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We analyze the energy spectra of Dirac fermions in the presence of rotation and magnetic field. We find
that the Landau degeneracy is resolved by rotation. A drastic change in the energy dispersion relation leads
to the “rotational magnetic inhibition” that is a novel phenomenon analogous to the inverse magnetic
catalysis in a magnetic system at finite chemical potential.
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I. INTRODUCTION

In many quantum theories an external magnetic field is a
useful probe for various intriguing phenomena. The most
important concept to understand the magnetic dynamics
appears from the Landau quantization. For a strong enough
magnetic field only the lowest Landau level (LLL) domi-
nates the dynamics. Such a situation with a gigantic
magnetic field could be realized in the Early Universe
[1,2] and in central cores of neutron stars (or magnetars)
where eB ∼ 1015 G [3]. Also, an extreme environment with
a strong magnetic field could be generated in relativistic
heavy-ion collision experiments where we may have eB ∼
m2

π ∼ 1018 G [4–6]. Investigating quantum chromodynam-
ics (QCD) in a strong magnetic field is, therefore, of
increasing importance for not only theoretical interest but
also experimental application [7]. In particular the response
of quark matter to the magnetic field involves P- and
CP-odd processes through quantum anomaly, which is still
under active studies [8–12] (see also Refs. [13] as related
reviews).
One of the most essential and established changes of

quark matter driven by strong magnetic fields is the
inevitable breaking of chiral symmetry, which is called
the magnetic catalysis [14–16]. We can confirm the
magnetic catalysis in many theoretical examples which
include: the Nambu–Jona-Lasinio (NJL) model [15,17,18],
the quark-meson model [19–22], the MIT bag model [23],
the lattice QCD simulation [24], the holographic model
[25] (see also Refs. [16] for reviews and the references
therein). The idea of charged particles acquiring a dynami-
cal mass due to the magnetic field is applicable also to
condensed matter systems such as the graphene [26], the
Weyl semimetals [27], and bosonic systems [28,29].
The magnetic catalysis could be affected by other

controlling parameters even though the magnetic field is
strong. For instance, in a dense system at large chemical
potential, the magnetic field would not enhance but sup-
press the chiral condensate, which is called the inverse
magnetic catalysis [17,30]. Inclusion of neutral meson

fluctuations could lead to an infrared singularity that
disfavors the chiral condensate, which is called the mag-
netic inhibition [31]. In this way it would be useful to
consider magnetic systems under competing conditions for
drawing further nontrivial consequences from the physics
of the magnetic catalysis [32–35].
In this work we will pay attention to the competition

between rotation and the magnetic catalysis. It is well
known that the effect of rotation or angular momentum is
quite analogous to that of the magnetic field. Especially for
nonrelativistic systems in a trapping potential one can show
that the system exhibits the Landau-type quantization in
response to rotation [36,37]. This analogy has motivated
people to study anomalous quantum phenomena induced
by rotation instead of magnetic field, that is, the quantum
Hall effect induced by rotation [38], the quantum vortex
with rotating Bose-Einstein condensate [39], the chiral
vortical effect [11], and the chiral magnetic effect in cold
atoms [40].
We would emphasize another interesting (and less

known) analogy between rotation and density. For non-
relativistic theories this analogy is readily understood from
the fact that the Hamiltonian in a rotating frame is shifted as
Ĥ → Ĥ − L̂ ·Ω (with the angular velocity vector Ω) and
this latter term may be regarded as an effective chemical
potential. One might thus expect that the similarity between
rotation and density should hold for relativistic theories.
However, the similarity in the relativistic case is, if any, not
as trivial because one should treat relativistic rotation as a
deformation of spacetime geometry. That means, to study
rotational effects on relativistic systems, it is necessary to
analyze the quantum field theory in curved spacetime [41].
(Also from the viewpoint of the Poincaré algebra, rotating
relativistic fluid can be discussed [42,43].) Although QCD
in curved spacetime is not yet a mature research subject and
not much about modified QCD vacuum structure is known,
it has been argued that the gravitational background fields
should significantly influence the QCD vacuum properties
[44–47] (see also Refs. [48–50] for quantum lattice
simulations). It is, therefore, an intriguing question that

PHYSICAL REVIEW D 93, 104052 (2016)

2470-0010=2016=93(10)=104052(12) 104052-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.104052
http://dx.doi.org/10.1103/PhysRevD.93.104052
http://dx.doi.org/10.1103/PhysRevD.93.104052
http://dx.doi.org/10.1103/PhysRevD.93.104052


whether rotation could be given an interpretation as an
effective chemical potential even for relativistic theories.
If so, rotation should yield a modification on the QCD
vacuum and, particularly in the presence of a strong
magnetic field, we may anticipate an effect analogous to
the inverse magnetic catalysis in which the role played by
the chemical potential is replaced with rotation. We would
call the phenomenon of reduced chiral condensate by a
combination of rotation and magnetic field the “rotational
magnetic inhibition” in short.
In this paper, we investigate the Dirac equation with both

rotation and magnetic field and apply the resulting energy
dispersion relation to a fermionic effective model. The
solution of the Dirac equation indicates that the modified
Landau levels with rotation have nondegenerate spectrum
with angular momentum dependence. We adopt the NJL
model and impose both the magnetic field and rotation to
find chiral restoration that is driven by increasing magnetic
field especially at strong coupling. Finally we will discuss
possible physical implications of our results to several
experimental setups.

