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We consider a toy model for the relativistic collapse of a homogeneous perfect fluid that takes into
account an equation of state for high density matter, in the form of a Hagedorn phase, and semiclassical
corrections in the strong field. We show that collapse reaches a critical minimum size and then bounces. We
discuss the conditions needed for the collapse to halt and form a compact object. We argue that implications
of models such as the one presented here are of great importance for astrophysics as they show that black
holes may not be the only final outcome of collapse of very massive stars.
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I. INTRODUCTION

Relativistic gravitational collapse is at the foundation of
black hole physics. It is widely believed that the collapse of a
sufficiently massive star will inevitably lead to the formation
of a black hole. This idea is rooted in the simplest collapse
model, developed by Oppenheimer and Snyder and inde-
pendently by Datt (OSD) in 1939 [1]. The OSD model
describes a spherical, nonrotating, homogeneous matter
cloud (made of pressureless, “dust” particles) that collapses
under its own weight. In the OSD model, after the boundary
of the cloud passes the Schwarzschild radius, the black hole
forms. All the matter eventually falls into the central
singularity that remains hidden from far-away observers.
Many analytical studies of relativistic spherical collapse have
been developed, starting from the pioneering work of
Oppenheimer and Snyder and Datt. These classical models
are solutions of Einstein’s equations for physical matter
sources such as dust, perfect fluids, and fluids with only
tangential pressures, with and without inhomogeneities (see,
for example, Ref. [2]). In more recent times some attention
has been devoted to the study of collapse models that take
into account corrections to general relativity at high densities.
These semiclassical models are solutions of Einstein’s
equations for effective matter sources that are composed
of a physical part together with an unphysical part that
describes modifications to general relativity in the strong
field (see, for example, Ref. [3]).
Classical models, satisfying standard energy conditions,

generically develop singularities [4]. However, it is usually
believed that singularities should not form in the real
Universe and that their appearance in solutions of
Einstein’s equations merely signals a breakdown of the
theory in the strong field regime. Therefore, in order to
avoid the formation of singularities, at some stage during
collapse either the matter model must violate energy
conditions or general relativity must not hold. Wheeler
first recognized the importance of classical singularities as

possible windows in a regime where quantum gravity
dominates. Singularities can be avoided in semiclassical
models where repulsive forces, arising at high densities,
balance the gravitational attraction, and bouncing scenarios
are favored. For example, in the last few years there have
been several studies of collapse in semiclassical models
inspired by bounces in loop quantum cosmology (LQC)
(see [5]). These bouncing models exhibit a minimum scale
(related to the maximum allowed density, which is in turn
related to the energy scale of quantum gravity) that suggests
the possibility of the existence of small compact remnants.
Exotic compact remnants as leftovers from gravitational
collapse have been discussed for decades, and while their
theoretical properties have been widely studied, their
existence is still purely hypothetical. There exist many
proposed objects, from gravastars [6] to quark stars [7] to
boson stars [8] and Planck stars [9].
Here we present a simple toy model for collapse of a

homogeneous perfect fluid that considers the equation of
state for high density as well as semiclassical corrections
that occur in the strong field. With respect to previously
studied models the scenario presented here depends on two
parameters, which are in turn related to two different energy
scales. One is the characteristic scale of the Hagedorn
phase, and the other is the energy scale of semiclassical
corrections. Note that, depending on the chosen approach
to modify general relativity, the latter may or may not be
related to the Planck scale. In the present work we use a
standard semiclassical approach that comes from loop
quantum gravity (LQG). The model is particularly appeal-
ing because all physical quantities are well defined,
physically meaningful and well behaved. The main result
is that collapse reaches a critical size characterized by a
maximum critical density and then bounces. Therefore, the
collapsing phase that leads to the formation of a black hole
is followed by an expanding phase that can be described as
a white hole solution. The main difference with the standard
OSD collapse model comes from the behavior of trapped
surfaces. Trapped surfaces initially develop similarly to the
classical case but “evaporate" before collapse reaches the*daniele.malafarina@nu.edu.kz
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critical stage. One main consequence of the existence of a
critical scale is that there is a minimum radius below which
the horizon does not form at all. Such a radius is related to
the critical density, and for quantum-gravitational effects, it
is of the order of the Planck length. Therefore, this model
suggests the possibility of the existence of exotic compact
remnants as leftovers from collapse. The implications of
such models for astrophysics are immediately clear: A
sufficiently massive star that collapses under its own
gravity may not necessarily end up in a black hole. In
fact, we show here that its core may produce an extremely
dense, not very massive, exotic compact object, while the
outer layers and most of its mass are ejected in an explosion
that is powered at the level of the quantum-gravity scale.
The paper is organized as follows: In Sec. II classical

