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Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a
numerical approach consisting in solving for a four-region model the static and spherically symmetric
Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum
chamber but also its walls and the exterior environment, the method allows one to probe new effects on the
scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the
effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1
order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical
estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the
vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could
be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the
experiment at several key positions inside the vacuum chamber. For the chameleon potential VðϕÞ ¼
Λ4þα=ϕα and a coupling function AðϕÞ ¼ expðϕ=MÞ, one finds M ≳ 7 × 1016 GeV, independently of the
power-law index. For VðϕÞ ¼ Λ4ð1þ Λ=ϕÞ, one finds M ≳ 1014 GeV. A sensitivity of a ∼ 10−11 m=s2

would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a
vacuum room, is presented. In this case, Planckian values of M could be probed provided that
a ∼ 10−10 m=s2, a limit reachable by future experiments. Our method can easily be extended to constrain
other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.
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I. INTRODUCTION

The accelerated cosmic expansion, highlighted by several
observations such as type-Ia supernovae [1], the temperature
fluctuations of the cosmic microwave background [2] and
the distribution of large scale structures, has been the subject
of intense research. The simplest explanation invoking a
cosmological constant, in fair agreement with current
observations, suffers from some fine-tuning and coincidence
issues. A wide range of alternative models from various
frameworks have been proposed (see e.g. [3] for a review), a
lot of them introducing a dynamical scalar field coupled to
matter. In order to leave observational signatures on the
structure formation or the expansion history, while passing
tight constraints coming from laboratory experiments [4–6],
tests in the solar system (see [7] for a review, also [8,9]) and
on galactic scales [10,11], a screeningmechanism appears to
be fruitful by suppressing the fifth-force induced by the
coupled scalar field in local environments. Chameleons
[12–17] are typical models where the scalar field is

suppressed in a dense medium, like in the Solar System,
while acting as a cosmological constant on sparse environ-
ment like in the cosmos at late time.
Many experimental tests of the chameleons have been

proposed so far, involving e.g. ultracold neutrons [18–23] or
cold atoms interferometry [24,25] (see also [26–31,31–34]),
still leaving a part of the parameter space unconstrained.
Very recently, new experiments based on atom interferom-
etry, involving a sourcemass inside a vacuum chamber, have
been proposed to test chameleon models with a high
sensitivity [35,36], individual atoms being sufficiently small
to let the scalar field unscreened even if the nucleus is dense.
The experimental setup consists in measuring or con-
straining the additional acceleration on individual atoms,
due to the scalar field gradient induced by the presence of a
source mass at the center of the chamber. Forecasts were
provided in [35] and first experimental results of [36]
claimed to rule out most of the chameleon parameter space.
Nevertheless those results rely on analytical assumptions

and have not been validated when accounting for the entire
environment surrounding the experiment. In this paper,
we consider a four-region model, including the wall of
the chamber and the exterior environment, and we solve
numerically the Klein-Gordon (KG) equation in the static
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and spherically symmetric case. The only assumptions
made here are (1) that the scalar field reaches its attractor
(the field value at the minimum of its effective potential)
outside the vacuum chamber, i.e. in the air, at spatial
infinity, and (2) that we have a nonsingular C1 solution
everywhere. Our method reveals that in the regime where
the test mass perturbs weakly the scalar field profile, its
amplitude is controlled by the attractor outside the chamber
instead of being related to the chamber size. In addition, our
analysis presents the advantage of including the important
effects of the vacuum chamber wall that have been
neglected so far. We show that the scalar field profile
and the resulting acceleration can differ by up to 1 order of
magnitude in the weakly perturbing regime, compared to
previous analysis [35,36]. Thus the effects of the wall
cannot be neglected in a precise investigation of the
chameleon parameter space. In the thin-shell regime,
analytical approximations are validated to a good accuracy.
Nevertheless our method highlights order of ten percents
deviations. It also allows one to determine quantitatively
the negative acceleration close to the walls of the vacuum
chamber.
We also propose a new experimental setup, where the

atom interferometer is placed inside a vacuum room.
Refined constraints on the chameleon parameters (essen-
tially the coupling function) are provided for both exper-
imental setups and the experimental requirements to
exclude the chameleon parameter space up to the Planck
scale in the future are evaluated.
The numerical analysis has been performed for two

typical chameleon potentials, with varying power laws.
The first one (referred as Chameleon-1), VðϕÞ¼Λ4þα=ϕα

[37] is able to reproduce the cosmic acceleration and to
fit supernovae data, however tests of general relativity in the
solar system would exclude the corresponding parameter
space [38]. It is nevertheless interesting to consider this
model as an illustrative example of field configurations inside
the vacuum chamber that are weakly perturbed by the
presence of the central source mass. Laboratory experiments
also probeother regions of its parameter space, even if they are
not of direct interest for cosmology. The second considered
potential (referred as Chameleon-2) has an additional
cosmological constant [39], VðϕÞ ¼ Λ4 exp ðΛ̄α=ϕαÞ≃
Λ4ð1þ Λ̄α=ϕαÞ where we assume Λ ¼ Λ̄ for keeping only
one additional parameter, α being fixed. For both models we
take an exponential coupling function AðϕÞ ¼ expðϕ=MÞ.
The paper is organized as follows. In Sec. II, we briefly

remind the equations of motion and introduce the consid-
ered models. The experimental setup is described in Sec. III
and the numerical strategy is detailed in Sec. IV. Analytical
results are reminded in Sec. V and are compared to the
numerical results in Sec. VI for the two considered models,
refined constraints being established on their parameters.
We finally discuss our results and draw some conclusions
and perspectives in Sec. VII.

