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We present detailed calculations for quantum-gravitational corrections to the power spectra of gauge-
invariant scalar and tensor perturbations during inflation. This is done by performing a semiclassical Born-
Oppenheimer type of approximation to the Wheeler-DeWitt equation, from which we obtain a Schrödinger
equation with quantum-gravitational correction terms. As a first step, we perform our calculation for a de
Sitter universe and find that the correction terms lead to an enhancement of power on the largest scales.
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I. INTRODUCTION

The unification of quantum theory and gravity is one of
the central open problems in physics. Several approaches to
a theory of quantum gravity have been developed [1], but in
order to ultimately decide which approach describes nature
best, we need testable predictions. Finding such predictions
is problematic, because quantum-gravitational effects
might only become sizable at energies of the order of
the Planck scale. A promising scenario to look for such
effects is the highly energetic inflationary phase in the very
early Universe. This is also the topic of the present paper.
In our work, we will focus on a rather conservative

approach to quantum gravity based on a canonical quan-
tization that leads to the Wheeler-DeWitt equation. We
study how quantum fluctuations of spacetime are influ-
enced by quantum-gravitational effects during inflation and
whether the resulting corrections to the power spectra of
primordial fluctuations can be observed in the cosmic
microwave background (CMB). Small effects may con-
stitute the key to quantum gravity, comparable perhaps with
the discovery of the Lamb shift in atomic physics [2].
Canonical quantum gravity and the Wheeler-DeWitt equa-
tion may not yield the ultimate quantum theory of gravity,
but they should give a reliable picture at least close to the
Planck scale; the Wheeler-DeWitt equation is the quantum
wave equation that directly gives the Einstein equations in
the semiclassical limit [1].
Quantum field theory in curved spacetime follows from

the Wheeler-DeWitt equation in a Born-Oppenheimer type
of approximation scheme [1]. This scheme may be realized
by a formal expansion with respect to the Planck mass
[3,4], but it can be realized also in another way that is closer
to the standard Born-Oppenheimer approximation in

molecular physics [5]. Going one order beyond this limit
yields the quantum-gravitational corrections derived
here. Previously, this approximation was already used to
derive such corrections from the Planck-mass expansion
[3,4,6–11] and from an alternative expansion [12–15].
In this paper, we continue with this investigation in the

following ways. First, we apply the Planck-mass expansion
scheme to the scalar and tensor perturbations described
in a fully gauge-invariant way. Second, we keep all the
terms in the resulting quantum-gravitationally corrected
Schrödinger equation for the perturbation modes and
explicitly address the issue of the unitarity-violating terms
that appear. We restrict ourselves here to the de Sitter case.
This investigation represents the preparation we need in
order to expand our analysis to the general case of slow-roll
inflation, which we shall present in a follow-up paper.
The present paper is organized as follows. In Sec. II, we

first give an introduction to how perturbations of spacetime
are dealt with in a Hamiltonian framework. The quantization
of this system is discussed following the Dirac method.
Then, the construction of perturbative gauge-invariant quan-
tities is presented, which leads to a trivialization of the
perturbative constraints and allows for a reduced phase space
quantization. In Sec. III, we then formulate the Wheeler-
DeWitt equation for our model of a perturbed inflationary
universe. Sections II and III are presented in some detail
because they contain important reference material for later
papers. Section IV is dedicated to the semiclassical approxi-
mation of this Wheeler-DeWitt equation and it is at this point
where we derive a Schrödinger equation with quantum-
gravitational correction terms for the quantized spacetime
perturbations. In Sec. V we describe the Gaussian ansatz for
the wave function representing the perturbations and we use
this in Sec. VI to derive the general expression for the power
spectra of the scalar and tensor modes. We then present
concrete results for the usual (uncorrected) power spectra
in a de Sitter universe in Sec. VII. Finally we calculate the
quantum-gravitationally corrected power spectra for this
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case numerically as well as—after a linearization—analyti-
cally in Sec. VIII. Section IX presents the main conclusions
and comments on the comparison between the present and
previous approaches.

II. HAMILTONIAN PERTURBATIONS
IN GENERAL RELATIVITY

A. Classical framework

Let us assume general relativity with the metric mini-
mally coupled to a scalar matter field ϕ. The complete
action of this system in the Hamiltonian form can be written
in the following way:

S ¼
Z

dt
Z

d3xðΠijgij;t þ πϕϕ;t −HÞ; ð1Þ

where gij is the metric on the three-dimensional spatial
slices defined by the foliation given by the time function
tðxμÞ, πϕ is the conjugate momentum of the scalar field ϕ,
and Πij is the conjugate momentum of the spatial metric.
The Hamiltonian density H is a linear combination of
constraints,

H ≔ NHþ NiHi; ð2Þ

where the lapseN and the shiftNi are Lagrange multipliers.
The metric of the four-dimensional ð4Þgμν manifold can be
straightforwardly reconstructed in terms of all these vari-
ables as follows:

N−2 ¼ −ð4Þgtt; Ni ¼ ð4Þgti; gij ¼ ð4Þgij: ð3Þ

In fact, these relations can also be understood as the
definitions of the lapse, shift, and the three-dimensional
metric.
The expressions for the Hamiltonian and diffeomor-

phism constraints are respectively given by [1],

H ¼ 16πG
μg

�
ΠijΠij −

1

2
ðΠl

lÞ2
�
−

μg
16πG

ð3ÞR

þ 1

2

�
π2ϕ
μg

þ μggijϕ;iϕ;j þ 2μgVðϕÞ
�
; ð4Þ

Hi ¼ −2DjΠi
j þ πϕϕ;i: ð5Þ

Here, and in the following, we have set c ¼ 1. In these
expressions, VðϕÞ is the potential of the scalar field,
μg ≔

ffiffiffiffiffiffiffiffiffiffiffiffi
det gij

p
, D is the covariant derivative associated

with gij, and all latin indices are raised and lowered by gij.
The Einstein equations can be obtained by direct variation
of the action above. In particular, the constraints read

H ¼ 0; ð6Þ

Hi ¼ 0: ð7Þ

The rest of the equations correspond to the time derivatives
of the metric, the scalar field and their conjugate momenta.
Nonetheless, their exact form is not needed for our
purposes, so they are not explicitly displayed here.
Equations (6) and (7) are the general constraint equations

of canonical quantum gravity. In the following, however,
we will refer to them as the “background equations,” and
the total constraint equations will consist of this back-
ground and the perturbations.

B. Perturbations

As a preparation for our application in the remaining part
of the paper, we will here and in the next subsection analyze
the evolution of small perturbations around a background
that obeys the equations of the previous section. Let us
assume that all quantities depend on a dimensionless
parameter ε, which defines a one-parameter family of
spacetimes ðMðεÞ; gμνðεÞ; TμνðεÞÞ. The value ε ¼ 0 corre-
sponds to the background spacetime. In this way, a
variational (or perturbative) operator δ can be defined as

δ ≔
d
dε

����
ε¼0

: ð8Þ

Making use of this operator, the perturbations of different
quantities are named in the following way:

C ≔ δN; Bi ≔ δðNiÞ;
hij ≔ δðgijÞ; pij ≔ δðΠijÞ;
φ ≔ δϕ; p ≔ δπϕ: ð9Þ

The extremal value of the action, derived from

δS ¼ 0; ð10Þ

provides the equations of motion for the background
quantities. Furthermore, as shown in Refs. [16,17], the
second variation of the action gives an effective action
functional for the perturbations,

1

2
δ2S ¼

Z
d4x

�
pijhij;t þ pφ;t − CδðHÞ − BiδðHiÞ

−
N
2
δ2ðHÞ − Ni

2
δ2ðHiÞ

�
: ð11Þ

The first and second variations of the background con-
straints lead to expressions δðHÞ, δðHiÞ, δ2ðHÞ, and δ2ðHiÞ
that are explicitly given in e.g. Ref. [18].
The equations for the small perturbations are then

obtained by variation of the action (11) with respect to
the perturbative variables (9). In particular, the variations
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with respect to Bi and C give the constraints that must be
obeyed by the perturbations:

δðHÞ ¼ 0; ð12Þ

δðHiÞ ¼ 0: ð13Þ

The rest of the dynamical equations are obtained by taking
the variations with respect to pij, hij, φ, and p.
As mentioned in the previous section, in full general

relativity the Hamiltonian is just a linear combination of
constraints and thus it vanishes on shell (except for possible
boundary terms). Nevertheless, as shown here, for the small
perturbations evolving on a given background the situation
is different. The Hamiltonian for the perturbations can be
directly read from Eq. (11):

Hpert ≔ CδðHÞ þ BiδðHiÞ þ
N
2
δ2ðHÞ þ Ni

2
δ2ðHiÞ: ð14Þ

On shell, due to the perturbative constraint equations (12)–
(13), the first two terms of the last equation vanish. But the
last two terms of this equation do not vanish and constitute
a physical, nonzero, Hamiltonian for the perturbative
degrees of freedom:

Hphys ≔
N
2
δ2ðHÞ þ Ni

2
δ2ðHiÞ: ð15Þ

Note that in this perturbative Hamiltonian the background
quantities do not appear as dynamical variables. That is,
they are assumed to be given and are not basic variables that
encode physical degrees of freedom. The system can be
understood as a hierarchy of systems, which can be solved
order by order. The background quantities are obtained as a
solution to the background Einstein equations and are as
such plugged into the action (11). Therefore, in this sense,
the background quantities are nondynamical in the
Hamiltonian Hpert.