models for collapse of homogeneous perfect fluids are
briefly reviewed. In Sec. III the Hagedorn equation of state
(EOS) is introduced, and classical perfect fluid collapse
with such EOS is investigated. In Sec. IV semiclassical
collapse of the Hagedorn fluid is described. Finally, Sec. V
is devoted to discussing possible astrophysical implications
of the model. In the following, we use geometrical units for
which G ¼ c ¼ 1.

II. PERFECT FLUID COLLAPSE

The OSD model can readily be extended to the case of
collapse of a homogeneous perfect fluid sphere, with a
linear equation of state relating the energy density ρðtÞ to
the pressure pðtÞ, in the form p ¼ kρ. We use comoving
coordinates fr; tg that can be thought of as coordinates
attached to the infalling particles of the cloud, for which the
energy momentum tensor takes a diagonal form as
Tμν ¼ diagfρ; p; p; pg. Standard energy conditions must
be satisfied by energy density and pressure. Typically, we
require the weak energy conditions (WEC), which can be
written as ρ > 0 and ρþ p ≥ 0 and imply k ≥ −1. The
speed of sound in the cloud cs is defined as
c2s ¼ dp=dρ ¼ k, so for cs not to exceed the speed of
light, we must require k ≤ 1. Finally, in order to have
positive pressures, one should impose k > 0. Note, how-
ever, that in certain cases negative values of k may be
considered. For example, this is the case of the dark energy
EOS which requires k ¼ −1 and for which the density
reduces to the cosmological constant. The amount of matter
enclosed within the radius r at the time t is described via the
Misner-Sharp mass of the system Fðr; tÞ, which for a
homogeneous perfect fluid, in order to satisfy regularity
requirements at the center, can be written as Fðr; tÞ ¼
r3MðtÞ [10]. In the case of dust (p ¼ 0) we have
MðtÞ ¼ M0, and the amount of matter within the comoving
radius r remains unchanged during collapse. In the case of a
perfect fluid we must set an initial condition for M as
Mð0Þ ¼ M0. Then, from the behavior of MðtÞ we see that
during collapse there can be an inflow or an outflow of
matter across the shell r. Collapse is described by the

adimensional scale factor aðtÞ, which is related to the
physical area radius R by Rðr; tÞ ¼ raðtÞ. Therefore, once
an initial scaling condition at t ¼ 0 is chosen [in our case
we set að0Þ ¼ 1] collapse proceeds as long as _a < 0. Then
the metric is written as

ds2 ¼ −dt2 þ a2

1 − br2
dr2 þ r2a2dΩ2; ð1Þ

where dΩ2 is the line element on the unit two-sphere and b
is an integration constant that can be thought of as a
condition imposed on the initial velocity of the particles.
For the sake of clarity, in the following we restrict our
attention to the case of marginally bound collapse given
by b ¼ 0.
Homogeneous models can be thought of as representing

the inner core of the collapsing object, with inhomogene-
ities becoming more important as one moves away from the
center. Therefore, an increasing mass function M implies
that the outer shells are falling onto the inner shells.
Matching conditions should be imposed at the boundary
of the cloud rb, where the star’s surface matches with a
known exterior metric. In the following, we assume that the
homogeneous approximation is valid only in the vicinity of
the core and that radial inhomogeneities will change the
density and pressure profiles at greater radii. Therefore, in
the following analysis we will not concern ourselves with
the matching conditions at the boundary of the star. Note,
however, that matching across a (possibly varying) boun-
dary surface rbðtÞ with a generalized Vaidya exterior is
always possible (see [11]).
Also, in the present model we limit ourselves to isotropic

