH and QM for x > 90M and
x > 140M, respectively. Finally on the bottom panel, we
use hL=M ¼ f51.2; 25.6; 12.8g, hM=M ¼ f25.6; 12.8; 6.4g and
hL=M ¼ f12.8; 6.4; 3.2g. These different sets of resolutions were
used here to emphasize the mesh spacings required to be in the
convergence regime for different zones.

FIG. 13. Zoomed-in view of Fig. 12 around the IZ. The inset
shows the behavior close to the horizon.
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the solution features in the vicinity of the BH location,
xBH;1=M ¼ 10 in this case. In addition we can see clearly the
convergence factor tending to 16.0 around x=M ¼ 9 or
x=M ¼ 11 as we increase the resolution used in QL to the
ones in QM and QH, a clear indication of fourth order
convergence. However it is interesting to note that the high
resolution mesh spacing set drives the convergence factor
outside the convergence regime approximately outside the
interval ½7M; 13M�. This is mainly due to the limited
precision to represent numbers in these computations (dou-
ble precision in our case). Subtractions of very similar
numbers result in catastrophic loss of precision which in
turn results in poor convergence order computation. A
quadruple precision version of the code was used in the past
to evaluate and confirm this loss of precision; however its
general use for our current simulations is prohibitively
expensive and we do not report its results here.
One interesting reading fromFig. 14 concerns identifying

the mesh spacing requirement for each of the zones
describing our metric. For example, in the vicinity of the
BH location, ½10.5M; 11.5M�, we can safely say that the set
of mesh spacings h=M ¼ f0.00625; 0.0125; 0.025; 0.05g
lies within the convergence radius of the fourth order
scheme. As this x interval extends beyond, roughly
½11.5M; 20.0M�, the requirement changes to the set of
h=M ¼ f0.0125; 0.025; 0.05; 0.1g. As we increase the
interval farther away, ½20.0M; 50.0M�, the set of h=M ¼
f0.1; 0.2; 0.4; 0.8g seems reasonable. Aswe go farther away
from the BH location, the resolution requirement for
½50M; 200M� drops for h ¼ f0.8; 1.6; 3.2; 6.4g approxi-
mately. Finally as we extend to intervals of ½200M;
1000M� and beyond, mesh spacings of h=M ¼ f3.2; 6.4;
12.8; 25.6g seem reasonable to obtain converging solutions.
From these studies it is clear then that we are able to obtain
fourth order converging solutions from the IZ to the FZ if we
are careful in selecting the appropriate mesh spacings.

F. Orbital hang-up effect, and long time
evolutions of the BHB

In Ref. [56] the Ricci violation was shown for an initial
spatial hypersurface. This work has presented figures for
the Ricci violation and relative Kretschmann by using
Eq. (29) as the coordinate transformation for long time
evolutions of our dynamic spacetime, these figures just
capture a snapshot at an instant in time, which is basically
the same procedure that was used for the initial data. This
means that we just need the EOM at an instant in time, and
it is not necessary to solve the EOM. Therefore, it is not
clear that we have introduced an appropriate EOM for long
time evolutions of the BHB system, and thus to confirm our
results we present the orbital evolutions.
A natural way to test this implementation of the EOM is

to see if this work can reproduce any of the known effects
of spin dynamics in aligned nonprecessing systems, such as
the orbital hang-up effect discovered in Ref. [43].

Recovering the hang up effect is an easy way to show
the correctness in the implementation of the EOM for the
binary. The orbital hang-up effect is an effect where the
spin of the individual BHs add to the orbital angular
momentum of the binary, causing the orbit to inspiral more
slowly, as it has to dissipate more angular momentum. This
leads to a pileup of the orbits, causing the “hang-up.” For
the following plot, we will be considering equal mass BHs
in quasicircular orbits, with dimensions in terms of the total
massM ¼ m1 þm2 of the binary. This effect was shown to
be the strongest at merger in Ref. [43], but as we show here
it also has an effect in the PN regime.