II. THE MODELS

We start from a generic action for modified gravity
models involving a nonminimally coupled dynamical
scalar field ϕ, written in the Einstein frame,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

R
2κ

− 1

2
ð∂ϕÞ2 − VðϕÞ

�
þ Sm½A2ðϕÞgμν;ψm�; ð1Þ

with R, the scalar curvature, κ ¼ 8π=m2
pl, mpl being the

Planck mass, ψm the matter fields, VðϕÞ a general potential
and AðϕÞ a general coupling function.
Varying this action with respect to ϕ gives the KG

equation

□ϕ ¼ dV
dϕ

− T
d lnA
dϕ

; ð2Þ

where T is the trace of the energy-momentum tensor
Tμν ¼ −ð2= ffiffiffiffiffiffi−gp Þð∂Sm=∂gμνÞ. We introduce ~Tμν the stress-
energy tensor for a perfect fluid in the Jordan frame in order
to consider conserved quantities, i.e. ~∇μ

~Tμν ¼ 0, the tilde
denoting Jordan frame quantities. Energy density ρ and
pressure p in both frames are then related by [40]

ρ ¼ A4ðϕÞ~ρ; ð3Þ

p ¼ A4ðϕÞ ~p; ð4Þ

so that in the weak field regime the KG equation in the
static and spherically symmetric case becomes

ϕ00 þ 2

r
ϕ0 ¼ dVeff

dϕ
;

dVeff

dϕ
¼ dV

dϕ
þ ~ρA3

dA
dϕ

; ð5Þ

in which we have introduced an effective potential Veff , the
prime denoting a radial coordinate derivative. We work
here in the nonrelativistic limit with negligible metric
potentials and pressure. In Table I, the two considered
inverse power-law chameleon potentials and the coupling
function AðϕÞ are specified. Equations of motion for
both models are identical since only the derivative of the
potential dV=dϕ contributes to the KG equation. However
viable Λ values are different. For the Chameleon-1
model, Λ must be fixed by the supernovae best fit and
obeys to [41]

logΛ ≈
19α − 47

4þ α
; ð6Þ

in order to reproduce the acceleration of the Universe
expansion even in the presence of the nonminimal coupling
[38]. In the case of Chameleon-2, Λ is the cosmological
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constant value Λ≃ 2.4 meV while α is an independent
variable.

III. EXPERIMENTAL SETUP

Laboratory experiments measuring the acceleration
induced by a test mass can be used to probe and constrain
modifications of gravity. As a reminder, the chameleon
field is screened in high density environments while it
mediates long-range force in sparse ones. Therefore atomic
particles in an ultrahigh vacuum chamber can mimic
cosmos conditions. In the first experiments, the test mass
was located outside the vacuum chamber [24,25], an
experimental setup which is not ideal given that the
chamber wall screens the fifth force on the atoms. New
experiments have been proposed in [35,36] where the test
mass is located inside the vacuum chamber, which
improves the constraints on the acceleration due to the
scalar field. Here we focus on a recently proposed atom
interferometry experiment [36] where one takes advantage
of matter-wave properties of cesium-133 atoms in a Fabry-
Perot cavity. When an atom absorbs/emits a photon, it
recoils with a momentum p ¼ ℏk, with k the wave number
of the absorbed/emitted photon. So, one can reproduce the
equivalent of a Max-Zehnder interferometer for cold atoms
with three light pulses using counterpropagating laser
beams. Atoms are initially prepared in a hyperfine state
F ¼ 3 and stored in a two-dimensional magneto-optical
trap. A first light pulse splits the matter-wave packet in two
hyperfine states F ¼ 3 and F ¼ 4 and gives an impulse of
ℏkeff to the atoms. The effective wave number keff depends
on the two counterpropagating beam wave numbers. The
probability of hyperfine transition can be controlled by the
intensity and duration of both laser beams. The second
pulse reverses the relative motion of the beams like the
mirror of Max-Zehnder interferometer and the third pulse
acts like a beam splitter which allows overlap of partial
matter wave packets. Because of the recoil of the atoms, the
phase difference between the two arms of the interferom-
eter Δϕ is a function of the acceleration a of atoms,

Δϕ ¼ keffaT2; ð7Þ

where T ∼ 10 ms in general, is the time interval between
two pulses. To alleviate some systematics effects, counter-
propagating laser beams are reversed and the aluminum

sphere can be positioned in two places: a near and a far
positions (the test mass surface is respectively located
8.8 mm and 3 cm far from the atoms), which allows to
disentangle the contribution from chameleon force to
Earth’s gravity. One measurement consists thus of four
interference fringes, corresponding to reversed counter-
propagating laser beams and both positions of the test mass.
Using this setup, the acceleration induced by the chameleon
has been excluded up to

aexp < 5.5 μm=s2 at 95%C:L: ð8Þ

The experimental setup proposed in [35] is similar, except
that they plan to use cooled rubidium atoms launched in a
small fountain located 1 cm far from the test mass. Our
numerical simulations can be easily adapted for such a
configuration.
Details of the considered experimental setup are reported

in Table II. The size and density of the central mass, the
geometry of the chamber and the vacuum density are those
of [35,36]. In addition we consider the thickness and
density of the vacuum chamber walls, as well as the
exterior density. In Fig. 1, we draw the experimental setup
considered in our numerical simulations. The four regions
are labeled by their densities1: (1) the test mass made of
aluminum (ρA), (2) the vacuum where the acceleration due
to the chameleon is measured (ρv), (3) the wall of the
chamber (ρw) made of stainless steel, (4) the exterior of the
chamber, mostly filled by air at atmospheric pressure (ρatm).

IV. NUMERICAL STRATEGY

Analytical approaches have been considered so far
[35,36], which are valid under some assumptions like
negligible chamber wall effects. Therefore, numerical
methods are useful to validate and refine analytical results,
by including the effects due to the experimental setup, like
the thickness and the density of the wall as well as the
exterior environment. In the future, numerical results will
be also helpful to study more realistic situations where the
vacuum chamber is not exactly spherical or cylindrical.
We consider two methods for solving the KG

equation (5): a singular and multipoint boundary value

TABLE I. Characterization of the effective potential for the models of interest: potential VðϕÞ, coupling functions AðϕÞ, the model
parameters, the minimum of the effective potential and the corresponding mass. Dependent parameters appear in brackets. Values in the
last two columns are valid as long as AðϕÞ≃ 1 (an assumption no longer valid for some models, see discussion in Sec. VI).

