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The relational framework of canonical quantum gravity with nonultralocal constraints is explored. After
demonstrating the absence of anomalies, a spatially discretized version of the relational framework is
introduced. This allows the application of Lieb-Robinson bounds to on-shell monotonic gauge flow when
there is a continuous external “time” parameter. An explicit Lieb-Robinson bound is derived for the
differential on-shell evolution of the operator norm of the commutator of discretized Dirac observables,
demonstrating how a local light conelike causal structure emerges. Ultralocal constraints do not permit such
a structure to arise via Lieb-Robinson bounds. Gauge and (3 + 1)-diffeomorphism invariance of the light
cone is discussed along with the issues of quantum fluctuations, the nature of the nonlocalities, the spatial
continuum limit, and the possible links to noncommutative geometry.
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I. INTRODUCTION AND MOTIVATION

Locality and causality have played pivotal roles in
gravitational physics for nearly a century. While the concept
and important consequences of local light cones are well
established in general relativity, causality in canonical loop
quantum gravity and in spin foam models has proven more
difficult to elucidate. Almost 20 years ago Smolin [ 1] pointed
out the importance of the emergence of classical long range
correlations for nonpertubative theories of quantum gravity
in some appropriate semiclassical limit. These correlations
are then reflected in how one thinks about causality in
quantum field theory on a fixed classical background
spacetime, specifically that local observables at spacelike
separation commute (microcausality). During the interven-
ing years, there have been several studies of causality in the
background independent fully quantum regime, particularly
utilizing spin foam (covariant) models. However, generally
the spin foam models do not support causal correlations,
unless they either are assumed at the outset [2,3] or involve
some kind of alteration of the vertex amplitude intended to
describe a local orientation [4]. On the other hand, approach-
ing the issue of semiclassical causality from the canonical
point of view is even more conceptually challenging since
that approach is a “timeless” formalism. Consequently, the
consensus expectation is that microcausality will emerge
from some as yet to be developed semiclassical limit of
quantum gravity; however, to date such a causal limit for
quantum gravity remains lacking. Thus it is mysterious that
microcausality occupies such a foundational place in general
relativity, quantum field theory, and the standard model of
particle physics, yet is still so elusive from a background
independent quantum gravity point of view. In a broader
context, the semiclassical regime of quantum gravity is of
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importance not only from the perspective of causal correla-
tions, but also as a general testing ground to examine whether
a theory of quantum gravity can behave in familiar classical
ways in some suitable limit.

Here we take a simple first step toward understanding
these questions starting from an unexpected direction. We
adopt the relational framework approach to canonical quan-
tum gravity which has been developed over several decades
[5-9]. Then we explore the case where the constraints are
nonultralocal and, for reasons to be discussed, limit our
considerations to the on-shell physics. Next, we apply Lieb-
Robinson bounds, originally introduced in the 1970s to
describe solid-state spin systems [10], to a spatially dis-
cretized version of the relational framework and demonstrate
how a suitably gauge invariant differential local light cone for
discretized Dirac observables may be constructed. In
essence, the local light-cone emerges from on-shell non-
ultralocality of constraints in a quite general sense within
spatially discrete relational framework models with smooth
monotonic gauge flow described by an external “time”
parameter. If the constraints are taken to be ultralocal, then
this Lieb-Robinson-based causal structure collapses.
Quantum fluctuations act to disrupt the local light-cone
structure, and a set of general criteria are presented which are
sufficient for the Lieb-Robinson-based local light-cone
structure to survive the quantum-classical tug of war.

The outline of the remainder of the paper is as follows: The
relational framework is briefly recapitulated in Sec. IL
Section III studies nonultralocality, its freedom from anoma-
lies, and introduces “patchy” gauge flow. It concludes with a
description of the spatially discretized model that is used later
on. Section I'V provides an introduction to two nonrelativistic
versions of earlier Lieb-Robinson bounds from the literature:
The first for Heisenberg operator evolution via time inde-
pendent Hamiltonians, and another more mathematically
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sophisticated approach for time-dependent Hamiltonians,
both on general lattices or networks. In Sec. V a relativistic
differential-time expression for the Lieb-Robinson local light
cone is derived for the case of an external time parameter
acting as the synchronizing conductor of the relational
framework’s clock  variable symphony orchestra.
Section VI discusses gauge invariance and other properties
of the relational local light cone. Through a series of
questions and answers, Sec. VII examines issues related to
the continuum limit of the spatial discretization, the nature of
nonlocality necessary for the Lieb-Robinson local light cone,
a possible link to noncommutative geometry, and the role of
quantum fluctuations. The paper concludes with a brief
summary and self-criticism of the model in Sec. VIIL

II. REVIEW OF THE RELATIONAL
FRAMEWORK

In this section we briefly review the necessary points of
the relational framework formalism. For further details
please see [7,8,11]. The essential idea behind the relational
framework is to construct Dirac (gauge invariant) observ-
ables from gauge variant (partial) observables. This all
starts from the classical phase space M description of a
reparametrization invariant system whose dynamics is
described by a (canonical) Hamiltonian that consists
entirely of a linear combination of constraints. In the
relational framework, quantization occurs on the reduced
phase space. We start by describing the classical formalism.
Consider then a set of first-class constraints C; with I € Z,
an arbitrary index set. For the case of canonical four-
dimensional general relativity, the index [ includes both a
continuous three-coordinate index y (), labeling a point ¢
on the three-dimensional manifold X, as well as a discrete
index i(7). The latter index ranges from O through N, — 1,
and labels the N, first-class constraints (gauge conditions)
at each point o. These constraints satisfy the first-class
condition {C;, C;} = fK Cg, where generally /X may be a
structure function, possibly depending on phase space
functions. We have assumed all second-class constraints
have previously been handled by taking M to be the
surface in phase space where they all vanish, and that the
Poisson bracket used above is the Dirac bracket. Next select
a set of gauge variant phase space functions 7/, I € T
called clock functions or clock variables that coordinatize
the gauge orbit of any point in phase space within a
neighborhood of the (classical) constraint surface (shell)
M={meM|C/(m)=0, YIeTI}. The T' might
include matter (nongravitational) degrees of freedom.
Then AJ = {C;, T’} is locally nonsingular as an (I,J)
“matrix,” and one can define the transformed equivalent
first-class constraints

¢y =Y [ATc,. (1)

J
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These obey {C}, T'} ~ 5/, where ~ denotes weak equality,
that is equality on-shell, and the Hamiltonian vector fields
X, = X; weakly commute (i.e., commute on shell). Gauge

transformations for any phase space function f and set 8 of
reals can be written as

1
n!

Xy = ZI pX;. (2)

a(f) = exp(X,) =S = (Xp) .
n=0

If one is given a set of real-valued phase space constants
(clock parameters) 7/, a weakly gauge invariant (Dirac)
observable associated with partial (gauge variant) observ-
ables f and 77 is

Oy(r) = O[f](r) = la(f)]ay(rr)=e- (3)

The motivating idea is that O[f](7) represents the value of f
when the clock variables 77 take the values 7/; i.e., it is a
gauge slice or fixing. O[f](z) is a phase space function, and
one must compute it first treating B’ as phase space
constants, and only subsequently set g/ = 7/ — T'.

One also finds az(T")~T'+p" and O[T'](r) =
ap(T") g, (1))~ ~ 7' on shell. Also on the constraint surface
O|[f](r) may be formally expanded as

o~ > (I ) (o). @

{k=0y \'1 i

One can also derive

Olf1() + Olf'l(z) = Olf + (), (5)
Olf1=)0lf')(z) = Olf f'l(2), (6)

{Olf1(z), Olf'1(2)} = {O[f1(x), Ol 1(=)}p
~ O{f.f"}pl(7). (7)

where the Dirac bracket is defined as

{f fp = f = Af. CHATAT '}
+{f" CHATAT £} (8)

The formalism simplifies considerably if one can choose
canonical coordinates so that the clock variables 7' are
themselves some canonical coordinates. Then one has a
complete set of canonical pairs partitioned as (g%, p,,) and
(T', P;), where the P; are the canonical momenta con-
jugate to the T’. Hence in a local neighborhood of the
constraint surface one can write the constraints as the
equivalent set

C,=P;+ hi(g*. pa. T?) =0, )
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and setting P; = —h;(q“, p,, T’) formally solves the con-
straints. One can also show that the canonical Dirac
observables Q“(7) = O[¢“](r) and P,(7) = O[p,|(7) sat-
isfy equal-z canonical Poisson bracket relations. As dis-
cussed in [7,11], the C; comprise a strongly Abelian
constraint algebra and obey C} = C; + O(C?); hence the
Hamiltonian vector fields X; of C} and X; of C; weakly
commute. The relations (5), (6), and (7) may be summa-
rized by saying that O induces a weak algebra homomor-
phism with respect to pointwise addition and multiplication
as well as a weak Dirac algebra homomorphism on
{f,f'}p- When neither f nor f' depend on any P, their
Dirac bracket reduces to the Poisson bracket, and then there
is also a weak Poisson algebra homomorphism.
Next define

Hy(z) = H/(0%(2). P,(2).7)
= Ol)(2) ~ hy(Q°(2). Po(@)7).  (10)

If f is any phase space function depending only on ¢,, p,,
but not on 7/, P;, one has

0

50 O ~ {H,(2), Olf)(=)}. (11)

That is, H;(z) generates the z-parametrized gauge flow of f
on the constraint surface. So if one specializes to a
parametrization invariant dynamical system whose canoni-
cal Hamiltonian vanishes, one may refer to the H;(z) as the
(r dependent) physical Hamiltonians. In the following we
will make extensive use of (11), and it is important to
realize that both that partial differential equation (PDE) as
well as its integrability condition hold only on shell [7]. So
we will henceforth limit ourselves to on-shell physics.