pressures. The question of whether anisotropies become
important towards the formation of the singularity was first
addressed by Belinskii, Khalatnikov, and Lifshitz (BKL)
[12]. During collapse, at least initially, spatial derivatives
are less dominant with respect to time derivatives and
anisotropies can be neglected. The BKL conjecture states
that as one approaches the singularity, a regime is reached
where anisotropies dominate. However, the BKL scenario
is a conjecture related to classical singularities in GR, and it
is not clear how it would translate in a quantum framework
(see, for example, Ref. [13]). Diverging curvature is a
fundamental part of the conjecture, and being close to the
singularity is the key ingredient so that spatial gradients can
dominate. Therefore, in bouncing scenarios, where the
singularity is never reached, the role of anisotropies may
become less important. In the following, we assume that as
collapse proceeds we can always find a radius small enough
so that anisotropies can be neglected.
The density and pressure of the cloud are given through

Einstein’s equations by

ρ ¼ 3M
a3

; p ¼ − _M
a2 _a

; ð2Þ
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where dotted quantities denote derivatives with respect to t,
and the remaining equations reduce the system to two
differential equations for MðtÞ and aðtÞ. Given the mon-
otonic behavior of a, it is always possible to use a as a
variable in place of t and invert the equations to obtain
MðaÞ and tðaÞ. The differential equation forM comes from
the equation of state, by using Eq. (2), and takes the form

dM
da

¼ − 3kM
a

: ð3Þ

Note thatM decreasing in a corresponds toM increasing in
t. Then when k > 0 the pressure is positive and diverges as
collapse approaches the singularity. The differential equa-
tion for a, which is the true equation of motion for the
system, comes from the Misner-Sharp mass equation that in
the marginally bound case reduces toMðtÞ ¼ aðtÞ _aðtÞ2 and
can be written as

dt
da

¼ −
ffiffiffiffiffi
a
M

r
; ð4Þ

with theminus sign chosen in order to describe collapse. The
classical collapse scenario has several features that, from a
physical point of view, are not desirable. Most notably, the
scale factor a ¼ ð1 − 3ðkþ 1Þ ffiffiffiffiffiffiffi

M0

p
t=2Þ2=3ðkþ1Þ reaches

zero size in a finite time ts ¼ 2=3ðkþ 1Þ ffiffiffiffiffiffiffi
M0

p
, thus indicat-

ing the occurrence of a space-time singularity where energy
density and pressure diverge.

III. HAGEDORN PHASE

A first step to improve on the classical fluid model is to
introduce an EOS that saturates the number of states as the
density increases. In string theory and high energy physics
the term Hagedorn temperature TH is used to indicate the
temperature corresponding to a stage where ordinary matter
is forced to convert into quark matter. At this point, as
energy is added to the system, collisions between hadrons
no longer increase the temperature but they create more and
more particles. Then new quark-antiquark pairs can be
spontaneously generated from vacuum, thus providing
arbitrary new degrees of freedom for the system. In a
sense, one can think of a system reaching the Hagedorn
phase as allowed to store any arbitrary amount of energy
without further increasing its temperature. In this sense, the
Hagedorn temperature associated with this state is the
maximum temperature that can be reached, in principle, by
matter (see, for example, Ref. [14]). Measurements of
neutron star masses suggest that Hagedorn-type equations
of state are ruled out for neutron stars, but they may still be
valid for more dense exotic compact objects (see, for
example, Ref. [15]). Also, the Hagedorn EOS has been
investigated in cosmological models (see, for example,
Ref. [16]) in connection with a cyclic universe and the
possible existence of primordial black holes. Within

classical collapse models there exist some approaches to
relativistic collapse of Hagedorn fluids in the Vaidya space-
time (see, for example, Ref. [17]). However, classical
collapse of a fluid sphere with an equation of state of this
kind has not been investigated before. Close to the
Hagedorn phase the pressure increases less and less,
regardless of how much energy is added to the system.
Then the fluid’s heat capacity diverges at the temperature
TH, indicating that TH is a limiting temperature and it can
be reached by the system only by providing an infinite
amount of energy.
Such a situation may be effectively represented classi-

cally by the choice of an equation of state of the form

p ¼ kρ
1þ kρ=p0

: ð5Þ

The parameter p0 describes the maximum pressure that can
be achieved by the system and p → p0 as the density
increases to infinity. Typically, for an astrophysical object
one can think that the above equation of state will become
important above nuclear densities, namely, for ρ greater
than 1014 gr=cm3. This equation of state has been used in
[18] to describe a free bosonic string in Minkowski space
in the context of quantum gravity, but it has not been used
in collapse scenarios. Note that we recover the linear
equation of state in the low density limit (if we take p0