II. DIRAC EQUATION IN A ROTATING FRAME

In curved spacetime generally the Dirac equation with
electromagnetic fields can be written as

½iγμðDμ þ ΓμÞ −m�ψ ¼ 0 ð1Þ

with the covariant derivative Dμ ≡ ∂μ þ ieAμ and e > 0
being the charge of the Dirac fermion. As usual, the affine
connection Γμ is defined in terms of the metric gμν or the
spin connection ωμij and the vierbein eμi as

Γμ ¼ −
i
4
ωμijσ

ij;

ωμij ¼ gαβeαi ð∂μe
β
j þ Γβ

μνeνjÞ;

σij ¼ i
2
½γi; γj�: ð2Þ

The Greek and the Latin letters denote the indices in
coordinate and tangent space, respectively.
We can implement rotation by specifying the metric

characterized by the angular velocity vector, Ω ¼ Ωẑ,
and the metric then takes the following form:

gμν ¼

0
BBB@

1 − ðx2 þ y2ÞΩ2 yΩ −xΩ 0

yΩ −1 0 0

−xΩ 0 −1 0

0 0 0 −1

1
CCCA: ð3Þ

In the following calculation we adopt

et0 ¼ ex1 ¼ ey2 ¼ ez3 ¼ 1; ex0 ¼ yΩ; ey0 ¼ −xΩ;

ð4Þ

and the other components are zero, which gives the metric
(3). We shall choose the symmetric gauge in the inertial
frame and use the vector potential, Ai ¼ ð0; By=2;
−Bx=2; 0Þ, which results in B ¼ Bẑ with B a constant.
We can then give an explicit form of the Dirac equation
under rotation and the magnetic field, that is,

½iγ0ð∂t − xΩ∂y þ yΩ∂x − iΩσ12Þ þ iγ1ð∂x þ ieBy=2Þ
þ iγ2ð∂y − ieBx=2Þ þ iγ3∂z −m�ψ ¼ 0: ð5Þ

We can solve this differential equation to obtain the wave-
function as explained in Appendix A. For our purpose to
study the vacuum structure, we do not need the wave
function but only the energy spectrum is sufficient.
It is easy to deduce the eigenenergies of Eq. (5) at finite

Ω from the Ω ¼ 0 case. In this case the problem is reduced
to solving the ordinary Dirac equation in an external
magnetic field. It is a well-known fact that charged spin-
s particles have the energy dispersion relation in B ¼ Bẑ
(eB > 0) as

E2 ¼ p2
z þ ð2nþ 1 − 2szÞeBþm2 ð6Þ

with non-negative integer n. Compared with that without
rotation, the Dirac equation (5) with rotation has additional
pieces of

−iðxΩ∂y þ yΩ∂xÞ þ Ωσ12 ¼ ΩðL̂z þ ŜzÞ: ð7Þ

We denote the eigenvalues for L̂z and Ŝz as l and sz,
respectively. We can regard EþΩðlþ szÞ as the energy
eigenvalue in the inertial frame. In this way we can reach
the expression of the energy dispersion relations from
Eq. (5) given by

½Eþ Ωðlþ szÞ�2 ¼ p2
z þ ð2nþ 1 − 2szÞeBþm2: ð8Þ

In what follows we discuss some features of Dirac fermions
in a rotating frame.
(I) First, we make a comment on the Lorentz force in a

rotating frame. The gauge fields are transformed in a
rotating frame into the following form:

Aμ ¼ Aieiμ ¼ ð−BΩr2=2; By=2;−Bx=2; 0Þ; ð9Þ

which leads to an electric field; E ¼ −∇A0 ¼ BΩðx; y; 0Þ.
Hence, naïvely, one may want to identify this E as the
Lorentz force:

F ¼ ev × B ¼ eBΩðx; y; 0Þ; ð10Þ
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where v ¼ Ωð−y; x; 0Þ is the velocity vector at ðx; y; 0Þ
caused by rotation. However, A0 ¼ −BΩr2=2 does not
appear in Eq. (5) because the gamma matrix γt ¼ γieti
cancels it out. Therefore, rotation does not induce any
electromagnetic effect. This is an important point that
ensures our later discussion on the similarity between
rotation and finite density for relativistic theories.
(II) Let us take a closer look at the comparison of Eqs. (6)

and (8). Without rotation, Eq. (6) expresses the ordinary
Landau quantization in which the motion on the xy-plane is
characterized by n only instead of ðpx; pyÞ. Each Landau
level has degeneracy associated with some quantum num-
ber; when the area of the xy-plane is S, the degeneracy
factor for each Landau level is gauge independent and
given by

N ¼⌊eBS
2π
⌋: ð11Þ

In the cylindrical coordinates, for example, the degenerate
quantum number is the canonical angular momentum l.
Thus, l should take N different integers. In addition, a
condition, l ≥ −n for the nth Landau level arises from
normalizability of the wave-function. It follows that the
possible range of l should be

−n ≤ l ≤ N − n ð12Þ

for the nth Landau level. We give a detailed derivation for
this in Appendix B. (One might think that l should run up
to N − n − 1 but we implicitly assume N ≫ 1 with suffi-
ciently strong magnetic field.)
The angular momentum in Eq. (8) also runs from −n to

N − n (see Appendix A for details). This means that we
have a nondegenerate spectrum depending on l in Eq. (8).
We should replace the phase space integration with double
sum with respect to n and l. For spin-1=2 fermions with up
spin, the phase space sum reads:

Magnetic field∶
Z

dpxdpy

ð2πÞ2 →
eB
2π

X∞
n¼0

;

Magnetic fieldþ Rotation∶
Z

dpxdpy

ð2πÞ2 →
1

S

X∞
n¼0

XN−n

l¼−n
;