In order to quantize the system on the reduced phase
space where the classical constraints are valid, the gauge
invariant canonical variables Q%(z), P,(z); T'(z), P;(z) are
mapped to operators Q%(z), P,(z); T/(z), P,;(z) which
generate the quantum algebra U with the usual equal-z
canonical commutation relations. Given U, its representa-
tion (carrier) Hilbert space H may be generated via the
Gelfand-Naimark-Segal (GNS) construction employing
any positive linear functional (state) on [. Here one is
reducing phase space before quantizing; that is, all the
constraints are satisfied at the classical level. We
assume that for all 7, the physical Hamiltonians
H;(Q%),P,(7),7) are represented as densely defined
self-adjoint operators on H.

III. NONULTRALOCALITY

We say h; is ultralocal if it only depends on the canonical
fields or their spatial gradients (of any finite order) at the point
y(I) € . If all the h; are ultralocal, then {h;, h;} «
S(y(I),y(J)) (or its spatial derivatives), and therefore one
has {H,(r),H,;(z)} =~ 0 for y(I) # y(J). In this case, H,(z)
and H,(z) have no common ¢“, p,, TX for y(I) # y(J).
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Ultralocality produces significant mathematical convenience
and simplification. Moreover, all the commonly used
classical ~gravitational constraint algebras, such as
Arnowitt-Deser-Misner (ADM) and Holst, including pos-
sible scalar matter fields, possess ultralocal /;; see [11]. In
fact, all the known interactions in the standard model of
particle physics are ultralocal as well. However, a field theory
is not required to be ultralocal, just that measurements so far
are consistent with ultralocality. Here we keep an open mind
and explore the consequences of nonultralocal /2;. One should

realize from the outset that the constraint C; algebra remains
Abelian for nonultralocal /;, even though neither /; nor H,
will possess weakly Abelian algebras. We will see later on
that the quantity [H,(z), H,(z)] for y(I) # y(J) plays a
crucial role in Lieb-Robinson bounds.

It is sensible to first confirm that the quantum dynamics
remains anomaly-free even for non-Abelian H,(z). This
means that all the classical gauge symmetries are faithfully
reproduced in the quantum theory. Han [11] has proposed
the condition that the H; form an Abelian algebra to be
used as a definition for freedom from anomalies. It is
demonstrated below that this is overly restrictive, and we
provide an alternative condition for the quantum dynamics
to be anomaly-free. Following [11], one seeks to solve the
Schrodinger equation

if](i‘,f/) = H,(t)U(z,7) (12)

371
for a unitary propagator U(z,7’) between two Schrodinger
states WU(7), ¥'(7') at initial “multifingered time” 7’ and
final value 7. Let 7 denote the space for 7, and let c:R —
7T be a path from 7 to 7 parametrized by a real-valued
“external time” 7. We will show that U(z, 7’) is independent
of the choice of path ¢ as long as dc/dt > 0,V I, t. This is
a mathematical representation of the general covariance
(gauge invariance) of the quantum dynamics. We will need
a little more terminology. The real-valued fields 7/(z)
specify one 7 at any given ¢ for each y € £ and each
gauge i =0---N,— 1. We will refer to a single set of
configurations (all y, i) {z/(¢)}, for all t as a “slicing.” One
configuration (all y, i) at one given ¢ is called a “slice” from
aslicing. A gauge transformation is then a change of slicing
from {z(7)}, to {7(¢)},; i.e., a change of multifingered time.
Independent from slicing invariance, ¢ can be smoothly
reparametrized to ¢ = f(¢) (a 1-diff).

Start by rewriting the z-evolution PDE (12) as an integral
equation,

Oy =1+ / "dr Hy(0)0(0, 7). (13)

Here o is a variable like 7 or 7’ taking a value in 7 whose
components are
r?
[ . ,
J

for J =1,

otherwise,
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where I is the summation index in (13), and r is the (real)
variable of integration. Iterating this leads to a Dyson
expansion,

U 7)=1+ Z/ otV ()

- o)
+ (=2 / doj' [ do?

1J 77 7
x H;(c")H (6 U (e, 7) (14)

O o) =1+ (=) > Z

n=1 1<M<n {r1-rm}=1
pytetppy=n

./m dTy:m)] T AH, (61) - H, (o). (16)

i
X — T,
k=1 pk T

Here the channels I; € Z, j =1, ..., n are drawn from the
(p1 X Ji 4+ py xJy+ ) J’s. The sum over the I, ..., 1,
has been decomposed into sums over the gauge index i(J)
and integrals over the 3-manifold X with respect to the
volume element d%y u(y), where y coordinatizes X. The
existence of a such a volume element is assured once X is
taken to be an oriented manifold, and it is not generally
necessary to have a metric tensor on X for that. However,
U(z,7') on the left-hand side (LHS) of (16) must be
invariant under smooth coordinate reparametrizations of
2, and this requires the volume element to be similarly
invariant for scalar A,. It is straightforward to see that this
can be done if it is possible to induce a metric tensor g, ()
on X, where the volume element then takes the standard
form d3y| det g,,(v)|'/?. gu,(y) does not have to be any
physical metric. In fact, if the smooth 3-manifold X
smoothly embeds into any Euclidean space E = R”, then
the Euclidean metric tensor on E induces a suitable metric
tensor on X. The (strong) Whitney embedding theorem
states that if ¥ is m-dimensional Hausdorff and second
countable, then £ smoothly embeds into E for n = 2m.
Taking X to have those properties, one then has a volume
element on it to render U(z,7’) coordinate reparametriza-
tion invariant on X; moreover this is true for any such
invariant volume element. Alternatively, taking X to be a
paracompact differentiable 3-manifold assures it has a
Riemannian structure, whose metric tensor can then be
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where n is the depth of iteration, and /4, ...,/, €Z. One
may concretely picture each fixed 7 as an “/-channel” from
7' to 7. Each ¢ is a z-vector (a point in 7), having real

components a&m), K € T. The I-subscripts on the H,(c)
correspond to the z; integrated over when its corresponding
argument o; is integrated.

Suppose the 6" satisfy 6%”_1) > o-%’” for all m and K,
where here K € 7 plays a role like the index / in 7;. We
refer to this as the ordering hypothesis for the path through
7T -space from the initial 7’ to the final 7. Now consider the
nth term in the sum on the right-hand side (RHS) of (15).

Suppose among the n channels I,,....1, €Z, J1 €Z
occurs p; times, LJy €T occurs p, times,
1<M<n, with 0<p,....,py<n, and p;+---+

py = n. Under the ordering hypothesis one can recast
Eq. (15) as

{ﬁ( Z) [aunoun)]

|
used to construct an invariant 3-volume element in the
standard way.

The notation NCC on the RHS of (16) stands for
“noncollisional channels” and arises from the following
considerations: Each /-channel has a gauge index i and
position y on X. i and y are independent degrees of freedom
for each channel; however, once the number of distinct
channels has been fixed to be M, two channels with the
same i values cannot occupy the same position y. That is
the channels cannot “collide,” as the associated merger or
splitting of channels would alter the previously fixed
number of channels M, so “NCC” can also be thought
of as necessary to avoid double or under counting. The
{p«} give the number of z-steps or integrations along each
distinct channel J,. Any single 6*) € 7 has the compo-

(1) (p1)

nents: one from the sequence (z;’,...,7;") of real

integration variables in channel J; ...;

the sequence (132 r&p u)

and any one from
) of integration variables in
channel J,,; and (if not integrated) that component of 6*) is
set equal to the corresponding component of the initial 7.
Because of the ordering hypothesis, a( dlffers from ¢%)
at only one index value J, where a V2! J , and then

= J. The “r-ordering operator” T, acts to order the 7

arguments in each /-channel independently so that within
each channel J they increase from right to left:
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o) <. <o <6l V J. Notice that the ordering
hypothesis has allowed us to remove the path-dependent
limits on the multiple z-integrations.

Equation (16) sums (averages) over all the paths in 7°
from 7’ to 7 by advancing monotonically in z; within each
I-channel independently, stepwise over the n integrations,
from initial 7’ to final 7, as enacted by the T', operation. The
averaging over the paths from the initial to final z-slices is
carried out for each fixed n, M, first at fixed (NCC) channel
configuration {(i(J;), y(J;))}, and fixed stepping configu-
ration { p; }, by the corresponding z-integrations. Then the
channel configuration and stepping configuration are sep-
arately averaged at fixed n, M (the result is independent of
which of the latter two averages is performed first). Now
suppose we have some “external time” parameter ¢ so that
7; = 7;(t). As long as the path ¢/(¢) = 7;(t) between the
fixed initial and final 7 obeys dc!()/dt >0 for all I € 7
and relevant values of 7, one fulfills the ordering hypoth-
esis. This mild monotonicity condition is consistent with
the physical picture of multifingered time as “flowing
forwards everywhere.” The overall sign of the monotonicity
condition may be reversed, so multifingered time then
globally flows “backwards”; however, the choice of that
sign does not affect the conclusions.

By adding over all such ways of channel-wise monotonic
advancement from 7' to 7, the overall RHS of (16) is
insensitive to a change of slicing (gauge) z;(t) — 7;(t) for
fixed initial 7' and final z, and U(z,7’) depends only on
those initial and final configurations. This happens regard-
less of the commuting or noncommuting properties of the
H (7). It occurs because the monotonicity condition takes
care of the required z;-ordering within each /-channel
separately (T, becomes a t-ordering), and the operator
orderings among different /-channels (inside 7) on the
RHS are averaged over (as a sum over monotonic paths or
slicings between the fixed initial 7" and final = configura-
tions). This absence of path or slicing dependence of
U(z,7') is the relational framework manifestation of gen-
eral covariance (gauge invariance) for the quantum dynam-
ics: we have obtained freedom from anomalies for z-paths
monotonic in an external time parameter. Under these
conditions the propagator U/ more resembles the familiar
one from standard (fixed background geometry) quantum
field theory. In the absence of monotonicity, the use of the
components of 7 as integration variables, such as in
Egs. (13), (14), and (15) becomes ill-defined: Some I-
channels could then have ranges of z; which are traversed
multiple times in both senses as ¢ advances. This accords
with the intuition that these locally negative lapses among
generally positive ones are indeed somehow physically
anomalous. In fact, a similar notion in a different guise was
used in [4] to generate “causal” spin-foam vertices and
amplitudes. Monotonicity may be viewed as the relational
framework analog of global hyperbolicity on Lorentzian
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manifolds; however, unlike the latter,
assumes no background causal structure.