Potential VðϕÞ Coupling function AðϕÞ Parameters Minimum of Veff ðϕminÞ Mass sq. at minimum (m2
min)

Chameleon 1 Λ4þα=ϕα eϕ=M ðα;ΛÞ;M ðαΛαþ4M
~ρ Þ1=ðαþ1Þ

αð1þ αÞΛ4þαð ~ρ
αMΛ4þαÞ

2þα
1þα

Chameleon 2 Λ4ð1þ Λα=ϕαÞ eϕ=M α, Λ, M ðαΛαþ4M
~ρ Þ1=ðαþ1Þ

αð1þ αÞΛ4þαð ~ρ
αMΛ4þαÞ

2þα
1þα

1In the remainder of the paper, ρ refers to the density in the
Jordan frame.
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problem (bvp) solver with unknown parameter and a
nonlinear bvp solver implementing up to sixth order a
mono-implicit Runge-Kutta method with an adaptative
mesh refinement, working in QUAD precision.2 In the latter
case, the density in the four regions was made continuous
by considering arctan profiles with negligible widths.
We take the minimal assumption which states that the

scalar field is settled to its attractor at spatial infinity, i.e.
ϕ∞ ¼ ϕminðρatmÞ as [36]. Then, the asymptotic scalar field
profile is obtained by linearizing the KG equation up to first
order around spatial infinity,

ϕ00 þ 2

r
ϕ0 ¼ M2ðϕ − ϕ∞Þ; ð9Þ

with M2 ¼ d2Veff=dϕ2jϕ¼ϕ∞
, which admits the Yukawa

profile solution ðM2 > 0Þ

ϕ ¼ ϕ∞ þ Ce−Mr

r
; ð10Þ

with C the constant of integration. Since the KG equation is
of second order and the parameter C is to be determined,
three boundary conditions are needed. They are provided
by the regularity condition on the scalar field derivative at
the origin ϕ0ðr ¼ 0Þ ¼ 0 and by the asymptotic behavior of
ϕ and ϕ0 given by Eq. (10) at the end of the integration
interval. For the multipoint bvp method, the continuity of ϕ
and ϕ0 are imposed at the interfaces of each region (six
conditions) while the profile is guaranteed to be continuous
for arctan profiles of density. The density and size of each
region are reported in Table II. The two numerical methods
have been checked to be in agreement with each other.
Their applicability to the various regimes and their limi-
tations in the deep thin-shell regime will be discussed in
Sec. VI. We already point out that this numerical method
enables one to properly account for the effect of neighbor-
ing matter on the chameleon fields and can be easily

generalized to other experiments, possibly more sensitive
(in the limit of spherical symmetry).

V. ANALYTICAL APPROACH

In this section we reproduce the main steps of [35] and
derive analytically the chameleon field profile in the
spherically symmetric and static regime for a two-region
model (the source mass and the vacuum chamber). In the
next section, the validity of the various assumptions will be
analyzed and the analytical approximations will be com-
pared to the exact numerical results, for the two chameleon
potentials of Table I. For the sake of simplicity, we assume
in this section that α ¼ 1.
Assuming AðϕÞ ¼ 1, the field value at the minimum of

the effective potential written in Eq. (5), and the field mass
around it, are respectively given by

ϕmin ¼
�
Λ5M
ρ

�
1=2

; mmin ¼
ffiffiffi
2

p �
ρ3

Λ5M3

�
1=4

: ð11Þ

The case where the effect of AðϕÞ is important will be
discussed in Sec. VI. For a two-region model the density ρ
is either the source mass density ρA or the density in the
vacuum chamber ρv.
Four different regimes can be identified, depending on

whether the field reaches the effective potential minimum
or not: (1) the field does not reach the minimum of the
effective potential in any region, (2) the field reaches the
minimum in the vacuum chamber but not in the source
mass, (3) the field reaches the minimum in the source mass
but not in the vacuum chamber, (4) the field reaches the
minimum both inside the test mass and the vacuum
chamber. Cases (1) and (2) were referred as the weakly

FIG. 1. Outline of the atom-interferometry experiment, simu-
lated by a four-region model including the source mass, the
vacuum chamber, its walls and the exterior environment. In light
gray, the near and far positions where the acceleration on atoms
is measured (note that we consider a fixed source mass to keep
spherical symmetry whereas in the real experimental setup the
source mass is moved [36]).

TABLE II. Fiducial experimental parameters, corresponding to
the setup of [36].

RA Radius of the test mass 1 cm=5.1 × 1013 GeV−1
L Radius of the chamber 10 cm=5.1 × 1014 GeV−1
Rw Wall thickness 1 cm=5.1 × 1013 GeV−1
mA Test mass 11.3 g=6.7 × 1024 GeV
ρA Test mass density 1.2 × 10−17 GeV4

ρw Wall density 3.5 × 10−17 GeV4

ρv Vacuum density 5.0 × 10−35 GeV4

ρatm Air density ðPatmÞ 5.2 × 10−21 GeV4

2For this purpose we have used the MATLAB function BVP4C
which deals with singular bvp’s and a modified version of the
MIRKDC bvp solver with adaptative mesh in FORTRAN.
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perturbing regime in Ref. [35], whereas (3) and (4) were
referred as strongly perturbing. Below we consider those
four cases separately, as in Ref. [36]. In principle, one
should also distinguish between the cases where the field
reaches ϕmin inside the chamber wall, or not. When
lowering M, depending on the central mass density and
size, on the chamber wall density and thickness, ϕmin can
be reached first inside the central mass or inside the
chamber walls. Nevertheless, for the considered experi-
mental setup, the wall and the central mass have similar
densities and sizes, and so those two cases will not be
distinguished in the following.

