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The relational framework of canonical quantum gravity with nonultralocal constraints is explored. After
demonstrating the absence of anomalies, a spatially discretized version of the relational framework is
introduced. This allows the application of Lieb-Robinson bounds to on-shell monotonic gauge flow when
there is a continuous external “time” parameter. An explicit Lieb-Robinson bound is derived for the
differential on-shell evolution of the operator norm of the commutator of discretized Dirac observables,
demonstrating how a local light conelike causal structure emerges. Ultralocal constraints do not permit such
a structure to arise via Lieb-Robinson bounds. Gauge and (3þ 1)-diffeomorphism invariance of the light
cone is discussed along with the issues of quantum fluctuations, the nature of the nonlocalities, the spatial
continuum limit, and the possible links to noncommutative geometry.
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I. INTRODUCTION AND MOTIVATION

Locality and causality have played pivotal roles in
gravitational physics for nearly a century. While the concept
and important consequences of local light cones are well
established in general relativity, causality in canonical loop
quantum gravity and in spin foam models has proven more
difficult to elucidate. Almost 20 years agoSmolin [1] pointed
out the importance of the emergence of classical long range
correlations for nonpertubative theories of quantum gravity
in some appropriate semiclassical limit. These correlations
are then reflected in how one thinks about causality in
quantum field theory on a fixed classical background
spacetime, specifically that local observables at spacelike
separation commute (microcausality). During the interven-
ing years, there have been several studies of causality in the
background independent fully quantum regime, particularly
utilizing spin foam (covariant) models. However, generally
the spin foam models do not support causal correlations,
unless they either are assumed at the outset [2,3] or involve
some kind of alteration of the vertex amplitude intended to
describe a local orientation [4]. On the other hand, approach-
ing the issue of semiclassical causality from the canonical
point of view is even more conceptually challenging since
that approach is a “timeless” formalism. Consequently, the
consensus expectation is that microcausality will emerge
from some as yet to be developed semiclassical limit of
quantum gravity; however, to date such a causal limit for
quantum gravity remains lacking. Thus it is mysterious that
microcausality occupies such a foundational place in general
relativity, quantum field theory, and the standard model of
particle physics, yet is still so elusive from a background
independent quantum gravity point of view. In a broader
context, the semiclassical regime of quantum gravity is of

importance not only from the perspective of causal correla-
tions, but also as a general testing ground to examinewhether
a theory of quantum gravity can behave in familiar classical
ways in some suitable limit.
Here we take a simple first step toward understanding

these questions starting from an unexpected direction. We
adopt the relational framework approach to canonical quan-
tum gravity which has been developed over several decades
[5–9]. Then we explore the case where the constraints are
nonultralocal and, for reasons to be discussed, limit our
considerations to the on-shell physics. Next, we apply Lieb-
Robinson bounds, originally introduced in the 1970s to
describe solid-state spin systems [10], to a spatially dis-
cretized version of the relational framework and demonstrate
how a suitably gauge invariant differential local light cone for
discretized Dirac observables may be constructed. In
essence, the local light-cone emerges from on-shell non-
ultralocality of constraints in a quite general sense within
spatially discrete relational framework models with smooth
monotonic gauge flow described by an external “time”
parameter. If the constraints are taken to be ultralocal, then
this Lieb-Robinson-based causal structure collapses.
Quantum fluctuations act to disrupt the local light-cone
structure, and a set of general criteria are presented which are
sufficient for the Lieb-Robinson–based local light-cone
structure to survive the quantum-classical tug of war.
The outline of the remainder of the paper is as follows: The

relational framework is briefly recapitulated in Sec. II.
Section III studies nonultralocality, its freedom from anoma-
lies, and introduces “patchy” gauge flow. It concludes with a
description of the spatially discretizedmodel that is used later
on. Section IVprovides an introduction to two nonrelativistic
versions of earlier Lieb-Robinson bounds from the literature:
The first for Heisenberg operator evolution via time inde-
pendent Hamiltonians, and another more mathematically*Paul.deVegvar@post.harvard.edu
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sophisticated approach for time-dependent Hamiltonians,
both on general lattices or networks. In Sec. V a relativistic
differential-time expression for theLieb-Robinson local light
cone is derived for the case of an external time parameter
acting as the synchronizing conductor of the relational
framework’s clock variable symphony orchestra.
Section VI discusses gauge invariance and other properties
of the relational local light cone. Through a series of
questions and answers, Sec. VII examines issues related to
the continuum limit of the spatial discretization, the nature of
nonlocality necessary for theLieb-Robinson local light cone,
a possible link to noncommutative geometry, and the role of
quantum fluctuations. The paper concludes with a brief
summary and self-criticism of the model in Sec. VIII.

II. REVIEW OF THE RELATIONAL
FRAMEWORK

In this section we briefly review the necessary points of
the relational framework formalism. For further details
please see [7,8,11]. The essential idea behind the relational
framework is to construct Dirac (gauge invariant) observ-
ables from gauge variant (partial) observables. This all
starts from the classical phase space M description of a
reparametrization invariant system whose dynamics is
described by a (canonical) Hamiltonian that consists
entirely of a linear combination of constraints. In the
relational framework, quantization occurs on the reduced
phase space. We start by describing the classical formalism.
Consider then a set of first-class constraints CI with I ∈ I ,
an arbitrary index set. For the case of canonical four-
dimensional general relativity, the index I includes both a
continuous three-coordinate index yðIÞ, labeling a point σ
on the three-dimensional manifold Σ, as well as a discrete
index iðIÞ. The latter index ranges from 0 through Nc − 1,
and labels the Nc first-class constraints (gauge conditions)
at each point σ. These constraints satisfy the first-class
condition fCI; CJg ¼ fKIJCK , where generally fKIJ may be a
structure function, possibly depending on phase space
functions. We have assumed all second-class constraints
have previously been handled by taking M to be the
surface in phase space where they all vanish, and that the
Poisson bracket used above is the Dirac bracket. Next select
a set of gauge variant phase space functions TI, I ∈ I
called clock functions or clock variables that coordinatize
the gauge orbit of any point in phase space within a
neighborhood of the (classical) constraint surface (shell)
M ≐ fm ∈ MjCIðmÞ ¼ 0; ∀ I ∈ Ig. The TI might
include matter (nongravitational) degrees of freedom.
Then AJ

I ≐ fCI; TJg is locally nonsingular as an ðI; JÞ
“matrix,” and one can define the transformed equivalent
first-class constraints

C0
I ≐

X
J

½A−1�JICJ: ð1Þ

These obey fC0
I; T

Jg ≈ δJI , where ≈ denotes weak equality,
that is equality on-shell, and the Hamiltonian vector fields
XC0

I
≐ XI weakly commute (i.e., commute on shell). Gauge

transformations for any phase space function f and set βI of
reals can be written as

αβðfÞ ≐ expðXβÞ · f ¼
X∞
n¼0

1

n!
ðXβÞn · f;

Xβ ≐
X

I

βIXI: ð2Þ

If one is given a set of real-valued phase space constants
(clock parameters) τI , a weakly gauge invariant (Dirac)
observable associated with partial (gauge variant) observ-
ables f and TI is

OfðτÞ ≐ O½f�ðτÞ ≐ ½αβðfÞ�αβðTIÞ¼τI : ð3Þ

The motivating idea is thatO½f�ðτÞ represents the value of f
when the clock variables TI take the values τI; i.e., it is a
gauge slice or fixing.O½f�ðτÞ is a phase space function, and
one must compute it first treating βI as phase space
constants, and only subsequently set βI ¼ τI − TI .
One also finds αβðTIÞ ≈ TI þ βI and O½TI�ðτÞ ≐

αβðTIÞαβðTIÞÞ¼τI ≈ τI on shell. Also on the constraint surface
O½f�ðτÞ may be formally expanded as

O½f�ðτÞ ≈
X∞

fkI¼0g

�Y
I

ðτI − TIÞkI
kI!

��Y
I

ðXIÞkI
�
· f: ð4Þ

One can also derive

O½f�ðτÞ þO½f0�ðτÞ ¼ O½f þ f0�ðτÞ; ð5Þ
O½f�ðτÞO½f0�ðτÞ ≈O½ff0�ðτÞ; ð6Þ

fO½f�ðτÞ;O½f0�ðτÞg ≈ fO½f�ðτÞ;O½f0�ðτÞgD
≈O½ff; f0gD�ðτÞ; ð7Þ

where the Dirac bracket is defined as

ff; f0gD ≐ ff; f0g − ff; CIg½A−1�IJfTJ; f0g
þ ff0; CIg½A−1�IJfTJ; fg: ð8Þ

The formalism simplifies considerably if one can choose
canonical coordinates so that the clock variables TI are
themselves some canonical coordinates. Then one has a
complete set of canonical pairs partitioned as ðqa; paÞ and
ðTI; PIÞ, where the PI are the canonical momenta con-
jugate to the TI. Hence in a local neighborhood of the
constraint surface one can write the constraints as the
equivalent set

~CI ¼ PI þ hIðqa; pa; TJÞ ≈ 0; ð9Þ
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and setting PI ¼ −hIðqa; pa; TJÞ formally solves the con-
straints. One can also show that the canonical Dirac
observables QaðτÞ ≐ O½qa�ðτÞ and PaðτÞ ≐ O½pa�ðτÞ sat-
isfy equal-τ canonical Poisson bracket relations. As dis-
cussed in [7,11], the ~CI comprise a strongly Abelian
constraint algebra and obey C0

I ¼ ~CI þOðC2Þ; hence the
Hamiltonian vector fields XI of C0

I and X~I of ~CI weakly
commute. The relations (5), (6), and (7) may be summa-
rized by saying that O induces a weak algebra homomor-
phism with respect to pointwise addition and multiplication
as well as a weak Dirac algebra homomorphism on
ff; f0gD. When neither f nor f0 depend on any PI, their
Dirac bracket reduces to the Poisson bracket, and then there
is also a weak Poisson algebra homomorphism.
Next define

HIðτÞ ¼ HIðQaðτÞ; PaðτÞ; τÞ
≐ O½hI�ðτÞ ≈ hIðQaðτÞ; PaðτÞ; τÞ: ð10Þ

If f is any phase space function depending only on qa, pa,
but not on TI , PI , one has

∂
∂τI O½f�ðτÞ ≈ fHIðτÞ;O½f�ðτÞg: ð11Þ

That is,HIðτÞ generates the τ-parametrized gauge flow of f
on the constraint surface. So if one specializes to a
parametrization invariant dynamical system whose canoni-
cal Hamiltonian vanishes, one may refer to theHIðτÞ as the
(τ dependent) physical Hamiltonians. In the following we
will make extensive use of (11), and it is important to
realize that both that partial differential equation (PDE) as
well as its integrability condition hold only on shell [7]. So
we will henceforth limit ourselves to on-shell physics.
In order to quantize the system on the reduced phase

space where the classical constraints are valid, the gauge
invariant canonical variablesQaðτÞ, PaðτÞ; TIðτÞ, PIðτÞ are
mapped to operators Q̂aðτÞ, P̂aðτÞ; T̂IðτÞ, P̂IðτÞ which
generate the quantum algebra U with the usual equal-τ
canonical commutation relations. Given U, its representa-
tion (carrier) Hilbert space H may be generated via the
Gelfand-Naimark-Segal (GNS) construction employing
any positive linear functional (state) on U. Here one is
reducing phase space before quantizing; that is, all the
constraints are satisfied at the classical level. We
assume that for all τ, the physical Hamiltonians
HIðQaðτÞ; PaðτÞ; τÞ are represented as densely defined
self-adjoint operators on H.

III. NONULTRALOCALITY

We say hI is ultralocal if it only depends on the canonical
fields or their spatial gradients (of any finite order) at the point
yðIÞ ∈ Σ. If all the hI are ultralocal, then fhI; hJg ∝
δðyðIÞ; yðJÞÞ (or its spatial derivatives), and therefore one
has fHIðτÞ; HJðτÞg ≈ 0 for yðIÞ ≠ yðJÞ. In this case, HIðτÞ
and HJðτÞ have no common qa, pa, TK for yðIÞ ≠ yðJÞ.

