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We investigate the mass-radius relation of the neutron star (NS) with hyperons inside its core by using
the Eddington-inspired Born-Infeld (EiBI) theory of gravity. The equation of state of the star is calculated
by using the relativistic mean field model under which the standard SU(6) prescription and hyperon
potential depths are used to determine the hyperon coupling constants. We found that, for
4 × 106 m2 ≲ κ ≲ 6 × 106 m2, the corresponding NS mass and radius predicted by the EiBI theory of
gravity is compatible with observational constraints of maximum NS mass and radius. The corresponding κ
value is also compatible with the κ range predicted by the astrophysical-cosmological constraints. We also
found that the parameter κ could control the size and the compactness of a neutron star.
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I. INTRODUCTION

Neutron stars with their extreme compactness and
unknown composition make them a unique laboratory to
investigate, not only strong gravitational field (see for
example Refs. [1,2] for recent reviews), but also the
equation of state (EOS) of extremely dense matter (see
for example Refs. [3,4] for recent reviews). Based on a
recent analysis on the mass distribution of a number of
pulsars with secure mass measurement, it is found thatM ∼
2.1 M⊙ is an established lower bound value on maximum
mass ðMmaxÞ for the neutron star (NS), and the existence of
more massive NSs with M ∼ 2.5 M⊙ is, in principle,
possible [5]. The evidences of a massive NS with accurate
measurement, for example, are obtained from the recent
observation of pulsar J1614 − 2230 from Shapiro delay [6]
with the mass 1.97� 0.04M⊙ and pulsar J0348þ 0432
from the gravitational redshift of its white dwarf companion
[7] with the mass 2.01� 0.04M⊙. In addition, there are
also evidences that some black widow pulsars might have
higher masses. For example, pulsar B1957þ 20 reportedly
has a mass of M ¼ 2.4� 0.12 M⊙ [8], and even gamma-
ray black widow pulsar J1311 − 3430 [9] has higher mass
but less accurate mass than that of B1957þ 20. On the
other hand, accurate measurements of the NS radii, if
existing, would also provide important information.
Unfortunately, the analysis methods used to extract NS
radii from observational data still have high uncertainty
[10]. Furthermore, the limits of recent observational radii
from different sources or even from the same source are
often in contradiction to one another [11–18]. However, it
is remarkable that a neutron star with radius R1.4 ¼
10.7–13.1 km of canonical mass, is reported to be con-
sistent with other observational analysis and the host of
experimental data for finite nuclei [16,19].
In many works, the mass and radius of neutron stars are

usually used to constrain the equation of state of matter at

high densities by assuming the general relativity (GR)
theory as an ultimate theory of gravitation. If accurate
measurement of the NS with the mass of greater than
2.4 M⊙ is possible in the future, within GR this constraint
means the EOS of the corresponding NS should be very
stiff. This fact is quite difficult to reconcile with possible
existence of exotics such as hyperons in the NS core and
small measured radius that both favor soft EOS, all nuclear
models that are compatible with the experimental data on
hypernuclei predict the existence of hyperons in matter at
the density of exceeding 2–3 times nuclear saturation
density (ρ0 ¼ 0.16 fm−3) (see Ref. [20] and the references
therein). We need to note that up to now, there is no general
agreement among the predicted results for the NS EOS by
including hyperons and the maximum mass of the corre-
sponding NS within GR framework. Even, in the past few
years a lot of progress in this direction has been reported
but many inconsistencies still remain. This problem is
known as “the hyperon puzzle” (see Refs. [21–23] and the
references therein).
However, the differences between GR and its alternatives