If one specializes to the ultralocal case, so H,(z) and
H,(z) have no common Q¢, P,,, TX for y(I) # y(J), and to
the gauge diagonal case, for which the same thing occurs
when (1) # i(J), then [H,(z), H,(7)] = 0 for any I # J.
Consequently the 7',-ordered product in (16) factors into
separate T, for each [-channel, and U= I U 5, as
obtained earlier by Han [11].

It is also interesting to compare the 7 -ordering in (16)
with the well-known T-ordering from standard quantum
field theory. Weinberg [12] gives the following Dyson
expansion for the S-matrix (operator) in Minkowskii
spacetime or special relativity:

monotonicity

S=1+ i/d“xl dtx, T{H(x,) - H(x,)},  (17)

n=1

where H=H,+V, V(t)=exp(iHyt)Vexp(—iHt),
V(1) = [dx H(¥,) in the interaction picture, with H,
the free Hamiltonian and V the interaction. This is globally
Lorentz invariant except for the 7-ordered operator prod-
uct. The T-order of two spacetime points x; and x, (the
order of their 0-coordinates) is globally Lorentz invariant
unless (x; —x,)? > 0 (x; — x, spacelike), so (17) introdu-
ces no special frame if (but not only if) the (x) commute
at spacelike distances. While this is often referred to as a
kind of causality condition, in this sense it arises from the
invariance of § that occurs because global Lorentz trans-
forms x — x’ = Ax alter the spatial and temporal compo-
nents of 4-vectors and so can then reorder the T sequence
among the {x,}. By contrast, in the relational framework
representation just discussed, ¢ and all the 7z; increase
smoothly within both slicings 7;(¢) and 7;(¢) connecting the
fixed initial and final 7’s, and the gauge transform is no
longer simply related to the spatial coordinates y. Thus the
relational framework has no built-in analog of special
relativity’s “causality from global Lorentz invariance.”
The T, in Eq. (16) will not generally lead to “causality”
by itself, regardless of whether the constraints are ultralocal
or not.

The quantity [H,(z), H,(7)] for y(I) # y(J) is important
in the subsequent sections. Therefore we spend some time
to study it as well as its classical precursor { H,(z), H;(7)}.

We start by computing classically,

{H(7),H, ()} # O[{h;, h;} p)(7) = Ol{ ;. by }](7),  (18)

where the first relation has used Eq. (7), and the second
equality used that the /#; do not depend on any P; inside
some phase space neighborhood of the constraint surface.
We also have C; = P; + h; with {C;, C;} = 0 (recall the
6‘, form a strongly Abelian constraint algebra), and one
derives
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0={P;+h,P;+h;} ={h;,hy} +{Pp hy} +{h; P}
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We use the same sign conventions as Han [11], namely

oh; oOh b _ b
= {hp b} + 22 =220 (19) {Pa:q"} = (+)8a,
S {Pris} = (+)Xp, -y =2
Thus, P Pt sl
L 8 5 5f & o)
[y Shy opidq' 6q 6p;
(). Hy(z)} ~ OLSTJ 5TI]( ) 20) One also has from (18)
|
O[{hy, hy}](7) = O[{éla hy}(z) = O{ Py, hy}l(7)
v _Tj)kj ky % . — % T
—%(H ) (o ) - 0[5
o —T7) oh
~ X, X)) - 0|5 (=
(7 o) -ofo
~ ﬂ &) —o|®],
< (I3 )0 (T w0z o
_ ag;@ _o [(‘:—;‘5] (0). (22)
Consequently, {H,(7),{H,(2), O[f|() }}

o) 1)~ -0 0. e

Combining (20) and (23) one arrives at

Pl so| 2] o 24)

or! 5T/

Which canonical variables enter Q;; = {H;(z), H;(z)}?
Since H,;(7) = O[h](r) and near shell 4; is independent of
Pg’s, so H; has no Pg’s and neither does Q;;. How about
the (¢“, p,) variables? Let f be an arbitrary phase space
function solely dependent on the (¢“, p,)’s (and not
containing any TX, Py variables). One then has

{H,(z). Olf)(2)} = O[{ 1, f1pl(%) =

O{Cr fH(x) ~

O[{hy. f}(z)
OX; - fl(). (25

In the second equality we have used that h;, f are
independent of Py variables, in the third that f contains
no 7! variables, and in the fourth that C; = C, + O(C?)
and {f|, f2} = X, - f>. One would like to iterate Eq. (25)
to yield

~{H,(x), O[X, - f](z)}
~ O[(X;- X)) - f1(x) = O[(X, - X)) - fl(r),  (26)

where in the last equality the weak commutativity of the X;
has been used. If this were true, then by using the Jacobi
identity and that f is an arbitrary phase space function of
the ¢, p, variables, one would “find” that { H,(z), H,(7)}
could not be a phase space function of any ¢“, p,. However,
the step marked with ? is invalid because there one is using
the weak Eq. (25) inside a Poisson bracket. Such a
maneuver is inadmissible, as no weak equation may be
used before evaluating Poisson brackets. Hence
{H,(7),H,;(r)} may still be a phase space function of
q%, p, as well as the clock variables.

Suppose the constraints are ultralocal, meaning /; only
contains ¢“, p, with y(a) = y(I) and clocks Ty with
y(K) = y(I). Then 6h;/8T! « 8(y(I),y(J)), so by (20)
{H,(r),H;(r)} =0 for y(I)+# y(J). Hence to obtain
{H(7),H,;(7)} # 0 for y(I) # y(J) requires nonultralocal
constraints.

What about spatial parity (P) and time reversal (7'
symmetries? Let Q% = {H,(7).H,(z)} where j=i(I),
k=1i(J),x =y(I),and y = y(J). One has Qx\ = —Qf{; by
antisymmetry of the Poisson bracket One might be

concerned that when x # y, for Q vy to be nonvanishing
could require violation of P-symmetry (in addition to
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nonultralocality); i.e., that Qi’; could acquire a nonzero
spatially odd piece. Such a violation is only necessary
provided Qi’; = %, that is, the constraints are “gauge
symmetric,” meaning they satisfy

Shk il
8T} 8Ty

(gauge symmetry), (27)

which does not generally hold. So a violation of P-
symmetry is not generally necessary to obtain
{H;(z),H,;(7)} # 0 for y(I) # y(J) if there is nonultralo-
cality. An examination of the formal power series for
OI[f](z) (4) similarly shows that ones does not require a
violation of T-reversal symmetry either. The absence of
requiring P- and/or T-violation to obtain {H;(z), H;(z)} #
0 for y(I)# y(J) is reassuring since the gravitational
interaction is not expected to violate those symmetries.

We now present a very simple toy example of non-
ultralocality. Suppose the Hamiltonians have the special
form

) =)+ [ 5K (g9, o),

q"(y). pp(¥); %, )T (y). (28)

with the nonultralocal term chosen linear in the clock
variables for simplicity. We take the clock variables as 3-
diff scalars and the kernel K/ to be a weight-one 3-density.
The first term on the RHS is ultralocal and does not
contribute to {H;(z), H;(z)}. One finds

0(s) = {H}(0). a0} = O | - S8 0

~ O[K"™(q"(x), pa(x), ¢"(2), pp(2); %, 2)
- K"(q"(2), pp(2), q*(x), pa(x); 2, 0)] (7). (29)

Next we examine the 7 and external time gauge flow in
more detail. This is the bridge we will need to cross to get to
the Lieb-Robinson bounds. From the classical gauge flow
equation (11) and again following Han’s sign conventions
that {P,, 0"} % 8}, [P,(2).0(0)]=(=){P(r).0"(x)} =
(=i)8% (h is set to unity), one has the on-shell quantum
gauge flow equation

0

52, QW1 ~ (DI (7). Olf)(7) (30)

where f may depend on ¢“, p, canonical variables but not
the T/, P, types. Adopting the Ansatz

A

O[f)(x) = explibt (2)(O[f](0)) exp[~it ()] (31)
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for some self-adjoint operator M independent of f, one
infers from the gauge flow equation that

oM(z) - A
aT(] ) - HI(T)’

[f](z)]| = 0. (32)

Since f is an arbitrary phase space function of ¢¢, p,, one
has that on-shell 9M(z)/d7' — H,(z) may depend on the

7% but not on the 4%, p,, or Px. Here we will assume the
simplest case, that is,

A

OM(7)

S (), (33

which is sufficient, but not necessary. Now decompose
M as

M(z) = My(v). (34)

where Z is called a “patch” and is just the support of M, on
2. The motivation behind this is as follows: Each 1 € 7
contains a continuous spatial coordinate y(I) as well as a
discrete gauge index i(/). For nonlocal /; and H/, besides
the canonical variables at y(I) (called the “central site”)
there are other “nearby” canonical variables living at y’ #
y(I) which also enter /; and H; as their “entourage.” We
define the patch Z(I) to consist of the central site y(I)
together with all those nearby y’ where its entourage
resides. We assume the patches to be bounded and not
to take up all of X. Denoting the central site of Z by y.(Z)
we can set

Hy = Hyzq) = Hily)—y.2)- (35)

Using (33) with fixed 1,

Hy(z) » Y 0My(7) /01, (36)

Later on we will be more interested in the external time ¢
gauge flow of O[f](r) than in the z-flow, so we let

W) = Sty (e(r). (38)

It then follows from the 7 gauge flow equation (30) that

104038-7



P.G.N. DE VEGVAR

d > ~=0r(0) Of)(1)
EO[W)—ZTT

1

[ 2. 011(2)
— ()[AG). OLA())] (39)

As expected, one sees that [(r) generates gauge

flow in external time. More explicitly, setting O[f](¢) =
Olf](z(1)), (39) implies

OLf)(1) + ie[A(1). O[f](1)] + O(e?)
= exp(ief(1) OLf](r) exp(~icf(r)).  (40)

We would like to put F(z)
H,(1) is; hence by (37)

LmO[f] (1 +e) =

e—0

= ", H,(1) and figure out what

_ 811(1‘)[:1 .
zZ:I:Z(I)z o /0

B ol (1) 4 .