C. Quantization à la Dirac

In spite of the comments in the last paragraph, in order to
quantize the system, it is necessary to have a complete
action for all degrees of freedom. This can be constructed
just by writing together the background action and its
second variation:

Stotal ≔ Sþ 1

2
δ2S; ð16Þ

which defines the total Hamiltonian of the system

Htotal ≔ H þHpert ¼ N

�
Hþ 1

2
δ2H

�
þ Ni

�
Hi þ

1

2
δ2Hi

�
þ CδHþ BiδHi: ð17Þ

Everything seems fine up to this point: the variation of
the total action (16) with respect to the perturbative
variables (9) gives the linearized Einstein equations of
motion. This is because S does not depend on the
perturbative variables and, therefore, the variation of
Stotal with respect to the perturbative variables is exactly
the same as the variation of 1

2
δ2S. Nonetheless, 1

2
δ2S does

depend on background quantities. Thus, if one takes the
variations of the full action Stotal with respect to the
background quantities in order to obtain their equations
of motion, one will get the background equations plus
certain correction terms quadratic in the perturbations. In
particular, regarding the constraints, instead of obtaining
Eqs. (6)–(7) we will get

Hþ 1

2
δ2H ¼ 0; ð18Þ

Hi þ
1

2
δ2Hi ¼ 0: ð19Þ

Therefore, by using this full action to describe our
physical system, we are assuming that the background
Einstein equations are not exactly obeyed. Nonetheless,
one could obtain the exact background and perturbative
equations from the total Hamiltonian (17) by truncating
the system at ε order.
At a classical level, the discussion above is not very

relevant since, as already mentioned, all the properties and
results we can derive from this framework (by truncating
the expansion of the action at a quadratic level) can only be
trusted at ε order. Nonetheless, this has a great importance
when quantizing this system. We will assume a canonical
quantization, where the wave function will depend on
position variables. All “positions” ðgij; hij;ϕ;φÞ and their
corresponding conjugate momenta ðΠij; pij; πϕ; pÞ will be
promoted to operators, the first ones acting multiplicatively
and the latter ones as derivatives of their corresponding
conjugate positions.
Therefore, the situation can now be interpreted in two

alternative ways. On the one hand, if one assumed that the
equations of motion should be truncated at linear order, and
that the background equations are exactly obeyed, as we
explained in the preceding section, the constraints to be
imposed on the wave function would be

ĤΨ ¼ 0; ð20Þ

ĤiΨ ¼ 0; ð21Þ
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cδHΨ ¼ 0; ð22Þ

cδHiΨ ¼ 0: ð23Þ

In this case there is, in addition, also a physical Hamiltonian
Hphys for some of the degrees of freedom. This Hamiltonian
would in principle lead to a Schrödinger equation:

ĤphysΨ ¼ i
∂Ψ
∂t ; ð24Þ

where the time parameter t should be defined from the
background variables. Nonetheless, this approach does not
provide a direct interaction between the quantized back-
ground and perturbations in the sense that each obeys its
own equations of motion.
Note that if in Eqs. (22)–(24) only the perturbative

degrees of freedom were quantized, whereas for the back-
ground variables their classical behavior were considered,
one would obtain the limit of quantum field theories on a
fixed background spacetime. In fact, a Schrödinger equa-
tion like Eq. (24) results in a natural way from the Born-
Oppenheimer scheme presented below in that limit. But the
important point is that we want to go beyond that limit and
for this purpose the dynamical behavior of the background
variables is important. The quantum-gravitational correc-
tions derived in our paper come from the interaction of
“perturbations” and “background.”
In order to obtain such a direct interaction between the

quantized background and the perturbative degrees of
freedom, one should directly quantize all degrees of free-
dom with the Hamiltonian (17). In this approach, there is no
physical (nonvanishing) Hamiltonian, and one would have
to impose the following constraints on the wave function:�

Ĥþ 1

2
dδ2H�

Ψ ¼ 0; ð25Þ

�
Ĥi þ

1

2
dδ2Hi

�
Ψ ¼ 0; ð26Þ

cδHΨ ¼ 0; ð27Þ

cδHiΨ ¼ 0: ð28Þ

This latter one is the method followed in Ref. [19] and
many other papers in order to go beyond the approximation
of quantum field theories on fixed backgrounds (see in
particular the treatment in Ref. [20]). We will also work
within this approach because it gives a consistent formu-
lation in the quantum theory.
The problem is that Eqs. (25)–(28) are extremely difficult

to solve even for simple cosmological models. Therefore,
before quantizing the constraint equations, one can perform

a convenient canonical transformation to a new set of
variables for which the linearized constraints (27) and
(28) take a much simpler form or, in the best of the cases,
they are automatically obeyed. This can be done by
constructing so-called master gauge-invariant variables, to
which we now turn.

D. Construction of master gauge-invariant quantities:
Reduced phase space quantization

The constraints (12)–(13) are the generators of the
perturbative gauge freedom. Instead of quantizing the
whole system à la Dirac, as described in the previous
section, one could solve some of these perturbative con-
straints classically and perform a reduced phase space
quantization. One way to solve or, better to say, trivialize
these constraints is by constructing gauge-invariant quan-
tities which encode the complete physical information of
the problem.
In order to explain how to construct gauge invariants in

this Hamiltonian setting, we will restrict the matter sector to
the scalar field ϕ that we are considering. Nonetheless, the
generalization of the procedure to any other form of matter
is straightforward. Just for this section, let us denote by
ðhI; pIÞ, for I ¼ 1;…; 6, the six independent components
of the geometric perturbative variables ðhij; pijÞ. Apart
from those, we also have another perturbative degree of
freedom corresponding to the matter field, which is
described by the pair ðφ; pÞ.
The idea is essentially to make a canonical transforma-

tion from this set of perturbative variables to another new
set ð ~hI; ~pI; ~φ; ~pÞ, with the requirement that four of the new
moments reproduce the constraints (12) and (13):

δHJ ¼ ~pJ: ð29Þ

The subindex J takes the values J ¼ 1, 2, 3, 4 and we have
defined, in order to have a compact notation for this section,
δH4 ≔ δH. In this way, the four variables ~pJ will be gauge
invariant, but constrained to vanish by Eqs. (12)–(13),
whereas their conjugate variables ~hJ will be pure gauge,
such that their initial value can be arbitrarily chosen. In
addition, the evolution equations for these latter variables
will contain the free functions Bi and C, since they will be
obtained by variation of the action with respect to the
linearized constraints (29). This allows us to choose also
the time derivatives of the pure-gauge variables ~hJ.
Therefore, if one were able to follow this procedure

explicitly, one would have isolated the nonphysical infor-
mation (gauge as well as constrained) in the four pairs of
conjugated variables ð ~hJ; ~pJÞ. The remaining variables
½ð ~h5; ~p5Þ; ð ~h6; ~p6Þ; ð ~φ; ~pÞ� will be the so-called master
variables, which are gauge invariant and obey uncon-
strained equations of motion. These master variables are
the two degrees of freedom of the gravitational wave and

BRIZUELA, KIEFER, and KRÄMER PHYSICAL REVIEW D 93, 104035 (2016)

104035-4



the matter degree of freedom, which contain all the
physical information of the problem. The initial variables
ðhI; pI;φ; pÞ can be reconstructed in terms of the master
variables in any gauge just by applying the inverse of the
canonical transformation.
Examples of such master variables are the Regge-

Wheeler [21] and Zerilli [22] variables in Schwarzschild
backgrounds, as well as the generalization of the former
one to dynamical spherical backgrounds [23] (see
Refs. [17,18,24] for explicit examples of the application
of the described procedure for spherical backgrounds). In
cosmological backgrounds, the decomposition into scalar,
vector, and tensor quantities is usually performed [25,26].
In this decomposition, the gravitational degrees of freedom
are encoded into the tensorial sector and they are auto-
matically gauge invariant because they do not appear in the
perturbative constraints (12)–(13). (Note that the con-
straints form a four-dimensional vector field and its
decomposition gives rise to two scalar and two vector
degrees of freedom, but no tensor components.) For a
matter sector given by a scalar field, the gauge-invariant
Mukhanov-Sasaki variable [27,28] (see below), can be
defined by following the described procedure [29]. A
different technique, inspired by Hamilton-Jacobi theory,
which leads to the same result for such a cosmological
background, can be found in Ref. [30].
Once the constraints at the linearized level are trivialized,

one can either solve them classically by imposing the
four moments ~pJ to be vanishing or quantize them. The
quantization would just tell us, through Eqs. (27)–(28), that
the wave function must be independent of the position
variables ~hJ [29]. Therefore, only Eqs. (25)–(26) will have
to be considered. Furthermore, in spatially homogeneous
backgrounds, as the one that will be considered in this
paper, by choosing adapted coordinates with a vanishing
shift function Ni, the background diffeomorphism con-
straint (7) is exactly obeyed and Eq. (19), and thus its
quantum version (26), do not appear in this case [see
Eq. (17)]. Thus, by constructing gauge-invariant variables
at the classical level following the commented procedure,
only the Hamiltonian constraint (25) will have to be solved
at the quantum level. The total gauge-invariant Hamiltonian
will take the following form:Z

d3xHðgiÞ
total ¼

Z
d3xN

�
Hþ 1

2
δ2H

�
¼ 0Hþ SHþ TH; ð30Þ

where 0H will be the (spatially integrated) Hamiltonian
corresponding to the background spacetime [see Eq. (36)
below], while SH and TH will be the Hamiltonians of the
scalar [see Eq. (56)] and tensorial [see Eq. (64)] perturba-
tive degrees of freedom, respectively. The quantization of
this constraint will lead to Eq. (25), which, for our specific
model, will take the explicit form given in Eq. (66). This

equation will be called the master Wheeler-DeWitt equa-
tion and the main objective of this paper will be to solve it
within a semiclassical Born-Oppenheimer approach;
therein, Eq. (24) will emerge as an approximate equation.
Here, two comments are in order. On the one hand, note

that the procedure described in this section, which was also
similarly employed in Ref. [13], only takes into account the
perturbative degrees of freedom. We are assuming that the
time derivatives of the background variables that appear
during the process should be replaced by making use of the
background equations of motion. This is sufficient for our
approach since, as will be explained below, for the back-
ground objects that appear inside SH and TH, their classical
behavior will be considered. If one wishes to perform a
more fundamental quantization, without making use of the
background equations of motion, it would be necessary to
complete the above-mentioned canonical transformation to
the background degrees of freedom by correcting them with
quadratic terms in the perturbations along the lines pre-
sented in Refs. [31,32]. Nonetheless, note that both
procedures would lead to the same Hamiltonian (30).
On the other hand, the construction of the master gauge-

invariant objects, and their corresponding Hamiltonian, is
quite involved and has already been performed in
Refs. [29,30] for the background spacetime that we will
be interested in. Since we already know which are the
canonical variables, it is thus possible to use a reduced
action approach [33], as originally performed in Ref. [27],
where the constraints are solved and used to simplify the
action, to obtain the Hamiltonian (30). This will be
explicitly presented in the next section in order to clarify
our notation and assumptions.