ð13Þ

where N is the Landau degeneracy factor given in Eq. (11).
This modified phase space sum is needed for the evaluation
of the thermodynamic potential.
(III) The analogy between rotation and density is clear

from Eq. (8). The dispersion relation (8) behaves as if the
Dirac fermion were put at finite density with a chemical
potential μj ¼ Ωj≡Ωðlþ szÞ. Note that due to this
similarity, the Dirac fermions under rotation also suffer

from the sign problem for Monte Carlo simulations [48]. In
this paper, motivated by such a similarity, we study a
relativistic many-body system with rotation and magnetic
field. In the next section we will show that rotation may
supersede the magnetic catalysis.
(IV) Finally, we address the necessary condition for the

system size. For quantization in harmonic oscillators, the
system size should be large enough as compared to typical
scales of the problem. In order to discuss the Landau
quantization in the cylindrical system with area S ¼ πR2,
hence, the radius R should be larger than the magnetic
length, lB ¼ 1=

ffiffiffiffiffiffi
eB

p
(see Appendix A). In the rest frame

we have no problem taking such a large cylinder toward
the thermodynamic limit, i.e. R → ∞. Once rotation is
involved, however, the system with infinitely large radius is
not well-defined because the causality might be violated at
the edges of the cylinder where RΩ ≥ 1 [51,52]. Therefore,
our treatment in this paper is legitimate if R is not too
small to justify the quantization, and not too large to
maintain the causality. That is, the following condition
should be imposed:

1=
ffiffiffiffiffiffi
eB

p
≪ R ≤ 1=Ω: ð14Þ

We note that N ≫ 1 follows from the above condition.

III. NJL MODEL WITH ROTATION AND
MAGNETIC FIELD

We investigate the dynamical breaking of chiral sym-
metry in the presence of rotation and magnetic field
using the NJL model [53], which is defined in curved
spacetime by

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
Lðψ ;ψÞ;

L ¼ ψ ½iγμðDμ þ ΓμÞ −mcurrent�ψ

þ G
2
½ðψψÞ2 þ ðψγ5ψÞ2�: ð15Þ

Here, detðgμνÞ ¼ −1 for the metric (3) and G denotes the
coupling constant. In the usual way we can introduce
auxiliary fields and utilize the mean-field approximation to
obtain the effective thermodynamic potential:

VeffðmÞ ¼ ðm −mcurrentÞ2
2G

−
T
S

X
q¼�

Z
∞

−∞

dpz

2π

X
n;l;sz

×

�
βðεþ qΩjÞ

2
þ ln½1þ e−βðεþqΩjÞ�

�
; ð16Þ

where ε is the energy dispersion relation without rotation,
i.e. ε≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ ð2nþ 1 − 2szÞeBþm2

p
. The effective

potential (16) is the same as that at finite density once
Ωj is identified as a constant chemical potential μ [17].
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We should note that we implicitly assume a spatially
homogeneous chiral condensate so that the dynamical mass
in the energy dispersion relation takes an ordinary form. At
zero temperature, particularly, we can decompose Eq. (16)
into the pure-magnetic and rotational contributions as

VeffðmÞ ¼ ðm −mcurrentÞ2
2G

þ V0 þ VΩ; ð17Þ

where

V0 ¼ −
eB
2π

X∞
n¼0

αn

Z
∞

−∞

dpz

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

n

q
; ð18Þ

and

VΩ ¼ −
1

S

X∞
n¼0

αn
XN−n

l¼−n
θðΩjjj −mnÞ

×
Z

knj

−knj

dpz

2π

h
Ωjjj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

n

q i
ð19Þ

with j ¼ lþ 1=2 hereafter andΩ > 0. Here, we introduced
the following notations: αn ¼ 2 − δn0, m2

n ¼ 2neBþm2,
and knj ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩjÞ2 −m2

n

p
.

Now we must specify the ultraviolet regularization
scheme needed for Eq. (17). The NJL model is not
renormarizable, and so the regularization scheme is a part
of the model definition. Without electromagnetic back-
ground fields, a sharp cutoff is one of the most conventional
choices in the NJL model studies. Because the sharp cutoff
is incompatible with gauge invariance, a smooth cutoff such
as the proper-time method [54] and the Pauli-Villars
regularization would be more suitable for problems with
electromagnetic background fields. For instance, in the
derivations of the magnetic catalysis in Refs. [14,15], the
proper-time method was used to regularize the pure-
magnetic potential (18).
As long as our main concern is about the magnetic

catalysis, it is known that a naïve cutoff schemewould yield
qualitatively correct results, as was also mentioned in
Ref. [55] (see also Ref. [33] in which a naïve cutoff was
adopted with the functional renormalization group equa-
tion). We note that the ultraviolet divergent structure is the
same regardless of whether the system has rotation or not,
apart from the l-sum, so that we can use a naïve cutoff to
find results that physically make sense. Then, to make the
pz-integral and the n-sum restricted in a region around
p2
z þ 2neB≲ Λ2, we introduce a smoothed cutoff function

as [55]

fðpz; n;ΛÞ ¼
sinhðΛ=δΛÞ

cosh½~εðpz; nÞΛ=δΛ� þ coshðΛ=δΛÞ ð20Þ

with ~εΛ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2neB

p
. We note that in this function the

smoothness to exclude artifacts is tuned by a parameter δΛ.

Actually, in the δΛ=Λ → 0 limit fðpz; n;ΛÞ is reduced to
the step function θð1 − ~εÞ ¼ θðΛ2 − p2

z − 2neBÞ. By
changing δΛ of such a simple function (20), we can
systematically analyze whether our results are robust
and not affected by cutoff artifact.
For the rest of this work we will focus on mcurrent ¼

T ¼ 0. The gap equation is the condition to minimize
Eq. (17) with Eqs. (18) and (19). Then, we can write the gap
equation down as follows:

m
G

¼ m
π
ðF0 − FΩÞ ð21Þ

with the pure-magnetic term given by

F0 ≡ eB
2π

X∞
n¼0

αn

Z
∞

0

dpzfðpz; n;ΛÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

n

p ; ð22Þ

and the rotational term given by

FΩ ≡ 1

S

X∞
n¼0

αn
XN−n

l¼−n
θðΩjjj −mnÞ

Z
knj

0

dpzfðpz; n;ΛÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

n

p :

