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Coalescing binary black holes are among the primary science targets for second generation ground-based
gravitational wave detectors. Reliable gravitational waveform models are central to detection of such
systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy
of recent waveformmodels for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy
numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 ≤ q ≤ 3), and
samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass
binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass
≳50M⊙). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform
very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio ρ, except that
SEOBNRv2’s efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter
estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic
uncertainties for moderately strong GWevents up to roughly ρ≲ 15. PhenomD’s modeling errors are found
to be smaller than SEOBNRv2’s, and are generally irrelevant for ρ≲ 20. Both models’ accuracy deteriorates
with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2model
shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal
masses and simultaneously both black hole spins very large and aligned. Two older waveform models
(PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and
SEOBNRv2models. Finally, we quantify the bias expected from all four waveformmodels during parameter
estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin.

DOI: 10.1103/PhysRevD.93.104050

I. INTRODUCTION

Gravitational-wave (GW) astronomy is entering an
exciting time with a concerted global effort to detect
gravitational waves with ground-based facilities. In North
America, the Advanced Laser Interferometer Gravitational-
Wave Observatory (aLIGO) operates two 4-km scale
GW detectors [1,2], located in Hanford, Washington, and
Livingston, Louisiana. Both of these instruments began their
first observation run “O1” in September 2015, which is
scheduled to last for four months [3], operating at more than
three times the strain sensitivity of the initial LIGO detectors
[4]. In addition, the upgrades to the Virgo detector [5],
construction of the KAGRA detector [6,7], and planning of
the LIGO-India detector [8] are under way.
Binary black holes (BBHs) are among the most prom-

ising GW sources for detection with aLIGO. Compact
binary merger rate estimates suggest a GW detection rate of

approximately a few tens of binary black holes (BBH)
every year [9]. The actual masses of astrophysical black
holes are uncertain, but observations and population
synthesis studies suggest that BHs formed from stellar
core collapse can have masses up to and higher than 34M⊙
[10,11]. Also, recent measurements using continuum fitting
and x-ray reflection fitting suggest that black holes can
have high spin, with the BH angular momentum in
dimensionless units exceeding 0.8 [12–18]. Therefore
the observations of GWs emitted by spinning BBHs will
allow us to understand the spin-spin and spin-orbit dynam-
ics of the two-body system, apart from allowing us to test
strong-field dynamics of general relativity. Unlocking the
full scientific potential of BBH GWobservations, however,
will require us to detect as many such GWs as possible, and
to accurately characterize and classify the BBH systems
that emitted them.
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Optimal GW searches for stellar-mass BBH signals are
based on matched-filtering the detector data with modeled
waveforms. Past LIGO-Virgo searches for compact binaries
used models of nonspinning BBH inspirals as filtering
templates, e.g. [19–22] (with the exception of [23]).
Recent progress has moved the collaboration towards using
inspiral-merger-ringdown models of aligned-spin BBHs as
filters. It has been shown that doing so will significantly
increase search efficiency against generically oriented bina-
ries [24]. Furthermore, it has been shown that complete
inspiral-merger-rindown (IMR) waveforms are needed for
the observation of BBHs with M ≳ 12M⊙ [25]. It is there-
fore important for the aligned-spin candidate waveform
models to be carefully examined for accuracy in capturing
the entire coalescence process, including merger and ring-
down. Early work on assessing the accuracy of different
waveform models has focused on model-model compar-
isons [26–31]. In the absence of more accurate reference
waveforms, such studies have been limited by the most
accurate model they consider, and have used model-model
agreement to make statements about model accuracy. More
recently, there have been extensive studies of waveform
models involving high-accuracy numerical relativity (NR)
simulations [32–41]. However, most of these investigations
have focused on binaries with zero spins or modest spin
magnitudes. Furthermore, while recently developed wave-
formmodels [42,43] have used an unprecedented amount of
information fromNR to increase the accuracyof theirmerger
description, their accuracy has not been investigated in a
systematic manner over the BBH parameter space.
In this paper, we explore the accuracy of recent BBH

waveformmodels using newhigh-accuracyNR simulations,
from the perspective of their application to GW astronomy.
The 84 numerical waveforms were computed with the
Spectral Einstein Code (SpEC) [44] and are presented in
detail in a companion paper [45]. This catalog covers
nonprecessing configurations, i.e. BBHs with spin vectors
parallel or antiparallel to the orbital angular momentum.
More specifically, it spans mass ratios q≡m1=m2 ∈ ½1; 3�,
and spin projection χi ≡ ~χi · L̂ ∈ ½−0.9;þ0.9�, where i ¼ 1,
2 labels the two black holes,withmassmi and dimensionless

angular momentum ~χi ≡ ~Si=m2
i , and where L̂ denotes the

unit vector along the direction of the orbital angular
momentum. The median length of these simulations is 24
orbits, allowingus to extendour comparisons down tobinary
masses as low as 40–70M⊙ (depending on configuration,
cf. Fig. 1) while still covering aLIGO’s frequency band
above 15 Hz.We restrict probed total masses below 150M⊙.
Thewaveformmodelswe investigate include two recently

calibrated Effective-One-Body (EOB) models (namely,
SEOBNRv1 and SEOBNRv2) [42,46], and two recent
phenomenological models (namely IMRPhenomC and
IMRPhenomD) [43,47]. Both EOB and IMRPhenom mod-
els are constructed using (different) extensions of post-
Newtonian (PN) dynamics of compact binaries, with free
parameters that are calibrated to NR simulations. Figure 2
shows the parameters of the NR simulations used in the
construction of each of these models. We probe their
accuracy in different corners of the component spin space
in this work. We model detector sensitivity using the zero-
detuning high-power noise power spectral density for
aLIGO [48], and use flow ¼ 15 Hz as the lower frequency
cutoff for filtering.
We perform the following studies. First, we measure

the faithfulness of different waveform models by calcu-
lating their noise-weighted overlaps against the new NR
waveforms. We find that (i) both SEOBNRv2 and
IMRPhenomD are faithful to our NR simulations over
most of the spin and mass-ratio parameter space (overlaps
>99%), with overlaps falling to 97–98% when component
spins are antiparallel to each other. However, when both
BHs have large positive-aligned spins, IMRPhenomD
fares significantly better, while the overlaps between
SEOBNRv2 and NR fall to 80%; (ii) both SEOBNRv1
and IMRPhenomC show larger disagreement with NR, and
we clearly show that they have been superseded by their
more recent versions in accuracy. Specifically, we find
that SEOBNRv1 deteriorates when the spin on the larger
BH is ≳þ 0.5 (with overlaps falling to 80%), while
IMRPhenomC performs poorly when the spin magnitude
on the smaller BH exceeds ≈0.5, with overlaps falling
below 80%. While we do not find a strong correlation