III. THE WHEELER-DEWITT EQUATION

In this section, the formalism explained in the previous
section will be applied to the study of an inflationary
universe with tiny perturbations that are interpreted as the
seeds for structure formation in the universe and, hence, are
in particular responsible for the anisotropies of the CMB. In
our model, the inflationary phase is caused by a scalar
inflaton field that only varies slightly with time. We
consider scalar and tensor perturbations of the metric, as
well as perturbations of the scalar field. The resulting
Wheeler-DeWitt equation is then the starting point to
calculate the power spectra of scalar and tensor perturba-
tions by using a semiclassical approximation.

A. The minisuperspace background

We start by formulating theWheeler-DeWitt equation for
a flat Friedmann-Lemaître-Robertson-Walker (FLRW) uni-
verse with spatial topology. This plays the role of our
background spacetime, on which the perturbations are
formulated. But we emphasize that, as described in the
previous section and contrary to the usual approach of
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quantum field theory on fixed backgrounds, this back-
ground will also be treated dynamically with quantum
degrees of freedom.
We restrict ourselves to a flat universe, because the

exponential expansion during the inflationary phase flat-
tens any curvature of the universe sufficiently fast. In terms
of the conformal time η, which is fixed by choosing the
lapse function as N ¼ a, with a being the scale factor, the
line element of such a universe reads

ds2 ¼ a2ðηÞð−dη2 þ dx2Þ: ð31Þ

As usual, the relation between this conformal time and the
cosmic time t is given by dη=dt ¼ a−1. As mentioned
above, we introduce a massive minimally coupled scalar
field ϕ with potential VðϕÞ, which plays the role of the
inflaton, and we neglect a cosmological constant. The
action for such a model takes the form

S ¼ 1

2

Z
dηL3

�
−

3

4πG
ða0Þ2 þ a2ðϕ0Þ2 − 2a4VðϕÞ

�
: ð32Þ

Here and in the following, derivatives with respect to η are
denoted using primes. For completeness, let us include
explicitly the equations of motion, which are easily
obtained from this action:

3

4πG
a00

a
þ ðϕ0Þ2 − 4a2VðϕÞ ¼ 0; ð33Þ

ϕ00 þ 2
a0

a
ϕ0 þ a2

dVðϕÞ
dϕ

¼ 0: ð34Þ

In Eq. (32), we have introduced an arbitrary length scale L
that appears when performing the integration over the
volume. In order not to explicitly denote this length scale in
the following, we rescale the scale factor and conformal
time as follows, which is similar to the replacement carried
out in Ref. [14],

anew ¼ aoldL; ηnew ¼ ηold
L

: ð35Þ

After this replacement, the scale factor a has the dimension
of a length, while η—as well as the spatial variables—
become dimensionless. Hence, we can effectively set the
length scale L appearing in Eq. (32) to one. However, later
in our discussions of possible observational consequences
of our results, we will restore L. With this replacement, the
Hamiltonian for our “background universe” reads as follows:

0H ¼ −
2πG
3

π2a þ
1

2a2
π2ϕ þ a4VðϕÞ; ð36Þ

where πa ¼ −3a0=ð4πGÞ and πϕ ¼ a2ϕ0. The canonical
quantization of this Hamiltonian is carried out using the

Laplace-Beltrami factor ordering [1], which guarantees that
the kinetic term remains invariant under transformations in
configuration space. Consequently, we obtain the following
Wheeler-DeWitt equation for the background:�
2πℏ2G
3a

∂
∂a

�
a
∂
∂a

�
−

ℏ2

2a2
∂2

∂ϕ2
þ a4VðϕÞ

�
Ψ0ða;ϕÞ ¼ 0:

ð37Þ

We simplify this equation by introducing the dimensionless
quantity α, which is defined in terms of a reference scale
factor a0 as

α ≔ ln

�
a
a0

�
: ð38Þ

Furthermore, we set ℏ ¼ 1 and define for convenience a
rescaled Planck mass

m2
P ≔

3

4πG
: ð39Þ

With these definitions, the Wheeler-DeWitt equation sim-
plifies considerably and reads

1

2
e−2α

�
1

m2
P

∂2

∂α2 −
∂2

∂ϕ2
þ 2a60e

6αVðϕÞ
�
Ψ0ðα;ϕÞ ¼ 0: ð40Þ

B. Scalar perturbations

We now introduce scalar perturbations to the background
metric and parametrize them using four scalar functions of
space and time, A, B, ψ and E. The perturbed metric then
takes the form

ds2 ¼ a2ðηÞf−ð1 − 2AÞdη2 þ 2ð∂iBÞdxidη
þ ½ð1 − 2ψÞδij þ 2∂i∂jE�dxidxjg: ð41Þ

Here, we still take a to be dimensionless and η to have the
dimension of a length; the redefinitions using L will be
done below.
As has been explained in Sec. II D, the perturbation of

the scalar field φ ≔ δϕ, together with the four scalars in the
metric (41), can be combined into one gauge-invariant
master scalar which is sufficient to fully describe the scalar
perturbations [28]. Wewill construct such a gauge-invariant
quantity using one of the so-called Bardeen potentials, ΦB,
which is defined by

ΦBðη;xÞ ≔ Aþ 1

a
½aðB − E0Þ�0: ð42Þ

Note that ΦB is dimensionless. On top of the metric
perturbations, we also need to consider fluctuations
φðη;xÞ of the scalar inflaton field ϕðηÞ, which can be
represented in a gauge-invariant way as
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φðgiÞðη;xÞ ≔ φþ ϕ0ðB − E0Þ: ð43Þ

The quantities ΦB and φðgiÞ can be combined into a single
master gauge-invariant quantity, the so-called Mukhanov-
Sasaki variable v, which gives a full description of the
scalar sector of the perturbations [28]. This variable is
defined as

vðη;xÞ ≔ a

�
φðgiÞ þ ϕ0 ΦB

ℋ

�
; ð44Þ

where ℋ ≔ a0=a ¼ Ha, and H ¼ _a=a is the standard
Hubble parameter. Here, v has the dimension of an inverse
length. Including the scale factor a in Eq. (44) is essential,
because only in that way does v become the canonical
variable that diagonalizes the action, that is, there are no
cross terms of the form v0v, and therefore no first-order
derivative terms appear in its equation of motion. In this
way, the field v obeys a Klein-Gordon equation on a
Minkowski background. In quantum field theory on
classical backgrounds, this is the way one always writes
the action, such that one can impose the usual definition of
the creation and annihilation operators, with their canonical
commutation relations and the usual Klein-Gordon inner
product [33].
Apart from this, there are two other arguments in favor of

introducing the variable (44). First, the employed rescaling
with a in Eq. (44) is also crucial in describing the quantum-
to-classical transition by the process of decoherence: it
has been shown that the divergence occurring in the
decoherence factor can successfully be regularized when
using this rescaling [34]. Second, this rescaling allows for a
unitary implementation of the quantum dynamics when the
perturbations are treated for quantum field theory in curved
spacetime in the Fock picture [35].
In order to obtain the action for the variable v, one has to

expand the Einstein-Hilbert action plus the scalar field
action up to the second order in the perturbations around a
FLRW background, and one ends up with the scalar part of
the second variation of the action [28]

1

2
δ2S ¼ 1

2

Z
dηd3x

�
ðv0Þ2 − δij∂iv∂jvþ

z00

z
v2
�
: ð45Þ

Here, z is a shorthand notation for

z ≔ a
ffiffiffi
ϵ

p
; ð46Þ

where we have used the first slow-roll parameter

ϵ ≔ −
_H
H2

¼ 1 −
ℋ0

ℋ2
: ð47Þ

The fraction z00=z is therefore in the general case a
complicated expression that contains up to fourth-order

η-derivatives of the background variables ϕ and a. Given
that we are dealing here with a full theory of quantum
gravity, where the background is quantized as well, we
would therefore in principle also have to replace the η-
derivatives appearing in this fraction, which will become
canonical momenta in the respective Hamiltonian, by
derivatives with respect to a and ϕ in the process of
quantization. It is, however, a feature of the semiclassical
(Born-Oppenheimer) approximation in quantum cosmol-
ogy that the minisuperspace momenta can be approxi-
mated, at the used order, by derivatives of the
minisuperspace variables [20]. Therefore, we will use the
classical expressions for z00=z, which leads to a drastic
simplification when considering the de Sitter and slow-
roll cases.
Since we are working in the realm of linear perturbation

theory, we assume that each mode of the perturbations
evolves independently, which allows us to perform a
Fourier transform of the variable v as follows:

vðη;xÞ ¼
Z
R3

d3k

ð2πÞ3=2 vkðηÞe
ik·x: ð48Þ

The wave vector k that appears in this equation and its
modulus k ¼ jkj are related to a respective wavelength
without including the factor 2π, such that the relation
between k and its wavelength L is simply given by

k ¼ L−1: ð49Þ

We assume that v is real, such that the relation v−k ¼ v�k
holds. The action (45) takes the following form after
applying the Fourier transform and taking the integral over
the spatial volume:

1

2
δ2S ¼ 1

2

Z
dη

Z
d3k

�
v0kv

�
k
0 þ vkv�k

�
z00

z
− k2

�	
: ð50Þ

In order to later be able to analyze each mode separately,
that is, to have a separate Wheeler-DeWitt equation for
each mode, we have to replace the integral over the wave
vector k by a sum. This can be justified if one uses, as we
do here, a compact spatial topology. In order to implement
this formally, we introduce an arbitrary length scale L, with
respect to which the wave modes are discretized, in the
following way (see e.g. the appendix of Ref. [36]):Z

d3kf� � �g →
1

L3

X
k

f� � �g: ð51Þ

Here a comment is in order. Both the equations of motion
for the perturbations and the initial data that we will later
consider will only depend on the module k. Therefore, the
dependence of all results on the vector k will be only
through its module and, in particular, the sum in Eq. (51)
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has to be taken over the module k. Nevertheless, in order to
keep the notation as general as possible we will leave the
notation for all quantities as k.
Our action therefore becomes