FIG. 15. The top panel is the orbital hang-up effect shown by
plotting the individual trajectories of BH1. Note that the orbits get
bunched up as the spin is increased from χ1 ¼ χ2 ¼ 0.0 to 0.9.
Both of the BH spins are aligned with the orbital angular
momentum of the binary. The bottom panel shows the orbital
hang-up effect as a decrease in the orbital separation as a function
of time for varying aligned spin parameters, with the fiducial spin
values chosen to coincide with the spins used in the Ricci and
relative Kretschmann analyzes. For both the top and bottom
panels, the evolution was terminated at 14000M in time.
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This effect can be seen clearly in Fig. 15. Had the spins
been antialigned, the reverse would be seen, with the highly
spinning BHs plunging quickly compared to the non-
spinning case. Comparisons to the orbital dynamics in
Refs. [32] and [86] yield good confirmation between the
trajectory plotted and the nonspinning trajectory here,
offering reassurance that the correct dynamics are being
calculated in the PN approximation, and thus that our
results are valid for long time evolutions.

IV. DISCUSSION

We have constructed a globally analytic, approximate
BHB spacetime via asymptotically matching BH perturba-
tion theory to PN formalism farther out to a PM spacetime
even farther away. The procedure of asymptotic matching
had to be generalized from Ref. [56] to be valid on all
spatial hypersurfaces, instead of a small group of initial
hypersurfaces near t − t0. Matching the metrics in this way
allows us to construct a global metric, which is correct until
the PN approximation breaks down, around 10M in orbital
separation.
The validity of this global metric was extensively tested

using several different techniques. We first calculated the
absolute value of the Ricci scalar and plotted it along a
particular axis and compared it with the exact solution
value R ¼ 0. Then the evolution of the Ricci scalar was
explored, to ensure that there were no sporadic errors in the
evolution that would contribute unduly to the overall error.
Fortunately, the behavior observed in this evolution was a
smooth increase in the violation to the Einstein field
equations due to the slow motion assumption breaking
down as the BHs inspiral.
To contrast with the Ricci scalar analysis, we performed

an analysis by using the relative Kretschmann Krel in
Eq. (34). However, it was noticed that this measure of
the error in the global metric is not the best in the FZ, since
the FZ behavior is not damped, and indeed appears to be the
largest contributor of error. As a result of this analysis,
though the relative Kretschmann has the attractive feature
of being an invariant with a natural scale of comparison, we
will be using the Ricci scalar as the measure of the accuracy
of the global metric out to the FZ, electing to use the
Kretschmann for studies of the violation close to either BH.
This metric is valid dynamically and for long time

evolutions, which makes it an ideal metric to use when
studying effects happening in the relativistic regime of
BHBs. The immediate application of this metric is to
implement it into the HARM3D code, which can then be used
to study MHD in the context of the BHB problem with
spins. This will allow new studies of accretion physics,
giving us the theoretical tools to make predictions for the
EM signatures of BHBs with spin.
Certain practical considerations are required when talk-

ing about this global metric construction. In this paper, we
have considered only one choice of transition function,

which is summarized in Appendix A. The transition
functions’ arguments were chosen by pragmatic consid-
erations; experimentally shown to give a lower violation to
the Einstein field equations, and not necessarily by any
mathematical arguments, such as the Frankenstein theo-
rems of Ref. [65].
A study which will be important for the future is an in-

depth analysis of the transition region near the IZ-NZ BZ.
From preliminary hydrodynamic simulations, the mini
disks around the individual BHs fall entirely in the BZ,
and the choice of transition function may have a significant
impact on the spacetime, and thus the gas dynamics will be
impacted. Practical choices of the free parameters need to
be explored further and will be highly valued for upcoming
MHD runs.
Another test that can be done is to explore test particle

trajectories in the spacetime. This powerful tool will give us
a good idea of how the spacetime is doing complementary
to the violation of the Ricci scalar and relative Kretschmann
invariant. This is being developed currently, and will be
explored in detail in a future paper.
A final step for this project is to generalize this to

arbitrarily aligned spins, which will lead to precession. This
has the added benefit of being able to study even more
interesting spin effects such as transitional precession and
spin flips. This will require refinement in our techniques.
The IZ metric will have to take into account that the tidal
fields are no longer solely along the r direction, but shifted
so that the spin axis is arbitrarily aligned with the orbital
angular momentum. The EOM need to be updated to take
into account the higher order spin dynamics, and the metric
will need to be modified to generate spins along any
direction. Though this process will be arduous, a fully
analytic spacetime describing a precessing, arbitrarily
aligned, spinning BHB spacetime will allow for general
relativistic magnetohydrodynamics (GRMHD) simulations
to explore completely new territory of gas dynamics in the
context of precessing BH spins.
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APPENDIX A: TRANSITION FUNCTIONS

