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An ungravity-inspired model is employed to examine the astrophysical parameters of white dwarf stars
(WDs) using polytropic and degenerate gas approaches. Based on the observed properties such as mass,
radius, and luminosity of selected WDs, namely, Sirius B and ϵ Reticulum, bounds on the characteristic
length and scaling dimension of the ungravity (UG) model are estimated. The UG effect on the
Chandrasekhar limit for WDs is shown. The UG model is examined in the study of ultramassive WDs, e.g.,
EUVE J1746-706. The UG-inspired model implies that a new location for some WDs on the Hertzsprung-
Russell diagram is found.
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I. INTRODUCTION

Gravity is a structural element of stellar dynamics. A
change in the underlying gravity theory do have important
implications for the astrophysical description (see, e.g.,
Refs. [1] and references therein). One interesting example
is ungravity (UG) [2]. In its pristine form,UGarises from the
assumption of coupling between spin-2 unparticles and
the stress-energy tensor [3]. In this work, we shall consider
the impact of an UG-inspired model on the astrophysics of
white dwarfs (WDs). This work follows previous consid-
erations on the effect of an UG-inspired model on the
properties of the sun [4]. An UG-inspired model has also
been recently considered to address the flyby anomaly [5].
As will be shown, an UG model allows for the prediction

of ultramassive WDs (UWDs), i.e., WDs with masses
above the Chandrasekhar limit (MCh ≃ 1.45MS with
MS ≃ 2 × 1033 g) such as WD 1143þ 321 with M ¼
1.52MS [6].

1 On the other hand, these astrophysical objects
allow for setting bounds on the parameters of the UG
model.
In this work, the stellar equilibrium equation for WDs is

obtained by considering the polytropic and degenerate gas
approaches. Bounds on the UG parameters for two typical
WDs, namely, Sirius B (SIB) and ϵ Reticulum (or HD
27442 B, abbreviated here by HDB) are found. The effect
of UG on the Chandrasekhar mass limit of WDs is
examined and UWDs such as EUVE J1746-706 is con-
sidered. Our results generalize the study the of Ref. [10].

Furthermore, we show how UG affects the location of a few
WDs in the Hertzsprung-Russell (H-R) diagram. This paper
is organized as follows: in Sec. II, the UG model is
concisely explained; in Sec. III, the equations of the
polytropic and degenerate gas models are presented; in
Sec. IV, the UG-modified equilibrium equations for WDs in
the framework of both gas models are set up. Finally, our
results are presented and discussed in Sec. V.

II. THE UG MODEL

The essential idea behind the UG model [2] is that a
modification of the Newtonian gravitational potential is
introduced through the coupling of spin-2 unparticles OU

μν

[3] to the stress-energy tensor of Standard Model states,
Tμν. The resulting stress-energy tensor has following
form [2]:

T μν ¼ Tμν þ
�

κ�
ΛdU−1
U

�
gμνTσρOU

σρ; ð1Þ

where dU and ΛU are the scaling dimension and the energy
scale of OU, respectively. In Eq. (1), κ� ¼ Λ−1

U ðΛU
MU

ÞdUV

whereMU is the large mass scale and dUV is the dimension
of the hidden sector operators of the ultraviolet theory
which posses an infrared fixed point [2]. In order to
compute the effects of the unparticles to the lowest order
correction to the Newtonian gravitational potential, the
metric gμν is replaced by the Minkowski metric ημν in
Eq. (1). The resulting Newtonian gravitational potential in
the UG model framework then reads [2]

ϕ�ðrÞ ¼ −
G�M
r

�
1þ

�
R�
r

�
α−1

�
ð2Þ

where G� is the gravitational constant of UG, R� is the
length scale which characterizes the UG interactions, and α
is associated with dU through α ¼ 2dU − 1. It is obvious,
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1Notice that UWDs in binary systems can have their masses

above MCh by a small amount due to an accreted mass [7]. It has
also been pointed out that highly magnetized WDs can have
masses as large as M ¼ 2.58MS, for extremely high magnetic
fields BMax ≥ 1013 G [8], but these are much higher than the
observed magnetic fields in WDs which are typically in the range
between 103 G and 109 G [9].
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from Eq. (2), that we can recover the ordinary Newtonian
gravitational potential by choosing