1

2
δ2S ¼ 1

2

Z
dη

1

L3

X
k

�
v0kv

�
k
0 þ vkv�k

�
z00

z
− k2

�	
: ð52Þ

Like in the previous section, we want to eliminate L and
only reintroduce it when comparing our results with
observations. Following a procedure similar to Ref. [14],
we thus apply the replacements given in Eq. (35) and
additionally replace v and k as follows:

vnew ¼ vold
L2

; knew ¼ koldL: ð53Þ

The replacements imply that the wave vector k is now
regarded as a dimensionless quantity until we introduce a
reference scale later in the observational quantities. The
action thus reads

1

2
δ2S ¼ 1

2

Z
dη
X
k

�
v0kv

�
k
0 þ vkv�k

�
z00

z
− k2

�	
: ð54Þ

Note that all the variables that appear here are dimension-
less (in the system of units with ℏ ¼ 1 ¼ c that we use
here). As usual, from this Lagrangian we now define the
canonical momenta as

πk ¼ v0k ð55Þ

and therefore end up with the Hamiltonian

SH ¼ 1

2

X
k

�
πkπ

�
k þ vkv�k

�
k2 −

z00

z

�	
; ð56Þ

which is also a dimensionless quantity. As already men-
tioned above, we should also replace the η-derivatives of a
and ϕ that appear in z00=z by their canonical momenta, in
order to perform a complete quantization including the
background variables a and ϕ as, for example, shown in
Ref. [30]. However, since this would lead to a significantly
more complicated quantization procedure and given that we
will later only consider the de Sitter and, in a subsequent
paper, the slow-roll case, where z00=z is approximated by a
small value of the slow-roll parameter ϵ, determined at the
classical level, we will treat z00=z as a classical quantity.
Also note that z00=z would not change if we completed the
canonical transformation to make the perturbation variables
gauge invariant to the background, as commented at the end
of Sec. II D.
To simplify the notation, we define the following

quantity that one can regard as the time-dependent (dimen-
sionless) frequency of the parametric harmonic oscillator
described by the Hamiltonian (56):

Sω2
kðηÞ ¼ k2 −

z00

z
: ð57Þ

Before proceeding to the quantization, we should, in
principle, define a new set of real variables from vk and
πk by creating a double copy of the variables as well as the
wave function, as it was e.g. presented in Ref. [37]. Without
such a procedure, the quantization is not entirely consistent,
as we will quantize terms like vkv�k as v2. However, since
whether we employ the strict quantization procedure or not
will not make any difference in the calculation later on, we
shall refrain from introducing such variables for the sake of
briefness and clarity.
The quantization is thus carried out by promoting vk and

πk to quantum operators v̂k and π̂k and demanding that
they obey the standard commutation relations

½v̂k; π̂p� ¼ iδðk − pÞ: ð58Þ

The operators v̂k and π̂k are then represented by the
following expressions:

v̂kΨ ¼ vkΨ; π̂kΨ ¼ −i
∂Ψ
∂vk ð59Þ

and thus we finally obtain the quantum Hamiltonian for the
scalar perturbations

SĤ ¼
X
k

SĤk ¼
X
k

�
−
1

2

∂2

∂v2k þ 1

2
Sω2

kðηÞv2k
	
: ð60Þ

C. Tensor perturbations

We now want to introduce as well tensor perturbations of
the metric. While scalar perturbations lead to temperature
anisotropies in the CMB, tensor perturbations represent
primordial gravitational waves and their presence would
additionally lead to a polarization of the CMB radiation,
which would be detected in particular in the so-called B-
modes (see e.g. Ref. [38]). We will focus here, however, on
the influence the primordial gravitational waves have on the
anisotropy spectrum.
Tensor perturbations can be represented by a symmetric,

traceless and divergenceless tensor hij in the following
way:

ds2 ¼ a2ðηÞ½−dη2 þ ðδij þ hijÞdxidxj�: ð61Þ

By construction, tensor perturbations are already gauge
invariant. The symmetric tensor hij ¼ hji has six indepen-
dent components, but due to its divergencelessness
∂ihij ¼ 0, these are reduced by three and additionally by
one due to its tracelessness δijhij ¼ 0. Hence, only two
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degrees of freedom remain and they correspond to the two
polarizations of gravitational waves, hðþÞ and hð×Þ.
We define the perturbation variable for the tensor sector

as

vðλÞk ≔
ahðλÞkffiffiffiffiffiffiffiffiffiffiffi
16πG

p ; ð62Þ

where λ stands for the two polarizations þ and ×. Like for

the scalar perturbations, vðλÞk thus includes the scale factor a
as a prefactor. The derivation of the perturbation
Hamiltonian is completely analogous to the scalar case,
the only differences lie in the two polarizations present and
in the form of the time-dependent frequency, which in the
tensor case is given by the simpler expression

Tω2
kðηÞ ¼ k2 −

a00

a
: ð63Þ

Replacing the integral of the total Hamiltonian for the
tensor perturbations by a sum using the method presented

in Eqs. (51) and (53), we end up with the subsequent
Hamiltonian for the tensor perturbations,

TH ¼
X
λ¼þ;×

X
k

�
1

2
πðλÞk πðλÞ−k þ 1

2
Tω2

kðηÞvðλÞk vðλÞ−k

	
: ð64Þ

We see that this Hamiltonian is of essentially the same form
as the Hamiltonian for the scalar perturbations, such that we
can treat both cases together in one step. In particular, its
quantization is directly given by

TĤ ¼
X
λ

X
k

TĤk ¼
X
λ;k

�
−
1

2

∂2

∂vðλÞ2k

þ 1

2
Tω2

kðηÞvðλÞ2k

	
:

D. Master Wheeler-DeWitt equation

Adding the quantum Hamiltonians for the scalar and
tensor perturbations to the Wheeler-DeWitt equation of the
background, Eq. (25) takes the form

1

2

�
e−2α

�
1

m2
P

∂2

∂α2−
∂2

∂ϕ2
þ2e6αVðϕÞ

�
þ
X
k

�
−

∂2

∂v2kþ
Sω2

kðηÞv2k
�
þ
X
λ;k

�
−

∂2

∂vðλÞ2k

þ Tω2
kðηÞvðλÞ2k

�	
Ψðα;ϕ;fvkgÞ¼ 0: ð65Þ

Here and in the following, it is implicitly understood that
the reference scale a0 introduced in Eq. (38) is associated
with every factor of eα. In order to simplify the notation, we
will, for now on, no longer write out the superscripts S and
T, and we will also refrain from putting a circumflex over
quantized quantities. Hence, in this notation, the last
equation (65) reads as follows:

1

2

�
e−2α

�
1

m2
P

∂2

∂α2 −
∂2

∂ϕ2
þ 2e6αVðϕÞ

�
þ

X
k;S;Tλ

�
−

∂2

∂v2k þ ω2
kðηÞv2k

�	
Ψðα;ϕ; fvkgÞ ¼ 0: ð66Þ

Since we assume throughout this work that the perturba-
tions are small and that the perturbation modes do not
interact with each other, we can make the following product
ansatz [8]:

Ψðα;ϕ; fvkgÞ ¼ Ψ0ðα;ϕÞ
Y
k;S;Tλ

~Ψkðα;ϕ; vkÞ: ð67Þ

We can then define a wave function for each mode k for
both scalar and tensor perturbations in the following way:

Ψkðα;ϕ; vkÞ ≔ Ψ0ðα;ϕÞ ~Ψkðα;ϕ; vkÞ: ð68Þ

Each of these wave functions then obeys an individual
Wheeler-DeWitt equation for its respective mode k

1

2

�
e−2α

�
1

m2
P

∂2

∂α2 −
∂2

∂ϕ2
þ 2e6αVðϕÞ

�
−

∂2

∂v2k þ ω2
kðηÞv2k

	
Ψkðα;ϕ; vkÞ ¼ 0; ð69Þ

with each corresponding frequency Sω2
kðηÞ, as given in

Eq. (57), or Tω2
kðηÞ, as defined in Eq. (63).

In order to streamline the notation, we shall now
introduce a minisuperspace metric. For this purpose and
with regard to the semiclassical approximation carried out
later—for which we want to have a common prefactor of
m−2

P in front of the derivative terms of the background
variables—we redefine the scalar field to make it dimen-
sionless,

~ϕ ≔ m−1
P ϕ: ð70Þ

We can thus define the minisuperspace variable qA, whose
index takes a value of either 0 or 1, in the following way:

q0 ≔ α and q1 ≔ ~ϕ: ð71Þ

The corresponding minisuperspace metric GAB is then
given by
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GAB ≔ diagð−e−2α; e−2αÞ; ð72Þ

and we introduce an auxiliary potential V, which has the
dimension of length squared, via

VðqAÞ ≔ 2

m2
P
e4αVðϕÞ: ð73Þ

The Planck mass squared that has been introduced in this
definition will be relevant in the next section in order to
construct a hierarchy of equations. Note that such a term
can always be introduced by rescaling the corresponding
coupling constants of the potential. In the particular case of
quadratic potentials, V could be written in terms of ~ϕ as

VðqAÞ ¼ 2e4αVð ~ϕÞ: ð74Þ

Using all these definitions, Eq. (69) finally reads

1

2

�
−

1

m2
P
GAB

∂2

∂qA∂qB þm2
PVðqAÞ

−
∂2

∂v2k þ ω2
kðηÞv2k

	
Ψkðα;ϕ; vkÞ ¼ 0: ð75Þ

This equation will be referred to as our master Wheeler-
DeWitt equation and it will be the starting point for the
semiclassical approximation we carry out in the next
section.
Note that strictly speaking, Eq. (75) is not a Wheeler-

DeWitt equation in the original sense, because the con-
formal time η appears explicitly in ω2

kðηÞ due to our chosen
approximation. In principle, as mentioned before, one
would have to include the minisuperspace momenta in
ω2
kðηÞ instead. However, in order not to complicate the

terminology, we will keep referring to Eq. (75) as our
master Wheeler-DeWitt equation.