FIG. 1. Parameter space coverage of the simulations considered here. For mass ratio q ¼ f1; 2; 3g we indicate the spin components
ðχ1; χ2Þ projected onto the orbital angular momentum. Each point is color coded by the lowest total mass to which the waveform can se
scaled, such that the initial GW frequency remains ≳15 Hz. In the q ¼ 1 panel, each simulation is plotted twice at ðχ1; χ2Þ → ðχ2; χ1Þ to
represent the symmetry under exchange of the two objects.
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between model accuracy and mass ratio for the more recent
SEOBNRv2 and IMRPhenomD models, we do find that
both SEOBNRv1 and IMRPhenomC deteriorate in accu-
racy with increasing binary mass ratio. This accuracy
enhancement in both model families comes in part from
improvements in parametrization, and in part from exten-
sive calibration to NR simulations. While SEOBNRv1 was
calibrated to only two equal-mass spinning NR simula-
tions, SEOBNRv2 absorbs information from as many as
30. On the other hand, IMRPhenomD improves over
IMRPhenomC by adopting a double-spin parametrization,
and using information from NR simulations with mass
ratios up to q ¼ 18. In addition, we also show that the
IMRPhenomD and SEOBNRv2 models are indistinguish-
able from NR simulations in large regions of the considered
parameter space up to effective signal-to-noise ratios (SNR)
of 20 and 15, respectively, albeit with significant depend-
ence on the mass ratio and spins.
In our second study, we assess the viability of waveform

models for aLIGO detection searches for high-mass BBHs.
We compute the overlaps between each rescaled NR
waveform and a large set of model waveforms that sample
the binary mass and spin parameter space densely. From
this, we recover the maximum fraction of the optimal signal
SNR that any waveform model can recover—with the only
loss being caused by intrinsic inaccuracies of the model
itself. We find that (i) both SEOBNRv2 and IMRPhenomD
recover more than 99.5% of the optimal SNR over most of
the mass and spin parameter space, except when both BHs
have large aligned spins, where the inaccuracies of
SEOBNRv2 lead to a drop in SNR recovery to 97% of
its optimal value; and (ii) both IMRPhenomC and
SEOBNRv1 compensate for their intrinsic inaccuracy with
maximization of SNR over waveform parameters, recov-
ering >98% of the optimal SNR over most (not all) of the
parameter space considered within their domain of appli-
cability. This is a manifestation of the efficient utilization of
the intrinsic mass and spin degeneracy of gravitational
waveforms [49,50], allowing IMRPhenomC to be a fairly
effectual model despite being unable to reproduce NR
waveforms with identical masses and spins. On the other
hand, that SEOBNRv2 has low fitting factors for large
aligned component spins, despite maximizing over intrinsic
binary parameters, hints that the model might benefit from
a different parametrization of the transition regime from
late-inspiral to ringdown. Overall, we conclude that both
SEOBNRv2 and IMRPhenomD are viable for modeling
waveforms in aLIGO searches aimed at comparable
mass-ratio high-mass BBHs. This validates the use of
SEOBNRv2 by current and future aLIGO searches. We
note that due to the high computational cost of evaluating
the SEOBNRv2 model, aLIGO data analyses use its
reduced-order model [51] which mitigates this drawback.
Our third study concerns BBH parameter estimation

from GW signals, which, when accurately done, will

provide unique insight into astrophysical processes
involving stellar evolution, compact binary formation and
evolution [52–65]. Full Bayesian analyses of GW signals
require models that faithfully reproduce real GWs in order
to map them back to the properties of their source binaries.
Model inaccuracies manifest themselves as biases in the
recovered values of the mass and spin parameters of BBHs.
Therefore, we investigate the level of systematic biases that
using different (aforementioned) inspiral-merger-ringdown
(IMR) waveform models will incur. We find that (i) binary
chirp mass is best recovered by IMRPhenomD (within
�2–5%), especially for spin-aligned systems. For systems
with antialigned spins, the systematic bias in chirp mass is
similar for both IMRPhenomD and SEOBNRv2, rising
above 5% at the higher end of the sampled binary mass
range. (ii) Total mass is recovered with similar accuracy
(2–5%) by both SEOBNRv2 and IMRPhenomD, although
not as well as both recoverMc. The older SEOBNRv1 and
IMRPhenomC models, while furnishing larger biases over-
all, recoverM better thanMc. (iii) Binary mass ratio is also
best recovered by IMRPhenomD (within 10–15%), with
SEOBNRv2 systematically underestimating mass ratios for
binaries with antialigned spins, and overestimating for
positive-aligned spins (by up to �20%). (iv) We test the
recovery of the PN effective-spin combination χeff that
appears at leading order in inspiral phasing. As with the
mass parameters, we find that IMRPhenomD recovers χeff
best (within �0.1), especially for strongly spin-aligned
binaries. While SEOBNRv2 shows marginally higher
spin biases (up to �0.15) for high-mass binaries with
M ≳ 100M⊙, both SEOBNRv1 and IMRPhenomC models
incur higher biases in spin recovery (up to �0.25) over
different regions of the parameter space. Overall, we
find that both SEOBNRv2 and IMRPhenomD have com-
parable accuracy in terms of parameter recovery, with
IMRPhenomD performing better of the two for binaries
with large aligned χeff and/or high masses.
We note that a recent study [50] shows that the biases we

find for SEOBNRv2 will become comparable to statistical
uncertainty in spin recovery at SNRs ≈ 20–30. However, a
more detailed Markov-chain Monte Carlo (MCMC) analy-
sis will be needed to (i) determine the same for highly
spinning binaries, where SEOBNRv2 deviates significantly
from NR, and (ii) to compare the statistical biases for the
IMRPhenomD model with its (much smaller) systematic
biases that we report here. We also recall that the present
study applies to high-mass BBHs, with total masses
≳50M⊙. At lower binary masses, the NR waveforms no
longer cover the entire aLIGO frequency band, and one
needs either longer NR simulations or one needs to
hybridize the existing simulations with PN inspiral wave-
forms. We also note that we plan to follow up on the
interesting patterns seen in the high-spin/high-spin corner
of the BBH parameter space in the future in order to better
understand the accuracy of analytical models there.
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The remainder of the paper is organized as follows.
Section II summarizes the salient features of the new catalog
of NR simulations used in this analysis, describes different
measures of waveform-model accuracy, and summarizes the
different waveformmodels analyzed in this paper. In Sec. III
we present overlap comparisons of different waveform
models with our NR waveforms. In Sec. IV we measure
the efficacy of different waveform models as detection
filters. In Sec. V we analyze the systematic biases in the
recoveryof binarymass and spinparameters, associatedwith
the different waveform models we consider in this paper.
Finally, in Sec. VI we summarize and discuss our results.

II. METHODOLOGY

A. Numerical relativity simulations

The BBH simulations considered here were performed
with the Spectral Einstein Code (SpEC) [44], and were
presented in [45]. Initial data are constructed with the
pseudospectral elliptic solver described in [66], using the
extended conformal thin-sandwich method [67] with qua-
siequilibrium boundary conditions [68]. Evolutions use a
first-order representation of the generalized harmonic
system [69–72] with a damped-harmonic gauge [73].
The computational grid is adaptively refined [74], and
the excision boundaries are dynamically adjusted to follow
the apparent horizons [73,75,76]. Interdomain boundary
conditions are enforced with a penalty method [77,78], and
constraint-preserving outgoing-wave conditions [79–81]
are imposed at the outer boundary.
Our simulations consist of 84 configurations at mass

ratios q ¼ m1=m2 ¼ f1; 2; 3g. All simulations are non-
precessing; i.e. the dimensionless spin ~χ1;2 of each hole is
either aligned or antialigned with the direction of the orbital
angular momentum L̂. The parameters of all simulations
are plotted in Fig. 1. A total of 22 simulations have only one
hole spinning, 32 have both holes spinning with equal spin
magnitudes, and the remaining 30 have both holes spinning
with unequal spin magnitudes. The spin components along
L̂ range over −0.9 ≤ χ1;2 ≤ 0.9. All evolutions have initial
orbital eccentricity e < 10−4. The evolutions include an
average of 24 orbits, with the shortest having 21.5 orbits
and the longest having 32 orbits. BBH waveforms can be
rescaled to any total mass M ¼ m1 þm2. Figure 1 also
indicates the lowest total massMlow for each configuration,
such that the rescaled waveform covers the aLIGO fre-
quency range for f ≥ flow ¼ 15 Hz.

