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The purpose of this study is to derive the equation of motion for geodesics in the vicinity of the spacetime
of a (2þ 1)-dimensional charged BTZ black hole. In this paper, we solve geodesics for both massive and
massless particles in terms of Weierstrass elliptic and Kleinian sigma hyperelliptic functions. Then we
determine different trajectories of motion for particles in terms of conserved energy and angular momentum
and also with effective potential.
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I. INTRODUCTION

The black hole is one of the most interesting predictions
of the general theory of relativity, which has been attractive
to theoretical physicists for a long time, and it still has
unknown parts to study.
A black hole is a region of spacetime with a strong

gravitational field that even light cannot escape from. It has
an event horizon whose total area never decreases in any
physical process [1]. In 1992 Banados, Teitelboim, and
Zanelli (BTZ) demonstrated that there is a black hole
solution to (2þ 1)-dimensional general relativity with a
negative cosmological constant [2], in which it was proved
that this type of black hole arises from collapsing matter
[3]. In their solution of the gravitational field equation, a
constant curvature in local spacetime is required [4], which
is a strange result as a solution of general relativity. In a
certain subset of anti–de Sitter (AdS) spacetime, they found
a solution that contains all the properties of a black hole by
making a special identification [4,5]. Also, the charged
BTZ black hole is the analogous solution of AdS-Maxwell
gravity in (2þ 1) dimensions [6–8].
The BTZ black hole is interesting because of its

connections with string theory [9,10] and its role in micro-
scopic entropy derivations [11,12]. The BTZ black hole
can also be used in some ways to study black holes in
quantum scales [7,13]. Unlike the Schwarzschild and Kerr
black holes, the BTZ black hole is asymptotically anti–de
Sitter rather than flat and has no curvature singularity at the
origin [7].
Black holes have various aspects to study. One of them

that we are more interested to investigate is the gravitational
effects on test particles and light that reach the spacetime of
a black hole. It is important because the motion of matter
and light can be used to classify an arbitrary spacetime,
in order to discover its structure. For this purpose, we
need to solve geodesic equations that describe the
motion of particles and light. The analytical solutions for
many famous spacetimes [such as Schwarzschild [14],

four-dimensional Schwarzschild–de Sitter [15], higher-
dimensional Schwarzschild, Schwarzschild–(anti–)de
Sitter, Reissner-Nordstrom and Reissner–Nordstrom–
(anti–)de Sitter [16], Kerr [17], Kerr–de Sitter [18], and a
black hole in f(R) gravity [19]] have been found previously.
The solutions are given in terms of Weierstrass ℘-functions
and derivatives of Kleinian sigma functions.
The interesting classical and quantum properties of the

black hole have made it appropriate to use a lower-
dimensional analogue that could represent the main fea-
tures without unessential complications [2]. Moreover,
(2þ 1)-dimensional black holes are interesting as simpli-
fied models for analyzing conceptual issues such as black
hole thermodynamics [20]. In addition, the study of black
holes in lower dimensions is useful to better understand the
physical features (like entropy, radiated flux) in a black
hole geometry [21]. Also, studying the gravitational field of
(2þ 1)-dimensional black holes and motion around these
black holes can be useful.
The purpose in this paper is to determine the types of a

particle’smotion around a (2þ 1)-dimensional chargedBTZ
black hole by studying its spacetime. The outline of our paper
is as follows. In Sec. II we introduce the metric and obtain
geodesic equations. Section III includes analytical solutions
for massless and massive particles and also the resulting
orbits are classified in terms of the energy and the angular
momentum of test particles, and we conclude in Sec. IV.

II. METRIC AND GEODESIC EQUATIONS

The charged BTZ black hole is the solution of the
(2þ 1)-dimensional Einstein-Maxwell gravity with a neg-
ative cosmological constant Λ ¼ − 1

l2 [6]. In the case of a
special matter source, which is a nonlinear electrodynamic
term in the form of ðFμνFμνÞs, called Einstein-power
Maxwell invariant gravity [22–24], the form of the coupled
(2þ 1)-dimensional action in the presence of cosmological
constant is written as follows [25]:

Iðgμν; AμÞ ¼
1

16π

Z
∂M

d3x
ffiffiffiffiffiffi
−g

p ½R − 2Λþ ðkFÞs�: ð1Þ
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Here R denotes the scalar curvature, F is the Maxwell
invariant which is equal to FμνFμν (Fμν ¼ ∂μAν − ∂νAμ is
the electromagnetic tensor field and Aμ is the gauge
potential), and s is an arbitrary positive nonlinearity
parameter (s ≠ 1