G� ¼
G

1þ ðR�
R0
Þα−1 ; ð3Þ

where R0 is the distance in which the UG potential, ϕ�,
matches the Newtonian one. As a good approximation, by
considering the value of α near unity, we can write
G� ≃G=2. Without loss of generality we set this approxi-
mation which allows for obtaining the bounds on the
relevant parameters of the UG model as well as the effect
of UG on the properties of WDs. Of course, the considered
model is inspired on the original UG model, whose effects
are expected to take place only at extremely short distances.
Recent experiments set very stringent bounds on putative
new interactions with ranges at submillimeter scale [11]
(see also Ref. [12] for a comparison of the results of
searches of new short range interactions and the bounds for
ungravity arising from nucleosynthesis considerations);
however, these do not conflict with our study as we will
consider deviations of the Newtonian force at ranges in the
interval 10−8RS ≲ R� ≲ 102RS, where RS is the radius of
the sun.

III. THE GAS MODELS

A WD is considered as a mixture gas of ions and
electrons which deviates from an ideal gas. The equilibrium
of this compact object is ensured by the pressure, P, of
degenerate electrons rather than by high internal temper-
atures as in ordinary stars. The internal temperature
of WDs is rather low by stellar standards (as high as
107 K) [13]. Their low luminosity (L), generally several
orders of magnitude smaller than the one of the sun
(LS ¼ 3.846 × 1033 erg=s), corresponds to typical surface
temperatures of order of a few times 104 K [6]. Thus, WDs
are too cold to ignite nuclear reactions. Their composition
at birth is mostly 4He, 12C, and 16O (with μe ¼ A

Z ¼ 2).
Some heavier elements can be produced during a pycno-
nuclear reaction process under which WDs evolve, on a
very long timescale, through zero temperature nuclear
reactions in which lattice vibrations yield a small, but
finite probability of Coulomb barrier tunneling [6,14]. In
this work, we assume that a WD is at zero-temperature and
behaves as a neutral gas of noninteracting electrons and
bounded nucleons in nuclei of which the composition
parameter is μe ¼ 2. The electrons, whether they are
relativistic or not, contribute virtually to the entire pressure
of the WD, while the bounded nucleons contribute virtually
to all the WD energy density, given by μemHc2ne, where
mH is the atomic mass of the hydrogen ion, and ne as the
density of electrons. We assume either the polytropic or the
degenerate gas models to establish the Newtonian hydro-
static equilibrium (NHE) equation, for the WDs. In Sec. IV,

the validity of the NHE equation for WDs will be inves-
tigated. For a static Newtonian star, the NHE equation is
given by [13]:

dPðrÞ
dr

¼ −
GMðrÞρðrÞ

r2
; ð4Þ

where a further derivative with respect to r leads to the
usual form of NHE equation:

1

r2
d
dr

�
r2

ρ

dPðrÞ
dr

�
¼ −4πGρðrÞ: ð5Þ

Next, we consider the two gas models.

A. Polytropic gas model

According to the polytropic gas model, the pressure
depends on the density, ρ, as follows [13]:

P ¼ Kρðnþ1Þ=n; ð6Þ

where n is the polytropic index and K is a constant factor.
With this equation of state (EOS), we can obtain the well-
known form of the Lane-Emden (LE) equation. In order to
do this, we introduce two dimensionless variables, θ,
and, ξ, to express the density and radial distance with
respect to the center of star values, respectively:

ρ ¼ ρcθ
n; ð7Þ

r ¼ βpξ; ð8Þ

where ρc is the density at the center of a star and

βp ¼ ½ðnþ1ÞK
4πG ρð1−nÞ=nc �1=2. The pressure of a polytropic gas

reads

P ¼ Pcθ
nþ1; ð9Þ

where Pc ¼ Kρðnþ1Þ=n
c . Substituting Eqs. (7)–(9) into

Eq. (5) yields the well-known LE equations:

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −θn: ð10Þ

The above differential equation should be solved submitted
to the following boundary conditions: θðξ ¼ 0Þ ¼ 1 and
θ0ðξ ¼ 0Þ ¼ 0. The density and pressure of the star can be
obtained through solution of the LE equation for each value
of ξ. The first zero of the LE equation solutions (the value
of θðξÞ ¼ 0 for the first zero, indicated as ξ10) allows for
determining the relevant quantities of a star, such as its
radius and mass. The radius of a star is obtained as

R ¼ βpξ10: ð11Þ
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Using relation dMðrÞ ¼ 4πρðrÞr2dr, together with Eqs. (7)
and (8), as well as the LE equation, leads to

Mðξ10Þ ¼ 4πρcβ
3
p

�
−ξ2

dθ
dξ

�����
ξ¼ξ10

: ð12Þ

Finally, eliminating ρc in Eq (12), we obtains a relation
between the mass and the radius of the star [13]

4πMn−1R3−n ¼
�ðnþ 1ÞK

G

�
n
��

−
dθn
dξ

�
ξ10

�
n−1

ðξ10Þnþ1:

ð13Þ

B. Degenerate gas model

We assume now that WDs are completely described as a
electron-degenerate gas with densities in the range of
105–108 g=cm3 [13]. On the other hand, WDs satisfy the
degeneracy condition in which the temperature should be
much smaller than the Fermi energy EF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
Fc

2 þ E2
0e

p
where pF is the Fermi momentum and E0e ≃ 8 × 10−6 erg
ðT ≃ 6 × 109 KÞ, the rest energy of electrons. With this
assumption, the electron density distribution function
can be given approximately by the Heaviside function
and the ensued electron density as follows:

ne ¼
1

π2ℏ3

Z
pF

0

p2dp ¼ E3
0e

3π2ðℏcÞ3 x
3; ð14Þ

where ℏ is the Planck constant and x ¼ pF=mec. The
pressure of the electron gas is given by [13]

P ¼ 1

3π2ℏ3

Z
pF

0

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

c2

q p2dp ¼ AfðxÞ; ð15Þ

where A ¼ E4
0e=24π

2ðℏcÞ3 ≃ 6.002 × 1022 erg=cm3 and

fðxÞ ¼ xð2x2 − 3Þðx2 þ 1Þ1=2 þ 3 sinh−1ðxÞ: ð16Þ

As the gas is neutral, through Eq. (14) we can write the
density of the WD in the degenerate gas model as [13]

ρ ¼ Bx3; ð17Þ

where B¼E3
0eμemH=3π2ðℏcÞ3≃9.74×105μe g=cm3. This

equation, together with Eq. (15) are known as the EOS of
WDs in the framework of completely electron-degenerate
gas model. In order to obtain the NHE equation in the
degenerate gasmodel, we substitute Eqs. (15), (16), and (17)
into Eq. (5) to obtain

1

r2
d
dr

�
r2
dX
dr

�
¼ −

πGB2

2A
x3 ð18Þ

where X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
. By defining the new variable Φ as

X ¼ XcΦ; ð19Þ

whereXc is the value ofX at the center of star, and ξ ¼ r=βd
with βd ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2A

πGB2X2
c

q
. The NHE equation then reads

1

ξ2
d
dξ

�
ξ2

dΦ
dξ

�
¼ −ðΦ2 − X2

cÞ32: ð20Þ

This LE equation for a degenerate gas, can be solved
once ρc is known and boundary conditions specified:
Φðξ ¼ 0Þ ¼ 1 and Φ0ðξ ¼ 0Þ ¼ 0. In contrast to Eq. (10),
ξ10 is the first zero of Eq. (20) so thatXðξ10Þ ¼ 1. The radius
of a WD is obtained as

R ¼ βdξ10 ¼ 7.77 × 108
1

μeXc
ξ10: ð21Þ

Similarly, the mass of WD can be obtained by

Mðξ10Þ ¼ 4πBX3
cβ

3
d

�
−ξ2

dΦ
dξ

�����
ξ10

: ð22Þ

IV. THE LE EQUATION FOR THE UG MODEL

In order to study the effect of UG on WDs, we must
suitably adjust the LE equation. In this work, we use a
method similar to the one of Refs. [1,4] to obtain the
modified LE equation for both polytropic and degenerate
gas models. We first argue that the NHE equation is a valid
approximation of the most general Tolman-Oppenheimer-
Volkoff (TOV) equation for a WD [15],