Ultralocality produces significant mathematical convenience
and simplification. Moreover, all the commonly used
classical gravitational constraint algebras, such as
Arnowitt-Deser-Misner (ADM) and Holst, including pos-
sible scalar matter fields, possess ultralocal hI; see [11]. In
fact, all the known interactions in the standard model of
particle physics are ultralocal as well. However, a field theory
is not required to be ultralocal, just that measurements so far
are consistent with ultralocality. Here we keep an open mind
andexplore the consequences of nonultralocalhI .One should
realize from the outset that the constraint ~CI algebra remains
Abelian for nonultralocal hI, even though neither hI nor HI
will possess weakly Abelian algebras. We will see later on
that the quantity ½ĤIðτÞ; ĤJðτÞ� for yðIÞ ≠ yðJÞ plays a
crucial role in Lieb-Robinson bounds.
It is sensible to first confirm that the quantum dynamics

remains anomaly-free even for non-Abelian ĤIðτÞ. This
means that all the classical gauge symmetries are faithfully
reproduced in the quantum theory. Han [11] has proposed
the condition that the HI form an Abelian algebra to be
used as a definition for freedom from anomalies. It is
demonstrated below that this is overly restrictive, and we
provide an alternative condition for the quantum dynamics
to be anomaly-free. Following [11], one seeks to solve the
Schrödinger equation

∂
∂τI Ûðτ; τ0Þ ¼ ĤIðτÞÛðτ; τ0Þ ð12Þ

for a unitary propagator Ûðτ; τ0Þ between two Schrödinger
states ΨðτÞ, Ψ0ðτ0Þ at initial “multifingered time” τ0 and
final value τ. Let T denote the space for τ, and let c∶R →
T be a path from τ0 to τ parametrized by a real-valued
“external time” t. We will show that Uðτ; τ0Þ is independent
of the choice of path c as long as dcI=dt ≥ 0, ∀ I; t. This is
a mathematical representation of the general covariance
(gauge invariance) of the quantum dynamics. We will need
a little more terminology. The real-valued fields τIðtÞ
specify one τ at any given t for each y ∈ Σ and each
gauge i ¼ 0 � � �Nc − 1. We will refer to a single set of
configurations (all y, i) fτIðtÞgt for all t as a “slicing.” One
configuration (all y, i) at one given t is called a “slice” from
a slicing. A gauge transformation is then a change of slicing
from fτðtÞgt to f~τðtÞgt; i.e., a change of multifingered time.
Independent from slicing invariance, t can be smoothly
reparametrized to t0 ¼ fðtÞ (a 1-diff).
Start by rewriting the τ-evolution PDE (12) as an integral

equation,

Ûðτ; τ0Þ ¼ 1̂þ
X
I

Z
τI

τ0I

dr ĤIðσÞÛðσ; τ0Þ: ð13Þ

Here σ is a variable like τ or τ0 taking a value in T whose
components are

σJ ¼
�
r; for J ¼ I;

τ0J otherwise;
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where I is the summation index in (13), and r is the (real)
variable of integration. Iterating this leads to a Dyson
expansion,

Ûðτ; τ0Þ ¼ 1̂þ ð−iÞ
X
I

Z
τI

τ0I

dσð1ÞI ĤIðσð1ÞÞ

þ ð−iÞ2
X
I;J

Z
τI

τ0I

dσð1ÞI

Z
σð1ÞJ

τ0J

dσð2ÞJ

× ĤIðσð1ÞÞĤJðσð2ÞÞÛðσð2Þ; τ0Þ ð14Þ

¼ 1̂þ
X∞
n¼1

ð−iÞn
X

I1;…;In

Z
τI1

τ0I1

dσð1ÞI1

×
Z

σð1ÞI2

τ0I2

dσð2ÞI2
� � �

Z
σðn−1ÞIn

τ0In

dσðnÞIn

× fĤI1ðσð1ÞÞĤI2ðσð2ÞÞ � � � ĤInðσðnÞÞg; ð15Þ

where n is the depth of iteration, and I1;…; In ∈ I . One
may concretely picture each fixed I as an “I-channel” from
τ0 to τ. Each σðmÞ is a τ-vector (a point in T ), having real

components σðmÞ
K , K ∈ I . The I-subscripts on the ĤIðσÞ

correspond to the τI integrated over when its corresponding
argument σI is integrated.

Suppose the σðnÞ satisfy σðm−1Þ
K ≥ σðmÞ

K for all m and K,
where here K ∈ I plays a role like the index I in τI . We
refer to this as the ordering hypothesis for the path through
T -space from the initial τ0 to the final τ. Now consider the
nth term in the sum on the right-hand side (RHS) of (15).
Suppose among the n channels I1;…; In ∈ I , J1 ∈ I
occurs p1 times, …; JM ∈ I occurs pM times,
1 ≤ M ≤ n, with 0 ≤ p1;…; pM ≤ n, and p1 þ � � � þ
pM ¼ n. Under the ordering hypothesis one can recast
Eq. (15) as

Ûðτ; τ0Þ ¼ 1̂þ
X∞
n¼1

ð−iÞn
X

1≤M≤n

XM
fp1 ���pMg¼1
p1þ���þpM¼n

�YM
k¼1

� XNc−1

iðJkÞ¼0

Z
Σ
d3yðJkÞμðyðJkÞÞ

��
NCC

×

�YM
k¼1

�
1

pk!

Z
τJk

τ0Jk

dτð1ÞJk
� � �

Z
τJk

τ0Jk

dτðpkÞ
Jk

��
TτfĤI1ðσð1ÞÞ � � � ĤInðσðnÞÞg: ð16Þ

Here the channels Ij ∈ I , j ¼ 1;…; n are drawn from the
ðp1 × J1 þ p2 × J2 þ � � �Þ J’s. The sum over the I1;…; In
has been decomposed into sums over the gauge index iðJkÞ
and integrals over the 3-manifold Σ with respect to the
volume element d3y μðyÞ, where y coordinatizes Σ. The
existence of a such a volume element is assured once Σ is
taken to be an oriented manifold, and it is not generally
necessary to have a metric tensor on Σ for that. However,
Ûðτ; τ0Þ on the left-hand side (LHS) of (16) must be
invariant under smooth coordinate reparametrizations of
Σ, and this requires the volume element to be similarly
invariant for scalar ĤI. It is straightforward to see that this
can be done if it is possible to induce a metric tensor gabðyÞ
on Σ, where the volume element then takes the standard
form d3yj det gabðyÞj1=2. gabðyÞ does not have to be any
physical metric. In fact, if the smooth 3-manifold Σ
smoothly embeds into any Euclidean space E ¼ Rn, then
the Euclidean metric tensor on E induces a suitable metric
tensor on Σ. The (strong) Whitney embedding theorem
states that if Σ is m-dimensional Hausdorff and second
countable, then Σ smoothly embeds into E for n ¼ 2m.
Taking Σ to have those properties, one then has a volume
element on it to render Ûðτ; τ0Þ coordinate reparametriza-
tion invariant on Σ; moreover this is true for any such
invariant volume element. Alternatively, taking Σ to be a
paracompact differentiable 3-manifold assures it has a
Riemannian structure, whose metric tensor can then be

used to construct an invariant 3-volume element in the
standard way.
The notation NCC on the RHS of (16) stands for

“noncollisional channels” and arises from the following
considerations: Each I-channel has a gauge index i and
position y on Σ. i and y are independent degrees of freedom
for each channel; however, once the number of distinct
channels has been fixed to be M, two channels with the
same i values cannot occupy the same position y. That is
the channels cannot “collide,” as the associated merger or
splitting of channels would alter the previously fixed
number of channels M, so “NCC” can also be thought
of as necessary to avoid double or under counting. The
fpkg give the number of τ-steps or integrations along each
distinct channel Jk. Any single σðkÞ ∈ T has the compo-

nents: one from the sequence ðτð1ÞJ1
;…; τðp1Þ

J1
Þ of real

integration variables in channel J1; …; and any one from

the sequence ðτð1ÞJM
;…; τðpMÞ

JM
Þ of integration variables in

channel JM; and (if not integrated) that component of σðkÞ is
set equal to the corresponding component of the initial τ0.
Because of the ordering hypothesis, σðk−1Þ differs from σðkÞ

at only one index value J, where σðk−1ÞJ ≠ σðkÞJ , and then
Ik ¼ J. The “τ-ordering operator” Tτ acts to order the τ
arguments in each I-channel independently so that within
each channel J they increase from right to left:
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σðnÞJ ≤ � � � ≤ σð2ÞJ ≤ σð1ÞJ ; ∀ J. Notice that the ordering
hypothesis has allowed us to remove the path-dependent
limits on the multiple τ-integrations.
Equation (16) sums (averages) over all the paths in T

from τ0 to τ by advancing monotonically in τI within each
I-channel independently, stepwise over the n integrations,
from initial τ0 to final τ, as enacted by the Tτ operation. The
averaging over the paths from the initial to final τ-slices is
carried out for each fixed n,M, first at fixed (NCC) channel
configuration fðiðJkÞ; yðJkÞÞgk and fixed stepping configu-
ration fpkgk by the corresponding τ-integrations. Then the
channel configuration and stepping configuration are sep-
arately averaged at fixed n, M (the result is independent of
which of the latter two averages is performed first). Now
suppose we have some “external time” parameter t so that
τI ¼ τIðtÞ. As long as the path cIðtÞ ≐ τIðtÞ between the
fixed initial and final τ obeys dcIðtÞ=dt ≥ 0 for all I ∈ I
and relevant values of t, one fulfills the ordering hypoth-
esis. This mild monotonicity condition is consistent with
the physical picture of multifingered time as “flowing
forwards everywhere.” The overall sign of the monotonicity
condition may be reversed, so multifingered time then
globally flows “backwards”; however, the choice of that
sign does not affect the conclusions.
By adding over all such ways of channel-wise monotonic

advancement from τ0 to τ, the overall RHS of (16) is
insensitive to a change of slicing (gauge) τIðtÞ → ~τIðtÞ for
fixed initial τ0 and final τ, and Ûðτ; τ0Þ depends only on
those initial and final configurations. This happens regard-
less of the commuting or noncommuting properties of the
ĤIðτÞ. It occurs because the monotonicity condition takes
care of the required τI-ordering within each I-channel
separately (Tτ becomes a t-ordering), and the operator
orderings among different I-channels (inside T) on the
RHS are averaged over (as a sum over monotonic paths or
slicings between the fixed initial τ0 and final τ configura-
tions). This absence of path or slicing dependence of
Ûðτ; τ0Þ is the relational framework manifestation of gen-
eral covariance (gauge invariance) for the quantum dynam-
ics: we have obtained freedom from anomalies for τ-paths
monotonic in an external time parameter. Under these
conditions the propagator Û more resembles the familiar
one from standard (fixed background geometry) quantum
field theory. In the absence of monotonicity, the use of the
components of τ as integration variables, such as in
Eqs. (13), (14), and (15) becomes ill-defined: Some I-
channels could then have ranges of τI which are traversed
multiple times in both senses as t advances. This accords
with the intuition that these locally negative lapses among
generally positive ones are indeed somehow physically
anomalous. In fact, a similar notion in a different guise was
used in [4] to generate “causal” spin-foam vertices and
amplitudes. Monotonicity may be viewed as the relational
framework analog of global hyperbolicity on Lorentzian

manifolds; however, unlike the latter, monotonicity
assumes no background causal structure.
If one specializes to the ultralocal case, so ĤIðτÞ and

ĤJðτÞ have no common Q̂a, P̂a, T̂
K for yðIÞ ≠ yðJÞ, and to

the gauge diagonal case, for which the same thing occurs
when iðIÞ ≠ iðJÞ, then ½ĤIðτÞ; ĤJðτÞ� ≈ 0 for any I ≠ J.
Consequently the Tτ-ordered product in (16) factors into
separate TτI for each I-channel, and Û ¼ Q