2
). Varying the action (1) with respect to

gμν (the metric tensor) and Aμ (the electromagnetic field),
one can obtain the equations of gravitational and electro-
magnetic fields as

Gμν − Λgμν ¼ Tμν; ð2Þ

∂μð
ffiffiffiffiffiffi
−g

p
FμνðkFÞs−1Þ ¼ 0; ð3Þ

and the energy-momentum tensor is

Tμν ¼ 2½skFμρF
ρ
νðkFÞs−1 − 1

4
gμνðkFÞs�; ð4Þ

where k is a constant. When s and k go to −1, Eqs. (1)–(4)
reduce to the field equations of a black hole in Einstein-
Maxwell gravity. It is convenient to restrict the nonlinearity
parameter to s > 1

2
in order to have an asymptotically well-

defined electric field. The metric of a nonrotating charged
BTZ black hole can be written as follows [26]:

ds2 ¼ −gðrÞdt2 þ dr2

gðrÞ þ r2dϕ2; ð5Þ

in which the metric function gðrÞ using the components of
Eq. (2) is obtained as [26]

gðrÞ ¼ r2

l2
−mþ

8<
:

2q2lnðrlÞ s ¼ 1;

ð2s−1Þ2
�

sq2ðs−1Þ2
ð2s−1Þ2

�
s

2ðs−1Þ rð2ðs−1Þ2s−1 Þ otherwise:
ð6Þ

This spacetime is characterized by m (an integration
constant related to the mass), q (the electric charge of the
black hole), and a cosmological constant Λ. In the case of
s ¼ 3

4
, one can obtain a well-known metric which is called a

conformally invariant Maxwell solution [26], such as

gðrÞ ¼ r2

l2
−m −

ð2q2Þ34
2r

: ð7Þ

Taking ð2q2Þ34 ¼ K we have

ds2 ¼ −
�
r2

l2
−m −

K
2r

�
dt2 þ dr2

r2

l2 −m − K
2r

þ r2dϕ2: ð8Þ

The metric (8) is stationary and axially symmetric. To
describe geodesic motion in such a spacetime we need a
geodesic equation, which is written as

d2xμ

dλ2
þ Γμ

ρσ
dxρ

dλ
dxσ

dλ
¼ 0; ð9Þ

in which dλ2 ¼ gμνdxμdxν is the proper time and Γμ
ρσ

denotes the Christoffel connections given by

Γμ
ρσ ¼ 1

2
gμνð∂ρgσν þ ∂σgρν − ∂νgρσÞ: ð10Þ

We can obtain geodesic equations using the Lagrangian
equation

L ¼ 1

2

X3
μ;ν¼0

gμν
dxμ

dλ
dxν

dλ
¼ 1

2
ϵ

¼ 1

2

�
−
�
r2

l2
−m −

K
2r

��
dt
dλ

�
2

þ 1

ðr2l2 −m − K
2rÞ

�
dr
dλ

�
2

þ r2
�
dϕ
dλ

�
2
�
; ð11Þ

where ϵ for massive and massless particles has the values of
1 and 0, respectively, and λ is an affine parameter.
Using the Euler-Lagrange equation we can obtain con-

stants of motion

Pt ¼
∂L
∂_t ¼ −

�
r2

l2
−m −

K
2r

�
_t ¼ −E;

Pϕ ¼ ∂L
∂ _ϕ ¼ r2 _ϕ ¼ L; ð12Þ

where E is energy and L is angular momentum. Now, using
Eqs. (11) and (12), we can obtain geodesic equations as
follows:

�
dr
dλ

�
2

¼E2þmϵ−
L2

l2
−
ϵr2

l2
þKϵ

2r
þmL2

r2
þKL2

2r3
; ð13Þ

�
dr
dϕ

�
2

¼
�
−

ϵ

l2L2

�
r6 þ

�
E2

L2
þmϵ

L2
−

1

l2

�
r4 þ

�
Kϵ

2L2

�
r3

þmr2 þ Kr
2

¼ RðrÞ; ð14Þ

�
dr
dt

�
2

¼
�
r2

l2
−m −

K
2r

�
2

−
ϵðr2l2 −m − K

2rÞ3
E2

−
L2ðr2l2 −m − K

2rÞ3
E2r2

: ð15Þ

These equations give a complete description of dynamics.
Using Eq. (13) we can find effective potential