4πr2dPðrÞ¼−
GMðrÞdMðrÞ

r2

�
1þ PðrÞ

ρðrÞc2
��

1þ4πr3PðrÞ
MðrÞc2

�

×
�
1−

2GMðrÞ
c2r

�
−1
; ð23Þ

where dMðrÞ ¼ 4πr2ρðrÞdr. For WDs, PðrÞ ≪ ρðrÞc2 in
the nonrelativistic (low density) and the ultrarelativistic
(high-density) limits. In order to show this, we focus on the
EOS of WDs in the degenerate gas model (subsection B) at
the two limits. In the nonrelativistic limit, pFc ≪ E0e or
equivalently x ≪ 1; hence, fðxÞ ∼ 8

5
x5. Thus, from

Eqs. (15) and (17), we can write

P
ρc2

∼
8A
5Bc2

x2 ≃ 5 × 10−5x2 ≪ 1: ð24Þ

Therefore, at the nonrelativistic regime or at the low-
density regions (x ≪ 1) we have P ≪ ρc2. At the ultra-
relativistic limit, pFc ≫ E0e or equivalently x ≫ 1, the
expansion of fðxÞ can be approximated by ∼2x4 and then
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P
ρc2

∼
2A
Bc2

x≃ 7 × 10−6
�
pFc
E0e

�
≪ 1: ð25Þ

Indeed, the density of WD is 109 g=cm3, considering
ρ ¼ μemHne, the Fermi momentum of electron,
kFe ¼ ð3π2neÞ1=3, is about 0.045 fm−1 and pFc=E0e ∼ 17;
hence, from Eq. (25), P ≪ ρc2. Thus, we can neglect the
second term in the first bracket in Eq. (23). Regarding the
second bracket in Eq. (23), rearranging MðrÞ ∼ 4πr3ρ̄=3,
where ρ̄ is the average density up to radius r, then
4πr3P ∼ 3ðP=ρ̄c2ÞMðrÞc2 ≪ MðrÞc2, and hence we can
ignore the second term of the second bracket of Eq. (23).
Finally, for the third bracket, as no region of the star lies
within its Schwarzschild radius, 2GMðrÞ

rc2 ≪ 1.
We now consider the UG hydrostatic equilibrium

(UGHE) equation. We incorporate the UG-modified
Newtonian gravitational potential, Eq. (2), in the NHE
equation, Eq. (4), as follows:

dPðrÞ
dr

¼ −
G�MðrÞρðrÞ

r2

�
1þ

�
R�
r

�
α−1

�
: ð26Þ

By employing dMðrÞ ¼ 4πρðrÞr2dr, after a straightfor-
ward calculation, the UGHE equation becomes

1

r2
d
dr

�
r2

ρ

dPðrÞ
dr

�
¼−4πG�ρðrÞ

�
1þα

�
R�
r

�
α−1

�

þG�MðrÞ
R3�

�
αðα−1Þ

�
R�
r

�
αþ2

�
: ð27Þ

It is clear that setting α ¼ 1 and G� ¼ G=2 in the UGHE
equation leads to the NHE equation, Eq. (4).
In order to obtain LE-modified equation, we include

the EOS of both gas models, i.e., Eqs. (7) and (8) for the
polytropic gas model and Eqs. (15) and (17) for the
degenerate gas model, in the UGHE equation. From
Eq. (12) we obtain, after some manipulation, the modified
LE equation for the polytropic gas model:

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −

G�
G

��
1þ α

�
ξ�
ξ

�
α−1

�
θn

þ
�
αðα − 1Þ

�
ξ�
ξ

�
α−1

�
1

ξ

dθ
dξ

��	
: ð28Þ

From Eq. (22), we get, after some manipulation, the
modified LE equation for the degenerate gas model:

1

ξ2
d
dξ

�
ξ2

dΦ
dξ

�
¼ −

G�
G

��
1þ α

�
ξ�
ξ

�
α−1

�
ðΦ2 − X2

cÞ32

þ
�
αðα − 1Þ

�
ξ�
ξ

�
α−1

�
1

ξ

dΦ
dξ

��	
: ð29Þ

In Eqs. (28) and (29), ξ� ¼ R�=βpðdÞ for the polytropic
(degenerate) gas. Choosing α ¼ 1 and G� ¼ G=2, we
recover the usual LE equations, Eqs. (10) and (20). The
mass and radius of WDs are calculated by Eqs. (11)
and (12) for the polytropic gas model or by Eqs. (21)
and (22) for the degenerate gas model at ξ�10, the first zeros
of the modified LE equations.

V. RESULTS AND DISCUSSION

We consider the UG model for two arbitrary WDs, i.e.,
SIB and HDB, in the framework of polytropic and
degenerate gas models. Table I indicates the values of
the mass (M0), radius (R0), and luminosity (L0) in terms of
the corresponding parameters of the sun (MS, RS, and LS),
along with data of their effective temperatures. The data of
M0, R0, and Teff arise from the gravitational redshift
method, as quoted by Refs. [16,17]. The luminosity, L,
is given by

L ¼ 4πR2σT4
eff ; ð30Þ

where σ is the Stefan-Boltzmann constant. Regarding the
values of the effective temperature and radius of SIB and
HDB, from the corresponding uncertainties, we obtain L0

and ΔL0.
Our method consists in using the uncertainties of the

relevant quantities to obtain bounds on the characteristic
length, R�, and scaling dimension, α, of the UG-inspired
model. In order to compute the astrophysical bounds on α
and R� and to get the new mass limit for WDs, we outline
the adopted strategy. At first, we solve the LE equations,
Eqs. (10) and (20), to obtain for the selected WDs mass,
radius, and luminosity, denoted by M10, R10, and L10,

TABLE I. Relevant values for the selected WDs, i.e., SIB and HDB [16,17].

WD ðM0 � ΔM0Þ=MS ðR0 � ΔR0Þ=RS Teff � ΔTeffðKÞ ðL0 � ΔL0Þ=LS

SIB 1.02� 0.02 0.0081� 0.0002 25193� 37 0.0237� 0.0013
HDB 0.616� 0.022 0.0129� 0.0003 15310� 350 0.0082� 0.0011

TABLE II. The computed values of the properties of the
selected WDs (SIB and HDB).

Model WD M10=MS R10=RS L10=LS

Degenerate SIB 1.0988 0.0080 0.0231
HDB 0.6012 0.0127 0.0079

Polytropic SIB 1.0201 0.0081 0.0237
HDB 0.6162 0.0129 0.0082
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respectively. Then, by varying α and R� within the LE-
modified equations, Eqs. (28) and (29), we calculate the
same observable parameters and accept those values that
are compatible with the uncertainties (Table I). Next, the
effect of UG on the Chandrasekhar limit mass is examined.
Finally, we depict the effect of UG on the position of a few
WDs in the H-R diagram.
We set the polytropic index of n ¼ 2.03ð1.73Þ and the

core density ρc ¼ 3.20 × 107ð3.22 × 106Þ g=cm3 for SIB
(HDB). Table II shows the calculated mass, radius, and
luminosity.

For the same input parameters, that is, ρc and n, we solve
Eqs. (28) and (29) for the different values of α and R�. We
select those solutions for which M, R, and L, calculated at
ξ�10, remain within the observational range as illustrated by
Table I, i.e., ½M0 − ΔM0;M0 þ ΔM0�, etc. In order to find
the allowed region for R� and α, we compute the upper and
lower bounds on R� denoted by Rþ� and R−� , respectively.
Figures 1 and 2 depict the allowed regions of R� and α
based on the degenerate and polytropic gas models, for
HDB (SIB) [panels (a(b))]. In order to obtain Rþ� ðR−� Þ, we
use the upper (lower) values of M so that the values of R
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FIG. 1. The allowed region for the UG parameters for (a) HDB and (b) SIB with the polytropic gas model. The characteristic length
has been normalized by R, the radius of the relevant WD.
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FIG. 2. The same as Fig. 1 for the degenerate gas model.
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and L remain within the observational range (cf. Table I). It
should be mentioned that, in each portion of the allowed
regions, we set a fixed value for the uncertainty in M, R,
and L. From Eqs. (11), (12), (21), (22), and (30), we obtain