ð23Þ

This expression of FΩ is slightly complicated for the
evaluation. If knj is negligibly small compared with Λ
and

ffiffiffiffiffiffi
eB

p
, however, the rotational contribution FΩ can be

approximated with a simpler regularization by fð0; n;ΛÞ,
which significantly simplifies the analytical treatment.
Fortunately, this is the case for our analysis with a small
G (see Sec. IVA). In this approximation we can perform the
pz-integration in Eq. (23) analytically to reach:

FΩ ≃ 1

S

X∞
n¼0

αn
XN−n

l¼−n
θðΩjjj −mnÞfð0; n;ΛÞ

× ln

�
Ωjjj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩjÞ2 −m2

n

p
mn

�
: ð24Þ

We note that we can immediately have the expression for
finite-density systems by replacing FΩ in Eq. (21) with

Fμ ¼
eB
2π

X∞
n¼0

αnθðjμj −mnÞ ln
�jμj þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 −m2
n

p
mn

�
; ð25Þ

which encompasses the mechanism for the inverse mag-
netic catalysis. It should be mentioned that we would not
demand an ultraviolet regularization thanks to the step
function, θðjμj −mnÞ in Fμ. From this, at the same time, we
can understand that FΩ is not really sensitive to the
regularization scheme if S is large enough.
We should here refer to involved studies by Becattini

et al. In Refs. [43], the quantum relativistic fermion system
in rotating frame has been investigated in the aim of
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establishing a general thermodynamic and hydrodynamic
framework to describe the system. Hence the chiral
symmetry breaking has not been discussed. Also they have
not considered the magnetic field which plays an important
role to obviously show the analogy between rotation and
density.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section we analyze the magnetic response of the
dynamical mass in rotating frames in the following two
cases: (A)G < Gc and (B)G > Gc, whereGc is the critical
coupling for the onset of the chiral condensate in the
vacuum (i.e. Ω ¼ ffiffiffiffiffiffi

eB
p ¼ 0)

Gc ¼ 19.65=Λ2; ð26Þ

which we numerically determined from Eqs. (21) using our
present regulator (20) with

δΛ ¼ 0.05Λ: ð27Þ

We have numerically verified that a different δΛ would
change the results quantitatively but the qualitative features
are the same. For both (A) and (B) we choose the following
parameters:

eB ¼ ð0.1–0.2ÞΛ2;

S ¼ 106π=Λ2 ði:e: R ¼ 103=ΛÞ: ð28Þ

We see that Eq. (14) is satisfied with the above parameter
choice and the treatment of the Landau quantization is
justified.

A. Dynamical mass at weak coupling (G < Gc)

Let us discuss our numerical results with the following
coupling:

G ¼ 0.622Gc: ð29Þ

We define a unit of the dynamical mass as

mdyn ¼ 1.25 × 10−2Λ; ð30Þ

which is the solution of the gap equation with eB ¼ 0.2Λ2

and Ω ¼ 0. We show our numerical results in dimension-
less unit in terms of mdyn. In Fig. 1 we make a plot for the
dynamical mass (red line) as a function of the angular
velocity by solving Eq. (21) with rotation. The horizontal
axis is given by an effective “chemical potential”:

μN ≡ΩN: ð31Þ

In view of Eqs. (24) and (25) this ΩN is the maximum
counterpart of μ.

To pursue the analogy between rotation and density
quantitatively, we draw another (blue) line by solving the
gap equation with FΩ replaced with Fμðμ ¼ μNÞ. Figure 2
is a 3D plot for the solution of Eq. (21) as a function of Ω
and eB. We can observe that there is a threshold for the
dynamical mass with increasingΩ, above whichm ¼ 0 and
chiral symmetry is restored. This location of the critical Ωc
changes with eB, and we make Fig. 3 to show this
eB-dependence of Ωc. Here are some remarks on these
numerical results.
(I) When the angular velocity exceeds Ω≃mdyn=N, the

rotational effects become visible, but the damping of the
dynamical mass starts slowly (see the red line in Fig. 1).
This behavior is different from the mass suppression
induced by finite chemical potential (see the blue line in
Fig. 1). Such a difference stems from the l-dependence of
each mode.

FIG. 1. Dynamical mass with eB ¼ 0.2Λ2 obtained from the
gap equation (21) with rotation (red line) and with chemical
potential μ ¼ μN (blue line). The model parameters are chosen as
in Eq. (28).

FIG. 2. 3D plot for the dynamical mass as a function of Ω and
eB at weak coupling. For small Ω the dynamical mass grows
exponentially with 1=eB (i.e. the magnetic catalysis). The critical
Ωc is also amplified exponentially as 1=eB decreases (see also
Fig. 3).
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Let us count the number of modes that are relevant for
the suppression of the dynamical mass. For simplicity, we
concentrate only on the LLL with n ¼ 0. In the present
parameter choice, the LLL approximation should work well
for FΩ and Fμ. (The following argument should be also
applicable even when higher Landau levels are not negli-
gible.) Because of the step function in FΩ, only the modes
with l > m=Ω − 1=2 give finite contributions. Indeed, the
red line in Fig. 1 starts decreasing at NΩ≃mdyn, which
corresponds to the threshold that the highest angular
momentum modes in FΩ contributes nonvanishingly. In
contrast, the step function in Fμ given in Eq. (25) indicates
that all N modes simultaneously start contributing for
μ > m, while for μ < m nothing happens.
(II) Another way to investigate the difference between

the red and the blue lines in Fig. 2 is to approximate the
l-sum. Suppose that Ω is small so that we can treat Ωj as a
continuous variable. Also we assume a sufficiently large
integerN. Then, we can approximate the l-sum inFΩ by an
integration as

XN−n

l¼−n
ln

�
Ωjjj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩjÞ2 −m2

n

p
mn

�
θðΩjjj −mnÞ

≃ 1

Ω

Z
μN

0

dμ ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

n

p
mn

�
θðμ −mnÞ: ð32Þ

For our parameter choice N ∼Oð104Þ is large enough and
the above approximation is justified. Then the rotational
contribution to the gap equation (21) is reduced to