Veff ¼
ϵr2

l2
−
Kϵ
2r

−
mL2

r2
−
KL2

2r3
−mϵþ L2

l2
: ð16Þ

Here for convenience we define a series of dimensionless
parameters as
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~r ¼ r
m
; ~l ¼ l

m
; ~K ¼ K

m
; ~L ¼ m2

L2
; ð17Þ

and then rewrite Eq. (14) as

�
d~r
dϕ

�
2

¼ ~r6
�
−ϵ ~L
~l2

�
þ ~r4

�
E2 ~Lþ ϵ ~Lm −

1

~l2

�

þ ~r3
�
ϵ ~L ~K
2

�
þm~r2 þ

~K ~r
2

¼ Rð~rÞ: ð18Þ

A. Comparison to other cases of parameter s

For s ¼ 3
2
, the metric function is equal to

gðrÞ ¼ r2

l2 −mþ Ar
1
2, in which A ¼ 4ð3q2

32
Þ32, so we have

�
dr
dϕ

�
2

¼ r6
�
−

ϵ

L2l2

�
þ r4

�
E2

L2
þ mϵ

l2L2
−

1

l2

�

þ r2
�
−
Aϵ
L2

þm

�
− Ar: ð19Þ

The solution of this equation is similar to Eq. (14) (i.e., for
s ¼ 3

4
, so that it is investigated completely in this paper). In

the case of s ¼ 1, the metric function gðrÞ is

gðrÞ ¼ r2

l2
−mþ 2q2 ln

�
r
l

�
; ð20Þ

and so we have

�
dr
dϕ

�
2

¼ r6
�
−

ϵ

L2l2

�
þ r4

�
E2

L2
þmϵ

L2
−
2ϵq2

L2
ln

�
r
l

�
−
1

l2

�

þ r2
�
m−2q2 ln

�
r
l

��
; ð21Þ

and for s ¼ 3, the metric function is gðrÞ ¼ r2

l2 −mþQr
4
5,

where Q ¼ 25ð12q2
25

Þ3
4

, so we have

�
dr
dϕ

�
2

¼ r6
�
−

ϵ

L2l2

�
þ r4

�
E2

L2
þmϵ

L2
−

1

l2

�

þmr2 −
Qϵ

L2
r
24
5 −Qr

14
5 : ð22Þ

Equation (21) includes some logarithmic terms; Eq. (22)
and other equations related to other cases of s have some
terms with fractional powers of r, that, to our knowledge,
cannot be solved analytically. However, they may be solved
numerically similar to applied methods in Ref. [27].
Therefore, in the following we consider the conformally
invariant Maxwell solution (s ¼ 3

4
).

B. Possible regions for geodesic motion

Equation (18) implies that a necessary condition for the
existence of a geodesic is Rð~rÞ ≥ 0, and therefore, the real
positive zeros of Rð~rÞ are extremal values of the geodesic
motion and determine the type of geodesic. Since ~r ¼ 0 is a
zero of this polynomial for all values of the parameters, we
can neglect it. So Eq. (18) changes to a polynomial of
degree 5 as below:

R�ð~rÞ ¼ ~r5
�
−ϵ ~L
~l2

�
þ ~r3

�
E2 ~Lþ ϵ ~Lm −

1

~l2

�
þ ~r2

�
ϵ ~L ~K
2

�

þm~rþ
~K
2
: ð23Þ

Using analytical solutions, one can analyze possible
orbits that depend on the parameters of the test particle or
light ray ϵ, E2, l, K, and L. In the next sections it will be
shown exactly.
For a given set of parameters ϵ, l, E2, K, and L, the

polynomial R�ðrÞ has a certain number of positive and real
zeros. If E2 and L are varied, the number of zeros can
change only if two zeros of R�ðrÞ merge to one. Solving
R�ð~rÞ ¼ 0 and dR�ð~rÞ

d~r ¼ 0 gives us E2 and ~L. For massive
particles ðϵ ¼ 1Þ we have

~L¼−
~l2ð4m~rþ3 ~KÞ
~r2ð ~K~l2þ4~r3Þ ;

E2¼−
4~l4m2 ~r2þ4 ~K~l4m~r−8~l2m~r4þ ~K2~l4−4 ~K~l2 ~r3þ4~r6

ð4m~rþ3 ~KÞ~l4 ~r ;

ð24Þ

and for massless particles ðϵ ¼ 0Þ

~L ¼
�
−
64m3

27 ~K2
þ 1

~l2

�
1

E2
: ð25Þ

The results of this analysis are shown in Figs. 1 and 2, in
which regions of different types of geodesic motion are
classified.
The shape of an orbit is related to the energy and angular

momentum of the test particle. Since ~r must be real and
positive, the acceptable physical regions canbe foundwith the
conditionE2 ≥ Veff . So the number of positive and real zeros
of Rð~rÞ will characterize the shape of different orbits. Here
according to the obtained results in this section, we can
identify three regions for the geodesicmotion of test particles:
(1) In region I, R�ð~rÞ has two real and positive zeros

ðr1 < r2Þ such that for R�ð~rÞ ≥ 0 we have 0 < ~r <
r1 and ~r ≥ r2. There are two kinds of orbits,
terminating bound orbits (TBOs) and flyby or-
bits (FOs).