or modifications become significant in the strong gravita-
tional fields of neutron stars [24,25]. Among the theories of
gravity, a new kind of Eddington-inspired theory of gravity
with Born-Infeld–like (EiBI) structure has been proposed
by Banados and Ferreira [26]. The EiBI theory of gravity
shows distinctive features such as avoidance of singularities
in the early cosmology and in the Newtonian collapse of
pressureless particles, the formation of stable pressureless
stars, and the existence of pressureless cold dark matter
with a nonzero Jeans length. However, the EiBI theory of
gravity shows anomalies associated with the phase tran-
sition for negative κ (see Ref. [27] and the references
therein). It is also reported that the EiBI theory of gravity is
safe from surface singularity pathology [28]. It is shown in
Ref. [29] that the modified Tolman-Oppenheimer-Volkov
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(TOV) equation based on EiBI theory of gravity could
adjust the maximum mass of NS by adjusting its κ value,
and the corresponding author has also found that through
direct observations of the radii of low mass NS (around
0.5 M⊙) and the measurements of neutron skin thickness of
208Pb, they could not only discriminate EiBI from GR but
also estimate the κ value in EiBI. It is also reported that the
range of reasonable values of κ parameter in the EiBI model
can be constrained by using some astrophysical and
cosmological data [30].
In this work, we demonstrate that “hyperon puzzle”

problem that commonly appears if we use simple hyperon
EOS within GR gravity is not present in the EiBI theory of
gravity. Note that to calculate the EOS of NS, we use the
extended version of the relativistic mean field (ERMF)
model [31–33]. We also found that it is possible to obtain
NS with the mass of around 2.1 M⊙ and the radius inside
the range deduced by the authors of Ref. [16] by using a κ
value that is still compatible to the range obtained from
astrophysical and cosmological constraints [30]. We need
also to note that the models of NS for simple hyperon EOS
with maximal mass around 2.1 M⊙ and within f(R) gravity
has been studied in Ref. [23] while within the anisotropic
pressure assumption has been studied in Ref. [34].
The paper is organized as follows. Section II describes

the brief outline of NS EOS. Section III is devoted to
discuss EiBI theory of gravity. Section IV briefly describes
the review of the derivation of TOVequation based on EiBI
theory of gravity in NSs while Sec. IV describes the
numerical solutions and results. Finally, the conclusion
is given in Sec. VI.

II. EQUATION OF STATE

NS can be roughly divided into two regions with
different compositions, particle distributions and density
ranges namely the crust and core. In this work, we use the
crust EOS calculated by Miyatsu et al. [35], while the core
is assumed to be composed of interacting baryons (nucle-
ons and hyperons) and free leptons that are calculated using
the ERMF model.
The ERMF model is an extension of the standard RMF

model by including additional cross-coupling terms for σ,
ω and ρ mesons [31,32]. In the RMF model, baryons
interact with each other by exchanging σ, ω, ρ and ϕ
mesons. The total Lagrangian density can be written as [33]

L ¼ Lfree
B þ Lfree

M þ Llin
BM þ Lnonlin þ Lfree

l ; ð1Þ

where the free baryons Lagrangian density is

Lfree
B ¼

X
B¼N;Λ;Σ;Ξ

Ψ̄B½iγμ∂μ −MB�ΨB: ð2Þ

Here, ΨB is baryons (nucleon, Λ, Σ and Ξ) field.
The Lagrangian density for the free mesons is

Lfree
M ¼ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ þ 1

2
ð∂μσ

�∂μσ� −m2
σ�σ

�2Þ

−
1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ −

1

4
ϕμνϕ

μν þ 1

2
m2

ϕϕμϕ
μ

−
1

4
ρμνρ

μν þ 1

2
m2

ρρμρ
μ: ð3Þ

The ωμν, ϕμν and ρμν are field tensors corresponding to
the ω, ϕ and ρ mesons field, and can be defined as
ωμν ¼ ∂μων − ∂νωμ, ϕμν ¼ ∂μϕν − ∂νϕμ and ρμν ¼ ∂μρν−
∂νρμ, respectively. The Lagrangian Llin

BM describing inter-
actions among baryons through meson exchange can be
written as

Llin
BM ¼

X
B¼N;Λ;Σ;Ξ

Ψ̄B½gσBσ þ gσ�Bσ� − γμgωBωμ

−
1

2
γμgρBτB · ρμ − γμgϕBϕμ�ΨB; ð4Þ

where τB is the baryons isospin matrices. The Lagrangian
describing mesons self-interactions for σ, ω, and ρ is
defined as