A. ϕðr= 0Þ ≠ ϕminðρAÞ and ϕðRA < r < LÞ ≠ ϕminðρvÞ
Within the test mass the field does not reach the attractor

that is the minimum of the effective potential. Since
ρv < ρatm < ρA, the second term in the effective potential
dominates, Veff ≃ ϕρA=M. The KG equation can be solved
inside the mass imposing that the field profile is regular at
the origin, which gives

ϕ ¼ Dþ mAr2

8πMR3
A

; ð12Þ

where D is an integration constant that can be fixed by
matching ϕ and ϕ0 to the field solution in the vacuum
chamber at r ¼ RA. Inside the vacuum chamber the field
does not reach the attractor value. Let us denote ϕbg the
value that would take the field at the center of the chamber
in the absence of the source. Then one can consider a
harmonic expansion of the potential

VeffðϕÞ≃ VeffðϕbgÞ þ
m2

bg

2
ðϕ − ϕbgÞ2; ð13Þ

higher order terms being subdominant. One can solve the
KG equation assuming that the field profile decays at
infinity. This gives

ϕðrÞ ¼ ϕbg þ
α

r
e−mbgr: ð14Þ

Note that at r ¼ RA, one has mbgRA ≪ 1 for typical
experimental parameters and thus ϕðRAÞ≃ ϕbg þ α=RA.
After matching, one finds the field profile in case (1),

ϕð1ÞðrÞ ¼ ϕbg −
mA

8πRAM
×

��
3 − r2

R2
A

�
ΘðRA − rÞ

þ
�
2
RA

r
e−mbgr

�
Θðr − RAÞ

�
; ð15Þ

where Θ is the Heaviside function. Therefore the effect of
the mass is to deepen the field profile, by a quantity
3mA=ð8πRAMÞ ≪ ϕbg at r ¼ 0. By definition, case (1) is

valid as long as jϕbg − ϕð1Þðr ¼ 0Þj ≪ ϕbg. Outside the
mass, the difference jϕbg − ϕj decreases like ∝ 1=r for
realistic experimental configurations where the exponential
decay factor can be neglected.
A subtlety arises in the evaluation of ϕbg, which in

Ref. [35] was either the attractor in the vacuum, either
related to the chamber size,3 under the assumption that the
scalar field reaches the minimum of the effective potential
inside the vacuum chamber wall. This assumption is
actually not valid in case (1) because ρw ∼ ρA, and because
the wall thickness is about the radius of the test mass. So in
most of the parameter space corresponding to case (1), the
scalar field does not reach its attractor inside the wall. As a
result, ϕbg is better approximated by ϕminðρatmÞ. Numerical
results will highlight the effects of the chamber wall on the
scalar field profile. Even if the background field value has
no effect on the acceleration itself, this result is important
because it changes the region in the parameter space in
which case (1) applies: it is extended to lower values of M,
as developed thereafter.
The analytical field profile and the induced acceleration

aϕ ¼ ∂rϕ=M have been plotted in Figs. 2 and 3 respec-
tively for various values of M reported in Table III.
The acceleration induced by the scalar field gradient

inside the vacuum chamber is well approximated by

aϕ ≈
mA

4πM2r

�
1

r
þmbg

�
: ð16Þ

Since mbgr ≪ 1 for realistic laboratory experiments, the
acceleration is independent of Λ and thus one can constrain
directly the value of M. This is the reason why, as we will
show in the following, the power law of the potential has no
effect on the acceleration as long as jAðϕÞ − 1j ≪ 1.

B. ϕð0Þ ≠ ϕminðρAÞ and ϕbg =ϕminðρvÞ
When the size of vacuum chamber is larger than the

characteristic distance over which the field reaches the
minimum of the potential, that is when

L ≫
1

mminðρvÞ
¼

�
Λ5M3

4ρ3v

�
1=4

; ð17Þ

the field profile is still governed by Eq. (15). However the
value of ϕbg is now simply ϕminðρvÞ. In the case of the bare
chameleon potential VðϕÞ ¼ Λ5=ϕ, one has Λ≃ 2.6 ×
10−6 GeV in order to reproduce the late-time accelerated

3ρv is much lower than the wall density ρw where the field was
assumed to reach its attractor ϕminðρwÞ. Thus the first term of Veff
in Eq. (13) dominates the KG equation inside the chamber, which
can be solved to get ϕbg as a function of the size of the vacuum
chamber. However, behind this calculation is hidden the
assumption that the field reaches ϕminðρwÞ in the wall, which
is not valid in case (1) in most of the parameter space.
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expansion of the Universe. For typical vacuum densities
and chamber sizes, e.g. those reported in Table II, one
finds that this regime would occur when M ≲ 10−6 GeV.
This does not correspond anymore to the weakly perturbing

regime requiring ϕbg ≳mA=ð4πRAMÞ, which gives
M ≳ 2 × 109 GeV in our fiducial experimental setup.
In the case of the potential VðϕÞ ¼ Λ4ð1þ Λ=ϕÞ, Λ≃
10−12 GeV is the cosmological constant. It results that the
field in the chamber is expected to reach ϕminðρvÞ only if
M ≲ 105 GeV. There again this is far from the regime
where the test mass perturbs only weakly the field, valid
when M ≳ 1020 GeV, i.e. in the super-Planckian regime.

C. ϕð0Þ=ϕminðρAÞ and ϕðRA < r < LÞ ≠ ϕminðρvÞ
In case (3) the field reaches ϕA ≡ ϕminðρAÞ inside the

test mass. One can define a radius S such that ϕðSÞ ¼
ϕAð1þ ϵÞ with 0 < ϵ ≪ 1. For S < r < RA, the density
term dominates in Veff and the solution of the linearized
KG equation is given by

ϕ ¼ Dþ C
r
þ mAr2

8πMR3
A

; ð18Þ

which is the same as Eq. (12) but with a nonvanishing
integration constant C. Outside the test mass, the field still
obeys Eq. (14). After matching ϕ and ϕ0 at r ¼ RA and ϕ at
r ¼ S, the integration constants α, D and C can be fixed.
The resulting field profile in case (3) reads [35]

ϕð3ÞðrÞ ¼

8>>><
>>>:

ϕA; r < S;

ϕA þ mA
8πR3

AMr ðr3 − 3S2rþ 2S3Þ; S < r < RA;

ϕbg − mA
4πMr e

−mbgr

�
1− S3

R3
A

�
; r > RA;