When constructing the global metric, we must introduce appropriate transition functions in the BZs to avoid erroneous
behaviors [65]. In this analysis, we follow Ref. [33], and use the following transition function:

fðr; r0; w; q; sÞ ¼

8>>><
>>>:

0; r ≤ r0;

1
2

�
1þ tanh

�
s
π

�
χðr; r0; wÞ − q2

χðr;r0;wÞ

��	
; r0 < r < r0 þ w;

1; r ≥ r0 þ w;

ðA1Þ

where χðr; r0; wÞ ¼ tan½πðr − r0Þ=ð2wÞ�, and r0, w, q and s
are parameters. Great detail on this transition function can
be found in Refs. [37–39]. This transition function uses
different parameters in each of the BZs, which are modified
from Ref. [39].
In the analysis, we started by using the parameters from

Ref. [33]:

fnear ¼ fðx; 2.2m2 −m1r12=M; r12 − 2.2M; 1; 1.4Þ; ðA2Þ

finner;A ¼ fðrA; 0.256rTA; 3.17ðM2r512Þ1=7; 0.2; r12=MÞ:
ðA3Þ

Here rTA is the transition function radius, derived by
requiring that the uncontrolled remainders of the IZ and
NZ approximations be roughly equal. The NZ-FZ tran-
sition function is unchanged with respect to Ref. [33], and
the details of this choice of transition function can be
explored in that paper. It should be noted that although we
should formally use the transition functions given in
Ref. [56] due to the matching order according to the
Frankenstein theorems of Ref. [65], we have used the
above transition functions because it was found by experi-
ment that they give overall better results in the Ricci
calculation. While this is not mathematically rigorous, it is
a practical choice that we made to minimize the violation to
the Einstein field equations represented by the Ricci scalar
and the relative Kretschmann invariant.
It is also noted here that in practice we use the value

s ¼ b=M, where b is a (constant) initial orbital separation,
as opposed to r12=M, which is time dependent. This choice
was made in Ref. [33], so to compare as directly as
possible, we use the same s parameter as the one used there.
In the course of doing large separation runs (≈100M)

with the nonspinning global metric, a problem was found
with the IZ-NZ transition function. At large separation, the
value of s ¼ r12=M becomes large. As discussed in
Ref. [38], q determines the location where the transition
function equals 1=2, and s sets the slope, given by
sð1þ q2Þ=ð2wÞ. When we discuss the Ricci scalar of the
spacetime, s becomes more sensitive than q in setting the
slope for fixed r0 and w. Due to the value of r12 setting
the slope, in large separation runs with m1 ¼ m2 ¼ m=2,

the second derivative of the transition function finner;A can
become very large. Because of this, a new value of s is
suggested to minimize the absolute value of the second
derivative of this transition function. Due to analytic testing
of the transition function, this s parameter was set to 12 for
our future work and implementation into HARM3D.
Of course, there are many other parameters that set the

transition function, all of which can have wildly different
values. In future work, it would be nice to have a way of
optimizing the parameters to give the minimum violation to
the Ricci scalar. This could be achieved by using a
Monte Carlo simulation to explore this parameter space
and pinpoint the ideal values of the different parameters,
while still being a valid transition function (i.e. obeying the
Frankenstein theorems [65]). This will be reserved for
future work.