I ÛI, as
obtained earlier by Han [11].
It is also interesting to compare the Tτ-ordering in (16)

with the well-known T-ordering from standard quantum
field theory. Weinberg [12] gives the following Dyson
expansion for the S-matrix (operator) in Minkowskii
spacetime or special relativity:

Ŝ ¼ 1̂þ
X∞
n¼1

Z
d4x1 � � � d4xn TfĤðx1Þ � � � ĤðxnÞg; ð17Þ

where Ĥ ¼ Ĥ0 þ V̂, V̂ðtÞ ¼ expðiĤ0tÞV̂ expð−iĤ0tÞ,
V̂ðtÞ ¼ R

d3x Ĥð~x; tÞ in the interaction picture, with Ĥ0

the free Hamiltonian and V̂ the interaction. This is globally
Lorentz invariant except for the T-ordered operator prod-
uct. The T-order of two spacetime points x1 and x2 (the
order of their 0-coordinates) is globally Lorentz invariant
unless ðx1 − x2Þ2 > 0 (x1 − x2 spacelike), so (17) introdu-
ces no special frame if (but not only if) the ĤðxÞ commute
at spacelike distances. While this is often referred to as a
kind of causality condition, in this sense it arises from the
invariance of Ŝ that occurs because global Lorentz trans-
forms x → x0 ¼ Λx alter the spatial and temporal compo-
nents of 4-vectors and so can then reorder the T sequence
among the fxng. By contrast, in the relational framework
representation just discussed, t and all the τI increase
smoothly within both slicings τIðtÞ and ~τIðtÞ connecting the
fixed initial and final τ’s, and the gauge transform is no
longer simply related to the spatial coordinates y. Thus the
relational framework has no built-in analog of special
relativity’s “causality from global Lorentz invariance.”
The Tτ in Eq. (16) will not generally lead to “causality”
by itself, regardless of whether the constraints are ultralocal
or not.
The quantity ½ĤIðτÞ; ĤIðτÞ� for yðIÞ ≠ yðJÞ is important

in the subsequent sections. Therefore we spend some time
to study it as well as its classical precursor fHIðτÞ; HIðτÞg.
We start by computing classically,

fHIðτÞ;HJðτÞg≈O½fhI;hJgD�ðτÞ¼O½fhI;hJg�ðτÞ; ð18Þ

where the first relation has used Eq. (7), and the second
equality used that the hI do not depend on any PJ inside
some phase space neighborhood of the constraint surface.
We also have ~CI ¼ PI þ hI with f ~CI; ~CJg ¼ 0 (recall the
~CI form a strongly Abelian constraint algebra), and one
derives
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0 ¼ fPI þ hI; PJ þ hJg ¼ fhI; hJg þ fPI; hJg þ fhI; PJg

¼ fhI; hJg þ
δhJ
δTI −

δhI
δTJ : ð19Þ

Thus,

fHIðτÞ; HJðτÞg ≈O
�
δhI
δTJ −

δhJ
δTI

�
ðτÞ: ð20Þ

We use the same sign conventions as Han [11], namely

fpa; qbg ¼ ðþÞδba;

fPI; hJg ¼ ðþÞXPI
· hJ ¼

δhJ
δTI ;

Xf ¼ δf
δpi

δ

δqi
−

δf
δqi

δ

δpi
: ð21Þ

One also has from (18)

O½fhI; hJg�ðτÞ ¼ O½f ~CI; hJg�ðτÞ −O½fPI; hJg�ðτÞ

¼
X
fkIg

�Y
J

ðτJ − TJÞkJ
kJ!

��Y
J

ðXJÞkJ
�
~XI · hJ −O

�
δhJ
δTI

�
ðτÞ

≈
X
fkIg

�Y
J

ðτJ − TJÞkJ
kJ!

�
~XI

�Y
J

ðXJÞkJ
�
· hJ −O

�
δhJ
δTI

�
ðτÞ

≈
X
fkIg

�Y
J

ðτJ − TJÞkJ
kJ!

�
XI

�Y
J

ðXJÞkJ
�
· hJ −O

�
δhJ
δTI

�
ðτÞ

¼ ∂HJðτÞ
∂τI −O

�
δhJ
δTI

�
ðτÞ: ð22Þ

Consequently,

fHIðτÞ; HJðτÞg ≈
∂HJðτÞ
∂τI −O

�
δhJ
δTI

�
ðτÞ: ð23Þ

Combining (20) and (23) one arrives at

∂HJðτÞ
∂τI ≈O

�
δhI
δTJ

�
ðτÞ: ð24Þ

Which canonical variables enterQIJ ≐ fHIðτÞ; HJðτÞg?
Since HIðτÞ ¼ O½hI�ðτÞ and near shell hI is independent of
PK’s, so HI has no PK’s and neither does QIJ. How about
the ðqa; paÞ variables? Let f be an arbitrary phase space
function solely dependent on the ðqa; paÞ’s (and not
containing any TK, PK variables). One then has

fHIðτÞ;O½f�ðτÞg ≈O½fhI; fgD�ðτÞ ¼ O½fhI; fg�ðτÞ
≈O½f ~CI; fg�ðτÞ ≈O½XI · f�ðτÞ: ð25Þ

In the second equality we have used that hI , f are
independent of PK variables, in the third that f contains
no TI variables, and in the fourth that ~CI ¼ C0

I þOðC2Þ
and ff1; f2g ¼ Xf1 · f2. One would like to iterate Eq. (25)
to yield

fHIðτÞ; fHJðτÞ;O½f�ðτÞgg
≈
? fHIðτÞ;O½XJ · f�ðτÞg
≈ O½ðXI · XJÞ · f�ðτÞ ≈ O½ðXJ · XIÞ · f�ðτÞ; ð26Þ

where in the last equality the weak commutativity of the XI
has been used. If this were true, then by using the Jacobi
identity and that f is an arbitrary phase space function of
the qa, pa variables, one would “find” that fHIðτÞ; HJðτÞg
could not be a phase space function of any qa, pa. However,
the step marked with ? is invalid because there one is using
the weak Eq. (25) inside a Poisson bracket. Such a
maneuver is inadmissible, as no weak equation may be
used before evaluating Poisson brackets. Hence
fHIðτÞ; HJðτÞg may still be a phase space function of
qa, pa as well as the clock variables.
Suppose the constraints are ultralocal, meaning hI only

contains qa, pa with yðaÞ ¼ yðIÞ and clocks TK with
yðKÞ ¼ yðIÞ. Then δhJ=δTI ∝ δðyðIÞ; yðJÞÞ, so by (20)
fHIðτÞ; HJðτÞg ≈ 0 for yðIÞ ≠ yðJÞ. Hence to obtain
fHIðτÞ; HJðτÞg ≠ 0 for yðIÞ ≠ yðJÞ requires nonultralocal
constraints.
What about spatial parity ðPÞ and time reversal ðTÞ

symmetries? Let Qjk
xy ≐ fHIðτÞ; HJðτÞg where j ¼ iðIÞ,

k ¼ iðJÞ, x ¼ yðIÞ, and y ¼ yðJÞ. One hasQjk
xy ¼ −Qkj

yx by
antisymmetry of the Poisson bracket. One might be
concerned that when x ≠ y, for Qjk

xy to be nonvanishing
could require violation of P-symmetry (in addition to
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nonultralocality); i.e., that Qjk
xy could acquire a nonzero

spatially odd piece. Such a violation is only necessary
provided Qjk

xy ¼ Qkj
xy; that is, the constraints are “gauge

symmetric,” meaning they satisfy

δhkx
δTj

y
¼ δhjx

δTk
y

ðgauge symmetryÞ; ð27Þ

which does not generally hold. So a violation of P-
symmetry is not generally necessary to obtain
fHIðτÞ; HJðτÞg ≠ 0 for yðIÞ ≠ yðJÞ if there is nonultralo-
cality. An examination of the formal power series for
O½f�ðτÞ (4) similarly shows that ones does not require a
violation of T-reversal symmetry either. The absence of
requiring P- and/or T-violation to obtain fHIðτÞ; HJðτÞg ≠
0 for yðIÞ ≠ yðJÞ is reassuring since the gravitational
interaction is not expected to violate those symmetries.
We now present a very simple toy example of non-

ultralocality. Suppose the Hamiltonians have the special
form

hiðxÞ ¼ h̄iðxÞ þ
Z
Σ
d3yKijðqaðxÞ; paðxÞ;

qbðyÞ; pbðyÞ; x; yÞTjðyÞ; ð28Þ

with the nonultralocal term chosen linear in the clock
variables for simplicity. We take the clock variables as 3-
diff scalars and the kernel Kij to be a weight-one 3-density.
The first term on the RHS is ultralocal and does not
contribute to fHIðτÞ; HJðτÞg. One finds

QðτÞ ≐ fHx
l ðτÞ; Hz

mðτÞg ≈O
�
δhxl
δTz

m
−
δhzm
δTx

l

�
ðτÞ

≈O½KlmðqaðxÞ; paðxÞ; qbðzÞ; pbðzÞ; x; zÞ
− KmlðqbðzÞ; pbðzÞ; qaðxÞ; paðxÞ; z; xÞ�ðτÞ: ð29Þ

Next we examine the τ and external time gauge flow in
more detail. This is the bridge wewill need to cross to get to
the Lieb-Robinson bounds. From the classical gauge flow
equation (11) and again following Han’s sign conventions
that fPa;Qbg ≈ δba, ½P̂aðτÞ;Q̂aðτÞ�¼ð−iÞfPaðτÞ;QbðτÞg¼
ð−iÞδba (ℏ is set to unity), one has the on-shell quantum
gauge flow equation

∂
∂τI Ô½f�ðτÞ ≈ ðiÞ½ĤIðτÞ; Ô½f�ðτÞ�; ð30Þ

where f may depend on qa, pa canonical variables but not
the TI , PI types. Adopting the Ansatz

Ô½f�ðτÞ ¼ exp½iM̂ðτÞ�ðÔ½f�ð0ÞÞ exp½−iM̂ðτÞ� ð31Þ

for some self-adjoint operator M̂ independent of f, one
infers from the gauge flow equation that

�∂M̂ðτÞ
∂τI − ĤIðτÞ; Ô½f�ðτÞ

�
≈ 0: ð32Þ

Since f is an arbitrary phase space function of qa, pa, one
has that on-shell ∂M̂ðτÞ=∂τI − ĤIðτÞ may depend on the
T̂K but not on the q̂a, p̂a, or P̂K. Here we will assume the
simplest case, that is,

∂M̂ðτÞ
∂τI ≈ ĤIðτÞ; ð33Þ

which is sufficient, but not necessary. Now decompose
M̂ as

M̂ðτÞ ¼
X
Z

M̂ZðτÞ; ð34Þ

where Z is called a “patch” and is just the support of M̂Z on
Σ. The motivation behind this is as follows: Each I ∈ I
contains a continuous spatial coordinate yðIÞ as well as a
discrete gauge index iðIÞ. For nonlocal hI and HI , besides
the canonical variables at yðIÞ (called the “central site”)
there are other “nearby” canonical variables living at y0 ≠
yðIÞ which also enter hI and HI as their “entourage.” We
define the patch ZðIÞ to consist of the central site yðIÞ
together with all those nearby y0 where its entourage
resides. We assume the patches to be bounded and not
to take up all of Σ. Denoting the central site of Z by ycðZÞ
we can set

HZ ≐ HZðIÞ ¼ HIjyðIÞ¼ycðZÞ: ð35Þ

Using (33) with fixed I,

HZðIÞðτÞ ≈
X
X

∂MXðτÞ=∂τI: ð36Þ

Later on we will be more interested in the external time t
gauge flow of Ô½f�ðτÞ than in the τ-flow, so we let

ĤðtÞ ≐ X
I

∂τIðtÞ
∂t ĤIðτÞ

≈
X
I

∂τIðtÞ
∂t

X
X

∂M̂XðτÞ
∂τI ¼ ∂M̂ðtÞ

∂t ; ð37Þ

M̂ðtÞ ≐ X
X

M̂XðτðtÞÞ: ð38Þ

It then follows from the τ gauge flow equation (30) that
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d
dt