B. Accuracy measures

We can define an inner product between two waveforms
h1 and h2 as

hh1; h2i≡
Z

fhigh

flow

~h1ðfÞ ~h�2ðfÞ
SnðjfjÞ

df; ð1Þ

where ~hðfÞ represents the Fourier transform of h, the
superscript � represents complex conjugation, and SnðjfjÞ
is the power spectral density of detector noise. We integrate
the inner product over the frequency interval ½flow; fhigh�,
which spans the sensitive band of the GW detector. In this
paper we use flow ¼ 15 Hz, fhigh ¼ 4096 Hz, and the zero-
detuning high-power noise curve [48] to model aLIGO at
design sensitivity. This inner product is sensitive to an
arbitrary phase and time shift between the two waveforms.
Since both of these are extrinsic parameters and of little
astrophysical interest, we maximize the inner product over
them to define the maximized overlap O,

Oðh1; h2Þ ¼ max
ϕ0;t0

hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1ihh2; h2i
p : ð2Þ

This overlap measures the correlation between any two
given waveforms. We use the overlap to measure the
accuracy of analytical waveform families by comparing
to NR waveforms with identical physical parameters. This
assumes that the latter closely reproduce truewaveforms in
nature. The error analysis in [45] shows that numerical
errors of the NR waveforms cause mismatches 1 −O <
5 × 10−4, with a median value of 1 −O ∼ 3 × 10−4.
Therefore, we expect that overlaps computed here to be
influenced by NR errors only for O > 0.9995.
GW detection searches use a discrete set of waveforms,

called a “template bank,” to filter detector data. This bank
spans the range of mass and spin parameters considered in
the search, and can be visualized as a multidimensional
lattice. There are two sources of SNR loss from using
template banks. First, the density of templates in the
parameter space. This is a free parameter which trades
the loss of SNR with the number of templates to be
searched. Customarily, a 3% loss in SNR is viewed as
acceptable. The second source of error—the focus of this
paper—is the accuracy of the underlying analytical wave-
form family that is used to generate the templates. The
second source is somewhat compensated for by the free-
dom of maximizing the recovered SNR over intrinsic
binary parameters; i.e., it does not matter which template
waveform fits a given signal in a detection search. To
investigate the SNR loss due to the second factor alone, we
compute the fitting factors of different waveform models as
follows. For each combination p of ðM ¼ m1 þm2; q ¼
m1=m2; χ1; χ2Þ that we rescale our NR waveforms to, we
sample a set Sp of 8,000,000 points in the vicinity of the
true parameters (p) and compute the overlaps between the
NR waveform hNRðpÞ and model waveforms hMðiÞ for all
points i ∈ Sp. Finally, the fitting factor FF of model M for
signal parameters p is given by

FFMðpÞ ¼ max
i∈Sp

OðhNRðpÞ; hMðiÞÞ: ð3Þ
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FF is therefore the maximum fraction of the optimal SNR
that a waveform model can recover for a GW signal with
parameters p. The deviation of the fitting factor from unity
quantifies the loss in SNR due to model inaccuracy alone,
and is in addition to any loss incurred due to the
discreteness of the actual template bank used in a GW
search.

C. Waveform models

In this paper we investigate the following waveform
models for aligned-spin binary black holes.

1. Effective one-body

Buonanno and Damour [82] developed an effective-one-
body (EOB) approach to the two-body problem in general
relativity. Over the past decade parametrized EOB models
capable of describing the complete binary coalescence
process have been developed and calibrated using infor-
mation from NR simulations [42,46,82–90,90–94]. In the
spin EOB framework, the dynamics of two compact objects
of masses m1 and m2 and spins ~χ1 and ~χ2 is mapped onto
the dynamics of an effective particle of mass μ ¼
m1m2=ðm1 þm2Þ and spin ~χ� moving in a deformed-
Kerr background with mass M ¼ m1 þm2 and spin
~χKerr. The parametrized spin mapping f~χ1; ~χ2g → ~χ� and
the deformation of the background from Kerr is chosen to
ensure that the inspiral dynamics of the test particle
reproduce the PN-expanded dynamics of the original
two-body system. Free parameters are introduced into
the models that represent unknown, higher-order PN terms,
or additional physical effects like corrections due to non-
circularity. Such free parameters are calibrated with NR
simulations. With the EOB system specified, a Hamiltonian
HEOB to describe its conservative dynamics can be written
[42,46]. The nonconservative dynamics is contained in a
parametrized radiation-reaction term that is inserted in the
equations of motion. This term sums over the outgoing GW
modes and is calibrated to reproduce NR simulations. The
combination of these two pieces describes the binary
inspiral through to merger, at which point a ringdown
waveform is stitched on to the inspiral-merger waveform.
This BH ringdown waveform is constructed as a linear
superposition of the dominant quasinormal modes (QNMs)
of the Kerr BH formed at merger [90,95], with amplitude
and phase of each QNM mode determined by the stitching
process.
In this paper we focus on two recent aligned-spin EOB

models which are calibrated to NR: SEOBNRv1 and
SEOBNRv2 [42,46]. The SEOBNRv1 model has been
calibrated to five nonspinning simulations with q ¼
m1=m2 ¼ f1; 2; 3; 4; 6g and two equal-mass equal-spin
simulations [46]. It models binaries with nonprecessing
BH spins in the range −1 ≤ χ1;2 ≤ þ0.6. The improved
SEOBNRv2 model has been calibrated to a significantly

larger set of NR simulations, including eight nonspinning
simulations with q ≤ 8 and 30 spinning, nonprecessing
simulations [42]. This model is capable of modeling
binaries with nonprecessing component spins over the
range −1 ≤ χ1;2 ≤ þ1. We refer the reader to [42,46] for
a comprehensive summary of the technical details of these
two models. We note that due to the high computational
cost of evaluating these models, we and both current LIGO
searches use a reduced-order model of SEOBNRv2 [51] for
search templates.

2. Phenomenological

Offline GW searches and parameter estimation efforts
aimed at binary black holes involve filtering the detector
data with modeled waveforms in the frequency domain.
One way to minimize their computational cost is to use
frequency-domain closed-form GW models as search
filters. Past LIGO-Virgo searches used the TaylorF2 model
(see, e.g., [96]), although with the significant limitation that
TaylorF2 describes only the inspiral phase. A phenomeno-
logical model (IMRPhenomC) based on it has been
developed to also capture the plunge and merger phase
waveforms [47]. This model uses TaylorF2 phasing
and amplitude prescriptions during the early inspiral, and
stitches on an analytic Ansatz for GW phasing and
amplitude during the late-inspiral, plunge and merger
phases. These Ansätze are written as polynomials in
f1=3, where f is the instantaneous gravitational-wave
frequency, and the associated coefficients are treated as
free parameters. In the ringdown regime, IMRPhenomC
models binary phasing as a linear function in f, capturing
the effect of the leading QNM with a Lorentzian. The
model is calibrated to reproduce accurate NR waveforms
for nonprecessing binaries with mass ratios q ≤ 4 and BH
spins between ½−0.75;þ0.83�, produced by different
groups [97–101]. The free parameters are interpolated over
the binary mass and spin parameter space as polynomials in
the symmetric mass ratio η and mass-weighted spin χmw,

χmw ≔
m1

m1 þm2

χ1 þ
m2

m1 þm2

χ2; ð4Þ

to obtain IMRPhenomC inspiral-merger-ringdown wave-
forms at arbitrary binary masses and spins. We refer the
reader to Ref. [47] for a complete description of this model.
The very recent IMRPhenomD model [43] improves

upon IMRPhenomC in several crucial aspects: (i) use of
both component spins to model the inspiral phasing; (ii) use
of the spin parameter χeff [102],

χeff ≔ χmw −
38η

113
ðχ1 þ χ2Þ ð5Þ

[with symmetric mass-ratio η ¼ m1m2=ðm1 þm2Þ2], to
capture the late-inspiral/plunge phase; (iii) use of
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(uncalibrated) EOBþ NR hybrid waveforms to constrain
free parameters; and (iv) use of several high mass-ratio NR
simulations to extend the range of validity of the model.
The simulations used to calibrate IMRPhenomD sample
component spins more densely than the set used for
IMRPhenomC, and cover mass ratios up to q ¼ 18. We
refer the reader to Refs. [43,103] for further details of
IMRPhenomD.