APPENDIX B: INGOING KERR COORDINATES
TO COOK-SCHEEL HARMONIC COORDINATES

The NZ metric is calculated in the PN harmonic
coordinates, but to accurately describe gas dynamics close
to the event horizons, it is desirable to have the horizon
penetrating property. Therefore, the Cook-Scheel harmonic
(CS-H) coordinates [79] are ideal for the Kerr spacetime,
which describes the background IZ metric.
Here we change the notation used throughout the paper

slightly because this coordinate transformation is for a
single BH. Therefore, in this appendix only, we will takeM
to be the mass of the individual Kerr BH, and not the
total mass.
The IZ metric presented in Ref. [58], however, is in the

ingoing Kerr (IK) coordinates. Noting the similarities
between the more familiar Boyer-Lindquist (BL) coordi-
nates, rIK ¼ rBL and θIK ¼ θBL, we can rewrite the coor-
dinate transformation from the IK ðvIK; rIK; θIK;ϕIKÞ
coordinates to CS-H ðtH; xH; yH; zHÞ coordinates2:

2Here, the changed notation of the CS-H coordinates is one of
convenience. We add the subscript H so as not to confuse
ourselves.
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tH ¼ vIK − rIK þ 2M ln

���� 2M
rIK − r−

����;
xH þ iyH ¼ ðrIK −M þ iaÞeiϕIK sin θIK;

zH ¼ ðrIK −MÞ cos θIK: ðB1Þ

It is noted that the following calculations are similar to the
summary in the appendix of Ref. [58] for the coordinate
transformation between the IK and Kerr-Schild coordi-
nates. To calculate the Jacobian to transform tensors, we
rewrite the above relations as

xH ¼ ½ðrIK −MÞ cosϕIK − a sinϕIK� sin θIK;
yH ¼ ½ðrIK −MÞ sinϕIK þ a cosϕIK� sin θIK;
zH ¼ ðrIK −MÞ cos θIK: ðB2Þ

Here, we calculate the radial coordinate in the CS-H as

r2H ¼ x2H þ y2H þ z2H

¼ r2IK − 2MrIK þM2 þ a2 − a2cos2θIK: ðB3Þ
When we solve the above equation with respect to rIK, there
are four solutions, and one of the solutions,

rIK ¼ 1

2

h
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4H − 2a2r2H þ a4 þ 4a2z2H

q
þ 2r2H − 2a2

i
1=2 þM; ðB4Þ

gives the appropriate radial coordinate for large rH.
Therefore, the inverse transformation is summarized as

rIK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2H − a2 þW

2

r
þM;

θIK ¼ arccos
zH

ðrIK −MÞ ;

ϕIK ¼ arctan
ðrIK −MÞyH − axH
ðrIK −MÞxH þ ayH

; ðB5Þ

and

vIK ¼ tH þ rIK − 2M ln

���� 2M
rIK − r−

����; ðB6Þ

where

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2H − a2Þ2 þ 4a2z2H

q
: ðB7Þ

We have the useful relations,

sin θIK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2H þ y2H
ðrIK −MÞ2 þ a2

s
;

sinϕIK ¼ ðrIK −MÞyH − axH
½ððrIK −MÞ2 þ a2Þðx2H þ y2HÞ�1=2

;

cosϕIK ¼ ðrIK −MÞxH þ ayH
½ððrIK −MÞ2 þ a2Þðx2H þ y2HÞ�1=2

: ðB8Þ

Using the above inverse transformation, the Jacobian for
this coordinate transformation, ∂xaIK=∂xbH, is calculated as

∂vIK
∂tH ¼ 1;

∂vIK
∂xH ¼ xH

2ðrIK −MÞ
�
1þ r2H − a2

W

��
1þ 2M

rIK − r−

�
;

∂vIK
∂yH ¼ yH

2ðrIK −MÞ
�
1þ r2H − a2

W

��
1þ 2M

rIK − r−

�
;

∂vIK
∂zH ¼ zH

2ðrIK −MÞ
�
1þ r2H þ a2

W

��
1þ 2M

rIK − r−

�
;

∂rIK
∂tH ¼ 0;

∂rIK
∂xH ¼ xH

2ðrIK −MÞ
�
1þ r2H − a2

W

�
;

∂rIK
∂yH ¼ yH

2ðrIK −MÞ
�
1þ r2H − a2

W

�
;