Lnonlin ¼ −
κ3gσNm2

σ

6mN
σ3 −

κ4g2σNm
2
σ

24m2
N

σ4 þ ζ0g2ωN
24

ðωμω
μÞ2

þ η1gσNm2
ω

2mN
σωμω

μ þ η2g2σNm
2
ω

4m2
N

σ2ωμω
μ

þ ηρgσNm2
ρ

2mB
σρμ · ρμ þ

η1ρg2σNm
2
ρ

4m2
N

σ2ρμ · ρμ

þ η2ρg2ωNm
2
ρ

4m2
N

ωμω
μρμ · ρμ: ð5Þ

While the free leptons Lagrangian density is

Lfree
l ¼

X
l¼e−;μ−

Ψ̄l½iγμ∂μ −Ml�Ψl; ð6Þ

here Ψl is the leptons (electron and muon) field. The
nucleons coupling constant and nonlinear parameters (the
set of these parameters is denoted by BSP parameter set)
can be found in Ref. [33]. The vector part of the hyperon
coupling constant gωH and gϕH can be obtained from a
standard prescription based on SU(6) symmetry [36]
namely

1

3
gωN ¼ 1

2
gωΛ ¼ 1

2
gωΣ ¼ gωΞ;

gρN ¼ 1

2
gρΣ ¼ gρΞ; gρΛ ¼ 0;

2gϕΛ ¼ 2gϕΣ ¼ gϕΞ ¼ 2
ffiffiffi
2

p

3
gωN; gϕN ¼ 0: ð7Þ

For the given values of gωH, the scalar hyperon coupling
strengths gσH are obtained from the hyperon potential depth
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in the symmetric nuclear matter that is evaluated at the
saturation density ρ0 as

UðNÞ
H ðρ0Þ ¼ −gσHσðρ0Þ þ gωHωðρ0Þ: ð8Þ

The experimental values of potential depth UðNÞ
H at ρ0 are

taken from Ref. [36] namely

UðNÞ
Λ ¼ −28 MeV; UðNÞ

Σ ¼ þ30 MeV

and UðNÞ
Ξ ¼ −18 MeV: ð9Þ

The constituent composition in the NS core should
obey the chemical potential balance, charge neutrality
and baryon density conservation (β stability) conditions.
Once the momentum Fermi of every constituent involved is
known from β stability conditions, the total energy density
(ϵ) of NS core matter which is equivalent to the zero
component of energy-momentum tensor (T00), can be
calculated numerically from Eq. (1) by using the standard
procedure of mean field approximation. A detailed pro-
cedure of ϵ derivation in mean field approximation for
examples can be found in standard textbooks such as
Refs. [37,38]. The radial pressure P can be obtained in
general from the vector component of energy-momentum
tensor (Tii) or can be calculated numerically from thermo-
dynamic relation, i.e.,

P ¼ ρ2B
dðϵ=ρBÞ
dρB

; ð10Þ

where ρB is baryon density. The effect of including
hyperons in neutron star matter can be seen in Fig. 1 while
the core constituents fraction for neutron star with hyperons
in it, is shown in Fig. 2. It is obvious from Fig. 1 that EOS
of NS matter with hyperons becomes softer starting from
ρB ≈ 0.4 compared to the one without hyperons because it

can be seen in Fig. 2, for ρB ≥ 0.4 that corresponding to
P ≥ 50 MeV fm−3 of NS matter, slow moving Λ;Σ−;Ξ−

hyperons start to appear and the number of energetic
nucleons and leptons decreases. The EOS, or explicit
ϵðPÞ relation will be used as input to solve the Tolman-
Oppenheimer-Volkoff (TOV) equations for the EiBI theory
of gravity in Sec. V.

III. EDDINGTON-INSPIRED BORN-INFELD
THEORY OF GRAVITY

In this section, we will briefly discuss the EiBI formal-
ism proposed by Banados and Ferreira [26] to describe
compact stars. The Eddington-inspired Born-Infeld gravity
theory is a subclass within the nonlinear theory of gravity. It
is based on the nonlinear theory of electrodynamics, known
as the Born-Infeld theory [39]. Banados and Ferreira [26]
later proposed a nonlinear theory of gravity having a Born-
Infeld structure. The action of EiBI theory of gravity is
given by

S ¼ 1

8πκ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ κRμνj

q
− λ

ffiffiffiffiffiffi
−g

p �

þ SM½g;ΨM�; ð11Þ

where Rμν is symmetric Ricci tensor. In the EiBI theory of
gravity, this tensor is constructed in the Palatini formu-
lation. Therefore, Rμν is a functional of connection Γα