IV. SEMICLASSICAL APPROXIMATION

Instead of solving the master Wheeler-DeWitt equa-
tion (75) directly, we are going to apply the semiclassical
approximation scheme that was first presented in Ref. [3]
and applied to cosmology in Ref. [8]. The advantage of this
approximation is that we recover, at consecutive orders,
first the dynamics of the classical background, then a
Schrödinger equation for the perturbations propagating
on the classical background and, finally, quantum-
gravitational corrections to it. In this way, we are able to
clearly distinguish quantum-gravitational effects.
For our approximation, we use the following WKB-type

ansatz:

ΨkðqA; vkÞ ¼ eiSðqA;vkÞ; ð76Þ
where the function SðqA; vkÞ is expanded in powers of
m2

P as

SðqA; vkÞ ¼ m2
PS0 þm0

PS1 þm−2
P S2 þ � � � : ð77Þ

This ansatz is then inserted into Eq. (75) and for each power
ofmP, all the terms that are multiplied with a factor ofmP of
that power are collected. The sum of terms with a specific
power of mP is then set equal to zero.
In the present case, the highest order that appears is m4

P,
where we get the following equation:

∂
∂vk S0ðq

A; vkÞ ¼ 0; ð78Þ

which implies that the background part of the wave
function represented by S0 does not depend on the
perturbations vk.
The next order is m2

P, where we obtain the Hamilton-
Jacobi equation of the background,

GAB
∂S0
∂qA

∂S0
∂qB þ VðqAÞ ¼ 0: ð79Þ

It can be shown that this equation is equivalent to the
Friedmann equation.
The subsequent order, which is m0

P, yields the equation

2GAB
∂S0
∂qA

∂S1
∂qB − iGAB

∂2S0
∂qA∂qB þ

�∂S1
∂vk

�
2

− i
∂2S1
∂v2k þ ω2

kv
2
k ¼ 0: ð80Þ

As one can see, the perturbations represented by S1 and vk
now come into play. In order to obtain a Schrödinger
equation for the perturbation modes, we define a wave

function ψ ð0Þ
k in the following way:

ψ ð0Þ
k ðqA; vkÞ ≔ γðqAÞeiS1ðqA;vkÞ: ð81Þ

Here we have introduced a prefactor γ, which is actually the
inverse of the standard WKB prefactor that we did not
include in our WKB-type ansatz (76). This is the procedure
used in the general semiclassical expansion scheme for
canonical quantum gravity [see, e.g., Eq. (22) in Ref. [3]].
We demand that γ obey the following condition:

GAB
∂

∂qA
�
1

2γ2
∂S0
∂qB

�
¼ 0: ð82Þ

Additionally, we can define the conformal WKB time,
which we will identify with the classical conformal time, in
terms of the minisuperspace variables as follows:

∂
∂η ≔ GAB

∂S0
∂qA

∂
∂qB ¼ e−2α

�
−
∂S0
∂α

∂
∂αþ ∂S0

∂ ~ϕ
∂
∂ ~ϕ

�
: ð83Þ
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Using the last three relations, it is possible to rewrite

Eq. (80) for S1 as a Schrödinger equation for ψ ð0Þ
k :

Hkψ
ð0Þ
k ¼ i

∂
∂η ψ

ð0Þ
k ; ð84Þ

where the perturbation Hamiltonian Hk is given by

Hk ≔ −
1

2

∂2

∂v2k þ 1

2
ω2
kðηÞv2k: ð85Þ

Therefore, we end up with a Schrödinger equation for the
quantum states of the perturbations, where the time is
defined from the minisuperspace quantum dynamics.
Up to now, we have recovered well-known physics, so

the interesting part and main point of this investigation
comes at the next order m−2

P , where quantum-gravitational
corrections come into play. At this order, the equation we
have to consider is given by

GAB
∂S0
∂qA

∂S2
∂qB þ 1

2
GAB

∂S1
∂qA

∂S1
∂qB −

i
2
GAB

∂2S1
∂qA∂qB

þ ∂S1
∂vk

∂S2
∂vk −

i
2

∂2S2
∂v2k ¼ 0: ð86Þ

The newly appearing function S2, which contains informa-
tion about the quantum-gravitational corrections at this
order, is then split into a part ς that depends only on the
minisuperspace variables, and a part χ that contains also the
perturbations vk,

S2ðqA; vkÞ≡ ςðqAÞ þ χðqA; vkÞ: ð87Þ

The reason for this split is to isolate the next-order
correction to the WKB prefactor, which is given by ς
and just contributes a phase. After this split, we end up with
the subsequent equation for χ:

∂χ
∂η ¼ 1

ψ ð0Þ
k

�
−
1

γ
GAB

∂ψ ð0Þ
k

∂qA
∂γ
∂qB þ 1

2
GAB

∂2ψ ð0Þ
k

∂qA∂qB

þ i
∂ψ ð0Þ

k

∂vk
∂χ
∂vk þ iψ ð0Þ

k

2

∂2χ

∂v2k
�
: ð88Þ

We can now use χ to define a new wave function ψ ð1Þ
k that

contains the quantum-gravitational corrections of the order
m−2

P as follows:

ψ ð1Þ
k ðqA; vkÞ ≔ ψ ð0Þ

k ðqA; vkÞeim−2
P χðqA;vkÞ: ð89Þ

Using this definition, we obtain a Schrödinger equation for

ψ ð1Þ
k with a quantum-gravitational correction term that is

suppressed by a prefactor of m−2
P

i
∂
∂η ψ

ð1Þ
k ¼ Hkψ

ð1Þ
k þ ψ ð1Þ

k

m2
Pψ

ð0Þ
k

�
1

γ
GAB

∂ψ ð0Þ
k

∂qA
∂γ
∂qB

−
1

2
GAB

∂2ψ ð0Þ
k

∂qA∂qB
�
: ð90Þ

We follow Ref. [3] in order to find an alternative expression
for the objects in the brackets in terms of the perturbation
Hamiltonian Hk. For illustrative purposes, we have out-
lined this calculation in the Appendix using only α instead
of both minisuperspace variables. We finally obtain the
following form of the quantum-gravitationally corrected
Schrödinger equation:

i
∂
∂η ψ

ð1Þ
k ¼ Hkψ

ð1Þ
k −

ψ ð1Þ
k

2m2
Pψ

ð0Þ
k

�ðHkÞ2
V

ψ ð0Þ
k

þ i
∂
∂η

�
Hk

V

�
ψ ð0Þ
k

�
: ð91Þ

Note that, for a generic ψ ð0Þ
k , the correction terms, which

appear multiplying ψ ð1Þ
k , are complex valued. The imagi-

nary component of those terms thus describes a potential
source of unitarity violation.
What is the source of this nonunitarity? The crucial point

is that the fundamental equation in quantum cosmology is
the Wheeler-DeWitt equation, not the Schrödinger equa-
tion. First, the Hamiltonian in theWheeler-DeWitt equation
is not self-adjoint, as is known for the general form of
the quantum constraints in geometrodynamics [39]; self-
adjointness is only demanded for the Hamiltonian in the
emerging (uncorrected) Schrödinger equation (84). Second,
the Wheeler-DeWitt equation obeys a Klein-Gordon type
of conservation law, not the standard Schrödinger con-
servation law. Expanding this Klein-Gordon law in the
Born-Oppenheimer scheme outlined above, one finds at
order m0

P the Schrödinger conservation law, which at the
next order is modified by terms proportional to m−2

P [see
Ref. [4], Eqs. (3.12) ff.]. In the present case, the expansion
of the Klein-Gordon current leads at order m−2

P to

d
dη

Z
dvkψ

�ð1Þ
k ψ ð1Þ

k ¼ 1

m2
P

Z
dvkψ

�ð1Þ
k

∂
∂η

�
Hk

V

�
ψ ð1Þ
k : ð92Þ

It is immediately recognizable that the term on the right-
hand side corresponds to the second term in the brackets on
the right-hand side of Eq. (91). Imaginary terms such as the
ones in Eq. (91) have been applied before in the context of
the black-hole information problem [40] and the quantum
optics of bosons in the gravitational field of the Earth [41].
As we shall see in Sec. VIII, the nonunitary terms can

become relevant for early times. A consistent calculation of
the quantum-gravitational corrections to the power spec-
trum can, however, only be performed if they are neglected
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there. This is similar to a process called “unitarization”
that is frequently employed in particle physics in order to
avoid a nonunitary contribution to scattering amplitudes
from unknown high-energy physics; see e.g. Ref. [42], in
particular Figs. 1–23 therein.