ð19Þ

with the radius

S≡ RA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πMRAϕbg

3mA

s
ð20Þ

being such that one has typically ðRA − SÞ=RA ≪ 1,
corresponding to the thin-shell regime. The induced accel-
eration is well approximated (mbgRA ≪ 1) by

aϕ ≈
mA

4πM2r2

�
1 − S3

R3
A

�
≃ RAϕbg

Mr2
ð21Þ

and contrary to case (1), it is related to the value of ϕbg. If
the wall is sufficiently large, then the field reaches ϕminðρwÞ
and so the calculation of ϕbg in Ref. [35] is valid, giving

ϕbg ≃ 0.69ðΛ5L2Þ1=3 ð22Þ
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FIG. 3. Numerical and analytical profiles (respectively solid
and dashed lines) of the acceleration aϕ=g with g the Earth
gravitational acceleration, for M values listed in Table III [from
top to bottom the curves correspond to increasing values of M, as
reported in Table III]. Vertical lines mark out the four regions (test
mass, chamber, wall and exterior).
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FIG. 2. Numerical and analytical scalar field profiles (respec-
tively solid and dashed lines) in absolute value for various M
listed in Table III [from top to bottom the curves correspond to
increasing values of M, as reported in Table III]. The numerical
profiles obtained when lowering the wall density to
ρw ¼ 5 × 10−19 < ρA, are drawn in dotted lines, in order to
illustrate that the wall density can perturb more or less impor-
tantly the field profile. Vertical lines mark out the four regions:
the test mass, the chamber, the wall and outside the chamber.
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for a spherical chamber. Compared to case (1), the induced
acceleration therefore does not depend only on M but also
on Λ and on the size of the vacuum chamber L. When Λ is
set to the cosmological constant and L to the fiducial value
reported in Table II, one finds that the experiment of [36]
constrains the coupling parameter down to M ∼ 1015 GeV.
The above calculation does not involve the power-law index α (apart indirectly viambg, but there is no effect in the

limit mbgr ≪ 1). Therefore it is expected that the predic-
tions are independent of α, as long as jAðϕÞ − 1j ≪ 1.
Analytical field profiles and induced accelerations for

case (3) are represented in Figs. 4 and 5 for the bare
potential VðϕÞ ¼ Λ5=ϕ (Chameleon-1), and in Figs. 9
and 10 for the potential VðϕÞ ¼ Λ4ð1þ Λ=ϕÞ, for several
values of M reported in Table III. Those are found to be in
good agreement with the numerical results, except close to
the wall where important deviations are found.
In the strongly perturbing regime, the reliability of the

theory is questionable. Indeed the quantum corrections,
either in the matter and the chameleon sector must remain
small. Most of the parameter space reachable by the experi-
ment proposed in [36] belongs to this regime. Following [42]
the underlying instabilities are harmless and the classical
analysis is trustable, keeping in mind that quantum correc-
tions can become large at very small scales. However since
the aim of this paper consists of modeling how the environ-
ment can affect the analytical results derived for the classical
field, we also provide numerical forecasts in the questionable
strongly perturbing regime. Nevertheless we did not explore
the deeply strong regime but focus on the transition between
the two regimes, where the numerical computations allow
one to follow the smooth evolution of the field and accel-
eration profiles whereas analytical assumptions break. Our
computations show that the analytical estimations are recov-
ered once in the strong regime, and that they are quite reliable,

TABLE III. Properties of the numerical scalar field and accel-
eration profiles for the two models in the different regimes.

Color M [GeV] aϕ=g (near) aϕ=g (far)

Chameleon-1, weakly perturbing: Figs. 2, 3
Blue 1013 1.3 × 101 2.8 × 100

Green 1015 1.3 × 10−3 2.8 × 10−4
Red 1017 1.3 × 10−7 2.8 × 10−8
Light blue 1019 1.3 × 10−11 2.8 × 10−12
Chameleon-1, thin-shell: Figs. 4, 5
Blue 108 5.8 × 109 1.4 × 108

Green 109 5.2 × 108 5.7 × 106

Red 1010 1.9 × 107 −4.4 × 106

Light blue 1011 2.5 × 105 5.5 × 104

Chameleon-2, thin-shell: Figs. 9, 10
Blue 1014 5.2 × 10−7 1.5 × 10−8
Green 1015 5.2 × 10−8 1.5 × 10−9
Red 1016 5.2 × 10−9 1.5 × 10−10
Light blue 1017 5.2 × 10−10 1.5 × 10−11
Purple 1018 5.3 × 10−11 2.4 × 10−12
Beige 1019 4.6 × 10−12 6.8 × 10−14
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FIG. 4. Numerical results (solid lines) and analytical approxi-
mation (dashed lines) for the scalar field profile of the Chameleon-
1 model, in the strongly perturbing (thin-shell) regime, for
Λ ¼ 2.6 × 10−6 GeV and values of the coupling M listed in
Table III [from top to bottom the curves correspond to decreasing
values ofM, as reported in Table III]. Differences between the two-
region and four-region models are non-negligible inside the
chamber, especially at the vicinity of the wall. Vertical lines mark
out the four regions (test mass, chamber, wall and exterior).
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FIG. 5. Numerical results (solid lines) and analytical approxi-
mation (dashed lines) for the acceleration jaϕj=g profile, for the
same model and parameters as in Fig. 4 [from top to bottom the
curves correspond to increasing values of M, as reported in
Table III].The numerical profile for the four-region model shows
that from the middle of the chamber to the wall, the acceleration
becomes negative and increases in magnitude. Vertical lines mark
out the four regions (test mass, chamber, wall and exterior).
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at least classically. The underlying quantum aspects are
beyond the scope of this paper.