ΔR ¼
��

ξ�10
ξ10

�
− 1

�
R10 ð31Þ

for the uncertainty in R,

ΔL ¼
��

ξ�10
ξ10

�
2

− 1

�
L10 ð32Þ

for the uncertainty in L, and

ΔM ¼
��

ξ�10
ξ10

�
2
�
η011
η010

�
− 1

�
M10 ð33Þ

for the uncertainty inM. In Eq. (33), η0 indicates θ0ðΦ0Þ, the
derivative of the LE solution for the polytropic (degenerate)
gas model. The ΔM and ΔR values shown in Figs. 1 and 2
are around α ¼ 1. Table III shows the astrophysical bounds
on α and R� with respect to data of SIB and HDB.
From values in Table III, we see that the allowed values

of the UG parameters decrease when the central density, or
equivalently the ratio M=R, increases. For example, in the
framework of the polytropic model, when the core density
increases an order of magnitude, α gets closer to unity by
about 4%. A stronger behavior is found for R�. For
instance, based on the limit values of α for the polytropic
model, R� gets reduced by 60% with a tenfold increase in
the density. As a result, by increasing theM=R, the allowed
region for the UG parameters becomes smaller.
We now estimate the effect of UG on the Chandrasekhar

mass limit, MCh. At the ultrarelativistic limit, x ≫ 1, from
Eq. (16), fðxÞ ∼ 2x4. Hence, using Eqs. (15) and (17), we
can write

P ¼
�

2A

B4=3

�
ρ4=3: ð34Þ

This EOS corresponds to a polytropic gas with n ¼ 3.
With the values of A, B, and μe, using Eq. (22), the
Chandrasekhar mass limit reads

MCh ¼ 0.721ð−ξ2θ0Þjξ10MS; ð35Þ

where θ0 indicates the derivative of the LE solution for the
ultrarelativistic polytropic gas model. Hence, from the
value of ξ10 ¼ 6.89679 and θ010 ¼ −0.04243, we obtain
the well known result,MCh ¼ 1.45MS. When we switch on
UG, the value of the first zero of the modified LE equation
and of the corresponding derivative are changed and thus
we can obtain new mass limits for WDs as a function of α
and R�. Figure 3 illustrates how the mass limit of WDs
varies with R� for different α’s. As depicted in Fig. 3, it is
possible to have WDs with masses greater than MCh for
different values of α and R�. As mentioned in Sec. I, the
mass of WD 1143þ 321 is higher thanMCh (M ¼ 1.52MS
[6]). Thus, the existence of this WD can be accommodated
within the UG model. As shown in Fig. 3, the curves get
closer to ordinary gravity case when α → 1�. Actually, it
can be seen that the curves rotate clockwise (counter
clockwise) around a point with M ¼ MCh and R� ∼
10−5RS ≃ 7 km for α → 1þð−Þ (but for α ¼ 1.05). It means
for α → 1� we can recover the usual Chandrasekhar limit
mass independently of the characteristic length of UG for
R� ≃ 7 km. This is achieved without any extra assumption
beyond the choice n ¼ 3, ρc ≃ 1010 g=cm3 and the ordi-
nary boundary conditions to solve the LE equation,
Eq. (28). Notice that Fig. 3 shows for α ¼ 1, that UG-
inspired model also predicts that the mass limit for WDs is
smaller than the usual value. Figure 3 and the correspond-
ing data might be, thus, observationally useful.
Although UWDs (M > 1.1MS) are rather rare with

respect to the ordinary WDs (M ∼ 0.6MS), they can be
observed through gravitational redshift measurements,
radius estimates or surface gravity measurements [18],

TABLE III. The astrophysical bounds on α and R� with respect
to the sample WD data.