III. FAITHFULNESS ANALYSIS

We now proceed to a comparison of the NR waveforms
introduced in Sec. II A with the analytical waveform
models introduced in Sec. II C, beginning with an analysis
of their faithfulness [cf. Eq. (2)]. We rescale the NR
waveforms to a range of total masses, and compute over-
laps with model waveforms with identical BH parameters.

FIG. 2. Parameters of numerical-relativity simulations used to calibrate the various inspiral-merger-ringdown models that we
investigate in this paper, i.e. (left to right) SEOBNRv1, SEOBNRv2, IMRPhenomC and IMRPhenomD.

FIG. 3. Unfaithfulness between SEOBNR and NR waveforms as a function of mass ratio q ¼ m1=m2, component spins χ1, χ2, and
total mass M. SEOBNRv1 (top panel) reproduces NR well when the spin on the bigger BH does not exceed þ0.5, with inaccuracies
increasing with mass ratio. SEOBNRv2 (bottom panel) significantly improves over SEOBNRv1 with overlaps against NR higher than
98% over most of the parameter space considered. However, when spins on both component BHs are large and positive aligned,
SEOBNRv2 fails to produce accurate waveforms (O≃ 0.80). We note that both models are accurate within their respective calibration
range, but become inaccurate outside this range. Therefore it is crucial to test waveform models before using them in aLIGO analyses.
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These overlaps are maximized over the extrinsic parameters
however, i.e. over the time and phase at coalescence. They
measure the accuracy of the models at specific points in the
parameter space ðm1; m2; χ1; χ2Þ.
In Fig. 3 we show the unfaithfulness (i.e. 1 −O) of

the two EOB models, SEOBNRv1 and SEOBNRv2. In
each row, the three panels correspond to mass ratios
q ¼ f1; 2; 3g. In each panel, the three axes correspond
to component spins and total mass with the color showing
the unfaithfulness. Note that the total masses probed are
restricted to M ≳ 50M⊙ (cf. Fig. 1).
For SEOBNRv1, we find that its unfaithfulness increases

with binary mass ratio as well as with the more massive
component’s spin, with little dependence on the binary’s
total mass. From the top left panel in Fig. 3 we note that for
the smallest mass ratio, q ¼ 1, SEOBNRv1 reproduces the
NR waveforms well with unfaithfulness below 0.5% over
most of the spin parameter space, except when the spins on
both holes are close to the maximum value that the model
supports (i.e. þ0.6), where its unfaithfulness rises above
2%. As we increase the mass ratio to q ¼ 2 (top middle
panel of the same figure) SEOBNRv1’s faithfulness further
drops below 95% in the high-aligned-spin region.
Furthermore, we also find that the unfaithfulness of the
model reaches 1–2% when the smaller hole carries large
antialigned spin. Further increasing the mass ratio to q ¼ 3
increases the differences of the model with NR further, with
overlaps falling below 90% when the larger black hole’s
spin → þ0.6. Overall, we find that the model performs
better when the more massive hole has antialigned spins
rather than aligned.
Turning to the more recent SEOBNRv2 model, we find

that it significantly improves over SEOBNRv1: for equal-
mass binaries, we find from the bottom left panel of Fig. 3
that the unfaithfulness of SEOBNRv2 is generally better
than 1% except for mixed aligned/antialigned spin direc-
tions of large spin-magnitudes, where its unfaithfulness
reaches 3%. For higher mass ratios q ¼ f2; 3g, the slight
increase of unfaithfulness towards the aligned/antialigned
spin corner persists. For instance, 1 −O≃ 0.97 for q ¼ 2;
χ1 ¼ −0.85; χ2 ¼ þ0.85. However, the most significant
deviation between SEOBNRv2 and NR occurs for both
spins aligned with large magnitudes. For χ1 ¼ χ2 ¼ þ0.85,
the unfaithfulness rises above 10% for mass ratios
q ¼ f2; 3g. We explore these differences between
SEOBNRv2 and NR further. In Fig. 4, we compare the
model and NR waveforms for q ¼ f2; 3g; χ1 ¼ χ2 ¼
þ0.85. In both panels, the waveform pairs are aligned
near the start of the NR waveform. We find that the
SEOBNRv2 phase evolution agrees with NR during most
of the inspiral phase, but its frequency rises faster during
the plunge phase than that found with NR, resulting in an
artificially accelerated merger. This evidence hints that the
calibration of the merger portion and ringdown attachment
of SEOBNRv2 will need further tuning.

We now turn our attention to the phenomenological
models IMRPhenomC/D. The unfaithfulness of
IMRPhenomC and IMRPhenomD with respect to NR,
shown in Fig. 5, displays patterns distinct from the
SEOBNR models. We find that IMRPhenomC shows
poorer agreement with NR than either of the SEOBNR
models, with unfaithfulness increasing rapidly with mass
ratio, spin magnitudes, and with decreasing binary masses.
The top panels of Fig. 5 show that this disagreement rises to
10–15% unfaithfulness, especially as the spin magnitude of
the smaller BH grows. We notice disagreement between
PhenomC and NR for large antialigned spins, which
increases to 10–15% unfaithfulness over most of the spin
parameter space as we go from q ¼ 1 to q ¼ f2; 3g. This
disagreement increases, also, as more of the NR waveform
is integrated over, i.e. at lower masses. In stark contrast, the
newest model considered, IMRPhenomD, shows better
agreement with NR than either of the SEOBNR models,
with faithfulness above 99% over most of the analyzed
parameter space, as seen in the bottom panels of Fig. 5. The
only region where we see somewhat smaller overlaps is for
q ≠ 1 mixed-aligned spins with large positive spin on the
larger hole.
We conclude that both SEOBNRv2 and IMRPhenomD

models describe well binaries with low to moderate spins,

FIG. 4. SEOBNRv2 and NR waveforms for the problematic
cases identified in the high spin corner of Fig. 3. Top:
q ¼ 2; χ1 ¼ χ2 ¼ þ0.85. Bottom: q ¼ 3; χ1 ¼ χ2 ¼ þ0.85.
Waveforms are aligned during their first few inspiral cycles.
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and even high antialigned spins, with the latter also
representing well high-aligned-spins binaries. The accu-
racy of both degrades somewhat with increasing mass
ratio in the high-aligned/aligned spin and high-aligned/
antialigned spin corners of the parameter space respec-
tively. We also find that both of these models outperform
their earlier counterparts significantly.
Further, we ask the question: how loud does a GW signal

have to be for modeling errors to degrade scientific
conclusions derived from it? To answer that, we use the
sufficient criterion ðδhjδhÞ < 1, where δh ¼ htrue−
hmodeled, to calculate the SNR threshold ρeff below which
the true and modeled waveforms will not be distinguishable
by aLIGO [104], i.e.