—Z( U )>z<,>_z’ (41)

where the last equality follows from the fact that there is
only one patch Z(I) with central site y(/) corresponding to
Z: y(I) = y.(Z). Consequently,

N ari( yC i
S =3 3 (P20 g
Z
And pulling it all together

() =) H,(1), (43)

D). (42)

0= Y (T D) ).

l
pary ot

H(t) is a “patchy” Hamiltonian generating relational
framework gauge flow in external time, whose patches Z
are based on the nonultralocality of the original /;. This
patchy representation of ¢ gauge flow unlocks the door to
applying the Lieb-Robinson bounds to be introduced in
Sec. IV below.

Before immediately moving on to the Lieb-Robinson
bound, we will need to know a little more about
[Ay(f), Hy()). Here we discuss its classical counterpart
Q = {Hx(1), Hy(t)} to gain some intuition about it before
proceeding.

PHYSICAL REVIEW D 93, 104038 (2016)
Q is built from

H)H H)'z O 8 ?)ll 6h§22 45
Denote
b o [0
i) = 0[] ) (46)

We have Q(x, y, 1) = {Hx(1), Hy(1)} =
x =y.(X) and y = y.(Y), and thus

—9(y, x, t) where

N 18¢; (x) O, ;
Oy = Y- |2y

i1.i,=0

— [ (y.%))-
(47)

As a reminder, Q may be a phase space function of the
TX, ¢, p, variables, but not Py variables, or it could just
be a phase space constant, and so include 7’s. As a simple
example, here we will try to construct f from just the 7’s.
We take fj.(x, y) to be (x,y) symmetric (P-even) and (i, j)
antisymmetric, such as  f%(x,y) = (7;(x) = 7;(x))+
(z:(y) = 7;(y)). Then for the sum in (47) to be nonvanish-
ing, we have to (i, i,) antisymmetrize the brackets in that
expression to obtain

Ne-l aTil(x)a’L'iz(y) aTiz(x)aTil(y)
Q(X,y,l): ZO[ ot ot - ot ot

iy,ip=

Fi(xy),

(48)

which is overall (x,y) antisymmetric as required. So as
y = x, @ — 0, but away from x =y, Q is nonvanishing.
We expect it to decay as Hy’s and Hy’s patches X and Y
cease to overlap, but that behavior is not well captured by
this toy model for Q.

Lieb-Robinson bounds were originally intended to study
spin systems imbedded in a solid-state lattice, so they are
naturally discretized. This lattice may be extended to
include a general network and is not limited to a periodic
tessellation of 3-space by polyhedra. Discretization
achieves significant mathematical simplifications, so we
will follow that approach in this initial investigation of
relational framework with nonultralocal constraints. We
discuss the limitations and issues related to discretization
and its continuum limit in Sec. VII. A continuum approach
will be left for future research.

Here we describe the discretization of the 3-manifold X
into a (generalized) lattice A. Associated with each lattice
site j € A C ¥ is a D-dimensional Hilbert space. Unless
otherwise indicated A will have finite size (cardinality);
alternatively, A may be taken to be a finite sublattice of
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some countable lattice I' C X. The Lieb-Robinson bound
does not depend on the dimensionality D, and the Hilbert
space for the entire system is taken to be the tensor product
of the site-based spaces. Capital Latin letters from the end
of the alphabet (previously referring to Hamiltonian
patches) will now denote sets of lattice sites, and |X]|
designates the cardinality of X. We say an operator 0 is
supported on a set Y of sites if 0 may be expressed as
0=1 Ay ® P, where 1 A\y 1s the identity operator on sites
notin Y, and P is an operator defined on Y. In the following
sections we will be most interested in the complete (Dirac)
observables O|[f](z), where f is a phase space function
containing neither 7/ nor P, canonical variables, and use
the unitary Hamiltonian patchy gauge flow (39), (43), and
(44). We assume we can take the discretized H,(z)~
H 4(Q%(7). P,(r), 7) as a self-adjoint operator on the Hilbert
space which is the tensor product of Hilbert spaces over
lattice sites j(a) included in its arguments.

We must take a moment to carefully resolve any potential
issues that might arise from discretizing operators like the
Ol[f](z), and to confirm that the discretized equations
behave as expected, especially from a gauge-flow point
of view. To this end, we have to define what precisely is
meant by the spatial discretization A of a continuum
operator constructed as a sum of products of the canonical
variables. The discretization map A is defined to act linearly
with respect to any sum of operators. Acting on a product of
continuum operators, A annihilates (“apodizes” or cuts off)
any product which contains one or more factors of canonical
variables that are not on the lattice. From this definition
follows A(A B) = A(A)A(B). The procedure we follow is
to “Diracify” first by constructing the continuum Dirac
operator O[f](z) from f, and then to discretize by acting
with A. One seeks to demonstrate that the continuum gauge-
flow equation (30) holds when all operators are replaced by
their discretized images under A, i.e., that A is a gauge-flow
homomorphism. This is made easier after one notes that the
continuum gauge-flow equation (30) is an operator equation
with both sides (weakly) equal to the operator corresponding
to the classical expression

i (H(Tj;cifj)kdxl (H(Xf)k’> fi o (49)

k=0 \"J 7

see Eq. (2.13) in [11]. Then by restricting the free index / to
have y(I) € A, i.e. to be on the lattice, and applying the A
map, it is straightforward to show that

0

5.1 801(@) ~ (DA (2), AO[f(D)]. (50)

One has to interpret the 7/ =7/1 terms as A(1) =
15 =®jen 1 j» where 1 j 1s the identity operator on the
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Hilbert space at site j. This way all the J’s appearing in
the sums inside (50) are on lattice, and there is no on-shell
operator flow to/from the lattice from/to nonlattice sites. Itis
also simple to show that [A(C,), A(C,)] ~ 0, so the dis-
cretized constraints are weakly Abelian. Henceforth we drop
the A whenever it is clear from the context that we are
discussing a discretization.

If i, j are lattice sites on X, the Lieb-Robinson bound
requires a 3-metric d(i, j). If A, B are sets of lattice sites, for
future use we define

d(A, B) = dist(A,B) = ieIE}IéBd(l,J), (51)
diam(A) = maxd(i, j). (52)
i.jeA

When Lieb-Robinson bounds were first applied to solid-
state spin systems, introducing the static metric d(i, j) was
innocuous; however, in applying Lieb-Robinson bounds to
gravitational physics there are several issues of serious
concern. Already at the purely classical level, d will acquire
a dependence on geometric variables included in the Q“(7),
so if one has a continuously varying external time param-
eter ¢, d(i, j) will inherit a continuous 7 dependence as well,
while d still describes a discretized 3-geometry of X. We
will show in Sec. V how this ¢ dependence can be
accommodated within the Lieb-Robinson bound. Still at
the classical level, in the continuum d(x,y) for x,y € X
could be taken as the proper geodesic distance between x
and y. But once X has been discretized, the voxelated
classical 3-geometric information and the replacement of
the PDE describing a geodesic by a finite difference
equation will introduce a classical discretization “error”
into d(i, j). Of course, one expects this classical error to
become negligible in the limit where the (proper) lattice cell
size becomes much smaller than any classical length
characterizing the 3-geometry. On the quantum level, once
the classical phase space functions are mapped into
operators, the well-known more difficult issues of quantum
fluctuations, nonvanishing expectations of variances,
choices of quantum state, and so on, immediately arise.
The quantum clock “operators” 7! themselves, however, do
not appear in the physical Hilbert space of the quantum
theory, since they are not gauge invariant, so there are no
worries from that direction: only f(T! =1!) can be
promoted to a physical quantum operator [13]. In the fully
developed quantum regime, of course, there is not even a
well-defined 3-geometry at all, so the best one might hope
for is that one can find some kind of semiclassical regime or
limit that supports or approximates a 3-metric like d(x, y).
For now, we will work at a level (classical or semiclassical)
where we may safely assume we do have a sufficiently
accurate r-dependent d(i, j) on the lattice, and discretiza-
tion error, quantum fluctuations, and semiclassical consis-
tency will be discussed later in Sec. VII after we see what
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the Lieb-Robinson bound can tell us about relational
framework operator gauge flow in external time with
nonultralocal constraints.

IV. INTRODUCTION TO LIEB-ROBINSON
BOUNDS

Here we provide a brief and hopefully self-contained
introduction to Lieb-Robinson bounds. The definitions and
theorems will be presented together with some intuition,
but we refer the more interested reader to Refs. [14] and
[15] for the detailed derivations.

From a pedagogical point of view, it is best to start with
the simplest case first: A nonrelativistic spin system on a
one-dimensional lattice [14]. So consider the one-
dimensional transverse Ising model for N spins with
Hamiltonian

N-1 N
H=-J]) S8, ,+B> S (53)
i=1 i=1

This spin Hamiltonian has the form H = 3 ,H, with H,
supported on Z. Lieb-Robinson bounds are most suited to
cases where ||H,|| decays rapidly with diam(Z) > 1. Using
(53) and the metric d(i, j) = |i — j|, we see that the Zeeman
term has diameter 0 and the Ising (exchange) interaction
has diameter one. So ||H|| = 0 for diam(Z) > 1, and these
are examples of “finite range” interactions. There are also
other forms of decaying interactions such as exponential,
and so on. One could also place the spins at the vertices of a
graph. Then H is again a sum of H, each Z being two
vertices, with H, nonvanishing only if an edge of the graph
links them. In that case the metric d(i, j) could be chosen as
the shortest path metric, and it gives ||H,|| # 0 only if
diam(Z) =0, 1. (This is quite different from the spin
networks usually considered in loop quantum gravity.)