Ô½f�ðtÞ ¼
X
I

∂τIðtÞ
∂t

Ô½f�ðτðtÞÞ
∂τI

¼ ðiÞ
�X

I

∂τIðtÞ
∂t ĤIðτÞ; Ô½f�ðτÞ

�

¼ ðiÞ½ĤðtÞ; Ô½f�ðτðtÞÞ�: ð39Þ

As expected, one sees that ĤðtÞ generates gauge
flow in external time. More explicitly, setting Ô½f�ðtÞ ≐
Ô½f�ðτðtÞÞ, (39) implies

lim
ϵ→0

Ô½f�ðtþ ϵÞ¼ Ô½f�ðtÞþ iϵ½ĤðtÞ;Ô½f�ðtÞ�þOðϵ2Þ
¼ expðiϵĤðtÞÞÔ½f�ðtÞexpð−iϵĤðtÞÞ: ð40Þ

Wewould like to put ĤðtÞ ≐ P
ZĤZðtÞ and figure out what

ĤZðtÞ is; hence by (37)

X
Z

ĤZðtÞ ≐ Ĥ ¼
X
I

∂τIðtÞ
∂t ĤIðτÞ

¼
X
Z

X
I∶ZðIÞ¼Z

∂τIðtÞ
∂t ĤIðτÞ

¼
X
Z

�∂τIðtÞ
∂t ĤIðτÞ

�
ZðIÞ¼Z

; ð41Þ

where the last equality follows from the fact that there is
only one patch ZðIÞ with central site yðIÞ corresponding to
Z: yðIÞ ¼ ycðZÞ. Consequently,

X
Z

ĤZðtÞ ¼
X
Z

XNc−1

i¼0

�∂τiðycðZÞ; tÞ
∂t

�
ĤycðZÞ

i ðτðtÞÞ: ð42Þ

And pulling it all together

ĤðtÞ ≐ X
Z

ĤZðtÞ; ð43Þ

ĤZðtÞ ¼
XNc−1

i¼0

�∂τiðycðZÞ; tÞ
∂t

�
ĤycðZÞ

i ðτðtÞÞ: ð44Þ

ĤðtÞ is a “patchy” Hamiltonian generating relational
framework gauge flow in external time, whose patches Z
are based on the nonultralocality of the original hI . This
patchy representation of t gauge flow unlocks the door to
applying the Lieb-Robinson bounds to be introduced in
Sec. IV below.
Before immediately moving on to the Lieb-Robinson

bound, we will need to know a little more about
½ĤXðtÞ; ĤYðtÞ�. Here we discuss its classical counterpart
Q ≐ fHXðtÞ; HYðtÞg to gain some intuition about it before
proceeding.

Q is built from

fHy1
i1
; Hy2

i2
g ≈O

�∂hy1i1
∂Ty2

i2

−
∂hy2i2
∂Ty1

i1

�
ðτÞ: ð45Þ

Denote

fi1i2ðx; yÞ ≐ O
�∂hxi1
∂Ty

i2

�
ðτÞ: ð46Þ

We haveQðx; y; tÞ ≐ fHXðtÞ; HYðtÞg ¼ −Qðy; x; tÞwhere
x ¼ ycðXÞ and y ¼ ycðYÞ, and thus

Qðx; y; tÞ ¼
XNc−1

i1;i2¼0

�∂τi1ðxÞ
∂t

∂τi2ðyÞ
∂t

�
ðfi1i2ðx; yÞ − fi2i1ðy; xÞÞ:

ð47Þ

As a reminder, Q may be a phase space function of the
TK , qa, pa variables, but not PK variables, or it could just
be a phase space constant, and so include τ’s. As a simple
example, here we will try to construct f from just the τ’s.
We take fijðx; yÞ to be ðx; yÞ symmetric (P-even) and ði; jÞ
antisymmetric, such as fijðx; yÞ ¼ ðτiðxÞ − τjðxÞÞþ
ðτiðyÞ − τjðyÞÞ. Then for the sum in (47) to be nonvanish-
ing, we have to ði1; i2Þ antisymmetrize the brackets in that
expression to obtain

Qðx;y;tÞ¼
XNc−1

i1;i2¼0

�∂τi1ðxÞ
∂t

∂τi2ðyÞ
∂t −

∂τi2ðxÞ
∂t

∂τi1ðyÞ
∂t

�
fi1i2ðx;yÞ;

ð48Þ

which is overall ðx; yÞ antisymmetric as required. So as
y → x, Q → 0, but away from x ¼ y, Q is nonvanishing.
We expect it to decay as HX’s and HY’s patches X and Y
cease to overlap, but that behavior is not well captured by
this toy model for Q.
Lieb-Robinson bounds were originally intended to study

spin systems imbedded in a solid-state lattice, so they are
naturally discretized. This lattice may be extended to
include a general network and is not limited to a periodic
tessellation of 3-space by polyhedra. Discretization
achieves significant mathematical simplifications, so we
will follow that approach in this initial investigation of
relational framework with nonultralocal constraints. We
discuss the limitations and issues related to discretization
and its continuum limit in Sec. VII. A continuum approach
will be left for future research.
Here we describe the discretization of the 3-manifold Σ

into a (generalized) lattice Λ. Associated with each lattice
site j ∈ Λ ⊂ Σ is a D-dimensional Hilbert space. Unless
otherwise indicated Λ will have finite size (cardinality);
alternatively, Λ may be taken to be a finite sublattice of
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some countable lattice Γ ⊂ Σ. The Lieb-Robinson bound
does not depend on the dimensionality D, and the Hilbert
space for the entire system is taken to be the tensor product
of the site-based spaces. Capital Latin letters from the end
of the alphabet (previously referring to Hamiltonian
patches) will now denote sets of lattice sites, and jXj
designates the cardinality of X. We say an operator Ô is
supported on a set Y of sites if Ô may be expressed as
Ô ¼ 1̂ΛnY ⊗ P̂, where 1̂ΛnY is the identity operator on sites
not in Y, and P̂ is an operator defined on Y. In the following
sections we will be most interested in the complete (Dirac)
observables O½f�ðτÞ, where f is a phase space function
containing neither TI nor PI canonical variables, and use
the unitary Hamiltonian patchy gauge flow (39), (43), and
(44). We assume we can take the discretized ĤIðτÞ ≈
Ĥi

jðQaðτÞ; PaðτÞ; τÞ as a self-adjoint operator on the Hilbert
space which is the tensor product of Hilbert spaces over
lattice sites jðaÞ included in its arguments.
We must take a moment to carefully resolve any potential

issues that might arise from discretizing operators like the
Ô½f�ðτÞ, and to confirm that the discretized equations
behave as expected, especially from a gauge-flow point
of view. To this end, we have to define what precisely is
meant by the spatial discretization Δ of a continuum
operator constructed as a sum of products of the canonical
variables. The discretization mapΔ is defined to act linearly
with respect to any sum of operators. Acting on a product of
continuum operators, Δ annihilates (“apodizes” or cuts off)
any product which contains one or more factors of canonical
variables that are not on the lattice. From this definition
follows ΔðÂ B̂Þ ¼ ΔðÂÞΔðB̂Þ. The procedure we follow is
to “Diracify” first by constructing the continuum Dirac
operator Ô½f�ðτÞ from f, and then to discretize by acting
withΔ. One seeks to demonstrate that the continuum gauge-
flow equation (30) holds when all operators are replaced by
their discretized images underΔ, i.e., thatΔ is a gauge-flow
homomorphism. This is made easier after one notes that the
continuum gauge-flow equation (30) is an operator equation
with both sides (weakly) equal to the operator corresponding
to the classical expression

X∞
kJ¼0

�Y
J

ðτJ − TJÞkJ
kJ!

�
XI

�Y
J

ðXJÞkJ
�
· f; ð49Þ

see Eq. (2.13) in [11]. Then by restricting the free index I to
have yðIÞ ∈ Λ, i.e. to be on the lattice, and applying the Δ
map, it is straightforward to show that

∂
∂τI ΔðÔ½f�ðτÞÞ ≈ ðiÞ½ΔðĤIðτÞÞ;ΔðÔ½f�ðτÞÞ�: ð50Þ

One has to interpret the τJ ¼ τJ1̂ terms as Δð1̂Þ ¼
1̂Λ ¼⊗j∈Λ 1̂j, where 1̂j is the identity operator on the

Hilbert space at site j. This way all the J’s appearing in
the sums inside (50) are on lattice, and there is no on-shell
operator flow to/from the lattice from/to nonlattice sites. It is
also simple to show that ½ΔðĈIÞ;ΔðĈJÞ� ≈ 0, so the dis-
cretized constraints areweaklyAbelian. Henceforthwe drop
the Δ whenever it is clear from the context that we are
discussing a discretization.
If i, j are lattice sites on Σ, the Lieb-Robinson bound

requires a 3-metric dði; jÞ. If A, B are sets of lattice sites, for
future use we define

dðA; BÞ ≐ distðA;BÞ ≐ min
i∈A;j∈B

dði; jÞ; ð51Þ

diamðAÞ ≐ max
i;j∈A

dði; jÞ: ð52Þ

When Lieb-Robinson bounds were first applied to solid-
state spin systems, introducing the static metric dði; jÞ was
innocuous; however, in applying Lieb-Robinson bounds to
gravitational physics there are several issues of serious
concern. Already at the purely classical level, dwill acquire
a dependence on geometric variables included in theQaðτÞ,
so if one has a continuously varying external time param-
eter t, dði; jÞ will inherit a continuous t dependence as well,
while d still describes a discretized 3-geometry of Σ. We
will show in Sec. V how this t dependence can be
accommodated within the Lieb-Robinson bound. Still at
the classical level, in the continuum dðx; yÞ for x; y ∈ Σ
could be taken as the proper geodesic distance between x
and y. But once Σ has been discretized, the voxelated
classical 3-geometric information and the replacement of
the PDE describing a geodesic by a finite difference
equation will introduce a classical discretization “error”
into dði; jÞ. Of course, one expects this classical error to
become negligible in the limit where the (proper) lattice cell
size becomes much smaller than any classical length
characterizing the 3-geometry. On the quantum level, once
the classical phase space functions are mapped into
operators, the well-known more difficult issues of quantum
fluctuations, nonvanishing expectations of variances,
choices of quantum state, and so on, immediately arise.
The quantum clock “operators” T̂I themselves, however, do
not appear in the physical Hilbert space of the quantum
theory, since they are not gauge invariant, so there are no
worries from that direction: only fðTI ¼ τIÞ can be
promoted to a physical quantum operator [13]. In the fully
developed quantum regime, of course, there is not even a
well-defined 3-geometry at all, so the best one might hope
for is that one can find some kind of semiclassical regime or
limit that supports or approximates a 3-metric like dðx; yÞ.
For now, we will work at a level (classical or semiclassical)
where we may safely assume we do have a sufficiently
accurate t-dependent dði; jÞ on the lattice, and discretiza-
tion error, quantum fluctuations, and semiclassical consis-
tency will be discussed later in Sec. VII after we see what
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the Lieb-Robinson bound can tell us about relational
framework operator gauge flow in external time with
nonultralocal constraints.