ρeff ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 −OðhNR; hmodeledÞÞ
p : ð6Þ

ρeff is the threshold value of the GW SNR, such that for
ρ ≤ ρeff the statistical errors in mass and spin estimation
will dominate over any systematic biases due to model
inaccuracies, and therefore our scientific conclusions will
not be degraded by model choice. The condition ρ ≤ ρeff is

necessary, but not sufficient; i.e. it is not necessarily true
that for all ρ ≥ ρeff modeling inaccuracies will actually
dominate [104]. With this caveat, we show in Fig. 6 the
SNR threshold ρeff for the SEOBNRv2 and IMRPhenomD
models, as a function of binary mass ratio, total mass, and
component spins. From the top row of the figure, we find
that SEOBNRv2 is sufficiently accurate for all aLIGO
measurement purposes when concerned with moderately
spinning binaries at SNRs up to ≈15–20. However, (i) for
equal-mass binaries with large mixed-aligned spins, and
(ii) for unequal-mass binaries with large aligned spins,
using SEOBNRv2 waveforms may lead to a loss in
information at fairly low aLIGO SNRs.
Turning to IMRPhenomD (lower panels of Fig. 6), we

observe that this model is particularly accurate for equal-
mass and/or equal-spin binaries and will be indistinguish-
able from NR for SNRs up to≈30, or possibly even higher.1

The SNR threshold falls to ≈15 for unequal-mass unequal-
spin systems. Overall, we find that IMRPhenomD is best
suited for aLIGO parameter estimation efforts aimed at

FIG. 5. This figure is similar to Fig. 3 with the difference that the models considered here are IMRPhenomC and IMRPhenomD (top
and bottom panels, respectively). We note that both of the phenomenological models have been calibrated over most of the mass-ratio
and spin range probed here. While IMRPhenomC shows significant deviation from NR as soon as we increase the mass ratio above
q ¼ 1, and/or spin magnitudes above ≈0.5, we find that IMRPhenomD reproduces NR remarkably well with overlaps above 99%
everywhere (above 99.5% over most of the space).

1The agreement between IMRPhenomD and the NR wave-
forms is so good that NR error estimates are of comparable order.
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comparable mass-ratio aligned-spin binaries of high total
mass (M ≥ Mmin ≳ 50M⊙).

IV. EFFECTUALNESS

Matched-filtering-basedGWsearches usemodeledwave-
forms aswaveforms to filter detector data and recover signals
that are otherwise buried in instrument noise. In such a
search, the recovered SNR for a given signal is optimized
over a discrete grid of binary mass and spin parameters that
describe the waveforms, and is the highest when the filter
waveform matches the signal exactly. In any real search,
some fraction of the optimal SNR is lost due to two reasons:
(i) the discreteness of the set of filter waveforms, and
(ii) inaccuracies in the modeled waveforms. In this section
we investigate the second factor for different waveform
models from the perspective of aLIGO detection searches,
focusing on nonprecessing BBHs. We use an overdense
sampling of the waveform parameter space to mitigate any
SNR losses due to reason (i). For each analytical waveform
family,we compute overlaps betweenwaveforms at all of the
sampled points and with each of our NR waveforms. For
eachNRwaveform, the highest overlap yields the fraction of
optimal SNR recoverable by each waveform model.
This calculation involves a maximization over physical

parameters of the model waveforms, and is therefore

computationally more expensive than the faithfulness
comparisons of Sec. III. The results of this effectualness
study are summarized in Fig. 7. This figure shows the
ineffectualness M ≔ 1 − FF [cf. Eq. (3)] of all IMR
models considered here. From top to bottom, different
rows correspond to SEOBNRv1, SEOBNRv2,
IMRPhenomC and IMRPhenomD, respectively. In each
row, different panels correspond to different mass ratios,
and each panel spans the 3D subspace of binary total
mass þ component spins. From the top row, we immedi-
ately notice that even though SEOBNRv1 has support only
for binaries with χ1;2 ≤ þ0.6, it recovers ≥99.5% of the
optimal SNR for most of the parameter space where either
χ1 ≥ þ0.6 or χ2 ≥ þ0.6. However, when both spins are
large and aligned, its SNR recovery deteriorates to 93–
95%. From the second row we notice that SEOBNRv2
performs significantly better with ESEOBNRv2 ≥ 99.5% over
most of the parameter space for all mass ratios considered.
The recovered SNR by SEOBNRv2 drops, however, when
both holes have large aligned spins. For χ1 ¼ χ2 ¼ þ0.85,
only 97% of optimal SNR are recovered, with worse
performance at higher mass ratios. From the third row,
we observe that IMRPhenomC achieves better than 98%
SNR recovery over the parameter space considered. When
the magnitude of the spins on bothBHs is large and they are

FIG. 6. We show the effective SNR level at which the SEOBNRv2 and IMRPhenomD models become distinguishable from NR
waveforms with the Advanced LIGO instruments. Here we use the indistinguishability criterion proposed in Ref. [104].
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FIG. 7. Effectualness of the four waveform models considered. Plotted is the fractional loss in recovered SNR. Rows correspond to
different models, and within each row, the data are plotted as a function of mass ratio q, BH spins χ1, χ2, and total mass M. The black
crosses denote the values of component spins in the x − y plane. We note that SEOBNRv1 does not model binaries with component
spins higher than þ0.6. We find that the more recent SEOBNRv2 and IMRPhenomD models supersede their earlier counterparts,
SEOBNRv1 and IMRPhenomC, respectively, with FFs over 99.5% over most of the spin and mass parameter space probed. However,
we do find that for binaries with high spins on both BHs, IMRPhenomD clearly outperforms all others with FFs > 99.5%, while
SEOBNRv2’s FFs against NR deteriorate to 97%.
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parallel (i.e. either both spins aligned or both antialigned),
the SNR loss increases 2% with increasing mass ratio. By
comparing with the top row of Fig. 5 we see a clear
demonstration of how well IMRPhenomC exploits the
degeneracies of the binary parameter space through its
use of an effective spin parameter. These results are
consistent with the understanding that it was constructed
with the aim of being an effectual model, and calibrated in
the region of the parameter space which we probe here [47].
The bottom row of Fig. 7, finally, shows results for
IMRPhenomD. As expected from its faithfulness measure-
ments stated in the previous section, this model recovers
≥99.5% of the optimal SNR in all of the parameter space
which we probe here. Note that this includes all high-spin/
high-spin corners, which were problematic with the other
IMR waveform models.
To summarize, we find here that IMRPhenomD is the

most effectual for BH binaries with 1 ≤ q ≤ 3, −0.85 ≤
χ1;2 ≤ þ0.85 and total masses greater than those shown in
Fig. 1. SEOBNRv2 also shows a comparable fitting factor,
except for a slight drop in SNR recovery in the high-spin/
high-spin corner of the nonprecessing BBH space.