D. ϕð0Þ=ϕminðρAÞ and ϕbg =ϕminðρvÞ
In case (4) the field profile is governed by Eq. (19) since

the field reaches the effective potential minimum at the
center of the test mass. However, as long as the condition
Eq. (17) is satisfied, ϕbg ¼ ϕminðρvÞ. For the bare potential
VðϕÞ ¼ Λ5=ϕ, case (4) takes place when M ≲ 10−3 GeV,
whereas for the potential VðϕÞ ¼ Λ4ð1þ Λ=ϕÞ one needs
M ≲ 10 GeV in order to be in the strongly perturbing
regime inside the test mass. Therefore case (4) is irrelevant
for values of Λ motivated by cosmology and realistic
experimental configurations.

VI. FOUR-REGION MODEL:
NUMERICAL RESULTS

A. Weakly perturbing regime

We discuss the weak field regime for Chameleon-1
exclusively since only case (3) of the previous section
(strongly perturbing regime) is relevant for values of M
below the Planck scale in the Chameleon-2 model. Allowing
super-Planckian values, one actually would recover the
regime where the field is only weakly perturbed by the
central mass, but the induced acceleration would be far too
low for being observable with future experiments.
In Fig. 2, jϕ − ϕ∞j is represented for variousM values of

the Chameleon-1 model, α ¼ 1 and Λ ¼ 2.6 × 10−6 GeV
being fixed, which corresponds to case (1) discussed in the
previous section. Inside the test mass the scalar field is
constant but the numerical profile roughly differs by 2 orders
ofmagnitude compared to the analytical approximation. This
difference is inducedby the effect of thewall,which enhances
jϕ − ϕ∞j in the vacuum chamber: the wall tends to stabilize
the scalar field and gives it a kick right outside the wall shell.
Note that the importance of the effect depends on the wall
density and thickness. By setting ρw ≪ ρA (or by reducing
thewall thickness), one tends to recover the analytical profile.
Outside the chamber, the scalar field follows the Yukawa
profile as imposed by the asymptotic behavior in Eq. (10).
The acceleration aϕ=g ¼ ∂rϕ=ðMgÞ, with g the Earth

gravitational acceleration, is plotted in Fig. 3. The general
behavior of the acceleration profile obtained numerically
does not differ significantly from the analytical approxi-
mation. However the chamber wall affects the amplitude of
the profile with a difference growing up to 1 order of
magnitude at the vicinity of the wall. This result illustrates
how important it is to take into account the four regions
modeling the experiment, in the weakly perturbing regime,
in the view of establishing accurate constraints from atom-
interferometry experiments. Given the experimental con-
straint on the acceleration aexp=g < 5.6 × 10−7 [36], we
find that the Chameleon-1 model is excluded at 95% C.L.
for α ¼ 1 and M < 7 × 1016 GeV (see Table III). An

experiment controlling systematics to probe aϕ=g ≲
10−12 would rule out the model up to the Planck scale.
This is close to the value aϕ=g ∼ 10−11 given in [35] as a
reachable sensitivity.
In Fig. 6, the parameter space of ðα;MÞ is explored for

the acceleration measured in the near position (see Sec. III).
Deviations between near and far positions are tiny (see
Table III for an order of magnitude). A universal behavior
with respect to α is observed forM > 1017 GeV. Given the
current bounds on aϕ=g, we thus find that the coupling
parameter M is constrained identically for Chameleon-1
models, independently of the α power-law parameter.
Future experiments will not be able to distinguish between
the various power-law potentials. The universal behavior is
broken at lower values of M because the assumption
jAðϕÞ − 1j ≪ 1 is not valid and the analytical approach
cannot be trusted anymore.

B. Strongly perturbing regime

Probing the deep thin-shell regime, i.e. when ðRA;w −
SA;wÞ ≪ RA;w (thin-shell radius of the test mass or of the
chamber wall), is very challenging numerically. Up to some
point, it is nevertheless possible to track the solution and to
check the validity of the analytical estimations, typically
using mesh refinement methods. The numerical treatment
also allows one to probe the smooth transition between the
weakly and strongly perturbed cases.

1. Chameleon-1

Even if one has already predicted analytically that the
acceleration would be excluded, the field and acceleration
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FIG. 6. Forecast for the normalized acceleration aϕ=gmeasured
in the “near” position, i.e. 8.8 mm far from the test mass, for
various M and α. The dotted line represents the gravitational
acceleration due to the test mass.
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profiles have been also computed for parameters corre-
sponding to the strongly perturbed regime, referred to as
Case (3) in Sec. V. Those are represented in Figs. 4 and 5
and compared to analytical predictions for several values of
M. Our numerical method also allows one to probe the
transitory regime.
As expected given that ρA ≲ ρw with similar test mass

radius and wall thickness, when lowering M, the field
reaches first the potential minimum ϕminðρwÞ inside the
wall, and then ϕminðρAÞ within the test mass, over a very
thin radius. Inside the vacuum chamber, one observes that
the field roughly reaches the amplitude of ϕbg given by
Eq. (22), which validates the calculation of [35]. In the
vicinity of the chamber wall, however, the acceleration
changes its sign and becomes negative, with a comparable
magnitude with the acceleration close to the source mass.
This effect could be helpful experimentally to discriminate
between a signal of modified gravity and systematic errors,
by performing measurements of the acceleration at several
key positions of the chamber.

2. Chameleon-2

For the Chameleon-2 model and the considered exper-
imental setup, it has been impossible to track numerically
the thin-shell regime up to the point where the acceleration
would have been large enough to be observed in laboratory
experiments. Nevertheless, the field and acceleration pro-
files are represented in Figs. 7 and 8, for M ¼ 1017 GeV
and increasing values of ρw and ρA. The attractor field
values within the test mass and the wall are reached
progressively and the field variations at the borders
between the four regions become more steep, as expected

given that ðRA;w−SA;wÞ=RA;w∝Mρ−1A;wR−2
A;w [see Eq. (20)].