IV. INTRODUCTION TO LIEB-ROBINSON
BOUNDS

Here we provide a brief and hopefully self-contained
introduction to Lieb-Robinson bounds. The definitions and
theorems will be presented together with some intuition,
but we refer the more interested reader to Refs. [14] and
[15] for the detailed derivations.
From a pedagogical point of view, it is best to start with

the simplest case first: A nonrelativistic spin system on a
one-dimensional lattice [14]. So consider the one-
dimensional transverse Ising model for N spins with
Hamiltonian

H ¼ −J
XN−1

i¼1

SziS
z
iþ1 þ B

XN
i¼1

Sxi : ð53Þ

This spin Hamiltonian has the form H ¼ P
ZHZ with HZ

supported on Z. Lieb-Robinson bounds are most suited to
cases where ∥HZ∥ decays rapidly with diamðZÞ > 1. Using
(53) and the metric dði; jÞ ¼ ji − jj, we see that the Zeeman
term has diameter 0 and the Ising (exchange) interaction
has diameter one. So ∥HZ∥ ¼ 0 for diamðZÞ > 1, and these
are examples of “finite range” interactions. There are also
other forms of decaying interactions such as exponential,
and so on. One could also place the spins at the vertices of a
graph. Then H is again a sum of HZ, each Z being two
vertices, withHZ nonvanishing only if an edge of the graph
links them. In that case the metric dði; jÞ could be chosen as
the shortest path metric, and it gives ∥HZ∥ ≠ 0 only if
diamðZÞ ¼ 0, 1. (This is quite different from the spin
networks usually considered in loop quantum gravity.)
When discussing these kinds of spin systems it is natural

to give operators the (nonrelativistic) time dependence
given by Heisenberg evolution,

O ¼ exp½iHt�Oð0Þ exp½−iHt�; ð54Þ

where for simplicity we have takenH to be (explicitly) time
independent. Then one has the following [14]:
Theorem (L-R): Suppose for all sites i ∈ Λ one has the

L-R condition

X
X∋i

∥HX∥jXj exp½μ diamðXÞ� ≤ s; ð55Þ

for some positive real constants s, μ. Let AX and BY be
(bosonic) operators supported on sets X, Y, respectively.
Then if dðX; YÞ > 0, one has

∥½AXðtÞ; BYð0Þ�∥
≤ 2∥AX∥∥BY∥

X
i∈X

exp½−μ distði; YÞ�½expð2sjtjÞ − 1�

ð56Þ

≤ 2∥AX∥∥BY∥jXjexp½−μ distðX;YÞ�½expð2sjtjÞ−1�: ð57Þ
The physical interpretation of this bound is made

especially lucid by an argument due to Hastings [14],
which we reproduce here because of its later importance:
Given an operator A with support X as above, let BlðXÞ be
the ball radius l about X: BlðXÞ ¼ fi∶distði; XÞ ≤ lg.
Construct the following operator:

Al
XðtÞ ¼

Z
dU UAXðtÞU†; ð58Þ

where one integrates over unitaries U supported on
ΛnBlðXÞ using the Haar measure. Al

XðtÞ has support
BlðXÞ. Since UAXðtÞU† ¼ AXðtÞ þ U½AXðtÞ; U†�, one has

∥Al
XðtÞ − AXðtÞ∥ ≤

Z
dU∥½AX;U�∥: ð59Þ

Using Lieb-Robinson bound (57) to bound the integrand on
the RHS, we see Al

XðtÞ is exponentially operator norm close
to AXðtÞ provided l is sufficiently large compared to
2sjtj=μ. That is, a time-evolved operator AXðtÞ may be
approximated to exponential accuracy by an operator Al

XðtÞ
supported on BlðXÞ. Therefore BlðXÞ has the interpreta-
tion of an effective t-dependent support for AXðtÞ, and the
(norm) “leakage” of AXðtÞ out of the “light cone” BlðXÞ is
exponentially small.
Most commonly the Lieb-Robinson bound is cast into

the following form: Suppose the L-R condition (55) holds;
then there is a constant vLR that depends on s, μ such that
for l ¼ distðX; YÞ, and l ≥ vLRt,

∥½AXðtÞ; BYð0Þ�∥ ≤
vLRjtj
l

gðlÞjXj∥AX∥∥BY∥; ð60Þ

and gðlÞ decays exponentially with l. From the theorem,
vLR ¼ 2s=μ. AXðtÞ can be approximated by Al

XðtÞ sup-
ported on the set of sites within distance l ¼ vLRjtj of X by
an error whose norm is bounded by l−1vLRjtjgðlÞjXj∥AX∥.
Bounds on the leakage of information (von Neumann
entropy) out of the light cone were studied in [16]. For
HZ of finite nonzero range, i.e., ∥HZ∥ ¼ 0 for diamðZÞ >
R for some R, the bound may be further improved [14]. If
R ¼ 1, ∥HZ∥ ≤ J, then one finds gðlÞ decays faster than
exponentially, roughly gðlÞ ∼ expð−al2Þ, for positive
constant a. However, if HZ has range 0, the discrete
equivalent of ultralocality, then μ is undefined since
diamðXÞ ¼ 0, and there is no more Lieb-Robinson light
cone.
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The intuition underlying the exponential decay is the
following: From the proof [14] one finds that the nth order
term of the exponential comes from a chain HZ1

;…; HZn

such that Z1∩X ≠ ∅; Z1∩Z2 ≠ ∅;…; Zn−1∩Zn ≠ ∅; Zn∩
Y ≠ ∅, i.e., a chain of n patches Zk; k ¼ 1;…; n each
supporting a local patch of H. Successive Hk are mutually
noncommuting as their ranges overlap, but more distant
ones commute as their supports are mutually disjoint. So it
is crucial for Lieb-Robinson bounds that ½HZ1

; HZ2
� ≠ 0 for

Z1∩Z2 ≠ ∅ and ½HZ1
; HZ2

� ¼ 0 for Z1∩Z2 ¼ ∅ for all
Hamiltonian patches Z1, Z2. This is why the (classical)
relational framework analog fHIðτÞ; HJðτÞg was studied
earlier in Sec. III, where the relation between the Lieb-
Robinson bound patchy HZ and the relational framework
HIðτÞ is given by (44). These chains of successively
overlapping Hamiltonian patches generate the effective
operator support Al

XðtÞ (light cone).
While there are clear similarities with some features of

relational framework nonultralocality, the relational frame-
workHamiltoniansHIðτÞ have a nontrivial (and nonunitary)
τðtÞ flow; see (23). In particular, the simple Heisenberg
evolution with a time independent Hamiltonian (54) does
not apply to Ô½f�ðτðtÞÞ, and one requires a Lieb-Robinson
bound for t dependent Hamiltonians. A nonrelativistic Lieb-
Robinson bound including this possibility was derived by
Nachtergaele, Vershynina, and Zagrebnov (NVZ) in 2011
[15], which will now be sketched.
NVZ start with vertices x ∈ Γ, where Γ is a countable set

of vertices. They assume: There exists a nonincreasing real-
valued function F∶½0;∞Þ → ð0;∞Þ such that

∥F∥ ≐ sup
x∈Γ

X
y∈Γ

Fðdðx; yÞÞ < ∞; and ð61Þ

C ≐ sup
x;y∈Γ

X
z∈Γ

Fðdðx; zÞÞFðdðz; yÞÞ
Fðdðx; yÞÞ < ∞: ð62Þ

For μ > 0 define FμðxÞ ≐ expð−μxÞFðxÞ, so ∥Fμ∥ < ∥F∥,
Cμ < C. The Hilbert space of states for the subsystem at
x ∈ Γ is Hx. For finite Λ ⊂ Γ the Hilbert space associated
with Λ is HΛ ≐ ⊗

x∈Λ
Hx. The algebra of observables sup-

ported on Λ is AΛ ≐ ⊗
x∈Λ

BðHxÞ, where BðHxÞ is the set of
bounded linear operators on Hx. If Λ1 ⊂ Λ2, then identify
AΛ1

with the subalgebra AΛ1
⊗ 1̂Λ2nΛ1

of AΛ2
, and so

AΛ1
⊂ AΛ2

. The algebra of local observables is defined as

Aloc
Γ ≐ ∪

Λ⊂Γ
AΛ: ð63Þ

The C�-algebra of quasilocal observables A is the norm
completion of Aloc

Γ . The support of A ∈ AΛ is the minimal
set X ⊂ Λ such that A ¼ A0 ⊗ 1̂ΛnX for some A0 ∈ AX. The
generator of the operator dynamics is defined for each finite

volume Λ ⊂ Γ, and we confine our interest to Hamiltonian
interactions (NVZ were also able to include suitable dis-
sipative terms). This interaction is such that for each finite
X ⊂ Γ and for all t, Φðt; XÞ is an operator in AX and
Φ�ðt; XÞ ¼ Φðt; XÞ. The evolution mapLΛðtÞ, for any finite
Λ ⊂ Γ and time t, is a bounded linear map AΛ → AΛ,

LΛðtÞðAÞ ≐
X
Z⊂Λ

ðiÞ½Φðt; ZÞ; A� ≐ X
Z⊂Λ

ΨZðtÞðAÞ: ð64Þ

The ΨZðtÞ are bounded linear maps acting on AX, for any
X ⊂ Λ such that X ⊃ Z, which are of the form
ΨZðtÞ ⊗ idXnZ. The ΨZðtÞ have norms that generally
depend on X, but are uniformly bounded as
∥ΨZðtÞ∥ ≤ 2∥Φðt; ZÞ∥. Let Mn ¼ BðCnÞ be the n × n
complex matrices. We say a map Ψ ∈ BðAZÞ is completely
bounded iff, ∀ n ≥ 1 the linear maps Ψ ⊗ idMn

, defined on
AZ ⊗ Mn, are bounded with uniformly bounded norm

∥Ψ∥cb ≐ sup
n≥1

∥Ψ ⊗ idMn
∥ < ∞: ð65Þ

Specifically, ∥ΨZ∥cb is amap defined onAΛ; ∀ Λ ⊂ Γ such
that Z ⊂ Λ, which is independent of the choice of Λ in Γ.
To obtain a Lieb-Robinson bound, NVZ make the

following two hypotheses: Given Γ, d, F as above,
(1) For all finite Λ ⊂ Γ, LΛ is norm continuous in t,

hence uniformly continuous on compact intervals.
(2) For eachΛ, there exists μ > 0 such that for all t ∈ R,

∥Ψ∥t;μ ≐ sup
s∈½0;t�

sup
x;y∈Λ

X
Z∋x;y

∥ΨZ∥cb
Fμðdðx; yÞÞ

< ∞: ð66Þ

One also finds

∥LΛðtÞ∥ ≤
X
Z⊂Λ

∥ΨZðtÞ∥ ≤
X
x;y∈Λ

X
Z∋x;y

∥ΨZðtÞ∥cb

≤ ∥Ψ∥t;μjΛj∥F∥ ≐ Mt:

ð67Þ

By definition of ∥Ψ∥t;μ one has Ms ≤ Mt for s < t.
Fix some large time T > 0, and for all A ∈ AΛ let AðtÞ

for t ∈ ½0; T� be a solution of the ordinary differential
equation (ODE)

d
dt
AðtÞ ¼ LΛAðtÞ with Að0Þ ¼ A: ð68Þ

Because ∥LΛðtÞ∥ ≤ MT < ∞, this ODE has a unique
solution defined by γΛt;sðAÞ ¼ AðtÞ for 0 ≤ s ≤ t ≤ T,
where AðtÞ is the unique solution of (68) for t ∈ ½s; T�
with initial condition AðsÞ ¼ A. We say a linear map
γ∶A → B for C�-algebras A, B is completely positive if
the maps γ ⊗ idn∶A ⊗ Mn → B ⊗ Mn are positive for all
n ≥ 1. Here positive means positive algebra elements (i.e.,
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of form A�A) are mapped to positive algebra elements.
NVZ showed that the map γt;s is a unit preserving,
completely positive map. For the one parameter group of
automorphisms induced by the Hamiltonian generators
Φðt; ZÞ, the NVZ version of the Lieb-Robinson bound
states the following:
There are constants v, μ, c such that for A ∈ AX,

B ∈ AY ,

∥½A;BðtÞ�∥ ≤ CðA;BÞ exp½−μðdðX; YÞ − vtÞ�; ð69Þ
where CðA;BÞ ¼ c∥A∥∥B∥minðjXj; jYjÞ. More specifi-
cally, given assumptions (1) and (2) above, NVZ’s theorem
2 states that