FΩ ¼ Fμðμ ¼ μNÞ −
eB
2π

X∞
n¼0

αn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
n

μ2N

s
θðμN −mnÞ:

ð33Þ
It is obvious that a density-like effect induced by rotation is
certainly contained in the first term Fμ. The second is a

negative term that makes a difference from the finite-
density case. This extra term plays a role to weaken chiral
restoration by rotation as compared to that by high density.
Therefore, the suppression of the dynamical mass in the
rotating frame occurs more gradually than that with the
finite chemical potential. Moreover, Eq. (33) implies
FΩ < Fμ for a fixed μN , and thus, chiral restoration by
rotation would need larger μN than that by finite density
(see Fig. 1).
(III) For mcurrent ¼ T ¼ 0 and large eB we can analyti-

cally investigate the eB-dependence of Ωc. In our analysis
we adopted the naïve cutoff regularization with Eq. (20),
but the regularization scheme should be irrelevant for a
large system with S ≫ 1=eB. If we utilized the proper time
regularization for F0, the gap equation with rotation and
strong magnetic field would be [54]

4π2

G
¼ Λ2

PT −m2

�
ln

�
Λ2
PT

2eB

�
− γE

�

þ eB

�
ln

�
m2

4πeB

�
þ 2 lnΓ

�
m2

2eB

�

− 2 ln

�
μN þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2N −m2

p
m

�
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

μ2N

s �
; ð34Þ

where γE is the Euler-Mascheroni constant, ΓðzÞ denotes
the gamma function, and ΛPT stands for the cutoff
parameter in the proper-time regularization. In this gap
equation (34), the terms in the third line result from the
n ¼ 0 mode in Eq. (33). We can find Ωc from the above
gap equation with m → 0 substituted, and the analytical
result is

ΩcðeBÞ ¼
ffiffiffi
π

p

S
ffiffiffiffiffiffi
eB

p exp

�
−
2π2

eB

�
1

G
−

1

Gc

�
þ 1

�

≃ 1.53 × 10−6ffiffiffiffiffiffi
eB

p exp

�
−
0.610Λ2

eB

�
; ð35Þ

where Gc ¼ 4π=Λ2
PT is the critical coupling for Ω ¼ffiffiffiffiffiffi

eB
p ¼ 0 that is found in the proper-time regularization.
In the second line in Eq. (35), we utilized the parameters of
Eqs. (26), (29), and (28). On the other hand, we can
numerically evaluate Ωc as a function of eB as displayed in
Fig. 3. From the linearity in Fig. 3 the numerical fit leads to

ΩcðeBÞ≃ 1.58 × 10−6ffiffiffiffiffiffi
eB

p exp

�
−
0.609Λ2

eB

�
: ð36Þ

This fitting result ensures that Eq. (32) is a good approxi-
mation for the parameters in Eq. (28).

FIG. 3. eB-dependence of Ωc for 0.1 ≤ eB=Λ2 ≤ 0.2. The
linearity of lnΩc vs 1=eB confirms the validity of the functional
form of Ωc given by Eq. (36).
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B. Dynamical mass at strong coupling (G > Gc)

We shall next focus on the following strong region:

G ¼ 1.11Gc: ð37Þ
We note that dynamically determined m with the above
strong-coupling is about 20 times larger than mdyn at weak
coupling. We show the numerical results in Fig. 4. Below
are several remarks on the results.
(I) For small angular velocity, the dynamical mass is

almost independent of Ω and eB. With increasing Ω the
dynamical mass is eventually suppressed by larger mag-
netic field, i.e. a counterpart of the finite-density inverse
magnetic catalysis is manifested. We would call this
decreasing behavior of the mass for larger magnetic field
the “rotational magnetic inhibition” in this paper. In Fig. 4
we see that the dynamical mass starts to drop around
μN ¼ ΩN ∼

ffiffiffiffiffiffi
eB

p
. The same is true for the finite-density

inverse magnetic catalysis observed around μ ∼
ffiffiffiffiffiffi
eB

p
[30].

We notice that there is a drastic difference between the
weak and the strong coupling results and this difference is
attributed to higher Landau levels relevant for the deter-
mination of the dynamical mass. In the weak coupling case
only a small number of the Landau levels contribute to the
gap equation, while many more Landau levels get involved
as the coupling constant becomes larger. This is essential
for the realization of the rotational magnetic inhibition as
well as of the inverse magnetic catalysis at finite density.
(II) Let us now take a close look at some possible

difference between the finite-density inverse magnetic
catalysis and the rotational magnetic inhibition. The
QCD vacuum has a rich content with μ and eB, and for
G > Gc, particularly, the de Haas-van Alphen oscillation
[56] may lead to several local minima of the gap equation
[17]. However, Fig. 4 shows that this is not the case for the
rotational magnetic inhibition. To see the microscopic
details, we should clarify the profile of the following
function:

FðmÞ ¼ 1

G
−
1

π
ðF0 − FΩÞ: ð38Þ

This function itself is continuous for any m, but the
derivative is not, that is,

dFðmÞ
dm

¼ m
πS

X∞
n¼0

αn
XN−n

l¼−n

�Z
∞

0

dpzfðpz; n;ΛÞ
ðp2

z þm2
nÞ3=2

−
Z

knj

0

dpzfðpz; n;ΛÞ
ðp2

z þm2
nÞ3=2

θðΩjjj −mnÞ

−
fðΩjjj; 0;ΛÞ

Ωjjj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩjÞ2 −m2

n

p θðΩjjj −mnÞ
�
; ð39Þ

which negatively diverges at

m ¼ σnj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩjÞ2 − 2neB

q
: ð40Þ

If m is greater than σnj, only the first term in the right-hand
side of Eq. (39) remains nonvanishing for a fixed n, and we
can confirm that Eq. (39) turns out to be positive. Thus, we
find,

dFðmÞ
dm

				
m→σnj−0

¼ −∞;
dFðmÞ
dm

				
m→σnjþ0

> 0; ð41Þ

and so FðmÞ may not be a monotonic function. This
behavior in the vicinity of m ¼ σnj might cause technical
difficulties to deal with multiple zeros of FðmÞ. Indeed, a
simple replacement of Ωj with μ leads to a profile of FðmÞ
having the de Haas-van Alphen oscillation for the mass gap
[17,34]. In the case with rotation, however, these singu-
larities are not very important for the solution of the gap
equation. In our numerical studies, actually, we find that
FðmÞ has only one solution, which is explained as follows.
If the effective chemical potential is not too large, i.e.