V. GAUSSIAN ANSATZ

A. Gaussian ansatz for the Schrödinger equation

Motivated by the fact that the most recent measurements
of the CMB anisotropies have not shown any hint for a non-
Gaussianity of primordial fluctuations [43], we assume that
the scalar and tensor perturbations are in the ground state,
which allows us to use a Gaussian ansatz to find a solution
to the Schrödinger equation (84). Introducing a normali-

zation factor Nð0Þ
k ðηÞ and the inverse Gaussian width

Ωð0Þ
k ðηÞ, our ansatz reads

ψ ð0Þ
k ðη; vkÞ ¼ Nð0Þ

k ðηÞe−1
2
Ωð0Þ

k ðηÞv2k : ð93Þ

We insert this ansatz into Eq. (84) and collect all the terms
with either a factor of v2k or v0k. Each of the sums
multiplying these terms is then set equal to zero and one
ends up with the following two equations:

iNð0Þ0
k ðηÞ ¼ 1

2
Nð0Þ

k ðηÞΩð0Þ
k ðηÞ; ð94Þ

iΩð0Þ0
k ðηÞ ¼ ðΩð0Þ

k ðηÞÞ2 − ω2
kðηÞ: ð95Þ

In addition to these equations, we also request a normalized
wave function for any given time η:

jψ ð0Þ
k j2 ¼ jNð0Þ

k j2
Z

∞

−∞
e−

1
2
½Ω�ð0Þ

k þΩð0Þ
k �v2kdvk

¼ jNð0Þ
k j2

ffiffiffi
π

pffiffiffiffiffiffiffiffiffiffiffiffi
ℜΩð0Þ

k

q ¼! 1: ð96Þ

This provides the modulus of the normalization factor in
terms of the real part of the inverse Gaussian width.
Therefore, we get the following relation:

Nð0Þ
k ¼

�
ReΩð0Þ

k

π

�1=4

eiφ; ð97Þ

where φ is a real function of time η. The imaginary phase
term would only be relevant in some kind of interference
experiment, but will not enter our results. It is easy to check
that inserting this last relation into Eq. (94) and separating it
into its real and imaginary components, yields two equa-
tions: an equation for the phase φ and an equation for the
real part of Eq. (95). Therefore, in order to obtain the
complete wave function (93), up to a vk-independent phase

term, it is enough to solve Eq. (95) for the inverse Gaussian
width. The normalization condition (97) holds at any time
and will ensure the correct normalization of the wave
function.
Equation (95) is a Riccati equation and, as is well known,

it can always be written as a second-order linear differential
equation. With such a purpose, the following change of
variable is performed:

Ωð0Þ
k ðηÞ ¼ −i

yð0Þ0k ðηÞ
yð0Þk ðηÞ

; ð98Þ

which leads to the equation of a parametric oscillator,

yð0Þ00k ðηÞ þ ω2
kðηÞyð0Þk ðηÞ ¼ 0: ð99Þ

In fact, this equation corresponds to the equation of the
classical perturbative variable vk or the quantized modes
ŷkðηÞ in the Heisenberg picture (see e.g. Refs. [34,44]).

There is, however, a subtlety. The functions yð0Þk ðηÞ occurring
in Eq. (98) are the complex conjugates of the corresponding
operators in the Heisenberg picture (see e.g. Ref. [45]). This
fact is very relevant when imposing initial conditions.
Let us be more specific. The standard assumption in the

context of inflationary models is to choose the Bunch-
Davies vacuum at early times (or, equivalently, small
scales) kη → −∞. The physical interpretation is that the
state assumes the form of the Minkowski vacuum for large
k. For a flat background, the frequency ω is constant and
equal to the wave number k. Therefore it is straightforward
to solve Eq. (99) as a linear combination of imaginary
exponentials with the mentioned frequency (e�ikη). Now
one just needs to choose the positive-frequency modes. In
the Heisenberg picture, one would choose the solution with
a minus sign in the exponent but in this approach, because
one has to take the complex conjugate, the solution of the

form yð0Þk ¼ eikη is the one that corresponds to the Bunch-
Davies vacuum.
Finally, the normalization of yð0Þk ðηÞ does not enter the

physically relevant quantity (98) and can be chosen as
wanted. [Note that Eq. (95) is of first order.] For conven-
ience, we will follow the usual convention in the
Heisenberg picture and request the Wronskian to be equal
to the imaginary unit:

W ≔ yð0Þ0k yð0Þ�k − yð0Þ0�k yð0Þk ¼ i: ð100Þ

B. Gaussian ansatz for the corrected
Schrödinger equation

Let us now study the same ansatz as the one presented in
the previous subsection, for the quantum-gravitationally
corrected Schrödinger equation. Therefore, we write the
corrected wave function ψ ð1Þ

k as
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ψ ð1Þ
k ðη; vkÞ ¼ Nð1Þ

k ðηÞe−1
2
Ωð1Þ

k ðηÞv2k ; ð101Þ

and insert this expression into Eq. (91). As before, different
orders of vk are set independently to zero. At order v4k, the
following algebraic relation is obtained:

Nð1Þ
k ½ω2

k − ðΩð0Þ
k Þ2� ¼ 0: ð102Þ

This equation can obviously not be obeyed by any non-
trivial wave function. Therefore, since it is of higher order
in the perturbations vk, we neglect it. Apart from this
equation, at orders v0k and v2k equations similar to Eqs. (94)
and (95) are respectively obtained, but with correction
terms. In particular the equation for the inverse Gaussian
width takes the following form:

iΩð1Þ0
k ¼ ðΩð1Þ

k Þ2 − ~ω2
k; ð103Þ

where the corrected frequency ~ωk is defined as

~ω2
k ≔ ω2

k −
1

2m2
PV

½ð3Ωð0Þ
k − iðlnVÞ0Þðω2

k − ðΩð0Þ
k Þ2Þ

þ 2iωkω
0
k�: ð104Þ

The differential structure of the equation is the same and
thus one can perform the same change of variable as above
in Eq. (98), that is,

Ωð1Þ
k ðηÞ ¼ −i

yð1Þ0k ðηÞ
yð1Þk ðηÞ

; ð105Þ

to obtain a linear equation for the auxiliary variable yð1Þk ,

yð1Þ00k ðηÞ þ ~ω2
kðηÞyð1Þk ðηÞ ¼ 0: ð106Þ

This last equation is quite complicated and, as will be
shown below in the application of the formalism to a de
Sitter background, it will not be easy to obtain analytical
solutions for it. Therefore, one could deal with this equation
numerically (this will be performed in Sec. VIII A) or one

could also consider its linearization around Ωð0Þ
k . In this last

case, we write the inverse Gaussian width as

Ωð1Þ
k ¼ Ωð0Þ

k þ ~Ωð1Þ
k : ð107Þ

If the function ~Ωð1Þ
k is assumed to be small, one can drop its

quadratic terms. In this way, the following equation is

obtained for ~Ωð1Þ
k :

i ~Ωð1Þ0
k ¼ 2Ωð0Þ

k
~Ωð1Þ
k − ð ~ω2

k − ω2
kÞ; ð108Þ

which corresponds to the differential equation for the

equivalent to ~Ωð1Þ
k studied in Refs. [8,9].

Up to this point, everything seems to be fine. But we
have not yet considered the equation for the normalization
factor Nð1Þ

k . In fact, the problem appears when one wants to
impose a normalization condition. Proceeding in the same
way as we did in the previous subsection, and thus making
use of the usual inner product of quantum mechanics since
the evolution equation is the Schrödinger equation plus

certain linear terms in ψ ð1Þ
k , one would request the same

relation (96) that provides the normalization factor in terms
of the inverse Gaussian width. The issue is that, when this

relation is inserted into the evolution equation for Nð1Þ
k , an

equation is obtained for the real part of the Gaussian width

Ωð1Þ
k that is in conflict with Eq. (103). This is a signal of

nonunitarity and the system is telling us that the normali-
zation of the wave function cannot be conserved. This
conflict is due to the presence of imaginary terms in the

factor that multiplies ψ ð1Þ
k in the second term of the right-

hand side of the corrected Schrödinger equation (91). The
only way to get a consistent framework, where one can
unambiguously take expectation values, which is certainly
necessary to compute the power spectrum, is to get rid of
those imaginary terms. In the present Gaussian ansatz, this
would translate to taking only the real part of the corrected
squared frequency ~ω2

k [Eq. (104)] in all equations of this
section, specifically in Eqs. (103), (106) and (108).
In addition, in Sec. VIII A we will analyze numerically,

for a de Sitter background, the solutions of Eq. (103) for
both cases: on the one hand, with the complete corrected
frequency ~ωk and, on the other hand, with only its real part.
There, it will be made explicit that the solution with the
complete frequency has more undesirable physical proper-
ties. In particular, it is clear that the solution to Eq. (106)
with a real frequency will be composed of oscillatory
functions. But having imaginary terms in the frequency will
induce exponential-like solutions, which will generically
imply, as will be explicitly shown below, an amplification
of the amplitude of the wave either towards the past or
towards the future.

VI. DERIVATION OF THE POWER SPECTRA

In order to obtain the power spectra of the scalar and
tensor perturbations (cf. e.g. Ref. [37]), we start from the
two-point correlation function of the corresponding master
variable v, which is given by

ΞðrÞ≔ hψkjv̂ðη;xÞv̂ðη;xþ rÞjψki

¼
Z Y

k

dvkψ�
kðvkÞvðη;xÞvðη;xþ rÞψkðvkÞ: ð109Þ

Using the Gaussian ansatz (93), this expression can be
rewritten as
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ΞðrÞ ¼ 1

2π2

Z þ∞

0

dp
p

sinðprÞ
pr

p3
1

2ReΩp
; ð110Þ

the power spectrum for v is then defined as

PvðkÞ ¼
k3

4π2
1

ReΩk
: ð111Þ

This formula is valid for both cases presented in the
previous section with or without considering quantum-
gravitational corrections. In the case without corrections,

one would just replaceΩk byΩð0Þ
k in the last expression. As

can be explicitly seen in this last formula, the real part of the
inverse Gaussian width is the object that contains the
complete information about the corresponding power
spectrum.
As usual, the two-point correlation function of the

Fourier-transformed variable vk can also be written in
terms of this power spectrum:

hψkjv̂kv̂�pjψki ¼
2π2

k3
PvðkÞδðk − pÞ: ð112Þ

In order to explicitly write out the power spectrum
corresponding to the scalar or tensor modes, respectively,
one has to define which is the physically relevant variable
in each case. This will be done in the following.