V. SYSTEMATIC PARAMETER BIASES

Bayesian parameter estimation of BH masses and spins
uses (semi)analytical waveform models. Its efficacy, there-
fore, depends critically on the accuracy of the waveform
model used [105]. Modeling inaccuracies introduce sys-
tematic biases in the inferred parameter values. In this
section, we quantify these systematic parameter biases for
the four waveform models considered in this work. To
avoid the complete MCMC procedure, we shall approxi-
mate the parameter bias of a waveform model as the
difference in parameters between those parameters that
maximize overlap with a NR waveform, and the parameters
of the NR waveform. We repeat this calculation for every
NR waveform. The broad features of the resulting param-
eter bias data are dependent most strongly on the effective
spin parameter χeff, and therefore, we will present results as
a function of it. Because we project two spins χ1, χ2 onto
the one effective spin, the plotted data will not be single
valued. Configurations with different χ1, χ2, but the same
χeff yield in general different biases, which are plotted at
their χeff values.
First, in the left column of Fig. 8 we show the fractional

systematic bias in the recovery of binary chirp massMc ¼
ðm1m2Þ3=5
ðm1þm2Þ1=5 that is intrinsic to different waveform models, as a

function of the effective spin χeff of the NR waveforms. In
the right column of the same figure we show the fractional
biases in the recovery of binary total mass M. In the top
row, we show results for SEOBNRv1. The magnitude of
the systematic biases for this model increases rapidly with
(i) increasing magnitude of χeff , and (ii) increasing mass
ratio. For example, we see that the recovered chirp mass can

be biased by up to 15% when the effective spin is
antialigned, while the total mass bias does not exceed
5%. On the other hand, the increasing trend of systematic
biases at high χeff is to be expected since SEOBNRv1 does
not support spins χ1;2 ≥ þ0.6 [46]. In the third row, we
show the intrinsic bias of IMRPhenomC in recovering
binary’s chirp and total masses. Focusing at the plot
markers in both panels, we observe that the systematic
biases stay below ∼3% for binaries with masses at the
lower end of the mass range probed here. However at
higher masses, as with SEOBNRv1, both the recovered
chirp mass and total mass can be shifted by 15% if the
binary’s χeff ≤ 0. Relatively, the total mass is recovered
better by this model. In comparison with SEOBNRv1,
IMRPhenomC allows for less accurate parameter recovery.
Next, we consider the more recent SEOBNRv2 model
(second row). This waveform model is of interest, in part,
because its reduced-order model [51] is being used in BBH
searches being run for the presently ongoing aLIGO
observing run O1. Focusing on the plot markers we find
that the systematic biases in Mc recovery stay below
∼1–2% of the true Mc value, for binaries with masses
≲80M⊙. For higher masses (100–150M⊙), biases go up to
5%, but are still smaller than the statistical uncertainty in
Mc measurement at high masses [106,107]. In compari-
son, SEOBNRv2 recovers binary total mass less accurately
with systematically larger fractional biases than for Mc.
We also observe that the bias in M has the same sign
as the χeff of the binary. Finally, in the bottom right
panel, we show the results for the most recently published
IMRPhenomD model. Performing better than SEOBNRv2,
IMRPhenomD furnishes biases in the recovery of Mc
which rarely exceed 2%. For χeff ∈ ½−0.6;þ0.6� the total
mass recovery does rise to 5%, which is worse than the
model’s Mc bias for the same signals. We also highlight
the aligned-spin/aligned-spin corner, where SEOBNRv2’s
mass-recovery biases rise up to 5–10%, while they stay
within 2–5% for IMRPhenomD. This is to be expected
given the disagreement between SEOBNRv2 and NR in the
same region of parameter space, as shown in Sec. III. For all
models, as illustrated in Fig. 11, we note that the highest
parameter biases for chirp mass correspond to the upper
edge of the total mass range probed here, i.e. the edge of the
“error bars” corresponds to M ∼ 150M⊙. In summary, for
M ≤ 100M⊙, both SEOBNRv2 and IMRPhenomD are
likely to yield similarly accurate estimates of chirp mass,
while for higher masses we find IMRPhenomD to be
relatively more suited to parameter estimation studies.
Further, Fig. 9 shows the recovered value of binary mass

ratio q ¼ m1=m2, for different waveform models, as a
function of the mass ratio and effective spin χeff of the NR
waveforms. As before, the plot markers correspond to a
fixed total mass M ¼ 80M⊙, while the error bars show the
entire range of y-values for the mass range that we probe
here (i.e.M ∈ ½Mmin; 150M⊙�). In the spin range supported
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FIG. 8. Systematic bias in the recovery of chirp mass Mc (left column) and total mass M (right column) for different waveform
models (rows). In each panel, the respective bias is shown as a function of the normalized effective spin of the NR waveforms. The plot
markers show the bias for a binary with total mass fixed at M ¼ 80M⊙. The “error bars” show the range of biases for total masses
between the minimum allowed mass and 150M⊙.
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by SEOBNRv1, we find that it exhibits up to 15%
systematic bias in the recovery of q, with biases increasing
as jχeff j → 1, i.e. for highly spinning binaries, including at
the lower end of the mass range probed here. SEOBNRv2,
on the other hand, shows a systematic trend with χeff . We
find that the difference between the recovered and true mass
ratios increases with χeff . For negative χeff , q tends to be
underestimated, whereas for positive χeff , q tends to be
overestimated. Therefore, if the radiating source has
χeff < 0 then SEOBNRv2 will give an artificially lower
mass-ratio value as the maximum-likelihood parameter
estimate, and vice versa if χeff > 0. At the high-aligned-
spin end, the mass ratio can be overestimated by more than
15% by SEOBNRv2. Turning to IMRPhenomC, we find
that its associated q bias stays within 20% at the lower mass
end, and is much larger for high binary masses. This is
particularly true for large antialigned χeff . IMRPhenomD,
on the other hand, shows little dependency of its intrinsic
mass-ratio bias on effective spin, except that it gives
slightly elevated q-bias close to χeff ¼ 0, i.e. for mixed-
aligned binaries. Overall, we note that all models recover q
worse as the total mass of the system increases.
IMRPhenomD gives a relatively better estimate of the
mass ratio than the other models considered here.
Finally, in Fig. 10 we show the bias in the recovery of the

effective-spin combination, χeff , as a function of the χeff of

the NR waveforms. χeff is the leading-order spin combi-
nation that enters the binary’s inspiral phasing, and there-
fore the matched filter is expected to be most sensitive to
this combination of the component spins [102]. Overall, we
find that χeff is well constrained, within �0.2 of its true
value, by all the waveform models considered. From the
left column, we can compare the spin recovery of the two
older models, SEOBNRv1 and IMRPhenomC. Both of
these models exhibit strong dependence of the accuracy of
spin recovery on χeff . For SEOBNRv1, we find that its
associated χeff bias is constrained within �0.1 of the true
value, when the source binary’s χeff ≤ þ0.4. When the
binary’s χeff exceeds þ0.4, the model gives rapidly
increasing systematic biases in its spin recovery, with
χeff being underestimated by up to 0.25. This trend arises
because SEOBNRv1 is restricted to component spins
χ1;2 ≤ þ0.6, so higher NR spin must—by construction—
be recovered by χ1;2 within SEOBNRv1’s range.
IMRPhenomC exhibits a similar trend at the negative side
of the spin range: it recovers χeff within �0.1 when the
source’s χeff > −0.5, with the bias increasing sharply for
more antialigned spins. In the top right panel of Fig. 10, we
show the spin recovery by the SEOBNRv2 model.
Primarily, we note that SEOBNRv2 recovers χeff very
well, with a systematic bias that stays below �0.1 in
dimensionless spin magnitude (with rare excursions up to

FIG. 9. Systematic bias in the recovery of the binary mass ratio q ≔ m1=m2, as a function of the normalized effective spin of the NR
waveforms. Different mass ratios are shown with different color, with horizontal dashed lines of the same color drawn to guide the eye.
The plot markers show the recovered q for a binary with total mass fixed at 80M⊙, while the “error bars” show the range spanned by the
recovered q as the injected binary mass is varied between its lowest allowed value and 150M⊙.
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�0.2 for large aligned spins). In addition, we note a (minor,
but interesting) pattern: the bias in spin recovery increases
almost linearly with χeff between −0.5 ≤ χeff ≤ þ0.6,
going from −0.1 for χeff ¼−0.5 to þ0.1 for χeff ¼ þ0.6.
Finally, the bottom right panel of Fig. 10 shows the χeff bias
for IMRPhenomD. We find the systematic bias in χeff
associated with this waveform model stays between �0.1
(as for SEOBNRv2), with best recovery for aligned spins
and low total masses. We also note that this bias shows little
dependence on χeff itself; however it does increase sys-
tematically with mass ratio q for the higher binary masses.
Overall, we find that of all the waveform models consid-
ered, both SEOBNRv2 and IMRPhenomD recover χeff
within �0.1, with IMRPhenomD performing markedly
more consistently for binaries with large aligned spins.
For all models, we note that the highest parameter biases

for mass and spin parameters correspond to the upper edge
of the total-mass range probed; i.e. the edge of the error
bars corresponds to M ∼ 150M⊙. We present detailed
results showing the dependence of systematic parameter
biases on signal parameters in Appendixes A and B.
From the results presented in this and the previous

section, we find that both IMRPhenomD and SEOBNRv2
outperform their earlier incarnations in the recovery of
various mass and spin combinations probed here,
with IMRPhenomD performing systematically better