μν,
R½Γ�. Meanwhile, κ and λ are parameters that are related to
the Born-Infeld nonlinearity and the cosmological constant,
respectively. If κ is going to zero, Eq. (11) will reduce to
the action of standard GR gravity. Here jgμν þ κRμνj
denotes the absolute value of the determinant of the tensor
ðgμν þ κRμνÞ.
By varying the action in Eq. (11) [26,40–42], we can

obtain the following equations:
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qμν ¼ gμν þ κRμν ð12Þ

qμν ¼ τðgμν − 8πκTμνÞ ð13Þ

Γα
βγ ¼

1

2
qαρðqρβ;γ þ qργ;β − qβγ;ρÞ; ð14Þ

where qμν is an auxiliary metric, τ≡ ffiffiffiffiffiffiffiffi
g=q

p
, and q is the

determinant of metric qμν.
From Eqs. (12) and (13), one can find mixed Einstein

tensor Gμ
ν i.e. [41],

Gμ
ν ≡ Rμ

ν −
1

2
Rδμν

¼ 8πτTμ
ν −

�
1 − τ

κ
þ 4πτT

�
δμν : ð15Þ

We note that Gμ
ν and Rμ

ν , are defined in terms of auxiliary
metric. The factor τ can be obtained by multiplying Eq. (13)
by metric gνα and then taking its determinant. The explicit
form of τ is [41]

τ ¼ jðδμν − 8πκTμ
νÞj−1

2: ð16Þ

It is worthy to note from the coupling-to-the-matter
perspective, EiBI can be considered as GR with additional
isotropic pressure in apparent stress tensor. This pressure
depends on τ. In this view, τ plays a crucial role in
determining the corresponding apparent EOS. On the other
hand, from observations of mass-radius relations or qua-
sinormal mode frequencies of neutron stars, gravitational
waves in general etc., one may only obtain information
about the apparent EOS. Furthermore, the authors of
Ref. [41] also argued that infinite τ for finite values of ϵ
and P triggers singularity avoidance (see Ref. [41] for the
details of the τ significance).

IV. NEUTRON STARS IN EIBI THEORY
OF GRAVITY

As it is mentioned in the Introduction that many studies
of NS properties used GR as the ultimate theory of gravity.
Even though a lot of progress is reported in this direction,
until now the core EOS is still uncertain and the problem
such as the hyperon puzzle still remains. On the other hand,
NS is a strong gravitational object where the differences
between GR and alternative or modified gravity theories
such as EiBI can be significant [24,25]. However, only
recently several authors applied the EiBI theory of gravity
to study compact objects [26,29,40,41]. Therefore, it is still
useful for the readers if we briefly review the derivation of
TOV based on EiBI theory of gravity.
We start from standard assumption that the EOS of NSs

satisfies the energy-momentum tensor of perfect fluid, i.e.,

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð17Þ

which satisfies the conservation equation, ∇μTμν ¼ 0. In
Eq. (17), ϵ, p, and uμ denote the energy density, the
isotropic pressure, and the four velocity of the NS matter,
respectively. Now we introduce the line element of the
metric gμν and the auxiliary metric qμν that describe the
structure of compact static and spherically symmetric
objects [27,40]

gμνdxμdxν ¼ −eνðrÞc2dt2 þ eλðrÞdr2 þ fðrÞdΩ2

qμνdxμdxν ¼ −eβðrÞc2dt2 þ eαðrÞdr2 þ r2dΩ2: ð18Þ

By using this definition for functions a and b as

a≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πGκϵ

c4

r
ð19Þ

b≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8πGκp
c4

r
; ð20Þ

and finding the tt and rr-components of Eq. (15) we will
obtain these following equations:

d
dr

ðre−αÞ ¼ 1 −
1

2κ

�
2þ a

b3
−

3

ab

�
r2; ð21Þ

e−αð1þ rβ0Þ ¼ 1þ 1

2κ

�
1

ab
þ a
b3

− 2

�
r2; ð22Þ

where the prime sign in the β variable in Eq. (22) and the
other variables in the remaining equations in this work
means the first derivative of the corresponding variable in
respect of r. From Eq. (13) we can obtain the following
relations:

eβ ¼ eνb3

a
; eα ¼ eλab; f ¼ r2

ab
: ð23Þ

On the other hand, from the conservation of energy
momentum in the g-metric we can obtain