∥½AðsÞ; BðtÞ�∥ ≤ ð2=CμÞ∥A∥∥B∥∥F∥minðjXj; jYjÞ
× expð−μdðX; YÞÞ
× ½expð∥Ψ∥t;μCμðt − sÞÞ − 1�; ð70Þ

for X; Y ⊂ Λ; X∩Y ¼ ∅. Notice the bound is uniform over
the chosen Λ. To extend to uniformity over Γ, the definition
of ∥Ψ∥t;μ in assumption (2) above should have the sup over
x, y altered from Λ to Γ.
In order to adapt this result to relational framework

gauge flow, we need to know that the derivation introduces
the quantity

CBðX; tÞ ≐ sup
T ∈BX

∥T γΛt;sðBÞ∥
∥T ∥cb

; ð71Þ

where for X ⊂ Λ, BX is the subspace of BðAXÞ of
completely bounded linear maps vanishing on the identity.
Here NVZ use the cb-norm (in contrast to the standard
norm) to make the denominator independent of Λ ⊂ Γ.
NVZ’s derivation gives

CBðX; tÞ ≤ CBðX; sÞ

þ
X

Z∩X≠∅

Z
t

s
∥LZðrÞ∥CBðZ; rÞ dr; with ð72Þ

∥LZðtÞ∥ ¼ ∥ΨZðtÞ∥ ≤ ∥Ψ∥t;μ
X
x;y∈Z

Fμðdðx; yÞÞ: ð73Þ

One also has that CBðZ; sÞ ¼ ∥B∥ if Z∩Y ≠ ∅ and other-
wise vanishes. Iterating these equations produces a Dyson
expansion,

CBðX; tÞ ≤ ∥B∥
X∞
n¼1

1

n!
ðt − sÞnan; ð74Þ

an ¼ ð∥Ψ∥t;μÞnðCμÞn−1
X

x∈X;y∈Y
Fμðdðx; yÞÞ: ð75Þ

This implies Eqs. (69) and (70) above with the (non-
relativistic) spatially uniform Lieb-Robinson velocity

vLR ¼ ∥Ψ∥t;μ
Cμ

μ
≤ ∥Ψ∥T;μ

Cμ

μ
; ð76Þ

for all t ∈ ½0; T� (temporally uniform bound). This bound
on vLR can be utilized to bound the norm leakage of
operators outside the Lieb-Robinson light cone, analo-
gously to what was performed earlier for the time-
independent Hamiltonian case.

V. LIEB-ROBINSON BOUNDS FOR THE
DISCRETIZED RELATIONAL FRAMEWORK

We now apply the NVZ version of a Lieb-Robinson
bound [15] to the relational framework discretized as
previously described on some lattice or network. It is
essential to handle appropriately the fact that the 3-metric
dðx; yÞ is both slicing fτðsÞg and slice s (external time)
dependent, and the Lieb-Robinson bound should preserve
the necessary gauge invariance. Strictly speaking, dðx; yÞ
should then be denoted as dðx; y; fτðsÞg; sÞ for the slice at
external time s in slicing fτðsÞg; however, we will continue
to use the abbreviated form dðx; yÞ for convenience. The
reader should bear in mind the suppressed slicing and slice
dependence.
The key initial step is to replace NVZ’s Φðt; ZÞ by

Φðt; ZÞ → HZðtÞ ¼
XNc−1

i¼0

�∂τjcðZÞi ðtÞ
∂t

�
HjcðZÞ

i ðτðtÞÞ; ð77Þ

from the spatially discretized version of (44). Equation (72)

may be iterated as CBðX; tÞ ≤
P∞

n¼1 C
ðnÞ
B ðX; tÞ, where the

n ¼ 0 iterate vanishes since X∩Y ¼ ∅. For simplicity we
first focus on the n ¼ 1 term,

Cð1Þ
B ðX; tÞ ≐ X

Z∩X≠∅

Z
t

s
∥ΨZðrÞ∥CBðZ; sÞ dr ð78Þ

≤ 2∥B∥ðt − sÞ
X
j∈X

X
Z∋j;Z∩Y≠∅

sup
~s∈½s;t�

∥HZð~sÞ∥: ð79Þ

The factor 2 on the RHS comes from ∥ΨZðrÞ∥ ≤
2∥HZðrÞ∥, where 2 enters from bounding ∥½HZðrÞ; A�∥
by 2∥HZðrÞ∥∥A∥. The general idea of the rest of the
derivation is to insert strategically placed uniforming
bounds (sups) after introducing an appropriate factor of
Fμ. The ranges of the sups are also important and have to be
selected with care. We also use supðABÞ ≤ supðAÞ supðBÞ
for A;B > 0. Inserting a factor 1 ¼ Fμðdðj; kÞÞ=
Fμðdðj; kÞÞ, one has

Cð1Þ
B ðX; tÞ ≤ 2∥B∥ðt − sÞ

X
j∈X;k∈Y

X
Z∋j;k

sup
~s∈½s;t�

×

�
∥HZð~sÞ∥
Fμðdðj; kÞÞ

Fμðdðj; kÞÞ
�
; ð80Þ
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and using the RHS of (77),

Cð1Þ
B ðX;tÞ≤ 2∥B∥ðt− sÞ

X
j∈X;k∈Y

X
Z∋j;k

ð sup
~s∈½s;t�

Þð sup
i2∈½0;Nc−1�

Þ

×

�
Nc

����∂τ
jcðZÞ
i2

ð~sÞ
∂ ~s

����
�

×

�
ðsup
τð~sÞ

Þð sup
i1∈½0;Nc−1�

Þð sup
~s∈½0;T�

Þ
�∥HjcðZÞ

i1
ðτð~sÞÞ∥

Fμðdðj;kÞÞ
��

× ðð sup
~s∈½s;t�

ÞFμðdðj;kÞÞÞ; ð81Þ

where a bounding sup over slicings fτð~sÞg has been
inserted into the middle factor. Henceforth we will take
∂τjiðtÞ=∂t ≥ 0, for all t, i, j, which is just the monotonicity
condition necessary for freedom from anomalies discussed
earlier, so the absolute values in the first line may be
omitted. We have also “extended” the sup over ~s in the
factor containing ∥H∥ from ~s ∈ ½s; t� to ~s ∈ ½0; T�, with

0 ≤ s < t ≤ T, where recall T is some “large” exter-
nal time.
Next, first bound the first factor, containing the ~s

derivatives of τ, by taking an overall sup over jc ∈ Γ,
thereby rendering that factor independent of Z. Returning
then to the middle factor with ∥H∥, bring in the sum over Z,
and expand j ∈ X, k ∈ Y to x; y ∈ Λ ⊃ Z, for some chosen
Λ ⊂ Γ of finite cardinality. By expanding j, k to x; y ∈ Λ,
more positive terms were added. Hence the sup factor
containing ∥Hj

i1
ðτÞ∥ may be bounded by

ðsup
τð~sÞ

Þð sup
i∈½0;Nc−1�

Þð sup
~s∈½0;T�

Þð sup
x;y∈Λ

Þ
X
Z∋x;y

�
∥HjcðZÞ

i ðτð~sÞÞ∥
Fμðdðx; yÞÞ

�
; ð82Þ

which is now conveniently independent of j, k. Therefore
the j, k sum on the far left may then be moved all the way to
the right to act only on the third factor, containing only
Fμðdðj; kÞÞ. Thus,

Cð1Þ
B ðX; tÞ ≤ 2∥B∥ðt − sÞ

�
ðsup
jc∈Γ

Þð sup
i∈½0;NC−1�

Þð sup
~s∈½s;t�

Þ
�
Nc

∂τjci ð~sÞ
∂ ~s

��

×

�
ðsup
τð~sÞ

Þð sup
i∈½0;NC−1�

Þð sup
~s∈½0;T�

Þð sup
x;y∈Λ

Þ
X
Z∋x;y

∥HjcðZÞ
i ðτð~sÞÞ∥

Fμðdðx; yÞÞ
�� X

j∈X;k∈Y
ð sup
~s∈½s;t�

ÞFμðdðj; kÞÞ
�
: ð83Þ

This may be written more compactly as

Cð1Þ
B ðX; tÞ ≤ 2∥B∥ðt − sÞIX;YðFμÞ

�
ðsup
jc∈Γ

Þð sup
i∈½0;Nc−1�

Þð sup
~s∈½s;t�

Þ
�
Nc

∂τjci ð~sÞ
∂ ~s

��
∥H∥T;μ; ð84Þ

where we have set

IX;YðFμÞ ≐
X
j∈X

X
k∈Y

ð sup
~s∈½s;t�

ÞFμðdðj; kÞjτð~sÞ;~sÞ: ð85Þ

Similar to NVZ, we assume there exists a real μ > 0 such that

∥H∥T;μ ≐ ðsup
τð~sÞ

Þð sup
i∈½0;NC−1�

Þð sup
~s∈½0;T�

Þð sup
x;y∈Λ

Þ
X
Z∋x;y

∥HjcðZÞ
i ðτð~sÞÞ∥

Fμðdðx; yÞÞ
< ∞: ð86Þ

From (86) we see ∥H∥T;μ is a bound temporally uniform
over ~s ∈ ½0; T� and spatially uniform over the chosen finite
subsetΛ ⊂ Γ. This occurs becauseΛ ⊂ Γ is any finite lattice
containing Z ⊂ Λ, and ∥HjcðZÞ

k ðτð~sÞÞ∥ is independent of the
choice of Λ within Γ. One may extend the definition of
∥H∥T;μ to be spatially uniform over countable Γ as in NVZ,
by changing the sup over x, y in (86) from Λ to Γ.
We now examine IX;YðFμÞ in some more detail. Recall

FμðxÞ ≐ expð−μxÞFðxÞ is a positive real-valued, nonin-
creasing function of its non-negative real argument; thus for
a fixed slicing

sup
~s∈½s;t�

Fμðdðx; yÞÞ ≤ Fμð inf
~s∈½s;t�

dðx; yÞÞ; ð87Þ

and

IX;YðFμÞ ≤
X
x∈X

X
y∈Y

Fμð inf
~s∈½s;t�

dðx; yÞÞ: ð88Þ

Alternatively, in the discretized model under study, X, Y are
both finite sets, so
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IX;YðFμÞ ¼ sup
~s∈½s;t�

X
x∈X

X
y∈Y

Fμðdðx; yÞÞ

≤ sup
~s∈½s;t�

minðjXj; jYjÞ sup
y∈mðX;YÞ

X
x∈MðX;YÞ

Fμðdðx; yÞÞ;

ð89Þ

where mðX; YÞ ≐ Y and MðX; YÞ ≐ X if jXj > jYj; other-
wise mðX; YÞ ≐ X andMðX; YÞ ≐ Y. Since Fμ is positive,
this may be bounded by “expanding” both mðX; YÞ and
MðX; YÞ to Γ to yield

IX;YðFμÞ ≤ minðjXj; jYjÞ exp½−μ inf
~s∈½s;t�

dðX; YÞ� sup
~s∈½0;T�

∥F∥;

ð90Þ

where as a reminder, ∥F∥ ≐ supx∈Γ
P

y∈Γ Fðdðx; yÞÞ < ∞
contains an implicit ~s dependence through dðx; yÞ.
When one bounds the higher order terms n > 1 in the

Dyson expansion (74) for CBðX; tÞ, at order n one initially
inserts n − 1 factors of

Fμðdðx;zÞÞFμðdðz;yÞÞ
Fμðdðx;yÞÞ

≤C
exp½−μðdðx;zÞþdðz;yÞÞ�

exp½−μdðx;yÞ� <C;

ð91Þ

where the triangle property of the 3-metric on a fixed slice
of a fixed slicing has been applied. Recall the positive real
constant C is defined by (62), and FμðxÞ ¼ e−μxFðxÞ.
There are also n factors of HZ. Expanding CBðX; tÞ ≤
∥B∥