A. Power spectrum for scalar perturbations

For the case of the scalar perturbations, the physical
quantities we are interested in are the temperature anisot-
ropies of the CMB, which are related to the comoving
curvature perturbation ζ defined by

ζ ≔ ΦB þ 2

3

Φ0
B þℋΦB

ℋð1þ wÞ : ð113Þ

Here, ΦB represents the Bardeen potential (42), and w
stands for the barotropic index appearing in the equation of
state P ¼ wρ. This expression can be simplified for our
purposes, because the CMB anisotropies are created during
the matter-dominated era, where w ¼ 0. Furthermore,
taking into account only large-scale perturbations, we
can regard ΦB as approximately constant and end up with
(cf. also e.g. Ref. [37])

ζ ≃ 5

3
ΦB: ð114Þ

We now have to express ζ in terms of the master
perturbation variable vk we use. The relation is given by

ζk ¼
ffiffiffiffiffiffiffiffiffi
4πG
ϵ

r
vk
a
; ð115Þ

where the slow-roll parameter ϵ has already been defined
in Eq. (47).
The power spectrum for the scalar perturbations is thus

given by the power spectrum of the curvature perturbations
ζk and using Eq. (111) we can finally write

PSðkÞ ≔ PζðkÞ ¼
4πG
a2ϵ

k3

2π2
1

2ReΩk
: ð116Þ

It is important to note that, beforeReΩkðηÞ is inserted into
the last expression, one has to take the limit of super-
Hubble scales (or late times) given by kη → 0−. As we will
see, the perturbations get “frozen” in this limit.

B. Power spectrum for tensor perturbations

For the case of the tensor perturbations, the power
spectrum for the master perturbation variable vk also takes
the form (111), but instead of the curvature perturbations
ζk, one now has to evaluate the following variable:

hk ¼ 2
ffiffiffiffiffiffiffiffiffi
8πG

p vk
a
: ð117Þ

Given that the tensor modes have two polarizations, the
power spectrum corresponding to the variable h has to be
multiplied by a factor of 2, such that we obtain the
subsequent power spectrum for the tensor perturbations,

PTðkÞ ≔ 2PhðkÞ ¼
64πG
a2

k3

2π2
1

2ReΩk
: ð118Þ

Here, the same comment as in the scalar case about taking
the super-Hubble scale limit for ReΩk applies.
Finally, we also define the tensor-to-scalar ratio r as

r ≔
PTðkÞ
PSðkÞ

: ð119Þ

This is the relevant dimensionless quantity that expresses
the relative strength of the primordial gravitational wave
background.

VII. THE UNCORRECTED SPECTRA FOR A DE
SITTER BACKGROUND

In this section, we solve the uncorrected Schrödinger
equation and use it to derive the power spectra for scalar
and tensor modes in a de Sitter background. In this way, we
will find the standard result from a different perspective.
The quantum-gravitational correction to this power spec-
trum will then be derived in the next section. Let us
comment that, to be precise, pure de Sitter is a singular limit
of the formalism developed in the previous sections. The
background matter field will be fixed to a constant value
and, thus, in principle it does not make sense to speak about
its (scalar) perturbations. This is shown explicitly in the
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appearance of the slow-roll parameter ϵ, which in this limit
should be vanishing, in Eqs. (46) and (115), as well as in
the divergence of the curvature perturbation ζ [Eq. (113)],
since for pure de Sitter w ¼ −1. In fact, in this case one
actually does not obtain a power spectrum since the modes
never reenter the horizon. Nonetheless, the computations
can be performed by keeping the slow-roll parameter as a
nonvanishing constant, and this particular case represents a
very good and easy-to-compute example to test the devel-
oped formalism.
Therefore, as commented above, we construct the de

Sitter universe by setting the scalar field ϕ to a constant
value. Using the vanishing of the background Hamiltonian
(36), and neglecting the time derivative of ϕ, we can write
the following relation between the potential V of the scalar
field and the constant Hubble parameter H0 in our de Sitter
universe:

VðϕÞ ¼ 3

8πG
H2

0 ¼
1

2
m2

PH
2
0: ð120Þ

In order to obtain a concrete relation between ϕ and H0,
one has to choose a specific potential, e.g. VðϕÞ ¼ 1

2
m2ϕ2,

such that ϕ ¼ mPH0=m, but we will refrain from doing this
in order to keep our considerations as general as possible.
The auxiliary potential VðηÞ defined in Eq. (73) thus

reads

VðηÞ ¼ e4αH2
0 ¼

1

H2
0η

4
: ð121Þ

In the de Sitter case, the frequencies ω2
kðηÞ take the same

form for both scalar and tensor perturbations,

ω2
kðηÞ ¼ k2 −

2

η2
; ð122Þ

such that we can consider both kinds of perturbations in one
step up to the calculation of the power spectra.
Now we can insert these relations into the equations

obtained in the semiclassical approximation presented in
Sec. IV and from the Gaussian ansatz applied in Sec. V.
Setting ϕ to a constant value implies that we have to

neglect the derivative with respect to ϕ in the Hamilton-
Jacobi equation (79), which thus simplifies to�∂S0

∂α
�

2

− e6αH2
0 ¼ 0: ð123Þ

Its solution can be easily obtained and reads

S0ðαÞ ¼ −
1

3
e3αH0; ð124Þ

where we have chosen the minus sign, which corresponds
to an expanding universe. This is then also reflected in the
definition of the WKB conformal time (83), given here by

∂
∂η ¼ eαH0

∂
∂α : ð125Þ

This choice recovers the standard flux of time, that is, η
growing with α, and thus can be directly identified with the
classical conformal time.
Considering the derivations presented in Secs. VA and

VI, we have seen that in order to obtain the power spectra,
we just need to find a solution for Ωð0Þ

k from Eq. (95),
which, for this particular case, is given by

iΩð0Þ0
k ðηÞ ¼ ðΩð0Þ

k ðηÞÞ2 − k2 þ 2

η2
: ð126Þ

Then, its real part ReΩð0Þ
k , in the limit of super Hubble

scales (η → 0), should be inserted into expressions (116)
and (118). In fact, Eq. (126) can be easily solved via the

auxiliary variable yð0Þk defined in Eq. (98) and its solution is
given by particular Hankel functions which can be
expressed in terms of elementary functions (see e.g.
Ref. [44], p. 472) as follows:

yð0Þk ðηÞ¼AðkÞe−ikη
�
1−

i
kη

�
þBðkÞeikη

�
1þ i

kη

�
: ð127Þ

The Bunch-Davies vacuum is imposed as the initial state,
which, as explained at the end of Sec. VA, for this solution
means choosing AðkÞ ¼ 0. This leads to

yð0Þk ðηÞ ¼ 1ffiffiffiffiffi
2k

p eikη
�
1þ i

kη

�
; ð128Þ

where the normalization has been chosen such that the
corresponding Wronskian is equal to the imaginary unity.
Consequently, we find from Eq. (126)

Ωð0Þ
k ðηÞ ¼ k3η2

1þ k2η2
þ i
ηð1þ k2η2Þ : ð129Þ

From Eq. (129), we see that Ωð0Þ
k ðηÞ approaches k for

η → −∞. Note that this corresponds, of course, to the
expression for the Minkowski vacuum and justifies the
choice of Eq. (128) in this Schrödinger picture. If we had
chosen, for example, BðkÞ ¼ 0 in Eq. (127), we would have

found in this limit Ωð0Þ
k ðηÞ ¼ −k, which would lead to a

non-normalizable Gaussian, which is physically not
acceptable.
As explained above, before plugging the real part of the

solution (129) into the expressions for the power spectra
(116) and (118), one needs to take the large-scale limit
kη → 0−, which leads to

ReΩð0Þ
k ðηÞ ¼ k3η2

1þ k2η2
→ k3η2: ð130Þ
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If we furthermore use the relation between the scale factor
and conformal time,

a ¼ −
1

H0η
; ð131Þ

we obtain from Eq. (116) the following power spectrum for
the scalar modes:

Pð0Þ
S ðkÞ ¼ GH2

0

πϵ

����
k¼H0a

: ð132Þ

Given that the expression for the scalar power spectrum
contains the slow-roll parameter ϵ, we have to evaluate
Eq. (132) at that point in time at which a certain mode k
reenters the Hubble scale, which is given by k ¼ H0a.
This makes the power spectrum (132) become slightly
k-dependent. This is, of course, the standard result (see e.g.
Ref. [44], Sec. VIII.4), but derived here in the Schrödinger
picture, starting from an expansion of the quantum-
gravitational Wheeler-DeWitt equation.
Following the same procedure for the tensor modes, we

obtain their corresponding power spectrum from Eq. (118),

Pð0Þ
T ðkÞ ¼ 16GH2

0

π
: ð133Þ

Hence, we also recover the standard result for the tensor-to-
scalar ratio r,

rð0Þ ¼ Pð0Þ
T ðkÞ

Pð0Þ
S ðkÞ

¼ 16ϵ: ð134Þ

If we reinsert ℏ and c in the last results, we can write

Pð0Þ
S ðkÞ ¼ ðtPH0Þ2

πϵ

����
k¼H0a

; Pð0Þ
T ðkÞ ¼ 16ðtPH0Þ2

π
;

where tP is the Planck time. This expresses the fact that
already Eq. (132) is a quantum-gravitational result (see also
Ref. [46]). The reason is that the scalar perturbations in the
metric together with the inflaton field are combined into a
variable, the Mukhanov-Sasaki variable v, which is quan-
tized. In the limit ℏ → 0, no effect is obtained. The
quantum-gravitational corrections that will be addressed
in the next section correspond, in the usual language, to
one-loop quantum corrections [6], which arise from the fact
that with our main Wheeler-DeWitt equation (66), we
consider full quantum gravity instead of just a quantum-
mechanically perturbed spacetime as in the conventional
approach to cosmological perturbations.

VIII. THE CORRECTED SPECTRA FOR A DE
SITTER BACKGROUND

Let us now finally calculate the quantum-gravitational
corrections originating from Eq. (91) to the power spectra
obtained in the previous section for a de Sitter universe. As
we have derived in Sec. V B, for this purpose, we need to
find a solution to the differential equation (103) or its
linearized version (108). This is the goal of this section.
More precisely, in the first two subsections we will present
the analysis of the full equation mostly by numerical
methods. In a third subsection, we will deal with the
linearized version, which allows for an analytical solution.