When discussing these kinds of spin systems it is natural
to give operators the (nonrelativistic) time dependence
given by Heisenberg evolution,

O = exp[iH1|O(0) exp[—iH1], (54)

where for simplicity we have taken H to be (explicitly) time
independent. Then one has the following [14]:

Theorem (L-R): Suppose for all sites i € A one has the
L-R condition

> lIHll|X] explu diam(X)] < s, (55)

X>3i

for some positive real constants s, u. Let Ay and By be
(bosonic) operators supported on sets X, Y, respectively.
Then if d(X,Y) > 0, one has
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I[Ax (), By (0)]]]
< 2/l Ax 1By 1Y expl—p dist(i, ¥)][exp(2s]t]) — 1]

ieX

(56)

<2l Ax Il By ll|X|exp[—u dist(X, Y)][exp(2s|t[) = 1] (57)

The physical interpretation of this bound is made
especially lucid by an argument due to Hastings [14],
which we reproduce here because of its later importance:
Given an operator A with support X as above, let B,(X) be
the ball radius ¢ about X: B,(X) = {i:dist(i,X) < ¢}.
Construct the following operator:

A%(1) = /dU UAx(t)UT, (58)

where one integrates over unitaries U supported on
A\B/(X) using the Haar measure. A%(#) has support
B/(X). Since UAx(1)U" = Ax(1) + U[Ax(1), U], one has

A% (1) — Ax (D)l < / WALUIL  (59)

Using Lieb-Robinson bound (57) to bound the integrand on
the RHS, we see A% (#) is exponentially operator norm close
to Ax(t) provided ¢ is sufficiently large compared to
25s|t|/u. That is, a time-evolved operator Ax(7) may be
approximated to exponential accuracy by an operator A% ()
supported on B,(X). Therefore B,(X) has the interpreta-
tion of an effective 7-dependent support for Ay(7), and the
(norm) “leakage” of Ax(7) out of the “light cone” B,(X) is
exponentially small.

Most commonly the Lieb-Robinson bound is cast into
the following form: Suppose the L-R condition (55) holds;
then there is a constant v, p that depends on s, u such that
for £ = dist(X,Y), and £ > v gt,

1[Ax(2). By (O)]Il S%Mg(f)lxlllellllByll, (60)
and g(#) decays exponentially with #. From the theorem,
vy g = 25/u. Ax(t) can be approximated by A%(f) sup-
ported on the set of sites within distance £ = v g|f| of X by
an error whose norm is bounded by =" v, g|t|g(£)| X ||| AxI.
Bounds on the leakage of information (von Neumann
entropy) out of the light cone were studied in [16]. For
H of finite nonzero range, i.e., ||H,|| = 0 for diam(Z) >
R for some R, the bound may be further improved [14]. If
R =1, ||[Hz|| < J, then one finds ¢(¢) decays faster than
exponentially, roughly g¢(#) ~ exp(—a£?), for positive
constant a. However, if H, has range 0, the discrete
equivalent of ultralocality, then u is undefined since
diam(X) = 0, and there is no more Lieb-Robinson light
cone.
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The intuition underlying the exponential decay is the
following: From the proof [14] one finds that the nth order
term of the exponential comes from a chain Hy , ..., H,
such that ZINX#0,Z\NZ, #0,. nlﬂZ #Q)Zﬂ
Y #0, a chain of n patches Zk, k=1,...,n each
supporting a local patch of H. Successive H), are mutually
noncommuting as their ranges overlap, but more distant
ones commute as their supports are mutually disjoint. So it
is crucial for Lieb-Robinson bounds that [H, , H | # 0 for
Z\NZy#@ and [Hy ,Hy | =0 for Z,NZ, =@ for all
Hamiltonian patches Z;, Z,. This is why the (classical)
relational framework analog {H,(z), H;(z)} was studied
earlier in Sec. III, where the relation between the Lieb-
Robinson bound patchy H, and the relational framework
H,;(z) is given by (44). These chains of successively
overlapping Hamiltonian patches generate the effective
operator support A% (#) (light cone).

While there are clear similarities with some features of
relational framework nonultralocality, the relational frame-
work Hamiltonians H;(7) have a nontrivial (and nonunitary)
7(t) flow; see (23). In particular, the simple Heisenberg
evolution with a time independent Hamiltonian (54) does
not apply to O[f](z(z)), and one requires a Lieb-Robinson
bound for # dependent Hamiltonians. A nonrelativistic Lieb-
Robinson bound including this possibility was derived by
Nachtergaele, Vershynina, and Zagrebnov (NVZ) in 2011
[15], which will now be sketched.

NVZ start with vertices x € I', where I" is a countable set
of vertices. They assume: There exists a nonincreasing real-
valued function F: [0, 00) — (0, 00) such that

IFIl = sup y  F(d(x.y)) and  (61)

xel’ yer

C = sup ZF

x,yel’ el

<o0. (62)

For i > 0 define F,(x) = exp(—ux)F(x), so ||F,|| < ||F]|,
C, < C. The Hilbert space of states for the subsystem at
x € T'is H,. For finite A C I' the Hilbert space associated
with A is Hy = ® ‘H,. The algebra of observables sup-

ported on A is .AA = ® B(Hx), where B(H,) is the set of

bounded linear operators on H,. If A; C A,, then identify
A,, with the subalgebra A, ® iAz\Al of A,,, and so
A, C Ay, The algebra of local observables is defined as

Aloe = ALCJFAA' (63)

The C*-algebra of quasilocal observables A is the norm
completion of Al%°. The support of A € A, is the minimal
set X C AsuchthatA = A’ ® iA\X for some A’ € Ay. The
generator of the operator dynamics is defined for each finite
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volume A C T', and we confine our interest to Hamiltonian
interactions (NVZ were also able to include suitable dis-
sipative terms). This interaction is such that for each finite
X cT and for all 7, ®(¢,X) is an operator in Ay and
®*(t,X) = ®(t, X). The evolution map L, (¢), for any finite
A T and time ¢, is a bounded linear map A, — A,,

Li(1)(A) =D (D)[@(1.2).A] = > Wy(1)(A).  (64)

ZCcA ZcA

The W, (t) are bounded linear maps acting on Ay, for any
XCA such that X D> Z, which are of the form
V(1) ® idx\z. The W (7) have norms that generally
depend on X, but are uniformly bounded as
1P, ()| <2)19(¢,Z)||. Let M, =B(C") be the nxn
complex matrices. We say a map ¥ € B(.Ay) is completely
bounded iff, ¥V n > 1 the linear maps ¥ ® idy, , defined on
A, ® M, are bounded with uniformly bounded norm

¥l = Surfll‘I’ ® idy, || < co. (65)
nx

Specifically, ||V, ||, is amap definedon.A,, V A C I'such

that Z C A, which is independent of the choice of A in T

To obtain a Lieb-Robinson bound, NVZ make the
following two hypotheses: Given I', d, F as above,

(1) For all finite A Cc T, £, is norm continuous in f,

hence uniformly continuous on compact intervals.

(2) Foreach A, there exists 4 > 0 such that forall € R,

) 12|l
IWll;y = sup sup » — (66)
i s€[0,1] x,yeA ZQZ” Fy(d(x7 y))
One also finds
NG ES 2201 RSB B L 2101
ZCA x,yeA Z3x,y
< Wl ANFI =M
(67)

By definition of || V||, , one has M; < M, for s < 1.
Fix some large time 7 > 0, and for all A € A, let A(r)

for + € [0,T] be a solution of the ordinary differential
equation (ODE)

d

—A(t) =

A
a L7\A(1)

with  A(0) = A. (68)
Because ||L£5(f)]| < My < oo, this ODE has a unique
solution defined by yA(A)=A(t) for 0<s<t<T,
where A(7) is the unique solution of (68) for 7 € [s, 7]
with initial condition A(s) =A. We say a linear map
y: A — B for C*-algebras A, B is completely positive if
the maps y ® id,,: A ® M, - B ® M, are positive for all
n > 1. Here positive means positive algebra elements (i.e.,
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of form A*A) are mapped to positive algebra elements.
NVZ showed that the map y,; is a unit preserving,
completely positive map. For the one parameter group of
automorphisms induced by the Hamiltonian generators
®(1,Z), the NVZ version of the Lieb-Robinson bound
states the following:

There are constants v, p, ¢ such that for A € Ay,
B e Ay,

I[A. B(0)]ll < C(A, B) exp[-u(d(X.Y) —vi)],  (69)

where C(A, B) = c||A||||B|| min(|X|, |Y|). More specifi-
cally, given assumptions (1) and (2) above, NVZ’s theorem
2 states that

IA(s). B@)]Il < (2/C)IANNBIHIFI| min(]X], [Y])

x exp(—ud(X.Y))
X [exp(||\Il||,,MCM(t - S)) - 1]’ (70)

for X, Y c A, XNY = @. Notice the bound is uniform over
the chosen A. To extend to uniformity over I', the definition
of [|¥]|,, in assumption (2) above should have the sup over
x, y altered from A to T

In order to adapt this result to relational framework
gauge flow, we need to know that the derivation introduces
the quantity

I 772 (B)Il

CoX-0 = S e

T eBy

(71)

where for X C A, By is the subspace of B(Ay) of
completely bounded linear maps vanishing on the identity.
Here NVZ use the cb-norm (in contrast to the standard
norm) to make the denominator independent of A CT.
NVZ’s derivation gives

Cp(X.,1) < Cp(X.s)

/ 1L, (NICa(Z.7) dr, with (72)

zmx#@

1Lz = 1))l < 1.y, > Fudx.y).  (73)

x,yeZ

One also has that Cz(Z,s) = ||B]| if ZNY # @ and other-
wise vanishes. Iterating these equations produces a Dyson
expansion,

p(X.1) < "BHZ
a, = (10]l,,)"(C)"" > Fuld(x,y).  (75)

xeX,yeY

(t—s)" (74)

This implies Egs. (69) and (70) above with the (non-
relativistic) spatially uniform Lieb-Robinson velocity
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ULr = ||‘I’||z.;4_ﬂ

C
P < II‘PIIT,,JI”, (76)

for all r € [0, 7] (temporally uniform bound). This bound
on v;r can be utilized to bound the norm leakage of
operators outside the Lieb-Robinson light cone, analo-
gously to what was performed earlier for the time-
independent Hamiltonian case.