μN ¼ ΩN ≲ Λ, we can practically remove the cutoff
function from the third term in Eq. (39). Then we can
approximate the l-sum in the third term by an integration
as we did in Eq. (32):

XN−n

l¼−n

1

Ωjjj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩjÞ2 −m2

n

p θðΩjjj −mnÞ

≃ 1

Ω

Z
μN

mn

dμ

μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

n

p θðμN −mnÞ

¼ 1

Ωmn

�
π

2
− tan−1

�
mnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2N −m2
n

p ��
θðμN −mnÞ; ð42Þ

which is finite even at m ¼ σnN . In the opposite limit of
large μN > Λ, we can make a similar argument with μN
replaced with Λ to confirm that no singularity appears
from an approximated form of Eq. (39). Therefore, it is

FIG. 4. 3D plot for the dynamical mass as a function of Ω and
eB at strong coupling. For largeΩ, chiral symmetry is restored by
eB, which manifests the inverse magnetic catalysis or the rota-
tional magnetic inhibition.
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effectively possible for us to regard FðmÞ as a monoton-
ically increasing function in our numerical analysis. This
explains why Fig. 4 does not show the de Haas-van Alphen
oscillation.
(III) We briefly discuss the physical implications of the

rotational magnetic inhibition to realistic situations at strong
coupling (with chiral symmetry breaking in the vacuum).
First, let us take an example from the condensed matter
physics system; for a material withR ¼ 1 cm (e.g. graphene
or 3D Dirac semimetal) under the magnetic field
B ¼ 1.7 × 106 G, we find that the rotational magnetic
inhibition takes place around μN ∼

ffiffiffiffiffiffi
eB

p
, that is, Ω ∼ffiffiffiffiffiffi

eB
p

vF=N ≃ 2.5 × 102 s−1 where we adopt vF ¼
106 m=s from the Fermi velocity of the quasiparticles in
graphene [57]. This suggests that the rotational magnetic
inhibition should be an observable effect in a table-top
experiment.
Another interesting environment where the rotational

magnetic inhibition could be activated is the neutron star.
If one makes a naïve estimate for a millisecond pulsar,
Ω ∼ 103 s−1 and R ∼ 104 m would lead to ΩR ∼Oð10−1Þ.
In view of Fig. 4 one may well conclude that chiral
symmetry should be restored at small eB or even at zero
eB. This is a very fascinating possibility that might have an
impact to the construction of the equation of state (EoS);
the neutron star EoS could get harder thanks to the
rotational magnetic inhibition. We have to leave quantita-
tive studies for future works, however, because R≃ 104 m
is outside of the region of R that we adopted in this paper.
Here we just emphasize that due to the quadratic depend-
ence, μN ∝ R2, the chiral condensate with larger R is
generally more sensitive to the rotational effect. Thus,
the rotational magnetic inhibition must be definitely a
sizable effect for the neutron star physics.

V. CONCLUSION AND OUTLOOK

We analyzed the Dirac equation with magnetic field
background in a rotating frame. We showed that rotation
should modify the Landau levels and resolve the Landau
degeneracy. As a result, rotation plays a role similar with
finite chemical potential. In the weak coupling case where
chiral symmetry is not yet broken in the vacuum, the
dynamical mass is induced by the magnetic field according
to the well-known magnetic catalysis. Together with rota-
tion, we found that the dynamical mass is suppressed with
increasing angular velocityΩ. For strong coupling case that
realizes chiral symmetry breaking in the vacuum, we
discovered opposite behavior of the dynamical mass. At
finite Ω (like finite density), the dynamical mass decreases
with increasing magnetic field. This phenomenon is an
inverse of the conventional magnetic catalysis, and could be
regarded as an example of the inverse magnetic catalysis. To
distinguish our finding from the inverse magnetic catalysis
at finite density or finite temperature, we named this novel
phenomenon the “rotational magnetic inhibition.”

We should note that the rotational responses obtained
from our calculation are model-independent. We intro-
duced a specific cutoff function for the pz-integral and the
n-sum to evaluate the chiral condensate within the NJL
model. Nevertheless, we also confirmed that the behaviors
of the chiral condensate are qualitatively unchanged even if
we use other parameters. Additionally once we regularize
the n-sum, the upper bound of angular momentum l is
automatically determined by the Landau degeneracy factor,
which is irrelevant to model parameters. Thus whatever
model and parameters we adopt, rotation should give
density-like contributions to the dynamical mass, as
expected in the level of the energy spectrum.
We can find many possible applications of the rotational

magnetic inhibition. We could discuss it in condensed
matter systems, in the cores of the neutron star, and in
noncentral relativistic heavy-ion collision experiments [58].
We gave a rough estimate of whether our analysis could be
relevant for those systems. For the heavy-ion collision the
estimate of Ω is still unclear and it is difficult to make any
decisive statement. For the neutron star, although angular
velocity itself is much smaller than the QCD scale, it is
obvious from our results that the rotation should give a
sizable modification to the dynamical mass through an
effective chemical potential μN ¼ ΩN. Hence we must
consider the rotational influence to the equation of state
(EoS); so far, its angular velocity seems too small to affect
the QCD dynamics and the rotation has been treated only as
a global effect in the EoS [59] (see also Refs. [60–63]). We
are now making a progress to go beyond such a treatment.
To this end, though it is beyond our scope of the present

paper, we would need to consider spatially inhomogeneous
condensates as done in finite-density systems (see Ref. [64]
and references therein) together with a magnetic field
[65,66] and also in systems influenced by surrounding
geometrical effects [46,47]. Most probably the chiral con-
densate could be decreasing as the radial distance from the
rotation center becomes larger. In the present analysis we
assumed a homogeneous condensate using not the effective
action but the effective potential only. This is how the results
depend on the bulk parameter R, which might be augmented
with local radial distance dependence. The main purpose of
this current study is to pursue the analogy between rotation
and density and we would leave more quantitative dis-
cussions including spatial inhomogeneity for future works.
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APPENDIX A: DIRAC EQUATION IN
A ROTATING FRAME