going to infinity). Also it is worth noting that the equation
of state is “soft” as the speed of sound cs within the cloud
goes to zero as the density increases. This is in contrast with
other theoretical approaches to high density matter, such as
the Zeldovich EOS, for which the fluid becomes stiff with
p → ρ and the speed of sound tends to the speed of light as
ρ increases. Weak energy conditions are always satisfied if
we consider k and p0 positive. In the case where p0 < 0 the
EOS is still physically reasonable if k is negative. In this
case WEC are also satisfied for k ≥ −1. On the other hand,
if k is negative (positive) and p0 positive (negative) the
EOS does not have a clear physical interpretation since p
diverges as ρ → −p0=k. However, one may still be tempted
to consider the EOS at large densities where p tends to p0

from above (below) as the density goes to infinity. In this
case the WEC are satisfied when p0 ≥ −kρ=ðkþ 1Þ and
p0 ≥ −kρ [respectively, when p0 ≤ −kρ=ðkþ 1Þ and
p0 ≤ −kρ; see Fig. 1].
By solving Einstein’s equations for a fluid with the above

EOS, we obtain a set of two differential equations. The
equation for the scale factor a is again given by Eq. (4),
while the equation for the mass function M becomes

dM
da

¼ − 3kMa2

a3 þ 3kM=p0

: ð6Þ

The above equation can be integrated to obtain MðaÞ
implicitly via
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�
M0

M

�
1=k

¼ 3kM þ p0ðkþ 1Þa3
3kM0 þ p0ðkþ 1Þ : ð7Þ

It is easy to see that the collapse scenario resulting from the
choice of the equation of state (5) is very similar to the
classical case with the linear equation of state. In the case
where k and p are positive it forms a singularity that is
covered by a horizon at all times. This is reasonable in light
of the fact that no repulsive interactions are introduced as
the density increases indefinitely. The main difference with
the linear EOS model then is in the time of formation of the
singularity that is now delayed (since pressures in this case
are lower). As said, the EOS given in Eq. (5) is also suitable
to describe negative pressures when k < 0. In this case it is
worth asking if it is possible to construct a model that
collapses to a finite compact remnant. The condition for the
cloud to settle to an equilibrium configuration is given by
_a ¼ ä ¼ 0. In this case from

ä ¼ − a
2

�
ρ

3
þ p

�
; ð8Þ

we see that, as ρ grows, p must tend to −ρ=3, which gives
the equilibrium condition as ð3kþ 1Þp0 þ kρ0 ¼ 0. Then
for k ≤ −1=3 it is possible to construct models for which ä
goes to zero. However, in order to also have _a → 0we must
require M → 0, and from Eq. (7) we see that this implies
a → 0. Therefore, no finite-size compact remnant can be
constructed in the classical Hagedorn collapse model.

IV. SEMICLASSICAL EFFECTS

As it is well known, collapse does not halt in classical
scenarios where energy conditions are always satisfied
and the attractive nature of gravity leads inevitably to the
formation of a space-time singularity. Nevertheless, one
can expect that quantum corrections, which should appear
in the strong field, will cause repulsive effects that may
prevent the cloud from collapsing to a singularity. Several
approaches in this direction have shown that taking these
effects into account leads to a bouncing scenario where
the cloud reaches a minimum size and then reexpands
indefinitely [3]. The main idea is to treat the modifica-
tions to general relativity that must occur in the strong
field limit as an effective matter source to be added to the
energy-momentum tensor [19]. In this way one solves the
usual Einstein’s equations for an unphysical matter
distribution (the effective energy-momentum tensor) that
takes into account the modifications in the strong field.
The effective density ρeff and effective pressure peff can
thus violate energy conditions as they are not the physical
density and pressure. One promising approach in this
direction comes from loop quantum gravity and involves
quadratic corrections to the energy density as ρ
approaches a critical value ρ0 [20]. In the semiclassical
formalism this implies taking an effective density ρeff
given by