V. LIEB-ROBINSON BOUNDS FOR THE
DISCRETIZED RELATIONAL FRAMEWORK

We now apply the NVZ version of a Lieb-Robinson
bound [15] to the relational framework discretized as
previously described on some lattice or network. It is
essential to handle appropriately the fact that the 3-metric
d(x,y) is both slicing {z(s)} and slice s (external time)
dependent, and the Lieb-Robinson bound should preserve
the necessary gauge invariance. Strictly speaking, d(x, y)
should then be denoted as d(x, y; {z(s)}, s) for the slice at
external time s in slicing {z(s) }; however, we will continue
to use the abbreviated form d(x,y) for convenience. The
reader should bear in mind the suppressed slicing and slice
dependence.

The key initial step is to replace NVZ’s ®(z, Z) by

Nl o i) oy
0.2) = 10 = 3 (P )i o).

i=0

from the spatially discretized version of (44) Equation (72)
may be iterated as Cz(X,1) <> * ,C )(X t), where the

n = 0 iterate vanishes since XNY = @. For simplicity we
first focus on the n = 1 term,

Y= 3 [ieeiczs a0
ZNX20

<2IIBI(r-5)) sup [|H,(5)II.  (79)

JEX Z3j.znY+0 SEls.1]

The factor 2 on the RHS comes from ||¥,(r)| <
2||Hz(r)|l, where 2 enters from bounding ||[Hz(r),A]ll
by 2||Hz(r)||||A]l. The general idea of the rest of the
derivation is to insert strategically placed uniforming
bounds (sups) after introducing an appropriate factor of
F,. The ranges of the sups are also important and have to be
selected with care. We also use sup(AB) < sup( ) sup(B)
for A,B>0. Inserting a factor 1=F,(d(j.k))/
F,(d(j,k)), one has

Cyl(x.0) <20Bll(t—s5) 3 Y sup

jex.key z>,.k SEls.1]

|HZ(5)l )
x [WF,M(M»] (80)
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and using the RHS of (77),

Cy(X.0) <20Bll(t=5) > > (sup)( sup )

jeXkeyzsjk SEls.1]  E[0.N 1]

07,7 (3)
X [NC T}
IHEP (2(3))
* <(i‘é‘>’)(ile[%?£_u)22}é%){ F,(d0.%) D
x (( sup )F,(d(j.K))). (81)

S€(s.1]

where a bounding sup over slicings {z(5)} has been
inserted into the middle factor. Henceforth we will take
o7l (1)/0t > 0, for all ¢, i, j, which is just the monotonicity
condition necessary for freedom from anomalies discussed
earlier, so the absolute values in the first line may be
omitted. We have also “extended” the sup over s in the
factor containing ||H|| from 5 € [s,] to § € [0, 7], with

|
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0<s<t<T, where recall T is some “large” exter-
nal time.

Next, first bound the first factor, containing the &
derivatives of 7, by taking an overall sup over j. €T,
thereby rendering that factor independent of Z. Returning
then to the middle factor with || H||, bring in the sum over Z,
and expand j € X, k € Ytox,y € A D Z, for some chosen
A C T of finite cardinality. By expanding j, k to x,y € A,
more positive terms were added. Hence the sup factor

containing ||H{1 (7)|| may be bounded by

[IIHf”(Z) (z(3))I

)sup ) (sup) S [V O e

5€[0,7] x.yeA z5xy

(sup)
7(5)

sup
i€[0,N.—1]

which is now conveniently independent of j, k. Therefore
the j, k sum on the far left may then be moved all the way to
the right to act only on the third factor, containing only
F,(d(j.k)). Thus,

ol (5
606,y <2080 =) (sup)(_sup ) sup [, 7))
Je€T  i€0,Nc—1]  5€[s.1] 05
IE 2 ((3)I .
X { (sup)( sup )(sup )(sup) ) “——r——— (sup )F,(d(j.k)) ). (83)
( o(5)  i€[0.Nc—1] 5€[0.T] x,yeA Z;;y Fﬂ(d(x,y)) jeXZk:eY 5€ls,1] g
This may be written more compactly as
ol (5
Cl (X.1) < 20BIl(r = )l v (F,) {(sup)( sup )( sup ) (Nc ! ))] IH Iz, (84)
J.€L i€[0.N .~1] 53€[s.1] 0s
where we have set
Ixy(F,) = ZZ(FUP VE(d(j K)]3)5)- (85)
jEX key SEls.]
Similar to NVZ, we assume there exists a real y > 0 such that
. 12 (3))I
Hllr, = (sup)( sup )('sup )(sup) p ———r——= < co. (86)
T o(5) i€[0.Nc—1] 3€[0.7] x.,yeA ;y Fu(d(x’)’))
From (86) we see ||H||7, is a bound temporally uniform sup F,(d(x,y)) < Fﬂ(iier[l‘fl]d(x,y)), (87)
over § € [0, 7] and spatially uniform over the chosen finite S€ls.1] =
subset A C I'. This occurs because A C I'is any finite lattice
containing Z C A, and ||Hfj(z) (z(5))]l is independent of the ~ and
choice of A within I". One may extend the definition of
|||, to be spatially uniform over countable I" as in NVZ, )
by changing the sup over x, y in (86) from A to I'. Ixy(F,) < Z Z F}t(gérﬁyft]d<x’y))' (88)

We now examine Iy y(F,) in some more detail. Recall
F,(x) = exp(—ux)F(x) is a positive real-valued, nonin-
creasing function of its non-negative real argument; thus for
a fixed slicing

xeX yeY

Alternatively, in the discretized model under study, X, Y are
both finite sets, so
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Iyy(F,) = sup > > F,(d(x.y))

5€ls.1] xex yey

< sup min(|X
S€(s.1]

Y) swp S Fudx.y),

yem(X.Y) yem(x.y)

’

(89)

where m(X,Y) =Y and M(X,Y) = X if |X| > |Y|; other-
wise m(X,Y) = X and M(X,Y) =Y. Since F, is positive,
this may be bounded by “expanding” both m(X,Y) and
M(X,Y) to T to yield

Ixy(F,) <min(|X[, [Y[) exp[-u inf d(X.Y)] sup [|IF||.
5€ls.1] 5€[0,7]

(90)

where as a reminder, ||F|| = supyer Y _yer F(d(x,y)) < o0
contains an implicit § dependence through d(x, y).

When one bounds the higher order terms n > 1 in the
Dyson expansion (74) for Cg(X, t), at order n one initially
inserts n — 1 factors of

exp[—u(d(x,z) +d(z,y))]

Fu(d(x.2)F,(d(z.y)) _ .
expl—ud(x.y)]

F,(d(x.y)) B

<C,

(O1)

where the triangle property of the 3-metric on a fixed slice
of a fixed slicing has been applied. Recall the positive real
constant C is defined by (62), and F,(x) = e F(x).
There are also n factors of H,. Expanding Cz(X,t) <
IBII> ,—1a,(t = s)"/n!, one bounds

a, < (20| Hll7,,)"[(sup)( sup )C,(d(z(5).5))]""

«(5) 5€[0.1]
ot (5)\ 1"
X [(sup)( sup )(sup)(Nc 8~( )>]
Jj€ i€l0.N~1] €[5 s

x [( wp) S 3 F (d( k>|,<g>.§>] . (92)

s€ls.f] jex key

We now assemble all these intermediate steps into the final
result. Define

éu = (sup)( sup )C,. (93)
«(5) 5€(0.7]

Because external time reparametrization (1-diff) invariance
will require a Lieb-Robinson bound restricted to infini-
tesimal time increments (7 — s) — 0, we set 6t = (1 —s) —
0 in the above expressions. Also define
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(_sup )IIF(d(z(5), 3)Il < (sup)( sup )(sup)

S€t,r+61] 7(5) 5€[0,T] xe€l’
X ZF(d(x,y;rG), 5))
yel’
< F(inf inf d(x,y)) = ||F]l, 94
<sup ) Finf inf d(x.y)) = IF] (94)

xel’ yer T(E) B

and ||F|| is slicing and slice independent. Then one has the
relational framework Lieb-Robinson bound,

[Ax(2). By (1 + 80)]l](s)

2 ~ .
< = lIAINIBINIF|| min(|X], [Y])
Gy

x lexp(—p&((1))) —exp(-u _inf d(X,Y))], (95)

SE[t.1+61]
where the |, on the LHS indicates one is referring to a
single slice at some 7 € [0, 7] within an arbitrary slicing

7(s). As a reminder, X, Y are the supports of A(t), B(t),
respectively, with XNY = @. We have denoted

2C

() =] inf d(X.Y:e(s).s)] - (T”NCnHuT,,,) (51)

SE[1,1+61]

o
<[ sup ) sop ()] 09
Jj€r i€f0O.N.~1] selt,+51] s

We will refer to the quantity

2C
ViR = TFNC”H”T.IM (97)

as the relational framework Lieb-Robinson velocity.

VI. INVARIANCE AND OTHER PROPERTIES OF
THE RELATIONAL FRAMEWORK
LIEB-ROBINSON BOUND

The relational framework Lieb-Robinson bound (95) has
a LHS that refers to the t-differential (5¢) behavior of the
norm of an operator commutator between discretized
observables A, B near a single slice of some arbitrary
slicing. Typically we take the operators A, B to have the

A

relational framework form A(O|f](z)), so they are dis-
cretized Dirac observables. The RHS has many factors,
some of which are uniformly bounded over slicings and
slices, and others that are slicing and/or slice dependent. We
now describe those dependencies. Recall that a change of
slicing is a gauge transformation, and a choice of slice s
within a slicing is a gauge fixing. By definition (86), y ~
1/diam(Z) is chosen so that ||H||7, is finite and includes
sups over all slicings z(5) and over all slices at 5 within
those slicings. Therefore, in addition to being spatially and
temporally uniform, x4 and ||H||y, are slicing and slice
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uniform as well. Moreover, C‘# = SUP,(5)SUPsefo,7)Cy 1S H
and F dependent, and hence slicing and slice uniform too.
Thus (2//4)C”||H||T,” and then v,z are both slicing, slice,
and spatiotemporally uniform. The same conclusion holds
for the prefactor of the exponentials on the RHS of (95).