ν0 ¼ 4b
a2 − b2

b0: ð24Þ

So β0 in the first equality of Eq. (23) can be written as

β0 ¼ 4b
a2 − b2

b0 þ 3

b
b0 −

1

a
b0: ð25Þ

By defining the speed of sound c2q ¼ ðdaðbÞdb Þ ¼ −b=aðdϵdpÞ,
β0 becomes

β0 ¼
�

4b
a2 − b2

þ 3

b
−
1

a
c2q

�
b0: ð26Þ
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One can easily integrate Eq. (21) and the result is

e−α ¼ 1 −
2GmðrÞ
c2r

; ð27Þ
where

m0 ¼ c2

4Gκ

�
2þ a

b3
−

3

ab

�
r2. ð28Þ

The similar form as the standard TOV equation pressure
derivative can be obtained by substituting Eqs. (26)
and (27) into Eq. (22). The result can be written as

p0 ¼ −
bc4

4πGκ

abða2 − b2Þ½ 1
2κ ð 1

ab þ a
b3 − 2Þr3 þ 2Gm

c2 �
r2ð1 − 2Gm

c2r Þ½4ab2 þ ð3a − bc2qÞða2 − b2Þ� :

ð29Þ

For more details regarding the derivation of Eq. (29), one
can consult Ref. [40]. We also need to note that EiBI
and GR theories are identical on the region outside the star
(r ≥ R). Therefore, we can use the same boundary con-
ditions at r ¼ R as those of GR not only for solving TOV
but also the metric eν equations.
In conclusion, we can obtain static NS properties based

on the EiBI theory of gravity by explicitly solving Eqs. (28)
and (29).

V. NUMERICAL SOLUTIONS AND RESULTS

A. Numerical methods and goals

Principally, once the EOS of the corresponding star
and κ value of EiBi theory of gravity model are given,
TOV equations [Eqs. (28) and (29)] can be integrated
numerically by using the fourth order Runge-Kutta algo-
rithm starting from central rϵ ∼ 0 until the edge of the star

(r ¼ R). The initial conditions in the center of the star to
solve these equations are given i.e., PðrϵÞ ¼ Pc, mðrϵÞ ∼ 0
and the radius of the star R is determined from the condition
PðRÞ ∼ 0. If the latter condition is fulfilled then
mðRÞ ¼ M. In this way, for every given central pressure
Pc value, we can calculate its corresponding mass M,
radius R, compactness ξ, and redshift z of the star as well as
their corresponding pressure, energy density and mass
profiles.
Similarly, the solution for the metric ν profile can also be

obtained by solving simultaneously Eqs. (24), (28), and
(29). However, different from those of Eqs. (28) and (29)
where the mass and pressure values at r ¼ rϵ are known, for
the metric ν, the only information is ν value at r ¼ R
(eνðRÞ ¼ 1 − 2GM

c2R ). Therefore, in this case, we simply guess
some particular value of ν at r ¼ rϵ and repeat the Runge-
Kutta calculation several times. If the ν value at r ¼ R
fulfills the required value by the corresponding boundary
condition, hence it means our used ν value at r ¼ rϵ is the
correct one. In this way, we can calculate the eν profile.
Other metrics profiles such as eα, eβ and eλ can be calculated
by using eν, pressure, energy density and mass profiles.
The main numerical results will be shown in Figs. 3–11

and they will be discussed in the next subsections.

B. Numerical solutions for various quantities
and for different κ values

In this part, we discuss the consequences of applying the
EiBI theory of gravity to describe NSs properties.
In Fig. 3, the profiles of the exponential of metrics eν and

its auxiliary counterpart eβ (left panel) as well as eλ and its
auxiliary counterpart eα (right panel) for NS with M ¼
1.4M⊙ in the cases κ ¼ −4 × 106 m2 and 4 × 106 m2 are
given. The black solid line represents the result of GR
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FIG. 3. Profiles of the exponential of metrics eν, eβ (left panel) and eλ, eα (right panel) as a function radius coordinate r for κ ¼ 4;−4
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(κ ¼ 0) where in this case, eν is equal to eβ and eλ is equal
to eα. It can be observed in the left panel that the effect of κ
variation on eβ and the difference between eβ and eν

appears more significant in the region closer to the center
(r → 0). eν or eβ with negative κ value is lower than that
with positive κ value, while for a fixed κ, eν is higher than
eβ with positive κ and eν is lower than eβ with negative κ.