(i) at recovering binary’s chirp mass, and (ii) for parameter
recovery, in general, for systems with high-aligned spins.
A more detailed MCMC analysis is necessary to measure

the statistical uncertainties in parameter recovery from
different models in order to determine the GW SNRs at
which modeling inaccuracies will actually begin to domi-
nate. Figure 6 only gives a lower limit on this SNR, and we
may well find that statistical uncertainties remain dominant
for even louder signals. We do, however, recommend based
on this study that aLIGO parameter estimation efforts use
either of the two waveform models to model filters.

VI. CONCLUSIONS

LIGO and other ground-based gravitational-wave detec-
tors rely on waveform models for detection of compact
object binaries as well as for parameter estimation of the
candidate events. Accurate aveform models are therefore
necessary to ensure high detection efficiency and to avoid
systematic biases in parameter estimation.
Past studies focused on evaluating the accuracy of

waveform models have either used model precision as a
proxy for accuracy (i.e. used model/model discrepancy as a
proxy for model/true-signal discrepancy) [26–31], or have
used NR simulations with zero/low-to-moderate compo-
nent spins as benchmarks [32–41,108,109]. In this paper

FIG. 10. Systematic bias in the recovery of the effective spin parameter χeff, as a function of the normalized effective spin of the NR
waveforms. The plot markers show the recovered χeff for a binary with total mass fixed at 80M⊙, while the “error bars” show the range
spanned by the recovered q as the injected binary mass is varied between its lowest allowed value and 150M⊙.
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we investigate the accuracy of four inspiral-merger-
ringdown waveform models for binary black holes. Our
analysis improved in several ways over earlier work: first,
we compare with numerical relativity waveforms, rather
than using the difference between analytical models as a
proxy for their error [26–31]. Second, the NR waveforms
are independent of the investigated waveform models, in
the sense that none of them was used in calibrating these
waveform models. Furthermore, a companion paper [45]
establishes the accuracy of the NR waveforms. Third, we
consider two recently published models, IMRPhenomD
[43] and SEOBNRv2 [42], the accuracy of which has not
been investigated independently (except for neutron-star
black-hole binaries [41]). Finally, our set of reference
waveforms comprehensively samples the component-spin
parameter space up to χ1, χ2 ¼ 0.9 for q ¼ m1=m2 ¼ 1 and
0.85 for q ¼ f2; 3g, extending the spin coverage beyond
the spins used in calibrating the waveform models.
First, we investigate the modeling accuracy of different

waveform models by computing their overlaps against our
NR reference waveforms. We rescale the NR waveforms
to a range of total mass values, from the lowest permis-
sible (and still ensuring that it starts at 15 Hz; see Fig. 1)
up to m1 þm2 ¼ 150M⊙. From Fig. 3, we find that
(i) SEOBNRv1 has overlaps above 99% against NR
waveforms for binaries where the more massive black
hole has spin χ1 < 0.5, which drop to 80% for larger χ1,
and (ii) SEOBNRv2 performs better with overlaps above
98% across the parameter space except when both χ1;2 are
large and aligned. From Fig. 5, we find (iii) IMRPhenomC
is faithful only to NR for very mildly spinning binaries,
with overlaps falling below 90% when jχ2j ≥ þ0.3, and
(iv) IMRPhenomD is superior to other waveform models
with overlaps (against our reference NR waveforms)
above 99% over the entire spin and mass parameter space
considered. For the two most faithful models (SEOBNRv2
and IMRPhenomD), we evaluate the indistinguishability
criterion, to find the SNR below which modeling errors do
not significantly bias parameter estimation. From Fig. 6,
we find that, except for binaries with large aligned spins on
at least one BH, SEOBNRv2 remains indistinguishable
from real GW signals with SNRs up to 15 or higher.
IMRPhenomD will be indistinguishable from real GW
signals with SNRs of 30 and above for equal-mass, equal-
spin binaries, and for SNRs ≳15 over most of the
remaining parameter space. These SNR ranges are very
likely to be conservative, due to the overly strict nature of
the distinguishability criterion used [104].
Second, we investigate the effectualness of different

waveform models (including two additional PN-based
ones) for use as aLIGO BBH detection filters. Detection
searches have an additional degree of freedom: the recov-
ered SNR is maximized over the mass and spin parameters
that characterize model waveforms. We compute the fitting
factors [110] of different waveform models against our NR

waveforms, to measure the SNR loss due to modeling
inaccuracies in isolation. As shown in Fig. 7, we find that
(i) SEOBNRv1 is effectual over the entire parameter range
it supports, i.e. for χ1;2 ≤ þ0.6, with fitting factors higher
than 99.5%; (ii) SEOBNRv2 has fitting factors above
99.5% across the considered region of the parameter space,
except for the high-spin/high-spin corner, where its fitting
factors fall to 97%; (iii) IMRPhenomC recovers more than
99% of the SNR over most of the parameter space, except
when both holes have either large aligned or large anti-
aligned spins, in which cases it still recovers more than
98% of the optimal SNR; and (iv) IMRPhenomD outper-
forms all other waveform models with fitting factors above
99.5% over the entire parameter range probed. We note that
the frequency domain IMRPhenomC model makes good
use of the intrinsic degeneracy in the waveform parameter
space, and is therefore well suited to detection searches.
SEOBNRv2, on the other hand, does not compensate for its
inaccuracy in the high-spin/high-spin corner of the param-
eter space with modified intrinsic parameters, and will
likely need to be recalibrated there.
Third, we investigate the systematic biases in parameter

recovery caused by intrinsic model inaccuracies. We find
that (i) both IMRPhenomD and SEOBNRv2 recover binary
chirp mass to within �2% forM ≳ 70M⊙, and �5–7% for
M ≳ 110M⊙, with IMRPhenomD systematically more
accurate for aligned spins. (ii) Binary total mass is
recovered with somewhat larger systematic biases across
the mass range, spanning �5% for binaries for which the
chirp mass is recovered within �2%. (iii) SEOBNRv2 and
IMRPhenomD recover the binary mass ratio with compa-
rable accuracy (within �10–15%), with IMRPhenomD
showing the smallest biases for aligned spin binaries.
Finally, (iv) the leading-order PN spin combination χeff
is the best recovered with IMRPhenomD (within �0.1),
followed closely by SEOBNRv2. The remaining two
models show larger biases for all intrinsic parameters
(see Fig. 14).
In summary, we find that the more recently published