Model WD α R�ðmÞ M=MS R=RS L=LS

Degenerate SIB 0.948 713.707 1.040 0.0079 0.0226
1.093 460.951 1.000 0.0083 0.0248

HDB 0.880 2261.582 0.638 0.0126 0.0078
1.092 581.410 0.594 0.0132 0.0858

Polytropic SIB 0.942 445.632 1.038 0.0079 0.0226
1.065 550.077 1.000 0.0083 0.0248

HDB 0.904 1141.932 0.638 0.0126 0.0078
1.102 1345.948 0.594 0.0132 0.0858
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FIG. 3. The characteristic length of UG vs the mass limit of
WDs for different R� and α values.
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obtained, for instance, by surveys of the Extreme
Ultraviolet Explorer (EUVE) [19]. We apply the UG model
on an UWD, namely, EUVE J1746-706. According to the
observational data,M ¼ 1.43MS, and ΔM ¼ 0.06MS [19],
and for the UG polytropic gas model (n ¼ 3), the α − R�
plot dependence is shown in Fig. 4. As depicted in Fig. 4,
the tail of the curves is longer than the ordinary WDs.
Although it seems that the curves in both region α < 1 and
α > 1 do not meet each other unless for α very far from
unity, we expect this behavior for curves of UWDs since we
use NHE, Eq. (4), to get the modified LE equation,
Eq. (28). We envisage that including general relativity
corrections on UGHEmight lead to a reliable bounds on the
UG parameters for UWDs. It is worth mentioning that the
obtained bounds for R� and α are compatible with the ones

obtained from the UG LE equation solutions applied for the
sun using the 6% uncertainty on its core temperature [4].
At the final step, we show how the UG changes the

location of WDs in the H-R diagram. In order to do this, we
obtain the bound values of R� and α for a few WDs with
respect to their mass and radius and the corresponding
uncertainties [16,17,20] and compute their luminosity.
Table IV shows the bounds on R� and α by considering
the observational data. It should be pointed out that the
calculations are performed in the framework of the poly-
tropic model with n ¼ 2. The luminosity of the selected
WDs can be computed by knowing their radius and surface
temperature. Figure 5 illustrates the position of WDs in the
H-R diagram for α ¼ 1 (solid curve), α > 1 (dashed curve),
and α < 1 (dash-dotted curve). It is clear that all curves for
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FIG. 4. The allowed region for UG for the EUVE J1746-706
WD, using the polytropic gas model.
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FIG. 5. The H-R diagram for a few WDs [16,17,20]. The solid,
dashed, and dash-dotted curves corresponded to α ¼ 1, α > 1,
and α < 1, respectively.

TABLE IV. The astrophysical bounds on α and R� with respect to the selected WD data [16,17,20].

WD Alt ID M0 � ΔM R0 � ΔR Teff � ΔTeffðKÞ α R�ðmÞ
0642-166 Sirius B 1.02� 0.02 0.0081� 0.0002 25193� 37 0.975 278.5

1.113 592
0416-594 ε Ret B 0.62� 0.022 0.0129� 0.0003 15310� 350 0.917 1178.8

1.089 1366.8
1105-048 LP 672 − 1 0.45� 0.094 0.0133� 0.0026 15141� 88 0.530 548.7

1.380 347.4
1143þ 321 G148-7 0.71� 0.072 0.0149� 0.0010 14938� 96 0.768 1124.5

1.255 1845.2
1327-083 W485 0.53� 0.079 0.0141� 0.00085 13920� 167 0.846 17338

1.305 2489.3
2341þ 322 LP 347 − 6 0.56� 0.022 0.0124� 0.0007 12300� 148 0.790 1039.6

1.230 1573.6
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different values of α and R� are between the dashed and
dash-dotted curves. Once again, we can see the role played
by UG on the luminosity of the WDs.
In conclusion, we have considered the UG hydrostatic

equilibrium equation in the framework of polytropic and
degenerate gas models for selected WDs, from which we
obtain bounds on the characteristic length, R�, and scaling

dimension, α, of the UG model. For ultramassive WDs, in
order to get reliable bounds on the UG parameters, one may
include general relativity corrections in the UG hydrostatic
equilibrium equation. The effect of the UG shows that WDs
heavier than the Chandrasekhar mass limit might exist. The
location of WDs in the H-R diagram is also shown to be
affected by UG.
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