However, it can be seen in the right panel that the effect of κ
variation on eα appears in the region not too far from the
edge. eλ or eα with positive κ value is lower than that with
negative κ value, while for a fixed κ value, the difference
appears more significant in the r → 0 region, i.e., eλ is
higher than eα with positive κ and eλ is lower than eα with
negative κ. We also need to note that in the region very
close to NS radius R, all eα coincide with all eλ while all eβ

coincide with all eν. These behaviors are due to the different
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FIG. 4. Profiles of parameter a and b in Eqs. (19) and (20) as a function of radius coordinate r. κ is in unit 106 m2.
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sign of κ that yields a small but crucial difference in region
r → 0 of parameter a and b profiles. The plots of a and b
profiles are shown on the left and right panels of Fig. 4.
In Figs. 5 and 6, the impacts of applying the EiBI theory

of gravity on the radial profile of pressure and energy
density of a NS are shown. EiBI theory of gravity yields a
quite different pressure profile result compared to that of
GR. For a fixed value of Pc, different decrement of the
pressure and energy as a function of radius due to κ
variation leads to different final radius value of NS. For
large Pc, the effect of κ variation pressure and energy
profiles in general appears in the almost maximum range of
the radius. On the contrary, for small Pc, the effect of the κ
variation energy profile appears more significantly only in

the region near the surface of NS. Recall that for Pc ≲
50 MeV fm−3 the hyperons do not yet appear in NS while
heavier NS mass corresponds to larger Pc. Therefore, it is
obvious that different behavior of pressure and energy
profiles for each NS mass is caused by interplay between
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the attractive contribution due to the presence of hyperons
and additional strong repulsive contribution if κ ≠ 0
depending on their operational region.
The correlation between κ and MðRÞ=M⊙ with fixed R

can be observed from Fig. 7 and the one between κ and R
with fixed MðRÞ=M⊙ is from Fig. 8. In Fig. 7, we can see
that in a particular value of radius, the neutron star with a
larger value of κ yields heavier mass than that with a
smaller value of κ. On the other hand, it can be seen from
Fig. 8 that in a particular value of mass, a NS with larger
value of κ yields larger radius than that with smaller κ. It is
interesting to see that for relatively large and fixed R (in this
case R ¼ 13 km), the correlation between κ and M=M⊙
becomes nonlinear while for relatively large and fixed
M=M⊙ the correlation between κ and R is also nonlinear.
As a consequence, the effect of increasing κ on the NS mass
appears more effective in the region where NS has small R
and heavier mass compared to that of large R and lighter
mass, even though in the region of small R and heavier
mass, the hyperons have already softened the EOS.

C. Comparison with observations

Here, our main focus is comparing our numerical
calculations with recent observations, such as 2 M⊙ pulsar
mass, NS radius constraint and z for low mass x-ray binary
EXO 0748-676 NS [43] as well as the astrophysical and
cosmological constraint of κ [30].
Figure 9 shows the mass-radius relation for NSs with

hyperons for some values of κ predicted under the EiBI
theory of gravity. We could see clearly that the NS with
masses around NS maximum mass and the corresponding
radii predictions are very sensitive to the κ parameter
variation. While for large R (R≳ 15 km), the κ parameter
variation is rather marginal. Therefore, we can adjust κ so