ρeff ¼ ρ

�
1 − ρ

ρ0

�
; ð9Þ

where the parameter ρ0 describes the maximum density
that can be achieved by the system and signals the
regime where quantum effects cannot be neglected.
Typically, for a star one can think that quantum effects
will become important around the Planck scale (namely,
for ρ > 1094 gr=cm3). Therefore, by taking ρ0 of the
order of the Planck density we are constructing a
semiclassical description of quantum-gravitational
effects coming from a first-order approximation of
collapse in LQG. Note that the energy scale of quantum
corrections is several orders of magnitude higher than
that of the Hagedorn phase. However, the constant ρ0 is
model dependent, as it comes from the specific
approach chosen to deal with repulsive effects, and it
need not necessarily be of the order of the Planck
density. Then the above formalism may still be used
with different values for the density parameter ρ0
coming from different theoretical approaches. For exam-
ple, in [21] it was suggested that the four-fermion
interaction may halt collapse before the quantum-gravity
regime and thus allow for the existence of compact
objects. This approach has been used in [22] to describe
semiclassical dust collapse. The choice of the effective
density in turn leads to an effective pressure and an
effective mass function as given by

FIG. 1. Plot of p0=ρ as a function of k ∈ ½−1; 1�. The weak
energy condition ρþ p ≥ 0 is satisfied in regions (I) and (IV) and
violated in regions (II) and (III). The solid line is given by −k,
while the dashed line is given by −k=ðkþ 1Þ and for ρ ¼ ρ0
represents the region where collapse halts and acr ¼ 0.
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Meff ¼ M

�
1 − ρ

ρ0

�
; ð10Þ

peff ¼ p

�
1 − 2ρ

ρ0

�
− ρ2

ρ0
: ð11Þ

The differential equation that must be satisfied by the
mass function M is again given by Eq. (3), while the
equation for the scale factor a now becomes _Meff ¼ a _a2,
which can be written as

dt
da

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
M

1

ð1 − 3M
ρ0a3

Þ

s
: ð12Þ

Note that as ρ0 goes to infinity we recover the classical
scenario. As mentioned, the final result is that the cloud
reaches a minimum scale acr and then bounces back. At
the time of the bounce the effective density and the
effective mass function become zero, and thus quantum
effects counterbalance the classical gravitational attrac-
tion, effectively “turning gravity off." This limit can be
viewed as the semiclassical equivalent to approaching
asymptotic freedom [23].
We now turn our attention to the semiclassical scenario

for a fluid that has reached the Hagedorn phase. This means
considering the mass function given by (6) and the scale
factor from (12). The existence of a threshold near the
Planck density for which modifications to the classical
collapse scenario are necessary is not a new idea (see, for
example, Ref. [24]). However, note that now there are two
different scales at which corrections to the classical perfect
fluid model become important, namely, the Hagedorn
phase, determined by p0, and the quantum-gravity phase,
determined by ρ0.
It is not difficult to see that when k > 0 and p0 > 0 the

semiclassical model results in a bouncing scenario. In fact,
we see that as a → acr the collapsing velocity _a goes to zero
but the acceleration ä does not vanish, thus indicating the
occurrence of the bounce (see Fig. 2). However, it should
be noted that the possibility that the bounce leads to the
formation of a baby universe may not be excluded, in
principle. In this case the outer event horizon would remain
unchanged, thus giving rise to a black hole for observers at
infinity, while the expanding matter would be confined
within the newly formed black hole. Such a scenario would
require a phase transition for the collapsing matter to occur
at the moment of the bounce. Mathematically this translates
into the requirement that some suitable matching condi-
tions be satisfied at the surface given by t ¼ tB. Such
analysis is beyond the scope of this article, and it will be
carried out elsewhere. On the other hand, in the bouncing
scenario the black hole turns into a white hole after the
bounce, and the expanding solution is simply described by
the time reversal of the collapsing one. In this case it is

worth asking under which conditions a compact remnant
may form. After a straightforward calculation we see that as
a approaches the critical value, ä tends to the value

äcr ¼
acr
2
ðρþ pÞ: ð13Þ

Therefore, the fluid model must approach the behavior of a
“dark energy” fluid with p ¼ −ρ for the repulsive effects to
halt collapse. Note that the condition for equilibrium is
more stringent in the semiclassical model with respect to
the classical case. For the EOS considered here we get