In the case M ¼ 1017 GeV, the attractor is reached inside
the test mass for ρA ≃ 5 × 10−20 GeV4, i.e. about 1000
times lower than the aluminum density, whereas inside the
wall, it is reached for ρw ≃ 7.5 × 10−20 GeV4. This slight
difference is explained by the fact that the central test mass
has a diameter 2 times larger than the wall thickness.
Inside the vacuum chamber, the analytical estimation is

roughly recovered in the first half of the chamber. Once in the
thin-shell regime, one can also observe that the field and
acceleration profiles inside the chamber are independent of
the wall and mass densities, except at their immediate
vicinity. Therefore, in the deep thin-shell regime, the scalar
field and acceleration both at the near and far positions of the
interferometer do not depend on the test mass and wall
densities and sizes, neither on the exterior environment. In
order to obtain the numerical solution inside the chamber,
down to low values ofM, one can therefore use the trick to set
thewall andmass densities high enough to be in the thin-shell
regime but low enough for the field profile to be numerically
tractable through the borders of the four regions.
The field and acceleration profiles have been calculated

numerically and compared to the analytical results, for
several values of M and Λ≃ 2.4 meV. These are repre-
sented in Figs. 9 and 10. As expected the profiles have the
same behavior as for the Chameleon-1 model (see Figs. 4
and 5). Close to the test mass, one recovers the analytical
estimation but one can nevertheless notice differences
higher than 20%.
Close to the wall, the acceleration becomes negative, and

its amplitude reaches values comparable to the acceleration

10
−2

10
−1

10
0

10
−12

10
−11

10
−10

Radial coordinate r(L)

φ 
[G

eV
]

FIG. 7. Numerical results (solid lines) and analytical approxi-
mation (dashed line) for the scalar field profile of the Chameleon-
2 model, for various ρA and ρw reported in Table IV, M ¼
1017 GeV being fixed [from top to bottom the curves correspond
to combination of parameters listed in Table IV].
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FIG. 8. Numerical results (solid lines) and analytical approxi-
mation (dashed line) for the acceleration aϕ=g profile of the
Chameleon-2 model, for various ρA and ρw reported in Table IV,
M ¼ 1017 GeV being fixed.
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at a position close to the test mass, which is a potentially
measurable prediction that could be useful to discriminate
between experimental systematic effects and an acceler-
ation induced by the presence of some scalar field.
In conclusion, we find that the atom-interferometry

experiment of [36] already excludes values of the coupling
parameter M ≲ 1014 GeV at 95% C.L. Moreover, if the
experimental sensitivity could be reduced down to aϕ=g ∼
10−11 (as it is claimed to be feasible in [35]), the model

would be probed nearly up to the Planck scale. Finally, note
that the typical field values reached inside the chamber are
too low to induce large deviations from AðϕÞ≃ 1, which
implies that our results are roughly independent of the
power-law index α.

C. Chamber geometry effects

The numerical method used throughout this paper takes
into account the effects of the chamber geometry, in the limit
where the vacuum chamber is spherical. Exploring various
chamber size and wall density, we propose to consider the
possibility to realize the same atom interferometry experi-
ment in a vacuum room in order to make the test ofM values
up to the Planck scale possible in the near future. The largest
vacuum rooms have a radius larger thanR ¼ 10 m and their
walls made of concrete are sufficiently large for the field to
reach inside its effective potential minimum. One can thus
neglect the exterior of the chamber (see Sec. VI B). The
vacuum room can sustain a vacuum around 10−6 Torr (we
assume ρv ¼ 5 × 10−31 GeV4), low enough to prevent ϕbg

to reach its effective potential minimum in vacuum.
Numerical field and acceleration profiles are reported in

Figs. 11 and 12 respectively. Assuming as before
ρA ¼ 1.2 × 10−17 GeV4, it results that a test mass of
1 cm radius only enables to probe the regime where the
field does not reach ϕA inside the test mass (see dashed
green lines in Figs. 11 and 12), the acceleration being thus
poorly constrained. However, provided that the test mass

TABLE IV. Densities inside the test mass ρA and the wall ρw
for the numerical scalar field and acceleration profiles of
Figs. 7 and 8.

Color ρA ½GeV4� ρw ½GeV4�
Blue 1.0 × 10−20 1.0 × 10−20
Green 2.5 × 10−20 2.5 × 10−20
Light blue 5.0 × 10−20 5.0 × 10−20
Purple 7.5 × 10−20 7.5 × 10−20
Beige 5.0 × 10−19 7.5 × 10−20
Red 1.2 × 10−17 7.5 × 10−20
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FIG. 9. Numerical results (solid lines) and analytical approxi-
mation (dashed lines) for the scalar field profile of the Chame-
leon-2 model, in the strongly perturbing (thin-shell) regime, for
Λ ¼ 2.4 × 10−12 GeV and values of the coupling M listed in
Table III [from top to bottom the curves correspond to decreasing
values of M, as reported in Table III]. The test mass, wall and
exterior densities have been adapted for making the profile
numerically tractable, with no effect inside the vacuum chamber
(apart at the immediate vicinity of the borders), as explained in
Sec. VI B 2. The ratios M=ρ were kept constant (with the same
value as for the red curve of Fig. 7), which fixes the thin-shell
radius, apart for M ¼ 1018 GeV (purple) and M ¼ 1019 GeV
(beige) for which only the wall density was adapted. Noticeable
deviations from the analytical estimation are observed inside the
chamber, due to the wall effects. Vertical lines mark out the four
regions (test mass, chamber, wall and exterior).
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FIG. 10. Numerical results (solid lines) and analytical approxi-
mation (dashed lines) for the acceleration jaϕj=g profile, for the
same model and parameters as in Fig. 9 [from top to bottom the
curves correspond to increasing values of M, as reported in
Table III]. Strong discrepancies are observed between the four-
region (numerical) and the two-region (analytical) models.
Vertical lines mark out the four regions (test mass, chamber,
wall and exterior).
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radius is larger (e.g. RA ¼ 3.3 cm), the strongly perturbing
regime is reached and the acceleration is large enough to be
measurable in a near future for M of the order of mpl. As a
result, for M ¼ mpl, jaϕj=g ¼ 2.4 × 10−10 at 8.8 mm from
the surface of the test mass (the previously called near
position in Sec. III) while jaϕj=g ¼ 5.7 × 10−10 for
M ¼ 0.1mpl. In comparison, the test mass of 1 cm gives
rise to jaϕj=g ¼ 1.7 × 10−11 for M ¼ mpl.
Similarly to what was obtained in Sec. VI B, the thin-

shell regime cannot be tracked numerically if the wall
density is of the order of the concrete ρ ∼ 10−17 GeV4. But
one can safely consider lower values of ρw (see Fig. 11)
without any significant change of the results inside the
vacuum room.