By comparison with the simple ¢ independent
Hamiltonian nonrelativistic Lieb-Robinson bound (57),
we see the exponentially damped leakage from a local light
cone is governed by the quantity £ in (96) above. So when

6D(t) = inf
SE[t.1+61]

(d(X, Y52(s).5)) > vus <p>

jer

x< sup > < sup >{8d‘(s)5t}, (98)
ke[0,N ~1] s€[t,1+61] Os

there is exponentially small leakage of the operator norm
from the local light cone during 6z. 6D(¢) is a slicing
dependent and slice dependent (slice near f) quantity. It is
also ¢t reparameterization (1-diff) invariant under ¢t — ¢ =
f(t),6t > &' = f'(¢)6t with f'(¢) > 0 for ¢t € [0, T], treat-
ing 7/ and H;(z) as (3 + 1) scalars, and noting that such a
relabeling of the slice from ¢ to ¢’ does not affect the 3-metric
d on the slice. At a fixed slicing and slice, 6D(t) is also
invariant under smooth coordinate reparametrizations
(3-diffs) of that 3-slice because the 3-metric d is, even
though neither the spatial discretization (lattice) itself nor
the 3-metric tensor g;; are 3-diff invariant. The factor
sup,(0t/0s)dt on the RHS of (98) has these same 3-slice
properties as d. Hence one has on-shell (3 4 1)-diff invari-
ance of the relational framework Lieb-Robinson bound local
light cone.

As shown by Dittrich [7,8], on-shell one can classically
embed every slicing into a 4-manifold with a Lorentzian
4-metric. The tangent bundle of this 4-manifold may
also be smoothly partitioned in a (3 + 1)-diff invariant
way using that Lorentzian metric to define local null
directions and so generate a 4-metric based null cone.
The relational framework Lieb-Robinson bound local light
cone should coincide with or bound the 4-metric null cone,
but this has not yet been explicitly established. The
4-metric null cone, however, does not address the important
issue of observable commutator leakage outside the light
cone, which is the crux of the relational framework Lieb-
Robinson bound.

One can also derive a relational framework Lieb-
Robinson bound local light-cone structure with
v} gsup,(0t/0t)dt replacing v i sup,(0r/0r)dt in a new
8D(t) which is slicing independent (containing a SUP,(s))
but is slice dependent (still retaining the supye; 451). That

is, one fixes some external ¢ parametrization 7l (), and
looks at slices within 67 of  over all the slicings z(¢). But
this construction seems less physically natural than the one
described above, where §D(t) is both slicing and slice
dependent, so we will not discuss it further.
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A differential Lieb-Robinson bound local light cone can
be “integrated forwards” in ¢ from slice to slice within a
single slicing to generate “support tubes” for observables.
To do this, one constructs operators A;’}(l, t + &t) over the
external time interval [z, 7+ 6f] by the Hastings method
described in Sec. IV which are exponentially accurate
t-dependent supports for a discretized Dirac observable
gauge evolving in external time from ¢ to ¢ + &¢. This then
may be iterated for succeeding slices spaced by intervals
ot — 0. This is precisely analogous to how one “integrates”
null cones on a curved Lorentzian manifold to generate
causal curves from the locally Minkowskian geometry.

VII. PHYSICAL AND CONCEPTUAL QUESTIONS

We have explored nonultralocal constraints with the
relational framework and derived an external time differ-
ential local light-cone structure based on Lieb-Robinson
bounds using a discrete spatial lattice or network model.
Several physical and conceptual issues about this spring to
mind, and we discuss those here. This discussion is by
necessity less mathematically rigorous and considerably
speculative in some cases.

Question 1: Aside from slicing and slice dependent
factors like (07/0s)ét are vy, and the local light cone
“the same” as the classical spacetime into which the rela-
tional framework is embedded varies? That is, basically one
is taking sups over a large spacetime to construct
vy rSup,(07/0s)St. But what happens when the entire
spacetime, initial conditions, and so on, are altered?
Would p stay the same? If u changed, then according to
(97) v g would also change as the spacetime under inves-
tigation was altered, a potentially fatal physical pathology if
we expect vy to be (or bound) the speed of light.

One way to avoid such an early demise for the
relational framework Lieb-Robinson bound would be that
1/u ~ diam(Z), the proper “typical size” of single on-shell
Hamiltonian patches, is a proper length much smaller than
the minimum over the classical spacetimes of any proper
curvature scales L.(x) they contain. That is, one could
interpret 1/ as some kind of proper finite range & of the
on-shell constraints or Hamiltonians. Thus, if £ is a
microscopic scale relative to classical geometrical scales,
& < min,L.(x) uniformly for all the classical spacetimes
under consideration, then different classical geometries but
with the same constraints will have the same y, ||H||7 ,, é‘ﬂ
and thus v;,. This takes the constraints to be nonlocal,
homogeneous in form, and uniformly bounded; it essen-
tially requires a large separation of physical scales, which is
common throughout physics. In addition, £ would also
have to be far smaller than any particle physics lengths that
have been probed so far for there not to have been any
evidence yet of nonlocality. But this does not mean that &
has to be on the order of the Planck scale Lp ~ 1073 m, but
it would certainly require £ <2 x 1079 m (1 TeV). ¢
would still have to be longer than the scale needed to have a
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well defined 3-metric on each slice, which at least requires
that £> Lp.

Question 2: What kind of terms in H,(z) would generate
the required nonultralocality? Specifically, would gradient
terms (of any order) suffice to produce the nonultralocality
for a Lieb-Robinson bound?

This question is closely tied to discretization. In a
typical discretization one replaces V, y(x) — (w(j + 1)—
w(j))/b, where b is some kind of lattice constant, and j is a
site index corresponding to the continuum coordinate x. So
H; containing a pointwise gradient in the continuum, such
as y(x) Vi (x), becomes nonlocal in the discretization since
it would couple sites j and j 4 1. But in the continuum H,
remains firmly ultralocal. Indeed, all the well known
actions for continuum canonical gravity such as the
3+ 1 ADM decomposition or the Holst action are ultra-
local, and for those cases £ = 0, and then there is no more
Lieb-Robinson local light cone.

The answer to the question is no, continuum gradients
alone are insufficient for nonultralocality. The reason for
the negative answer is any discretization perceives a
continuum gradient as a lattice constant dependent con-
tribution to &(b) = 1/u(b). An nth order gradient is
computed by discretization to give a contribution
¢ «x nb, which vanishes in the continuum limit b — 0.
Gradients have no nonzero natural scale in the continuum.
Hence for a local light cone to emerge by Lieb-Robinson
bounds, the nonultralocal H; cannot be constructed from
products of fields and their gradients at a single point. Both
&(b) and ||H/|l7, must be independent of b as b — 0.
Physical quantities like v; p and the local light cone cannot
depend on any cutoff scale like . This is the lesson of the
renormalization group for background dependent quantum
field theory, and it also requires discretization independ-
ence in the continuum limit for gravitational theories. In
fact, as found in [17], discretization independence implies
nonlocality in 4D discrete quantum gravity.

This question and its answer lead us to ask the following:

Question 3: What is the role of the discretization in the
Lieb-Robinson bound?

Contact with physical reality occurs when b — 0
because any nonzero b spatial discretization by itself breaks
3-diff invariance since the lattice or network is not gen-
erally mapped into itself by a 3-diff [18]. There are,
however, perfect actions for discretizations that do recover
the requisite invariance as b — 0 for several models [19].
Even for these special cases, the discretization will coarse
grain or voxelate the metric information at least over the
scale b. This classical error makes the discretized d(j, k)
acquire a b dependence. Again we have to assume that
lim,,_od(x, y; b) is well defined so v; gsup,(dr/Js)dt and
6D(t) are all also well defined in that continuum limit,
where the classical voxelation error disappears.

Question 4: How might the required nonultralocality of
h;, H;(z) arise? That is, if one starts from some bare
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classical constraints specified by H¢' that are ultralocal,
how can one end up with effective quantum constraints
generated by a nonultralocal HS?

The simple answer is that the real quantitative origins of
nonultralocality /; lie beyond the scope of the present work.
Indeed, this is like asking what atomic physics lies behind the
exchange coupling constant J in the Ising model (53). The
quantum algebra 2l at the kinematic level is generated by
0,(), P,(z) through their canonical commutation relations.
From that algebra we can find its representation carrier
Hilbert space by the GNS construction from any positive
linear functional (state) p on 2l. The quantum constraints are
p[P; + iST) = 0; i.e., the quantum fluctuations satisfy the
effective constraints in the mean (as an expectation value). A
similar process occurs in background-dependent quantum
field theory where quantum corrections due to loops are
taken into account using a field dependent effective
(“dressed”) action I'[®] rather than the bare classical action
I[®] [20]. Connected vacuum-vacuum quantum field theory
amplitudes can be computed using tree-level (mean field)
Feynman graphs with vertices using I'[®] instead of I[®]. A
similar “dressing” by quantum fluctuations might render 7
nonultralocal. Unfortunately the quantitative details are out
of present computational reach for background independent
quantum gravity without the well-defined path integral
technology of quantum field theory.