We solve the Dirac equation in a rotating frame (5). We
find that the quantum number l in Eq. (8) is same as that
without rotation. We also show that a quite large system
size as Eq. (14) is necessary for the Landau quantization.
We rewrite Eq. (5) as the following equation:

0 ¼ ½iγμðDμ þ ΓμÞ þm�½iγμðDμ þ ΓμÞ −m�ψ

¼
�
ði∂t þ ΩL̂z þ Ωσ12Þ2 þ ∂2

x þ ∂2
y þ ∂2

z

þ eBðL̂z þ 2σ12Þ −
�
eB
2

�
2

ðx2 þ y2Þ −m2

�
ψ

¼
�
ði∂t − iΩ∂θ þ Ωσ12Þ2 þ ∂2

r þ
1

r
∂r þ

1

r2
∂2
θ

þ eBð−i∂θ þ 2σ12Þ −
�
eB
2

�
2

r2 þ ∂2
z −m2

�
ψ : ðA1Þ

The last line is written with the cylindrical coordinate
xμ ¼ ðt; r; θ; zÞ. Taking the chiral representation

ψ ¼
�
χ

φ

�
; ðA2Þ

the solution is written as the following function:

χ ¼ e−iEtþipzz

�
eilþθχþðrÞ
eil−θχ−ðrÞ

�
; ðA3Þ

where l� is an integer and the radial function is defined as
σ3χ� ¼ �χ�. In what follows, we solve only the equation
of χ, but that of φ can be solved in the same way. Because
of the rotational invariance, ψ should also be an eigen-
function for Ĵz ¼ L̂z þ σ12. In other words, χ� have
equivalent total angular momenta, which leads

lþ ¼ l− − 1: ðA4Þ

We note that at this stage, there are no constraint for l�
other than Eq. (A4).
Substituting ψ with Eq. (A2), we obtain the equation for

χ�:�
fEþ Ωðl� � 1=2Þg2 − p2

z −m2 þ eBðl� � 1Þ

þ ∂2
r þ

1

r
∂r −

l2
�
r2

−
�
eB
2

�
2

r2
�
χ� ¼ 0: ðA5Þ

The solution for this equation is written with the confluent
hypergeometric function:

χ� ¼ rjl�je−eBr2=4½c1Mða; jl�j þ 1; eBr2=2Þ
þ c2ðeBr2=2Þ−jl�jMða − jl�j; 1 − jl�j; eBr2=2Þ�

ðA6Þ

with

a ¼ 1

2
ðjl�j ∓ 1 − l� þ 1Þ

−
1

2eB
½fEþΩðl� � 1=2Þg2 − p2

z −m2�: ðA7Þ

It is necessary that χ� be finite at arbitrary r because of
normalizability. The finiteness of χ�ðr → 0Þ demands
c2 ¼ 0. Also to keep χ�ðr → ∞Þ finite, a should be a
nonpositive integer:

−a≡ np ¼ 0; 1; 2;…: ðA8Þ

In this case, this hypergeometric function is reduced to an
associated Laguerre polynomial:

Mð−np; jl�j þ 1; eBr2=2Þ ¼ Cn;jl�jL
jl�j
np ðeBr2=2Þ; ðA9Þ

whereCn;jl�j is a constant independent of r. From Eq. (A8),
we find that the energy dispersion relation is quantized:

½Eþ Ωðl� � 1=2Þ�2
¼ eBð2np þ jl�j − l� þ 1 ∓ 1Þ þ p2

z þm2: ðA10Þ

This dispersion can be reduced to Eq. (8) if we introduce
the new integers defined by

n ¼ nþ ¼ n− þ 1;

n� ≡ np þ
1

2
ðjl�j − l� þ 1 ∓ 1Þ: ðA11Þ

We note that these equations imply the lower bounds for
l�:

l≡ lþ ¼ l− − 1 ≥ −n: ðA12Þ

Finally using the property of the Laguerre function,

L−l
nþlðx2Þ ∝ x2lLl

nðx2Þ ðfor l ≤ 0Þ; ðA13Þ

we obtain the eigenfunction as the following simpler form:

χn;l;�ðrÞ ∝ rle−eBr
2=4Ll

nðeBr2=2Þ: ðA14Þ

We mention that the above argument is valid even in the
Ω ¼ 0 case. This means that the quantum number l is the
same as the one without rotation. Therefore the possible
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range of l in a rotating frame is same as the one without
rotation, i.e., Eq. (12) (see Appendix B).
For the discussion in this paper, it is significant that the

quantization in terms of np in Eq. (A8) is performed only if
the wave function converges at infinity. The same is true for
the quantization of general harmonic oscillators. This is
why we need to consider systems with a much larger radius
than lB ¼ 1=

ffiffiffiffiffiffi
eB

p
, as shown in Eq. (14).

APPENDIX B: LANDAU DEGENERACY IN
CYLINDERS

Based on the Klein-Gordon equation for charged scalar
in external magnetic field, we briefly show that even in
cylindrical coordinate the Landau degeneracy factor is
given by Eq. (11), as well as in Cartesian coordinate. It
is also proved that the range of quantum number l for the
nth Landau level is given by Eq. (12).