(2) In region II, R�ð~rÞ has four real positive zeros ðri <
riþ1Þ such that for R�ð~rÞ ≥ 0 they are 0 < ~r < r1,
r2 < ~r < r3 and r4 ≤ ~r. Three possible orbits are
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terminating bound orbits, bound orbits (BOs), and
flyby orbits, respectively.

(3) In region III, there is no real and positive zero for
R�ð~rÞ and R�ð~rÞ ≥ 0 for positive ~r; therefore there
are just terminating escape orbits (TEOs).

For timelike geodesics these three regions will appear,
but for null geodesics only regions I and III exist. In Fig. 3
different potentials for each of these regions are illustrated.

III. ANALYTICAL SOLUTION OF
GEODESIC EQUATION

In this sectionwe study analytical solutions of equations of
motion. Using a new parameter u ¼ 1

~rwe simplify Eq. (18) to

FIG. 1. Regions of different types of geodesic motion for test
particles (ϵ ¼ 1). The numbers of positive real zeros in these
regions are I ¼ 2, II ¼ 4, III ¼ 0.

FIG. 2. Regions of different types of geodesic motion for light
(ϵ ¼ 0). The numbers of positive real zeros in these regions are
I ¼ 2, III ¼ 0.

(c)

(b)

(a)

FIG. 3. Effective potentials for different regions of geodesic
motion for test particles: (a) region I, (b) region II, and
(c) region III. The horizontal line denotes the squared
energy parameter E2.
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�
du
dϕ

�
2

¼
~Ku3

2
þmu2 þ

�
ϵ ~L ~K
2

�
uþ

�
E2 ~Lþ ϵ ~Lm −

1

~l2

�

þ
�
−ϵ ~L
~l2

�
1

u2
: ð26Þ

We will consider it for both particles and light rays as
follows.

A. Null geodesics

For ϵ ¼ 0 Eq. (26) changes to

�
du
dϕ

�
2

¼
~Ku3

2
þmu2 þ

�
E2 ~L −

1

~l2

�
¼ P3ðuÞ ¼

X3
i¼0

aiui;

ð27Þ

which is of the elliptic type. Another substitution u ¼
1
a3
ð4y − a2

3
Þ ¼ 2

~K
ð4y − m

3
Þ transforms Eq. (27) into

Weierstrass form as below,

�
dy
dϕ

�
2

¼ 4y3 − αy − γ ¼ P3ðyÞ; ð28Þ

in which

α¼ a22
12

−
a1a3
4

¼m2

12
;

γ¼ a1a2a3
48

−
a0a23
16

−
a32
216

¼−
ðE2 ~L~l2−1Þ ~K2

64~l2
−
m3

216
ð29Þ

are Weierstrass constants. Equation (28) is of the elliptic
type and is solved by the Weierstrass function [15,19]

yðϕÞ ¼ ℘ðϕ − ϕin; α; γÞ; ð30Þ

which here we have ϕin ¼ ϕ0 þ
R∞
y0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y3−αy−γ

p and y0 ¼
1
4
ða3
~r0
þ a2

3
Þ ¼ ~K

8~r0
þ m

12
depends only on the initial values ϕ0

and ~r0. As a result, the analytical solution of Eq. (18) is

~rðϕÞ ¼ a3
4℘ðϕ − ϕin; α; γÞ − a2

3

¼
~K

2½4℘ðϕ − ϕin; α; γÞ − m
3
� :

ð31Þ
Using this solution we could create the examples of null

geodesics for each region of different types of orbits which
are plotted in Figs. 4 and 5.(a)

1.5 1.0 0.5 0.5 1.0 1.5

1.5

1.0

0.5

0.5

1.0

1.5

(b)

20 10 10 20

20

10

10

20

FIG. 4. Null geodesic, region I: (a) corresponding terminating
bound orbit with E2 ¼ 0.3, L ¼ 0.1; (b) corresponding flyby
orbit with E2 ¼ 0.9, L ¼ 0.1.