∂rIK
∂zH ¼ zH

2ðrIK −MÞ
�
1þ r2H þ a2

W

�
;

∂θIK
∂tH ¼ 0;

∂θIK
∂xH ¼ xHzH

2ðrIK −MÞ2
�
1þ r2H − a2

W

�
× ððrIK −MÞ2 − z2HÞ−1=2;

∂θIK
∂yH ¼ yHzH

2ðrIK −MÞ2
�
1þ r2H − a2

W

�
× ððrIK −MÞ2 − z2HÞ−1=2;

∂θIK
∂zH ¼ −

�
1 −

z2H
2ðrIK −MÞ2

�
1þ r2H þ a2

W

��
× ððrIK −MÞ2 − z2HÞ−1=2;

∂ϕIK

∂tH ¼ 0;

∂ϕIK

∂xH ¼ −
yH

x2H þ y2H
þ axH
2ðrIK −MÞððrIK −MÞ2 þ a2Þ

×

�
1þ r2H − a2

W

�
;

∂ϕIK

∂yH ¼ xH
x2H þ y2H

þ ayH
2ðrIK −MÞððrIK −MÞ2 þ a2Þ

×
�
1þ r2H − a2

W

�
; ðB9Þ

∂ϕIK

∂zH ¼ azH
2ðrIK −MÞððrIK −MÞ2 þ a2Þ

×

�
1þ r2H þ a2

W

�
: ðB10Þ
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The right-hand side of the above equations includes the IK
and CS-H coordinates because the expressions give a
compact form. Although there is an apparent divergent
behavior at rIK ¼ M, this can be removed by using

rIK −M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2H − a2 þW

2

r
: ðB11Þ

Finally, the perturbed metric in the IK coordinates is
transformed to the CS-H coordinates as

gHμν ¼
∂xμ0IK
∂xμH

∂xν0IK
∂xνH gIKμ0ν0 : ðB12Þ

This IZ metric in the CS-H coordinates will then be
matched to the NZ metric.

APPENDIX C: DETAILS ABOUT THE
HORIZON AND THE INNERMOST STABLE

CIRCULAR ORBIT

In our analysis of the validity of the spacetime, it is
helpful to understand the location of the BH horizon and
the ISCO in the PNH coordinates. We discuss the coor-
dinate transformation from the BL to the CS-H coordinates
again, because various useful results have been derived in
the BL coordinates.
The coordinate transformation from the BL coordinates

ðtBL; rBL; θBL;ϕBLÞ to the CS-H coordinates ðtH; xH; yH;
zHÞ is given by

tH ¼ tBL þ
r2þ þ a2

rþ − r−
ln

���� rBL − rþ
rBL − r−

����;
xH þ iyH ¼ ðrBL −M þ iaÞeiφ sin θBL;

φ ¼ ϕBL þ
a

rþ − r−
ln

���� rBL − rþ
rBL − r−

����;
zH ¼ ðrBL −MÞ cos θBL; ðC1Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
denote the event horizon (rþ)

and Cauchy horizon (r−) in the BL coordinates, and φ is the
same as ϕIK in Appendix B.
The following equations are useful to understand the

CS-H coordinates:

x2H þ y2H ¼ ½ðrBL −MÞ2 þ a2�sin2θBL
¼ ½ðrBL −MÞ2 þ a2�

�
1 −

z2H
ðrBL −MÞ2

�
;

r2H ¼ ðrBL −MÞ2 þ a2sin2θBL;

rH cos θH ¼ zH ¼ ðrBL −MÞ cos θBL;
ϕH ¼ arctan

yH
xH

¼ ϕa þ φ;

ϕa ¼ arctan
a

rBL −M
: ðC2Þ

The event horizon (rBL ¼ rþ) is located at rH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2 θBL

p
in the CS-H coordinates from the

transformations above. We also will use this location in
the PNH coordinates as a rough estimation of the event
horizon because the transformation from the CS-H to the
PNH coordinates is treated perturbatively, so the location of
the horizon will not change much. On the equatorial plane
(θBL ¼ θH ¼ π=2), we have the event horizon at

rH ¼ M; ðC3Þ

which is independent of the spin parameter, a. It is noted
that there is a coordinate singularity at rBL ¼ M, i.e., rH ¼
jaj sin θBL (x2H þ y2H ≤ a2) and zH ¼ 0 [79].
The inverse transformation is obtained as

rBL ¼ 1ffiffiffi
2

p ½r2H − a2 þ ððr2H − a2Þ2 þ 4a2z2HÞ1=2�1=2 þM

¼ RH þM;

tBL ¼ tH −
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ2 þ a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