that the NS maximum mass prediction can be larger or
smaller compared to that of GR (κ ¼ 0). A larger and
positive value of κ leads to heavier maximum mass of NSs
and vice versa. In our calculation, the maximum mass
Mmax ≥ 2.0M⊙ of the NS with hyperons can be obtained if
we use κ ≳ 4 × 106 m2. Note, the corresponding NS radius
of EiBI theory of gravity is also compatible with the NS
radius constraint of Ref. [16] i.e., they fit with the vertical
shaded area in the case of relatively large mass region. On
the other hand, from cosmological and astrophysical
constraint for a compact object that is held by gravity as
reported by [30], in this case a NS with a typical radius
of about R ∼ 12 km and core density larger than
ρ ∼ 56.17 MeV fm−3, the constraint is κ ≲ 6 × 108 m2. A
tighter constraint for κ was also reported by the author
where κ ≲ 6 × 106 m2 will yield the corresponding mass of
about M < 5M⊙. Then it is clear that if we take 2.0M⊙ as
the constraint of lower bound of κ and combined with the
upper-bound value deducted from [30], we have restricted
constraint of κ i.e., 4 × 106 m2 ≲ κ ≲ 6 × 106 m2.
In Fig. 10 we show the effect of κ variation on redshift z

as a function of NS mass. The result is also compared to the
observational constraint from EXO0748-676 [43]. This
constraint implies that the acceptable EOS should have
maximum z above 0.33 [44]. It can be seen that for κ ≳ 0,
the results are consistent with z ¼ 0.35 for M ≳ 1.5 M⊙.
These results are quite consistent with the suspected higher
masses of accreting stars in x-ray binaries.

D. Results on compactness

For completeness, here we will also discuss the effect of
κ on the compactness of NS.
From Fig. 11, we can clearly observe that the effect of

increasing κ increases the compactness of the star for a
particular central pressure (Pc). In this work, we define the
compactness of a star as ξ ¼ M=R

ðM=RÞ0, where ðM=RÞ0 denotes
the ðM=RÞ for κ ¼ 0 or the one that is obtained from GR.
The compactness increases as κ used in the calculation
increases. If we assume that the limit of causality predicted
by EiBI is the same as the one of GR where the limit of
causality predicted by GR [45] is R≳ 2.83 GM=c2, then
we can estimate the upper limit for compactness as
ξcritical ≃ 0.24M⊙

km =ðMRÞ0. So, for each Pc in Fig. 11, we
can obtain ξcritical ≃ 5.56 for Pc ¼ 10 MeV fm−3, ξcritical ≃
2.30 for Pc ¼ 50 MeV fm−3 and ξcritical ≃ 1.66 for
Pc ¼ 200 MeV fm−3. These results are much greater than
the compactness we obtain in Fig. 11 especially in the
region of constraint 4 × 106 m2 ≲ κ ≲ 6 × 106 m2. If we
compare the result in Fig. 9, where the M-R of the
corresponding NS are below the causality limit of GR,
and the result in Fig. 11, where the compactness increases
as κ increases, it is obvious that the mass-radius relation of
the NS based on EiBI theory of gravity with κ value in the
acceptable range does not violate causality constraint.
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VI. CONCLUSIONS

In this work, we calculate the NS mass-radius relation
where hyperons are present in the NS core by applying the
EiBI theory of gravity. The NS core EOS with hyperons is
calculated by using the ERMFmodel where standard SU(6)
prescription and hyperons potential depths are used to
determine the hyperon coupling constants while the crust
EOS is taken from Ref. [35]. We have found that:

(i) The κ parameter of EiBI theory of gravity plays a
significant role in increasing or decreasing the
maximum mass of NSs. This result is consistent
with the one obtained by Sotani [29] though the
author uses a different EOS to the one used in
this work. If we take the value for κ around
4.0 × 106 m2, the maximum mass and its corre-
sponding radius are compatible with the constraints
of Refs. [7,16]. Furthermore, the corresponding κ
value is also consistent with the range predicted by
astrophysical and cosmological observations [30].

(ii) In the NS core, the κ parameter of the EiBI theory of
gravity plays a role to decrease or increase the

pressure and energy density as a function of radius
that causes the NSs with the same central pressure
larger or smaller depending on the sign of κ
parameter.

(iii) Larger κ parameter variation increases the compact-
ness of the NS and for the κ within 4 × 106 m2≲
κ ≲ 6 × 106 m2, the corresponding mass-radius re-
lation does not violate the causality constraint.

Our results might indicate that the NS can be an
astrophysical tool to probe the deviation of gravity from
Einstein’s theory of general relativity. This is a very
intriguing possibility and deserves further study.
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