SEOBNRv2 and IMRPhenomD models reproduce NR
waveforms with identical parameters more accurately than
their earlier counterparts, and have very good SNR recov-
ery. For both models this is explained by improvements in
their spin parametrizations, and extensive merger-ringdown
calibration against new NR simulations (few tens in
number, and mass ratios up to q ¼ 8–18). This manifest
systematic improvement of models over time highlights the
tactical synergy between numerical relativity and waveform
modeling. Further on, we also find that the frequency-
domain IMRPhenomC model is effectual enough for
aLIGO detection searches aimed at comparable-mass
aligned-spin high-mass BBHs, making good use of intrin-
sic degeneracies of the waveform parameter space. Overall,
we recommend that aLIGO parameter estimation efforts
prefer IMRPhenomD or SEOBNRv2 as the waveform
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model of choice, in favor of other currently available
frequency and time domain waveform models.
As noted previously, the parameter biases estimated here

need to be comprehensively compared with the statistical
errors in parameter recovery from detailed MCMC analy-
ses, in order to determine the actual GW SNRs where
modeling errors begin to dominate over other error sources
of uncertainty. A recent study [50] indicates that such might
be the case for SNRs ≈20–30 and higher (for SEOBNRv2).
We also note that in order to thoroughly sample the spin
parameter space, we have restricted ourselves to small mass
ratios, i.e. q ¼ f1; 2; 3g. The results presented here are
therefore applicable to comparable-mass BBHs with total
masses M ≳ 50M⊙, and will be extended to higher mass
ratios and lower total masses in the future, as longer and
higher q simulations become less computationally expen-
sive with advances in NR technology [111]. Finally, we use
the dominant quadrupolar multipoles here of the reference
NR waveforms, and leave a study of the subdominant
modes for future work. We expect their effect to be limited
to the highest masses and mass ratios considered here
[112], although a more rigorous treatment is needed to
reaffirm this conclusion.
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APPENDIX A: BIAS IN MASS COMBINATIONS

In this appendix, we present additional information
about the parameter estimation mass recovery. Figure 11
shows the chirp-mass recovery as a function of both
component spins, expanding on the left column of
Fig. 8 in the main text. Figure 12 shows the total-mass
recovery, similarly expanding on the right column of Fig. 8.
Figure 13 plots the recovery of symmetric mass ratio η
(cf. Fig. 9).
From Fig. 11, we find that (i) for the least massive

binaries considered, both SEOBNRv2 and IMRPhenomD
introduce less than 2% systematic biases in the recovery
of binary chirp mass; with the same rising to 10% for the
most massive binaries. (ii) The chirp-mass bias measured
for SEOBNRv1 closely follows that of SEOBNRv2,
except when both black holes carry large spins (both
aligned and antialigned), where the bias exceeds 10%.
(iii) IMRPhenomC, on the other hand, has intrinsic chirp-
mass biases that remain below 5% over the considered
parameter space, except when the more massive hole has
large antialigned spin—for which the biases exceed 10%
for binary mass M ≳ 100M⊙. From Fig. 12, we find that
(i) both SEOBNRv1 and IMRPhenomC incur smaller
systematic biases in M recovery than they do for Mc
recovery, especially for large antialigned and aligned spins.
(ii) SEOBNRv2 shows the opposite pattern; i.e. it recovers
M with more accuracy thanMc, especially for larger mass
ratios and larger spins on the bigger black hole. Finally,
(iii) IMRPhenomD recovers both mass combinations with
the relatively highest accuracy.
Further onto η recovery, the first thing we note from

Fig. 13 is that all four models recover ηwell (within 2%) for
equal-mass binaries, and this fidelity decreases as we go
from q ¼ 1 → 3. The only exception is SEOBNRv1 at
spins outside the range of the model (i.e. χ1;2 > þ0.6). For
q ¼ 2, we find that (i) the biases intrinsic to SEOBNRv2
are higher than SEOBNRv1, reaching 15–20% and 10–
15%, respectively, for both. SEOBNRv2 also gives a
systematic underestimation of η by −15% when both holes
have large positive-aligned spins. (ii) IMRPhenomC, in
contrast, performs better with biases staying below 10%,
even at the highest binary masses. And, (iii) IMRPhenomD
shows the highest fidelity (with η biases below 5%).
Increasing the mass ratio to q ¼ 3, we find that (i) all
three models other than IMRPhenomD manifest larger than
10% systematic biases in η recovery. (ii) For SEOBNRv1
the η bias increases as the spin on the smaller hole becomes
increasingly antialigned, while SEOBNRv2 overestimates
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FIG. 11. Systematic bias in the recovered chirp massMc for each waveform model; compare to Fig. 8. As in Fig. 7, the black crosses
denote the values of component spins in the x − y plane. Biases below 2% are shown nearly transparently, to emphasize regions with
larger biases.

ACCURACY OF BINARY BLACK HOLE WAVEFORM MODELS … PHYSICAL REVIEW D 93, 104050 (2016)

104050-17



FIG. 12. Systematic bias in the recovered total mass M for each waveform model; compare to Fig. 8. As in Fig. 7, the black crosses
denote the values of component spins in the x − y plane. Biases below 2% are shown nearly transparently, to emphasize regions with
larger biases.
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η by 5–10% for aligned BH spins (this trend was already
apparent in Fig. 9). (iii) IMRPhenomC shows the relatively
worst η recovery of the four with biases ranging from

−15% to 20%. IMRPhenomD confirms our earlier results
and is found to perform best at η recovery, significantly
improving upon its predecessor IMRPhenomC.

FIG. 13. Systematic bias in the recovered symmetric mass ratio η for the considered waveform models. As in Fig. 7, the black crosses
denote the values of component spins in the x − y plane.
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APPENDIX B: BIASES IN RECOVERED SPINS

In this appendix, we present additional information
about the parameter estimation spin recovery. Figures 14

and 15 show the bias in the recovery of two different spin

parameters, the effective spin χeff [cf. Eq. (5)] and the mass-

weighted spin χmw [cf. Eq. (4)].

FIG. 14. Systematic bias in the recovered values of the 1.5PN effective spin χeff , for the SEOBNRv1, SEOBNRv2, IMRPhenomC, and
IMRPhenomD models (from top to bottom).
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The overall trends are similar for χeff and χmw: all four
models recover χeff well, with absolute systematic biases
between �0.2. Of the four, IMRPhenomD stands out by
recovering χeff to within �0.1 of the true value.

SEOBNRv2 follows very closely, with χeff biases rising
higher than 0.1 only for very massive binaries (with
M ≳ 100M⊙) with large spins (magnitude) on at least
one hole. Both of the two remaining models show a strong

FIG. 15. Systematic bias in the recovered values of the mass-weighted effective spin χmw, for the SEOBNRv1, SEOBNRv2,
IMRPhenomC, and IMRPhenomD models (from top to bottom).
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correlation between the χeff bias and the χeff of the binary
itself. While SEOBNRv1 underestimates χeff by up to 0.25
when both holes have large aligned spins, IMRPhenomC
overestimates χeff when both holes have large antialigned
spins. Next, we focus on χmw. As for χeff, IMRPhenomD
was found to recover χmw with the smallest biases, which
only exceed �0.1 for unequal-mass binaries with aligned
(antialigned) spin on the larger (smaller) hole. As this is the
spin mapping used by IMRPhenomC to capture component
spin effects on phasing, we notice from Fig. 14 that it also
recovers χmw very well—except when both components
have large antialigned spins, in which case it overestimates

χmw by up to 0.3 dimensionless units. Of the two EOB
models, SEOBNRv2 recovers χmw better with systematic
biases increasing with mass ratio q, but not exceeding
�0.2. SEOBNRv1, on the other hand, shows the inverse
pattern of IMRPhenomC, giving large systematic biases in
χmw for binaries with χ1;2 ≥ 0.6, which is expected by
construction from the model as it does not support these
component spins.
Overall, we find both IMRPhenomD and SEOBNRv2

models viable for aLIGO parameter estimation studies
aimed at high-mass binary black holes with nonprecessing
spins.
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