1. Landau quantization for general gauges

We prepare the Landau quantization for general gauge.
The Klein-Gordon equation in a magnetic field B ¼ Bẑ is
as follows:

ð∂2
t − ∂2

z þm2 −D2
x −D2

yÞΦ ¼ 0: ðB1Þ

It is clear that the solution is the form given by
Φ ¼ e−iεtþikzϕðx; yÞ. The Klein-Gordon equation is then
reduced to

Ĥϕðx; yÞ ¼ λϕðx; yÞ ðB2Þ

with

Ĥ ≡ −ðD2
x þD2

yÞ; λ≡ ε2 − k2 −m2: ðB3Þ

This eigenvalue equation can be solved by introducing the
ladder operators:

a≡ iffiffiffiffiffiffiffiffi
2eB

p ðDx þ iDyÞ; a† ≡ iffiffiffiffiffiffiffiffi
2eB

p ðDx − iDyÞ;

ðB4Þ

which satisfy ½a; a†� ¼ 1. Therefore the eigenstates for
Eq. (B2) are jni ∝ ða†Þnj0i, and the corresponding eigen-
value is given by

Ĥjni ¼ eBð2nþ 1Þjni: ðB5Þ
2. Landau quantization for symmetric gauge

When we utilize the cylindrical coordinate, the sym-
metric gauge Aμ ¼ ð0; By=2;−Bx=2; 0Þ is most useful
because the Hamiltonian in Eq. (B2) respects the rotational
symmetry. Instead of ðr; θÞ, we use the complex coordinate
defined by

z≡ xþ iy; z≡ x − iy: ðB6Þ

We also introduce the new notations for the derivatives in
terms of z and z; ∂ ≡ ∂=∂z and ∂ ≡ ∂=∂z. Then the ladder
operators are also rewritten by ðz; ẑÞ:

a ¼ −iffiffiffiffiffiffiffiffi
2eB

p
�
2∂ þ eB

2
z

�
; a† ¼ −iffiffiffiffiffiffiffiffi

2eB
p

�
2∂ −

eB
2
z

�
:

ðB7Þ

The ground state is obtained by the condition aj0i ¼ 0:

hz; zjaj0i ¼ −i
1ffiffiffiffiffiffiffiffi
2eB

p
�
2∂ þ eB

2
z

�
ϕðz; zÞ ¼ 0: ðB8Þ

The solution is given by

ϕðz; zÞ ¼ ~ϕðzÞe−eBzz=4; ðB9Þ

where ~ϕðzÞ denotes a function of z. In principle, we have
no condition for the choice of ~ϕðzÞ, except for the
analyticity. This facultativity of ~ϕðzÞ comes from assum-
ing an infinitely large system in our calculation. In other
words, the eigenvalue equation of the harmonic oscillator
cannot be solved in finite-size systems (see Appendix A).
In order to find ~ϕðzÞ, we analyze another quantum

number, i.e., the canonical angular momentum. Because
of the rotational-invariance of the Hamiltonian, the eigen-
state of the Hamiltonian can be also the eigenstate of
the angular momentum L̂z ¼ xpy − ypx ¼ z∂ − z ∂. Let us
introduce the new ladder operators:

b≡ 1ffiffiffiffiffiffiffiffi
2eB

p
�
2∂ þ eB

2
z

�
; b† ≡ 1ffiffiffiffiffiffiffiffi

2eB
p

�
−2∂ þ eB

2
z

�
;

ðB10Þ

which satisfy ½b; b†� ¼ 1. We represent the angular momen-
tum as the ladder operators:

L̂z ¼ b†b − a†a: ðB11Þ

We define the simultaneous eigenstates for a†a and
b†b:

a†ajn; npi ¼ njn; npi;
b†bjn; npi ¼ npjn; npi; ðB12Þ

for n; np ¼ 0; 1;…. Instead of np, we designate these
eigenstates by the new quantum number l ¼ np − n:

hz; zjn; npi ¼ ϕnnpðz; zÞ≡ ψnlðz; zÞ;
L̂zψnl ¼ ðb†b − a†aÞψnl ¼ lψnl: ðB13Þ
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We note that the non-negativities of n and np lead to the
lower bound of l:

l ≥ −n: ðB14Þ

We produce a ground state by the operation of ladder
operator b†:

ψ0lðz; zÞ ∝ ðb†Þlψ00ðz; zÞ ∝ zle−eBzz=4: ðB15Þ

From this eigenstate, we find that l corresponds to the
degenerate quantum number, which is irrelevant to the
energy level. Thus the possible range of l is nothing but
the Landau degeneracy factor. In order to calculate the
degeneracy factor, we focus on the following equation:

d
dr

ð2πrjψ0lj2Þ ¼ 0; ðB16Þ

which determines the radius that gives the maximum value
of this distribution. If we consider the system to be the
cylinder with radius R, the solution for Eq. (B16) should be
smaller than R, which leads to the upper bound of l:

l ≤
eBR2

2
¼ eBS

2π
: ðB17Þ

Therefore from this upper bound and the lower bound
l ≥ −n ¼ 0, the degeneracy factor in the cylindrical
coordinate is given by Eq. (11).
Higher excited states with n ≥ 1 are calculated in a

similar way to ground states:

ψnlðz; zÞ ∝ ða†Þnðb†Þnþlψ00ðz; zÞ
∝ zle−eBzz=4Ll

nðeBzz=2Þ; ðB18Þ

which is same as Eq. (A14) if we use z ¼ reiθ and
z ¼ re−iθ. The upper bound of l for exited states cannot
directly be found from Eq. (B18) while the one for the
ground state is derived from the wave function (B15).
Nevertheless the upper bound of l for exited states is
obviously N − n because the degeneracy factor N is a
common quantity for all Landau levels. From this and the
lower bound l ≥ −n, we obtain Eq. (12).
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