P
n¼1ânðt − sÞn=n!, one bounds

ân ≤ ð2∥H∥T;μÞn½ðsup
τð~sÞ

Þð sup
~s∈½0;T�

ÞCμðdðτð~sÞ; ~sÞÞ�n−1

×

�
ðsup
jc∈Γ

Þð sup
i∈½0;Nc−1�

Þð sup
~s∈½s;t�

Þ
�
Nc

∂τjci ð~sÞ
∂ ~s

��
n

×
�
ð sup
~s∈½s;t�

Þ
X
j∈X

X
k∈Y

Fμðdðj; kÞjτð~sÞ;~sÞ
�
: ð92Þ

We now assemble all these intermediate steps into the final
result. Define

~Cμ ≐ ðsup
τð~sÞ

Þð sup
~s∈½0;T�

ÞCμ: ð93Þ

Because external time reparametrization (1-diff) invariance
will require a Lieb-Robinson bound restricted to infini-
tesimal time increments ðt − sÞ → 0, we set δt ≐ ðt − sÞ →
0 in the above expressions. Also define

ð sup
~s∈½t;tþδt�

Þ∥Fðdðτð~sÞ; ~sÞ∥ ≤ ðsup
τð~sÞ

Þð sup
~s∈½0;T�

Þðsup
x∈Γ

Þ

×
X
y∈Γ

Fðdðx; y; τð~sÞ; ~sÞÞ

≤ sup
x∈Γ

X
y∈Γ

Fðinf
τð~sÞ

inf
~s∈½0;T�

dðx; yÞÞ ≐ ∥ ~F∥; ð94Þ

and ∥ ~F∥ is slicing and slice independent. Then one has the
relational framework Lieb-Robinson bound,

∥½AXðtÞ; BYðtþ δtÞ�∥jτðsÞ
≤

2

~Cμ

∥A∥∥B∥∥ ~F∥minðjXj; jYjÞ

× ½expð−μEðτðtÞÞÞ − expð−μ inf
s∈½t;tþδt�

dðX; YÞÞ�; ð95Þ

where the jτðsÞ on the LHS indicates one is referring to a
single slice at some t ∈ ½0; T� within an arbitrary slicing
τðsÞ. As a reminder, X, Y are the supports of AðtÞ, BðtÞ,
respectively, with X∩Y ¼ ∅. We have denoted

EðτðtÞÞ≐ ½ inf
s∈½t;tþδt�

dðX;Y; τðsÞ; sÞ�−
�
2 ~Cμ

μ
Nc∥H∥T;μ

�
ðδtÞ

×

�
ðsup
j∈Γ

Þð sup
i∈½0;Nc−1�

Þð sup
s∈½t;tþδt�

Þ
�∂τjiðsÞ

∂s
��

: ð96Þ

We will refer to the quantity

vLR ≐ 2 ~Cμ

μ
Nc∥H∥T;μ ð97Þ

as the relational framework Lieb-Robinson velocity.

VI. INVARIANCE AND OTHER PROPERTIES OF
THE RELATIONAL FRAMEWORK

LIEB-ROBINSON BOUND

The relational framework Lieb-Robinson bound (95) has
a LHS that refers to the t-differential ðδtÞ behavior of the
norm of an operator commutator between discretized
observables A, B near a single slice of some arbitrary
slicing. Typically we take the operators A, B to have the
relational framework form ΔðÔ½f�ðτÞÞ, so they are dis-
cretized Dirac observables. The RHS has many factors,
some of which are uniformly bounded over slicings and
slices, and others that are slicing and/or slice dependent. We
now describe those dependencies. Recall that a change of
slicing is a gauge transformation, and a choice of slice s
within a slicing is a gauge fixing. By definition (86), μ ∼
1=diamðZÞ is chosen so that ∥H∥T;μ is finite and includes
sups over all slicings τð~sÞ and over all slices at ~s within
those slicings. Therefore, in addition to being spatially and
temporally uniform, μ and ∥H∥T;μ are slicing and slice
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uniform as well. Moreover, ~Cμ ≐ supτðsÞsups∈½0;T�Cμ is μ
and F dependent, and hence slicing and slice uniform too.
Thus ð2=μÞ ~Cμ∥H∥T;μ and then vLR are both slicing, slice,
and spatiotemporally uniform. The same conclusion holds
for the prefactor of the exponentials on the RHS of (95).
By comparison with the simple t independent

Hamiltonian nonrelativistic Lieb-Robinson bound (57),
we see the exponentially damped leakage from a local light
cone is governed by the quantity E in (96) above. So when

δDðtÞ ≐ inf
s∈½t;tþδt�

ðdðX; Y; τðsÞ; sÞÞ > vLR

�
sup
j∈Γ

�

×

�
sup

k∈½0;Nc−1�

� �
sup

s∈½t;tþδt�

��∂τjkðsÞ
∂s δt

�
; ð98Þ

there is exponentially small leakage of the operator norm
from the local light cone during δt. δDðtÞ is a slicing
dependent and slice dependent (slice near t) quantity. It is
also t reparameterization (1-diff) invariant under t → t0 ≐
fðtÞ; δt → δt0 ¼ f0ðtÞδt with f0ðtÞ > 0 for t ∈ ½0; T�, treat-
ing τI and HIðτÞ as (3þ 1) scalars, and noting that such a
relabeling of the slice from t to t0 does not affect the 3-metric
d on the slice. At a fixed slicing and slice, δDðtÞ is also
invariant under smooth coordinate reparametrizations
(3-diffs) of that 3-slice because the 3-metric d is, even
though neither the spatial discretization (lattice) itself nor
the 3-metric tensor gij are 3-diff invariant. The factor
supsð∂τ=∂sÞδt on the RHS of (98) has these same 3-slice
properties as d. Hence one has on-shell (3þ 1)-diff invari-
ance of the relational frameworkLieb-Robinson bound local
light cone.
As shown by Dittrich [7,8], on-shell one can classically

embed every slicing into a 4-manifold with a Lorentzian
4-metric. The tangent bundle of this 4-manifold may
also be smoothly partitioned in a (3þ 1)-diff invariant
way using that Lorentzian metric to define local null
directions and so generate a 4-metric based null cone.
The relational framework Lieb-Robinson bound local light
cone should coincide with or bound the 4-metric null cone,
but this has not yet been explicitly established. The
4-metric null cone, however, does not address the important
issue of observable commutator leakage outside the light
cone, which is the crux of the relational framework Lieb-
Robinson bound.
One can also derive a relational framework Lieb-

Robinson bound local light-cone structure with
v0LRsupsð∂τ=∂tÞδt replacing vLR supsð∂τ=∂tÞδt in a new
δ ~DðtÞ which is slicing independent (containing a supτðsÞ)
but is slice dependent (still retaining the sups∈½t;tþδt�). That
is, one fixes some external t parametrization τIðtÞ, and
looks at slices within δt of t over all the slicings τðtÞ. But
this construction seems less physically natural than the one
described above, where δDðtÞ is both slicing and slice
dependent, so we will not discuss it further.

A differential Lieb-Robinson bound local light cone can
be “integrated forwards” in t from slice to slice within a
single slicing to generate “support tubes” for observables.
To do this, one constructs operators Al

Xðt; tþ δtÞ over the
external time interval ½t; tþ δt� by the Hastings method
described in Sec. IV which are exponentially accurate
t-dependent supports for a discretized Dirac observable
gauge evolving in external time from t to tþ δt. This then
may be iterated for succeeding slices spaced by intervals
δt → 0. This is precisely analogous to how one “integrates”
null cones on a curved Lorentzian manifold to generate
causal curves from the locally Minkowskian geometry.

VII. PHYSICAL AND CONCEPTUAL QUESTIONS

We have explored nonultralocal constraints with the
relational framework and derived an external time differ-
ential local light-cone structure based on Lieb-Robinson
bounds using a discrete spatial lattice or network model.
Several physical and conceptual issues about this spring to
mind, and we discuss those here. This discussion is by
necessity less mathematically rigorous and considerably
speculative in some cases.
Question 1: Aside from slicing and slice dependent

factors like ð∂τ=∂sÞδt are vLR and the local light cone
“the same” as the classical spacetime into which the rela-
tional framework is embedded varies? That is, basically one
is taking sups over a large spacetime to construct
vLRsupsð∂τ=∂sÞδt. But what happens when the entire
spacetime, initial conditions, and so on, are altered?
Would μ stay the same? If μ changed, then according to
(97) vLR would also change as the spacetime under inves-
tigation was altered, a potentially fatal physical pathology if
we expect vLR to be (or bound) the speed of light.
One way to avoid such an early demise for the

relational framework Lieb-Robinson bound would be that
1=μ ∼ diamðZÞ, the proper “typical size” of single on-shell
Hamiltonian patches, is a proper length much smaller than
the minimum over the classical spacetimes of any proper
curvature scales LcðxÞ they contain. That is, one could
interpret 1=μ as some kind of proper finite range ξ of the
on-shell constraints or Hamiltonians. Thus, if ξ is a
microscopic scale relative to classical geometrical scales,
ξ ≪ minxLcðxÞ uniformly for all the classical spacetimes
under consideration, then different classical geometries but
with the same constraints will have the same μ; ∥H∥T;μ; ~Cμ

and thus vLR. This takes the constraints to be nonlocal,
homogeneous in form, and uniformly bounded; it essen-
tially requires a large separation of physical scales, which is
common throughout physics. In addition, ξ would also
have to be far smaller than any particle physics lengths that
have been probed so far for there not to have been any
evidence yet of nonlocality. But this does not mean that ξ
has to be on the order of the Planck scale LP ∼ 10−35 m, but
it would certainly require ξ ≪ 2 × 10−19 m (1 TeV). ξ
would still have to be longer than the scale needed to have a
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well defined 3-metric on each slice, which at least requires
that ξ ≫ LP.
Question 2: What kind of terms in HIðτÞ would generate

the required nonultralocality? Specifically, would gradient
terms (of any order) suffice to produce the nonultralocality
for a Lieb-Robinson bound?
This question is closely tied to discretization. In a

typical discretization one replaces ∇xψðxÞ → ðψðjþ 1Þ−
ψðjÞÞ=b, where b is some kind of lattice constant, and j is a
site index corresponding to the continuum coordinate x. So
HI containing a pointwise gradient in the continuum, such
as ψðxÞ∇ψðxÞ, becomes nonlocal in the discretization since
it would couple sites j and jþ 1. But in the continuum HI
remains firmly ultralocal. Indeed, all the well known
actions for continuum canonical gravity such as the
3þ 1 ADM decomposition or the Holst action are ultra-
local, and for those cases ξ ¼ 0, and then there is no more
Lieb-Robinson local light cone.
The answer to the question is no, continuum gradients

alone are insufficient for nonultralocality. The reason for
the negative answer is any discretization perceives a
continuum gradient as a lattice constant dependent con-
tribution to ξðbÞ ¼ 1=μðbÞ. An nth order gradient is
computed by discretization to give a contribution
ξ ∝ nb, which vanishes in the continuum limit b → 0.
Gradients have no nonzero natural scale in the continuum.
Hence for a local light cone to emerge by Lieb-Robinson
bounds, the nonultralocal HI cannot be constructed from
products of fields and their gradients at a single point. Both
ξðbÞ and ∥HI∥T;μ must be independent of b as b → 0.
Physical quantities like vLR and the local light cone cannot
depend on any cutoff scale like b. This is the lesson of the
renormalization group for background dependent quantum
field theory, and it also requires discretization independ-
ence in the continuum limit for gravitational theories. In
fact, as found in [17], discretization independence implies
nonlocality in 4D discrete quantum gravity.
This question and its answer lead us to ask the following:
Question 3: What is the role of the discretization in the

Lieb-Robinson bound?
Contact with physical reality occurs when b → 0

because any nonzero b spatial discretization by itself breaks
3-diff invariance since the lattice or network is not gen-
erally mapped into itself by a 3-diff [18]. There are,
however, perfect actions for discretizations that do recover
the requisite invariance as b → 0 for several models [19].
Even for these special cases, the discretization will coarse
grain or voxelate the metric information at least over the
scale b. This classical error makes the discretized dðj; kÞ
acquire a b dependence. Again we have to assume that
limb→0dðx; y; bÞ is well defined so vLRsupsð∂τ=∂sÞδt and
δDðtÞ are all also well defined in that continuum limit,
where the classical voxelation error disappears.
Question 4: How might the required nonultralocality of

hI; HIðτÞ arise? That is, if one starts from some bare

classical constraints specified by Hcl
I that are ultralocal,

how can one end up with effective quantum constraints
generated by a nonultralocal Heff