ä →
acrρ0
2

�
1þ kp0

p0 þ kρ0

�
; ð14Þ

from which we see that the condition ä ¼ 0 cannot be
satisfied also in the case where −1 < k < 0 when p0 < 0.
We conclude that obtaining ä ¼ 0 is possible only by
imposing k < 0 and p0 > 0 or k > 0 and p0 < 0. However,
the behavior of the equation of state in these two cases is
not physically very meaningful. Nevertheless, for the sake
of argument, let us now focus for a moment on the case
k < 0 with p0 > 0. In this case the EOS (5) can be
considered valid only at high densities, and p approaches
the limiting value p0 from above as ρ goes to infinity. If we
want to satisfy the equilibrium condition we must choose
the value of p0 to be p0 ¼ −kρ0=ð1þ kÞ, so that, as ρ
grows approaching the critical value, the pressure balances
the attraction giving ä ¼ 0 (see Fig. 1). Note that the above
constraint, in order to have the value of p0 several orders of
magnitude lower than that of ρ0, implies that k must be
small. Conversely, assuming that we know the values of p0

and ρ0 we can evaluate the value of k for which collapse
halts. With the above choice of p0 we can achieve the
equilibrium configuration, but from Eq. (7) we see that this
implies acr → 0. Therefore, we conclude that no compact
remnant can be constructed in the semiclassical Hagedorn
collapse model.
However, other repulsive effects, not due to gravity, may

contribute to create an exotic object left over from collapse,
much in the same way as neutron degeneracy pressure
balances gravity in neutron stars. Then from the fact that the
scale factor reaches the limiting value given by

a3cr ¼
�
3M0

ρ0

� 1
kþ1

�
3kM0 þ ðkþ 1Þp0

kρ0 þ ðkþ 1Þp0

� k
kþ1

; ð15Þ

we see that the critical density ρ0 plays a crucial role in
determining the size of the final remnant. The bigger the
value of ρ0, the smaller the critical scale of collapse.
The main consequence for astrophysical black holes can

be inferred from the study of the behavior of the apparent
horizon in the interior of the collapsing cloud. The
condition for the formation of trapped surfaces in the
classical scenario is given by
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1 − r2
M
a
¼ 0; ð16Þ

which gives the time at which the shell r becomes trapped.
This can be expressed via the apparent horizon curve
rahðtÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðtÞ=MðtÞp
. We see that, as a goes to zero, if

M goes to a constant (or goes to zero slower than a), then
rah goes to zero as well. The same can be seen from M ¼
a _a2 since we can write rahðtÞ ¼ 1= _a, which goes to zero as
_a diverges. On the other hand, in the semiclassical models
the condition for the formation of trapped surfaces is

1 − r2
Meff

a
¼ 0; ð17Þ

where now a reaches a minimum value at which _a ¼ 0 and
Meff ¼ 0. Then it is easy to see that in this case the radius of
the apparent horizon must go to infinity as the scale factor
reaches the critical value acr. This means that rah will cross
the boundary of the star at some point before the critical
scale is reached, thus leaving the physics that occur for a
close to acr not covered by any horizon (see Fig. 3).
However, this feature may be due to the fact that we are
neglecting inhomogeneities. In the more realistic case of
inhomogeneous collapse the outer shells still gravitate as
the central shell reaches the critical density. As a

consequence, the horizon does not disappear and the black
hole turns into a white hole after the bounce (see, for
example, Ref. [25]). In Fig. 4 we show the comparison
between Penrose diagrams for collapse in these two cases.
Note that if the boundary of the collapsing core is smaller
than the minimum value of the apparent horizon curve,
acr < minðrahÞ, then the collapsing object may not be
covered by the horizon at any time (depending on what
happens to trapped surfaces in the outer layers).