× ln

���� RH −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

RH þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
����;

θBL ¼ arccos
zH

rBL −M
¼ arccos

zH
RH

;

ϕBL ¼ ϕH − ϕa −
a

rþ − r−
ln

���� rBL − rþ
rBL − r−

����
¼ arctan

yH
xH

− arctan
a
RH

−
a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ln

���� RH −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

RH þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
����: ðC4Þ

Note here that rH and RH are different. The Taylor
expansion with respect to small a and M of the above
relation gives the same equations as in Ref. [87]. But in
Ref. [87], we find the time coordinate transformation as
tH ¼ tBL because the harmonic coordinates are not unique.
The other transformations remain unchanged from the
above equations.
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For the evaluation of the ISCO, we turn to Ref. [88] and
have the last stable circular orbit (sometimes referred to as
the marginally stable orbit) at

rms;BL ¼ Mf3þ Z2 ∓ ½ð3 − Z1Þð3þ Z1 þ 2Z2Þ�1=2g;
Z1 ≡ 1þ ð1 − a2=M2Þ1=3

× ½ð1þ a=MÞ1=3 þ ð1 − a=MÞ1=3�;
Z2 ≡ ð3a2=M2 þ Z2

1Þ1=2; ðC5Þ

for the BL radial coordinate. Plugging this radius into the
transformation for the CS-H coordinates, we obtain
Table II.

APPENDIX D: COMPUTATIONALLY
EFFECTIVE IZ METRIC

The metric perturbation in the IZ metric is described
under the ingoing radiation gauge, hIZμνlν ¼ 0 and

hIZμμ ¼ 0. Here, lν is the Kinnersley null tetrad [58]. We
can use these five gauge conditions to reduce the
computational cost for the calculation of the IZ metric.
It is noted that all conditions are not independent and the
existence of the gauge condition has been discussed
in Ref. [89].
In practice, when we calculate hIZ22, h

IZ
23, h

IZ
24, h

IZ
33 and h

IZ
34,

the other metric perturbations are derived as

hIZ11 ¼
1

4

ðr2 − a2 þ 2a2cos2θÞðr2 − 2Mrþ a2Þ2hIZ22
ðr2 þ a2Þðr2 þ a2cos2θÞ2 þ aðr2 − 2Mrþ a2ÞhIZ24

ðr2 þ a2Þðr2 þ a2cos2θÞ −
a2sin2θhIZ33

ðr2 þ a2cos2θÞ2 ;

hIZ12 ¼ −
1

2

ðr2 − 2Mrþ a2ÞhIZ22
r2 þ a2

−
ahIZ24

r2 þ a2
; hIZ13 ¼ −

1

2

ðr2 − 2Mrþ a2ÞhIZ23
r2 þ a2

−
ahIZ34

r2 þ a2
;

hIZ14 ¼ −
1

4

sin4θa3ðr2 þ a2 − 2MrÞ2hIZ22
ðr2 þ a2Þðr2 þ a2cos2θÞ2 −

1

2

ðr2 − a2cos2θ þ 2a2Þðr2 þ a2 − 2MrÞhIZ24
ðr2 þ a2cos2θÞðr2 þ a2Þ þ asin2θðr2 þ a2ÞhIZ33

ðr2 þ a2cos2θÞ2 ;

hIZ44 ¼
asin2θðr2 − 2Mrþ a2ÞhIZ24

r2 þ a2cos2θ
−
1

4

a2sin4θðr2 − 2Mrþ a2Þ2hIZ22
ðr2 þ a2cos2θÞ2 −

sin2θðr2 þ a2Þ2hIZ33
ðr2 þ a2cos2θÞ2 : ðD1Þ
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