I ?
The simple answer is that the real quantitative origins of

nonultralocality hI lie beyond the scope of the present work.
Indeed, this is like askingwhat atomic physics lies behind the
exchange coupling constant J in the Ising model (53). The
quantum algebra U at the kinematic level is generated by
Q̂aðτÞ, P̂aðτÞ through their canonical commutation relations.
From that algebra we can find its representation carrier
Hilbert space by the GNS construction from any positive
linear functional (state) ρ onU. The quantum constraints are
ρ½P̂I þ ĥeffI � ¼ 0; i.e., the quantum fluctuations satisfy the
effective constraints in the mean (as an expectation value). A
similar process occurs in background-dependent quantum
field theory where quantum corrections due to loops are
taken into account using a field dependent effective
(“dressed”) action Γ½Φ� rather than the bare classical action
I½Φ� [20]. Connected vacuum-vacuum quantum field theory
amplitudes can be computed using tree-level (mean field)
Feynman graphs with vertices using Γ½Φ� instead of I½Φ�. A
similar “dressing” byquantum fluctuationsmight render Ĥeff

nonultralocal. Unfortunately the quantitative details are out
of present computational reach for background independent
quantum gravity without the well-defined path integral
technology of quantum field theory.
An alternative way to consider this problem is from the

point of view of the renormalization group (RNG), asymp-
totic safety, and lattice gauge theories [21]. How finite-
scale interactions arise in the b → 0 (UV) limit is addressed
by the Wilsonian RNG flow. Nontrivial scaling of the
coupling constants (residing within the hI) at a RNG fixed
point can lead to a continuum theory, especially if there is a
second order phase transition either within the quantum-
classical crossover regime or perhaps at lower energies. The
correlation lengths such as ξ (in lattice units) would diverge
there and may play a role in the continuum limit of
canonical quantum gravity. It is also interesting to note
that asymptotic safety does not use a bare action as an
input, but rather produces one as an output, thereby
possibly circumventing the issue of how starting from an
ultralocal bare action leads to nonultralocality.
A more speculative answer is that we may not know the

“true” physical action or constraints for gravity at very
short but not yet Planckian lengths, only that they look local
as far as we can tell from our experience at long length
scales (above 2 × 10−19 m or energies up to 1 TeV). In that
case, the Lieb-Robinson local light cone would be a long
length scale manifestation of nonultralocality of those
otherwise inaccessible short length scale constraints, a hint
that we might not be aware of some deeper physics. One
possibility is that noncommutative products such as the
Moyal-Weyl-Groenewold ⋆-product and deformed diffeo-
morphisms could play a role. While noncommutative field
theories still have Lagrangian densities and Noether
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currents, the products of objects in the Lagrangian density
are nonlocal [22]. The scale of that nonlocality might be
associated with ξ above. However, noncommutative geom-
etry is not a quantization of the underlying manifold in the
sense that it does not promote phase space functions to
operators. So noncommutative manifolds do not describe
quantum fluctuations of geometry, and they are on-shell
descriptions. Instead they require that the geometric and
matter field actions be invariant under deformed diffeo-
morphisms of the noncommutative manifold, which are
nearly the standard diffeomorphisms normally used to
describe manifolds like Σ that leave the usual local action
invariant. At length scales larger than the nonlocal effects,
the noncommutative symmetries and constraints should
approach the standard ones while an on-shell Lieb-
Robinson light cone emerges from a relational framework
based on the noncommutative action. It is worth noting in
this regard that the nonlocality induced by noncommutative
geometry is not of the gradient (spurious) type.
Question 5: In the relational framework Lieb-Robinson

boundwhich variables are quantum andwhich are classical?
The operators Â, B̂ appearing in the Lieb-Robinson bound

analysis include those constructed from Q̂aðτÞ, P̂aðτÞ, which
may describe either geometrical or possiblymatter degrees of
freedom. These are treated fully quantummechanically from
the on-shell gauge flow (11). The τI are real parameters and
are never promoted to quantum operators, so they do not
acquire fluctuations. As discussed earlier, the clock variables
TI are also not promoted to physical operators T̂I . More
crucially, at the heart of the Lieb-Robinson bound lurks
dðx; yÞ, the on-slice 3-metric, computed from geometrical
variables. In dðx; yÞ those variables, such as the ADM 3-
metric qab, are treated classically, while in ÂðτÞ, B̂ðτÞ those
same variables are treated quantum mechanically. So there
seems to be an inconsistency. That is, inside ÂðτÞ and B̂ðτÞ
q̂ab is treated as an element of a noncommutative (quantum)
C�-algebra, but when q̂ab enters a computation of
dðx; y; τðsÞ; sÞ it is treated as an element of a commutative
(classical) C�-algebra. However, if we use classical geo-
desics as a basis for computing dðx; yÞ as an extremum over
the quantum expectation hq̂abi, then the Lieb-Robinson local
light-cone quantity δDðtÞ [see (98)] is mean field (expect-
ation value level) with respect to q̂ab over ½t; tþ δt�. Within
theHamiltonians ĤIðτÞ, qab is treated as a quantumoperator.
Thus we can say the Lieb-Robinson local light-cone con-
struction is at least mean field with respect to fluctuations
entering qab, and it must be stabilized against those fluctua-
tions if it is to survive.
Question 6: What parameters, if any, delineate a window

of survival for the mean-field Lieb-Robinson local light
cone in its precarious perch among the tensions between the
classical and quantum worlds?
To answer this, we introduce δd as the largest root mean

square quantum fluctuation of the proper lengths dði; jÞ,
and also take the classical discretization error in proper

lengths to be roughly the same as the lattice constant b. Lc
denotes the shortest classical curvature scale of any 3-
geometry under consideration. We also have ξ ¼ 1=μ, the
range (proper patch diameter) of the nonultralocal con-
straints. Since a classical metric dði; jÞ loses physical
meaning when dði; jÞ < δd, and quantum fluctuations
could play a role in the origin of ξ, δd≲ ξ. We can then
qualitatively delineate four distinct physical regimes:
(a) δd ≲ ξ < b ≪ Lc: Here the discretization is too

coarse to resolve the finite range ξ of the HI , which then
appears to be ultralocal. The Lieb-Robinson local light
cone does not emerge.
(b) δd < b < ξ ≪ Lc: Here theLieb-Robinson local light

cone is stabilized against the quantum fluctuations δd, the
discretization can resolve the nonultralocal range ξ of theHI ,
but it does not resolve the quantum fluctuations. The local
light cone is b (discretization) independent once b ≪ ξ.
(c) b < δd < ξ ≪ Lc: The proper range ξ is still sepa-

rated and immune from quantum fluctuations, while the
local light cone is still discretization (b) independent.
(d) b < δd≃ ξ ≪ Lc: Now ξ is quantum limited, a

fluctuation limited patch size. We still have discretization
independence once b < δd, where the discretization error is
no longer physically relevant.
In cases (b) and (c) the Lieb-Robinson local light cone

will survive provided: (1) the continuum limit b → 0 is well
behaved, and (2) δd ≪ δDðtÞ [see (98)]. This means δd
does not significantly affect the width of the local light cone
at t; tþ δt, and thereby limits δt from below. That is, the t-
dependence of the classical 3-metric dðx; yÞ cannot vary too
quickly in external time, so one can define a mean field or
classical differential local light cone. Case (b) or (c) could
correspond to the noncommutative geometry scenario for
nonlocality over the scale ξ in the presence of a metric
solution. In the marginal case (d), where the scale of
nonlocality is about that of the quantum fluctuations, the
survival of the Lieb-Robinson local light cone is too close
to call. Unfortunately, we really do not know which regime
we live in. But if noncommutative geometry provided an
action invariant under deformed diffeomorphisms and
nonlocal on scale ξ, then that would be on shell, and could
naturally separate ξ from quantum length fluctuations δd.
An alternative approach to relieve the classical vs

quantum tension inherent in dði; jÞ is to use semiclassical
(coherent) states Ψ [23] of 3-space. The idea is that each
length on the initial slice t has a quantum expectation
hd̂iΨ ≐ dΨ, a quantum fluctuation hðd̂ − hd̂iΨÞ2iΨ ≐
σ2dðΨÞ, and the classical length dcl > 0. It is also possible
to use other geometric quantities besides dðx; yÞ, such as
the areas of triangles or volumes of tetrahedra. To achieve
semiclassical consistency for dði; jÞ in a stateΨ, one would
require for all sites i, j

jdcl − dΨj
dcl

≪ 1 and ð99Þ
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σdðΨÞ
dcl

≪ 1: ð100Þ

This makes the notion of classical distance insensitive to
the quantum fluctuations from the state Ψ. Such a con-
struction would also encounter difficulties in case (d)
above, where the range ξ is quantum limited.

VIII. SUMMARY, SELF-CRITICISM, AND
CONCLUSION

In this work we have explored the consequences of
nonultralocal constraints within the context of the relational
framework of canonical gravity. It was shown that this leads
to an on-shell non-Abelian algebra for the physical
Hamiltonians, while the constraint algebra remains
Abelian. Unitary propagators stay anomaly-free for smooth
monotonic gauge flow in an external time parameter t. A set
of Hamiltonians that generate operator gauge flow in t with
finite-ranged support patcheswas derived. After introducing
a spatial discretization, Lieb-Robinson bounds were
reviewed and applied to demonstrate an on-shell differential
time local light cone. This local light cone has the properties
that there is exponentially small norm leakage of discretized
Dirac operator commutators outside the local light cone, it
displays suitable gauge (slicing) and (3þ 1)-diffeomor-
phism invariance, and the local light cone can be “inte-
grated” into “support tubes” for discretized Dirac operators
that resemble familiar causal curves from general relativity.
This entire Lieb-Robinson bound local light-cone structure
collapses for ultralocal constraints. Therefore nonultralo-
cality together with Lieb-Robinson bounds go an unexpect-
edly long way toward explaining how the standard quantum
field theory version of microcausality, where local observ-
ables commute at spacelike distances, emerges from the
(semi)classical relational formulation of canonical gravity at
length scales greater than that characterizing the nonlocality.
Within the application of quantum field theory to fixed

curved background spacetimes, one can derive the familiar
causal advanced and retarded propagators as inverse wave
operators (Green’s functions) for matter fields such as
scalar bosons and so on. These show that the vacuum

expectation values of commutators of canonical fields
vanish outside the past or future light cone. However,
while this is straightforward for Minkowski spacetime, to
obtain unique solutions for general curved space times one
imposes the stringent requirement that the manifold be
globally hyperbolic. The Lieb-Robinson approach, on the
other hand, requires no such corresponding ab initio strong
global background causal structure assumption.
The criticism of the Lieb-Robinson bound route from

nonultralocality to local light cones is abundantly clear
from the responses to the questions in the previous section.
While some issues, such as how two different classical
spacetimes can share the same Lieb-Robinson velocity, or
the role of field gradients, are quite clear, many deeper
concerns remain only partially clarified, or just display our
glaring ignorance. These harder nuts to crack include the
following: What are the origins of nonlocality? What is the
detailed microscopic meaning of the range or correlation
length ξ ¼ 1=μ? What if ξ is about the size of quantum
fluctuations (marginal case)? What are the specifics of the
semiclassical limit or choice of quantum states necessary to
ensure that quantum fluctuations do not destroy the local
light cone? Is it possible to handle the continuum limit
more thoroughly than simply to assume the required limit is
well behaved? Might noncommutative geometry or field
theory play a role in these issues? Each of these questions
challenges us to probe more deeply into the “atomic”
theory underlying the model of condensed matter ancestry
presented here and stands as motivation for future work.
Nevertheless, it remains surprising that aspects of cau-

sality may be linked to nonultralocality. Adopting ultra-
locality uncritically might be somewhat like what occurred
in the 1950s with parity: A beautiful symmetry, but Nature
could be a lotmore interesting if She broke it once in awhile.
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