An alternative way to consider this problem is from the
point of view of the renormalization group (RNG), asymp-
totic safety, and lattice gauge theories [21]. How finite-
scale interactions arise in the » — 0 (UV) limit is addressed
by the Wilsonian RNG flow. Nontrivial scaling of the
coupling constants (residing within the /;) at a RNG fixed
point can lead to a continuum theory, especially if there is a
second order phase transition either within the quantum-
classical crossover regime or perhaps at lower energies. The
correlation lengths such as £ (in lattice units) would diverge
there and may play a role in the continuum limit of
canonical quantum gravity. It is also interesting to note
that asymptotic safety does not use a bare action as an
input, but rather produces one as an output, thereby
possibly circumventing the issue of how starting from an
ultralocal bare action leads to nonultralocality.

A more speculative answer is that we may not know the
“true” physical action or constraints for gravity at very
short but not yet Planckian lengths, only that they look local
as far as we can tell from our experience at long length
scales (above 2 x 107! m or energies up to 1 TeV). In that
case, the Lieb-Robinson local light cone would be a long
length scale manifestation of nonultralocality of those
otherwise inaccessible short length scale constraints, a hint
that we might not be aware of some deeper physics. One
possibility is that noncommutative products such as the
Moyal-Weyl-Groenewold *-product and deformed diffeo-
morphisms could play a role. While noncommutative field
theories still have Lagrangian densities and Noether
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currents, the products of objects in the Lagrangian density
are nonlocal [22]. The scale of that nonlocality might be
associated with £ above. However, noncommutative geom-
etry is not a quantization of the underlying manifold in the
sense that it does not promote phase space functions to
operators. So noncommutative manifolds do not describe
quantum fluctuations of geometry, and they are on-shell
descriptions. Instead they require that the geometric and
matter field actions be invariant under deformed diffeo-
morphisms of the noncommutative manifold, which are
nearly the standard diffeomorphisms normally used to
describe manifolds like X that leave the usual local action
invariant. At length scales larger than the nonlocal effects,
the noncommutative symmetries and constraints should
approach the standard ones while an on-shell Lieb-
Robinson light cone emerges from a relational framework
based on the noncommutative action. It is worth noting in
this regard that the nonlocality induced by noncommutative
geometry is not of the gradient (spurious) type.

Question 5: In the relational framework Lieb-Robinson
bound which variables are quantum and which are classical?

The operators A, B appearing in the Lieb-Robinson bound
analysis include those constructed from Q,,(z), P,,(z), which
may describe either geometrical or possibly matter degrees of
freedom. These are treated fully quantum mechanically from
the on-shell gauge flow (11). The z; are real parameters and
are never promoted to quantum operators, so they do not
acquire fluctuations. As discussed earlier, the clock variables
T' are also not promoted to physical operators 77. More
crucially, at the heart of the Lieb-Robinson bound lurks
d(x,y), the on-slice 3-metric, computed from geometrical
variables. In d(x, y) those variables, such as the ADM 3-
metric g, are treated classically, while in A(z), B(z) those
same variables are treated quantum mechanically. So there
seems to be an inconsistency. That is, inside A(z) and B(z)
4. 1s treated as an element of a noncommutative (quantum)
C*-algebra, but when ¢, enters a computation of
d(x,y;7(s), s) it is treated as an element of a commutative
(classical) C*-algebra. However, if we use classical geo-
desics as a basis for computing d(x, y) as an extremum over
the quantum expectation (§,,, ), then the Lieb-Robinson local
light-cone quantity 5D () [see (98)] is mean field (expect-
ation value level) with respect to g, over [t, ¢ + 6t]. Within
the Hamiltonians &, (z), g, is treated as a quantum operator.
Thus we can say the Lieb-Robinson local light-cone con-
struction is at least mean field with respect to fluctuations
entering q,;,, and it must be stabilized against those fluctua-
tions if it is to survive.

Question 6: What parameters, if any, delineate a window
of survival for the mean-field Lieb-Robinson local light
cone in its precarious perch among the tensions between the
classical and quantum worlds?

To answer this, we introduce dd as the largest root mean
square quantum fluctuation of the proper lengths d(i, j),
and also take the classical discretization error in proper
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lengths to be roughly the same as the lattice constant b. L,
denotes the shortest classical curvature scale of any 3-
geometry under consideration. We also have & = 1/u, the
range (proper patch diameter) of the nonultralocal con-
straints. Since a classical metric d(i,j) loses physical
meaning when d(i, j) < éd, and quantum fluctuations
could play a role in the origin of &, 6d < & We can then
qualitatively delineate four distinct physical regimes:

(@) 0d S¢é<b<x L, Here the discretization is too
coarse to resolve the finite range £ of the H;, which then
appears to be ultralocal. The Lieb-Robinson local light
cone does not emerge.

(b)dd < b < & <« L,.: Here the Lieb-Robinson local light
cone is stabilized against the quantum fluctuations dd, the
discretization can resolve the nonultralocal range £ of the H,
but it does not resolve the quantum fluctuations. The local
light cone is b (discretization) independent once b < &.

(c) b < déd < &£ < L,: The proper range ¢ is still sepa-
rated and immune from quantum fluctuations, while the
local light cone is still discretization (b) independent.

d) b<déd=¢<x L. Now & is quantum limited, a
fluctuation limited patch size. We still have discretization
independence once b < 6d, where the discretization error is
no longer physically relevant.

In cases (b) and (c) the Lieb-Robinson local light cone
will survive provided: (1) the continuum limit b — 0 is well
behaved, and (2) 6d < 6D(t) [see (98)]. This means &d
does not significantly affect the width of the local light cone
at ¢, t 4 6t, and thereby limits 6¢ from below. That is, the #-
dependence of the classical 3-metric d(x, y) cannot vary too
quickly in external time, so one can define a mean field or
classical differential local light cone. Case (b) or (c) could
correspond to the noncommutative geometry scenario for
nonlocality over the scale £ in the presence of a metric
solution. In the marginal case (d), where the scale of
nonlocality is about that of the quantum fluctuations, the
survival of the Lieb-Robinson local light cone is too close
to call. Unfortunately, we really do not know which regime
we live in. But if noncommutative geometry provided an
action invariant under deformed diffeomorphisms and
nonlocal on scale &, then that would be on shell, and could
naturally separate £ from quantum length fluctuations dd.

An alternative approach to relieve the classical vs
quantum tension inherent in d(i, j) is to use semiclassical
(coherent) states W [23] of 3-space. The idea is that each
length on the initial slice ¢ has a quantum expectation
(d)y =dy, a quantum fluctuation ((d — (d)y)?)y =
6%(¥), and the classical length dy > 0. It is also possible
to use other geometric quantities besides d(x,y), such as
the areas of triangles or volumes of tetrahedra. To achieve
semiclassical consistency for d(i, j) in a state ¥, one would
require for all sites i, j

|dc1 _d‘I’|

<1 and (99)
dcl
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(%)

cl

< L (100)

This makes the notion of classical distance insensitive to
the quantum fluctuations from the state ¥. Such a con-
struction would also encounter difficulties in case (d)
above, where the range £ is quantum limited.

VIII. SUMMARY, SELF-CRITICISM, AND
CONCLUSION

In this work we have explored the consequences of
nonultralocal constraints within the context of the relational
framework of canonical gravity. It was shown that this leads
to an on-shell non-Abelian algebra for the physical
Hamiltonians, while the constraint algebra remains
Abelian. Unitary propagators stay anomaly-free for smooth
monotonic gauge flow in an external time parameter 7. A set
of Hamiltonians that generate operator gauge flow in # with
finite-ranged support patches was derived. After introducing
a spatial discretization, Lieb-Robinson bounds were
reviewed and applied to demonstrate an on-shell differential
time local light cone. This local light cone has the properties
that there is exponentially small norm leakage of discretized
Dirac operator commutators outside the local light cone, it
displays suitable gauge (slicing) and (3 + 1)-diffeomor-
phism invariance, and the local light cone can be “inte-
grated” into “support tubes” for discretized Dirac operators
that resemble familiar causal curves from general relativity.
This entire Lieb-Robinson bound local light-cone structure
collapses for ultralocal constraints. Therefore nonultralo-
cality together with Lieb-Robinson bounds go an unexpect-
edly long way toward explaining how the standard quantum
field theory version of microcausality, where local observ-
ables commute at spacelike distances, emerges from the
(semi)classical relational formulation of canonical gravity at
length scales greater than that characterizing the nonlocality.

Within the application of quantum field theory to fixed
curved background spacetimes, one can derive the familiar
causal advanced and retarded propagators as inverse wave
operators (Green’s functions) for matter fields such as
scalar bosons and so on. These show that the vacuum
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expectation values of commutators of canonical fields
vanish outside the past or future light cone. However,
while this is straightforward for Minkowski spacetime, to
obtain unique solutions for general curved space times one
imposes the stringent requirement that the manifold be
globally hyperbolic. The Lieb-Robinson approach, on the
other hand, requires no such corresponding ab initio strong
global background causal structure assumption.

The criticism of the Lieb-Robinson bound route from
nonultralocality to local light cones is abundantly clear
from the responses to the questions in the previous section.
While some issues, such as how two different classical
spacetimes can share the same Lieb-Robinson velocity, or
the role of field gradients, are quite clear, many deeper
concerns remain only partially clarified, or just display our
glaring ignorance. These harder nuts to crack include the
following: What are the origins of nonlocality? What is the
detailed microscopic meaning of the range or correlation
length & = 1/u? What if £ is about the size of quantum
fluctuations (marginal case)? What are the specifics of the
semiclassical limit or choice of quantum states necessary to
ensure that quantum fluctuations do not destroy the local
light cone? Is it possible to handle the continuum limit
more thoroughly than simply to assume the required limit is
well behaved? Might noncommutative geometry or field
theory play a role in these issues? Each of these questions
challenges us to probe more deeply into the “atomic”
theory underlying the model of condensed matter ancestry
presented here and stands as motivation for future work.

Nevertheless, it remains surprising that aspects of cau-
sality may be linked to nonultralocality. Adopting ultra-
locality uncritically might be somewhat like what occurred
in the 1950s with parity: A beautiful symmetry, but Nature
could be a lot more interesting if She broke it once in a while.
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