1500 1000 500 500 1000 1500

1500

1000

500

500

1000

1500

FIG. 5. Null geodesic, region III: corresponding terminating
escape orbit with E2 ¼ 3, L ¼ 0.3.
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B. Timelike geodesics

For ϵ ¼ 1 Eq. (26) changes to
�
u
du
dϕ

�
2

¼
~Ku5

2
þmu4 þ

� ~L ~K
2

�
u3

þ
�
E2 ~Lþ ~Lm −

1

~l2

�
u2 −

~L
~l2

¼ P5ðuÞ ¼
X5
i¼1

aiui; ð32Þ

which is a polynomial of degree 5 with an analytical
solution as below [15,19,28],

uðϕÞ ¼ −
σ1
σ2

ðϕσÞ; ð33Þ

(a)

1.5 1.0 0.5 0.5 1.0 1.5

1.5

1.0

0.5

0.5

1.0

1.5

(b)

40 20 20 40

40

20

20

40

FIG. 6. Timelike geodesic, region I: (a) corresponding termi-
nating bound orbit with E2 ¼ 1.2, L ¼ 0.11; (b) corresponding
flyby orbit with E2 ¼ 1.6, L ¼ 0.05.

(a)
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0.5
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(b)

50 50
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(c)

200 100 100 200

200
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FIG. 7. Timelike geodesic, region II: (a) corresponding termi-
nating bound orbit with E2 ¼ 0.965,L ¼ 0.11; (b) corresponding
bound orbit with E2 ¼ 0.95, L ¼ 0.17; (c) corresponding flyby
orbit with E2 ¼ 0.95, L ¼ 0.17.
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where σi is the ith derivative of the Kleinian sigma function
in two variables:

σðzÞ ¼ Ce−
1
2
ztηω−1zθ½g; h�ðð2ωÞ−1z; τÞ: ð34Þ

We have some parameters here: the symmetric Riemann
matrix τ ¼ ω−1ώ; the Riemann theta function θ½g; h�, which
is written as

θ½g; h�ðz; τÞ ¼
X
m∈Zg

eiπðmþgÞtðτðmþgÞþ2zþ2hÞ; ð35Þ

the period-matrix ð2ω; 2ώÞ; the period-matrix of the second
type ð2η; 2ή Þ; and C is a constant that can be given
explicitly. Note that z is a zero of the Kleinian sigma
function if and only if ð2ωÞ−1z is a zero of the theta
function θ½g; h�.
With Eq. (33) the solution for ~r is

~r ¼ −
σ2
σ1

ðϕσÞ: ð36Þ

This solution of ~r is the analytical solution of the
equation of motion for massive particles. Different types

of orbits for each region of this solution are illustrated in
Figs. 6–8.

C. Orbits

In region I, as we expressed before, there are two kinds
of orbits [for TBO r starts in ð0; ra� for 0 < ra < ∞ and
falls into the singularity at r ¼ 0; and for FO r starts from
∞, then approaches a periapsis r ¼ rp, and then goes back
to ∞)] with E2 ¼ 1.2 and L ¼ 0.11. In region II, we have
three orbits (for TBO, FO, and BO, r oscillates between
two boundary values rp ≤ r ≤ ra with 0 < rp < ra < ∞)
with E2 ¼ 0.95 and L ¼ 0.17. Region III has just one kind
of orbit (TEO, in which r comes from ∞ and falls into the
singularity at r ¼ 0) with E2 ¼ 1.2 and L ¼ 0.15. With the
help of analytical solutions, parameter diagrams Figs. 1
and 2, and effective potentials (Fig. 3), various orbits for
these three regions considering Λ ¼ − 1

l2 ¼ 1
3
ð10−5Þ and

q ¼ 1.25 are presented in Figs. 4–8.

IV. CONCLUSION

In this paper considering a three-dimensional charged
BTZ black hole, we studied the motion of particles
(massive) and light rays (massless). For this purpose, at
first we found equations of motion (geodesic equations).
Then using the effective potential and solving geodesic
equations in terms of the Weierstrass elliptic function and
Kleinian sigma hyperelliptic function, we classified the
complete set of orbit types. We also demonstrated that for
both timelike and null geodesics, there are different regions
where test particles can move. These regions and possible
kinds of motion are illustrated in Figs. 1–8. For timelike
geodesics TBO, BO, FO, and TEO are possible and for null
geodesics TBO, FO, and TEO are possible.
These results and obtained figures can be used to have an

intuition about the properties of the orbits such as light
deflection, periastron shift, and so on. The higher-
dimensional and rotating version of this spacetime could
be studied in the future.
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