V. DISCUSSION

We have constructed a simple analytical toy model for
relativistic collapse that includes a reasonable equation of
state for high density matter as well as modifications to
classical general relativity in the strong-field regime. In this
model the pressure of the system has an upper limit related
to the Hagedorn temperature, and the asymptotic safety
regime is achieved at high densities. This implies that there
are two scales as determined by the values of two
parameters (namely, the maximum pressure and the maxi-
mum density). We have shown that under these circum-
stances no singularity is produced, and the collapse reaches
a minimum size after which the cloud reexpands. Models
such as the one presented here suggest that black holes, as
defined mathematically in terms of singularity covered by
an event horizon at all times, may not exist in nature. The

FIG. 2. Comparison of the scale factor in the four cases of
classical or semiclassical collapse with linear EOS or Hagedorn
EOS with the parameters chosen as k ¼ 1=3, p0 ¼ 50 and ρ0 ¼
1000=3 and the initial conditions taken as að0Þ ¼ 1, M0 ¼ 1.
(i) The solid line is the semiclassical Hagedorn collapse, (ii) the
dotted line is the semiclassical collapse with linear EOS, (iii) the
dashed line is the classical Hagedorn collapse, and (iv) the dotted-
dashed line is the classical collapse with linear EOS. Note that
cases (i) and (ii) lead to a bounce when a ¼ acr, while cases (iii)
and (iv) lead to the formation of a singularity when a ¼ 0.

FIG. 3. Comparison of the apparent horizon in the four cases of
classical or semiclassical collapse with linear EOS or Hagedorn
EOS with the parameters chosen as k ¼ 1=3, p0 ¼ 50 and ρ0 ¼
1000=3 and the initial conditions taken as að0Þ ¼ 1, M0 ¼ 1.
(i) The solid line is the semiclassical Hagedorn collapse, (ii) the
dotted line is the semiclassical collapse with linear EOS, (iii) the
dashed line is the classical Hagedorn collapse, and (iv) the dotted-
dashed line is the classical collapse with linear EOS. Note that in
cases (i) and (ii) the apparent horizon curve rah goes to infinity as
a → acr, while in cases (iii) and (iv) rah → 0 as a → 0.
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only horizons that may occur in realistic scenarios are
apparent horizons, and these must be viewed as transient
phenomena [26]. In the present model the black hole
formation scenario turns into a white hole after the bounce.
The most important consequence for astrophysics is that the
physics of collapsing stars may be hiding quantum-gravi-
tational effects at its core. And these effects may have
detectable observational signatures. It has been suggested
that such bouncing models may appear as powerful
explosions in the Universe [27]. Therefore, if such a
hypothesis were to be confirmed, these models would
provide a cosmic laboratory to study quantum gravity, thus
allowing us to probe energy scales that cannot be reached
on Earth.
Furthermore, the existence of a minimum size at which

collapse stops suggests the possibility of the existence of
exotic compact remnants. Such objects would have to be
smaller, denser and less massive than a neutron star, and
they would be intrinsically quantum in nature. Note that the
final size of such an object is related to the value of the

maximum density parameter which may or may not be
related to the Planck scale regime. At this point one is
naturally led to wonder how such an object can be detected,
if it exists, and what kind of observational features it would
have. Studies of accretion disks around classical solutions
with naked singularities indicate that the luminosity emitted
by a disk around an exotic compact object may be higher
than that emitted by the accretion disk around a black hole
[28]. Nevertheless, this feature may be due to the presence
of a singularity in the classical solution, while the true
nature of the real objects may be entirely different.
Detection of observable phenomena coming from exotic
compact objects will be a challenge for future experiments,
both in terms of the strength of the signals as well as the
statistics of their occurrence. Nevertheless, future obser-
vations of strong gravity phenomena, via multi-messenger
astronomy, will hopefully provide the much-needed exper-
imental data to test general relativity in the strong field and
to test the various hypotheses, regarding the final fate of
collapse of very massive stars.

FIG. 4. The thick line represents the boundary of the cloud rb; the grey area represents the trapped region. Dashed lines represent the
classical apparent horizon (a.h.) and event horizon (e.h.), without semiclassical corrections. After the time of the bounce tB the cloud
expansion is described by the time reversal of the collapsing solution. Left panel: Penrose diagram of homogeneous collapse with
semiclassical corrections. Every shell bounces at the same time tB when the effective mass becomes zero. Right panel: Penrose diagram
for the more realistic case of inhomogeneous collapse. As the central shell reaches the critical density, the outer shells still have nonzero
effective mass. The total mass of the system decreases until the time of the bounce and then increases again. The outer horizon shrinks to
a minimum radius due to the decrease of the effective mass. After the bounce the black hole turns into a white hole.
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