VII. CONCLUSION

The chameleon screening mechanism is able to suppress
the fifth force induced by a scalar field in locally dense
environment, while allowing the scalar field to be respon-
sible for dark energy on large astrophysical scales and thus
to affect significantly the large scale structure formation.
This makes chameleon theories good candidates for
explaining dark energy and for being testable by future
cosmology-dedicated experiments, such as Euclid [43] or
the next generation of giant radiotelescopes dedicated to
21 cm cosmology [44]. Chameleon theories are also well
constrained by local tests of gravity in the solar system, in
the galaxy, as well as in laboratory. Recently it has been
proposed to use an atom-interferometry experiment to
constrain chameleon models with an unprecedented accu-
racy by probing the acceleration induced by the presence of
the scalar field on cold atoms. The experiment is realized
inside a vacuum chamber in order to reduce the screening
effect, and a central mass is used to source some field
gradient. Forecasts were calculated in [35] and a first
experimental setup was built and used to establish new
constraints on the chameleon model [36]. However the
calculations of the field and acceleration profiles rely on
several approximations, and until now did not fully con-
sider the effects of the vacuum chamber wall and of the
exterior environment.
The purpose of this work was to validate and refine

previous calculations, by using a numerical approach
consisting in solving the Klein-Gordon equation in the
static and spherically symmetric case for a four-region
model representing the central source mass, the vacuum
chamber, its wall, and the exterior environment. Three
boundary conditions are imposed: the field must be regular
at origin and reach the minimum of the effective potential
with a Yukawa profile, at large distance in the exterior
environment. Our method allows one to probe the transition
between the regime where the central source mass only
weakly perturbs the field configuration, and the thin-shell
regime where the field inside the central mass and inside the
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FIG. 11. Numerical scalar field profiles for a vacuum room
(L ¼ 10 m). The top green dashed curve is obtained for a test mass
of RA ¼ 1 cm with M ¼ mp (ρw ¼ 2.5 × 10−21 GeV4) while the
bottom blue and the center red ones are obtained for RA ¼ 3.3 cm
with M ¼ 0.1 ×mp (ρw ¼ 2.5 × 10−22 GeV4) and M ¼ mp
(ρw ¼ 2.5 × 10−21 GeV4) respectively. We only consider a three
regions model, neglecting the effect of the exterior of the vacuum
room (see discussion in Sec. VI B).
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FIG. 12. Numerical acceleration profiles jaϕ=gj for a vacuum
room (L ¼ 10 m). The bottom green dashed curve is obtained for
a test mass of RA ¼ 1 cm with M ¼ mp (ρw ¼ 2.5×
10−21 GeV4) while the top blue and the center red ones are
obtained for RA ¼ 3.3 cm with M ¼ 0.1 ×mp (ρw ¼ 2.5×
10−22 GeV4) and M ¼ mp (ρw ¼ 2.5 × 10−21 GeV4) respec-
tively. We only consider a three regions model, neglecting the
effect of the exterior of the vacuum room (see discussion in
Sec. VI B).
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chamber walls reaches the minimum of the effective
potential over a very small distance. Two typical chameleon
potentials were considered, in inverse power laws and
allowing varying powers, as well as a standard exponential
form for the coupling function.
In the weakly perturbing regime, it is found that the

chamber wall enhances significantly the scalar field inside
the vacuum chamber and reduces the induced acceleration,
by up to 1 order of magnitude compared to previous
analytical estimations and with a maximal effect close to
the wall.
Going to the thin-shell regime, for our fiducial exper-

imental setup, the field reaches the attractor inside the
chamber wall and the exterior environment becomes thus
irrelevant. However, for reasonable value of the induced
acceleration, the field inside the vacuum chamber does
not reach the minimum of the effective potential and is
instead related to the size of the chamber, as first noticed
in [35]. Our analysis refines the field and acceleration
profiles in the chamber and highlights noticeable devia-
tions from the analytical estimation, which is nevertheless
roughly recovered close to the central test mass. Close to
the chamber wall, the acceleration becomes negative,
with a magnitude similar to the one close to the central
mass. We argue that this prediction could be useful to
distinguish between systematic effects and fifth-force
effects which should be maximal and opposite close to
the central mass and to the wall, and should vanish
roughly at the middle distance between the test mass and
the walls.
Refined constraints have been derived on the coupling

parameter M from the atom-interferometry experiment of
[36]. For the chameleon potential VðϕÞ ¼ Λ4þα=ϕα and a
coupling function AðϕÞ ¼ expðϕ=MÞ, one finds M ≳ 7×
1016 GeV, independently of the power law. For the

bare potential VðϕÞ ¼ Λ4ð1þ Λ=ϕÞ, we find that M≳
1014 GeV. We have also confirmed that a future experiment
reducing its sensitivity down to a ∼ 10−10 m=s2 would be
able to rule out most of the parameter space of the latter
model, nearly up to the Planck scale.
Finally, we have proposed to realize a similar atom-

interferometry experiment inside a vacuum room. The
density inside such rooms is low enough for the field
profile and the induced acceleration to depend only on the
size of the room. If the room radius is larger than about
10 meters, we find that the chameleon model could be
probed up to the Planck scale. Nevertheless, further work is
needed to implement realistic nonspherical geometries of
the room (or of the vacuum chamber).
We conclude that numerical results will be helpful in the

future in order to establish accurate bounds on various
modified gravity models. In particular, the effects of the
vacuum chamber wall and its exterior environment cannot
be neglected. Our numerical method is easily extendable to
study other forms of the field potential and other modified
gravity models requiring a screening mechanism, such as
the symmetron, dilaton and f(R) models. An investigation
of the symmetron model is in progress and should be
released soon. Finally it can be easily adapted to other
experiments.
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