A. Numerical analysis of the full equation:
Bunch-Davies initial conditions

The aim of this subsection is to analyze the generic
behavior of the solution of the full equation (103), with and
without the imaginary (unitarity-violating) terms in ~ω2

k. For
such a purpose, Bunch-Davies initial data will be consid-
ered. In the subsequent subsection, we will discuss modi-
fied, more natural, initial conditions for the corrected
Schrödinger equation.
It is very difficult to find an analytical solution for the

differential equation (103), which is given by

iΩ0ð1Þ
k ¼ ðΩð1Þ

k Þ2 − ~ω2
k; ð135Þ

where, for the de Sitter case, the corrected frequency (104)
reads explicitly as follows:

~ω2
k ¼ ω2

k −
H2

0η
4

2m2
P

��
3Ωð0Þ

k þ 4i
η

�
ðω2

k − ðΩð0Þ
k Þ2Þ

þ 2iωkω
0
k

�
: ð136Þ

Therefore, we resort to numerical methods, and, as com-
mented above, we shall consider both the equation with the
complete ~ω2

k as well as with only the real part of ~ω2
k. In the

latter case, the corrected frequency to be considered
simplifies to

Reð ~ω2
kÞ ¼ ω2

k −
H2

0η
4

2m2
P

k3ð11 − k2η2Þ
ð1þ k2η2Þ3 : ð137Þ

Numerically, the Bunch-Davies initial conditions are just

implemented by requesting Ωð1Þ
k to be equal to the exact

solution (129) we have found in the previous section at a
chosen initial time. In the particular case of the plots shown
in Fig. 1, we have chosen an initial value of ηinitial ¼ −3000
and set the ratio to the unrealistically large value H0=mP ¼
10−2 such that the corrections can be seen in the plots. We
then solve the equation (135) numerically both with the
complete ~ω2

k and with its imaginary part dropped.
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For the case of the equation with the complete ~ω2
k, we

find that in the limit of large (negative) η, ReΩð1Þ
k shows

damped oscillations towards the future and, therefore,
amplified towards η ¼ −∞. As already commented above,

this is a consequence expected from having a complex
frequency, which is another argument against keeping the
unitarity-violating terms.
On the other hand, for the case of the equation with only

the real part of ~ω2
k, ReΩð1Þ

k turns out to be an oscillating
function with a constant amplitude. More precisely, it
oscillates around

kþ H2
0

4km2
P
; ð138Þ

with an amplitude of H2
0=ð4km2

PÞ. In this way, the minima

ofReΩð1Þ
k coincide with the value ofReΩð0Þ

k , which at early
times is equal to k. This oscillatory behavior, with a

constant amplitude and a minimum given by ReΩð0Þ
k is

obeyed all along until very small values of η (see Fig. 1). In
fact, for large negative values of η, the explained behavior
could be expected beforehand due to the specific initial data
we requested, which is to have an almost vanishing

derivative at initial time at a value equal to Ωð1Þ
k .

Requesting an almost zero time derivative at the initial
point imposes that such a point should be a minimum and
thus fixes the amplitude of the oscillations. Therefore, this
amplitude should, in principle, not be regarded as physi-
cally meaningful since we are imposing it by hand.
As for the behavior of the numerical solution for η → 0−,

we find that both solutions follow the same qualitative

behavior as ReΩð0Þ
k , but they differ quantitatively, which

implies a correction in the spectrum. In Sec. VIII C, by
making use of the linearized version of the equation for

Ωð1Þ
k , we will compute quantitatively such a correction.

B. Numerical analysis of the full equations:
Natural initial conditions

As has been commented above, the behavior of the Ωð1Þ
k

will be highly dependent on the chosen initial conditions.
Therefore, one should argue which would be its natural

initial data. In the case of Ωð0Þ
k the usual Bunch-Davies

vacuum is regarded as the initial physically meaningful
state. The idea behind the Bunch-Davies vacuum is that at
the beginning, when each mode is well inside its Hubble
horizon, it is oscillating with a constant frequency k. This

means that yð0Þk ¼ eikη and therefore Ωð0Þ
k ¼ k. Following

the same argumentation, in the corrected case, we should

try to find a frequency that makes the real part ofΩð1Þ
k equal

to a constant βk (which would stand for the frequency of
the free modes), whereas its imaginary part is vanishing. In
this way, we would find that the mode function would be a

freely oscillating function yð1Þk ¼ eiβkη. By writing explic-

itly the equation of motion for ReðΩð1Þ
k Þ and ImðΩð1Þ

k Þ
from Eq. (103),

FIG. 1. The real parts ofΩð0Þ
k in black (dashed line), ofΩð1Þ

k with

its complete equation of motion in green (dotted line), and ofΩð1Þ
k

removing the imaginary terms of the frequency from its equation
in red (continuous line) are shown for k ¼ 1. The first two plots
correspond to early times. In the first plot one can see the constant
amplitude oscillations of the solution without the imaginary
terms, whereas in the second plot the damped oscillations of the
solution with imaginary terms is clearly seen. The last plot
corresponds to late times.
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ReðΩð1Þ
k Þ0 ¼ 2ReðΩð1Þ

k ÞImðΩð1Þ
k Þ −Imð ~ω2

kÞ;
ImðΩð1Þ

k Þ0 ¼ ImðΩð1Þ
k Þ2 −ReðΩð1Þ

k Þ2 þReð ~ω2
kÞ;

it is easy to see that this can only be achieved if the
imaginary part of ~ωk (the unitarity-violating part) is

vanishing and initially (η → −∞) ReðΩð1Þ
k Þ2 ¼ Reð ~ω2

kÞ.
From the explicit form of the corrected frequencies given in
Eq. (137), we can compute the value of its real part at an
initial time η → −∞,

βk ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reð ~ω2

kÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ H2

0

2km2
P

s
≈ kþ H2

0

4km2
P
; ð139Þ

which is exactly the mean value of the oscillations found in
the numerical analysis above. Therefore, these latter con-

ditions [yð1Þk ¼ eiβkη or, equivalently, ReðΩð1Þ
k Þ ¼ βk and

ImðΩð1Þ
k Þ ¼ 0] would be the natural (Bunch-Davies-like)

initial conditions that one should consider when solving the
corrected equation of motion. With such conditions one

gets a nonoscillating evolution for ReΩð1Þ
k . The plot in

Fig. 2 shows this nonoscillating solution as compared to the

real part ofΩð0Þ
k . In addition, in Fig. 3 we plot the difference

Re ~Ωð1Þ
k between this nonoscillating numerical solution

ReΩð1Þ
k and ReΩð0Þ

k for late times. In the following section
we will also make use of these initial conditions to fix the
integration constant that will appear when solving the

linearized equation for ~Ωð1Þ
k .

C. Analysis of the linearized equation

Since the numerical solution we have discussed above
does not allow us to determine an analytical behavior of the
quantum-gravitational corrections, we now turn to the

linearized equation for ~Ωð1Þ
k ¼ Ωð1Þ

k −Ωð0Þ
k as given in

Eq. (108). This means, we will solve the equation

i ~Ωð1Þ0
k ¼ 2Ωð0Þ

k
~Ωð1Þ
k − ð ~ω2

k − ω2
kÞ; ð140Þ

with Ωð0Þ
k as given in Eq. (129). Given that we have found

out in the previous sections that, for several reasons, the
solution of the full equation exhibits unphysical behavior
when we keep the imaginary terms in ~ω2

k, we restrict
ourselves here to just considering the case where the
imaginary terms in ~ω2

k are dropped, which leads to the
expression (137) for the frequency. Note that we must not

remove the imaginary part of the Ωð0Þ
k appearing as a factor

in the first term of the right-hand side of Eq. (140), because

this term originates from the squaring of Ωð1Þ
k ¼ Ωð0Þ

k þ
~Ωð1Þ
k and thus ultimately follows from the first term of the

right-hand side of Eq. (91), which is why it being complex
does not violate unitarity.
Therefore, the differential equation we have to solve

explicitly reads

i ~Ωð1Þ0
k ¼ 2k3η3 þ 2i

ηð1þ k2η2Þ
~Ωð1Þ
k þH2

0η
4

2m2
P

k3ð11 − k2η2Þ
ð1þ k2η2Þ3 : ð141Þ

Its general solution is given by

~Ωð1Þ
k ¼ −

η2e−2iηk

ðηkþ iÞ2
�
c1 þ

H2
0

4m2
P

�
9e−2Γð0;−2ikη − 2Þ

þ 3e2Γð0; 2 − 2ikηÞ − e2iηk
ð1þ ηkðηkþ 6iÞÞ

ðηk − iÞ2
�	

;

ð142Þ

where c1 is the integration constant. Note that, for con-
venience, we use the upper incomplete gamma function

FIG. 2. The real part ofΩð1Þ
k with Bunch-Davies-like initial data

(red continuous line) compared toReΩð0Þ
k (black dashed line) for

k ¼ 1 with the unrealistically high ratio H0=mP ¼ 2=3.

FIG. 3. The real part of ~Ωð1Þ
k ≔ Ωð1Þ

k − Ωð0Þ
k (black solid line)

and its expansion (143), with the integration constant c1 ¼ 0, at
η → 0 (blue dot-dashed line) for k ¼ 1.
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Γð0; zÞ instead of its closely related function exponential
integral which is sometimes presented as a solution to
Eq. (141) by computer algebra programs.
In the limit η → 0−, the Taylor expansion of the function

leads to the following form:

~Ωð1Þ
k ≈ η2

�
c1 þ

H2
0

4m2
P

�
1þ 3e2Γð0; 2Þ þ 9Γð0;−2Þ

e2

�	
:

ð143Þ

We see that in the late-time limit, ~Ωð1Þ
k tends to zero

regardless of the value chosen for c1. This integration
constant must be fixed by using the Bunch-Davies-like
initial conditions obtained in the previous subsection. For
such a purpose, we expand our solution for η → −∞, which
leads to

~Ωð1Þ
k ≈

H2
0

4k2m2
P
−
c1e−2iηk

k2
: ð144Þ

From there, it is straightforward to see that one should set
c1 ¼ 0 in order to select the only nonoscillatory solution.
Let us mention that there is an extremely good coinci-

dence between the nonoscillating numerical solution pre-
sented in the previous subsection with the solution (142) of
the linearized equation (with c1 ¼ 0). We do not display
here the plots corresponding to this latter solution, since
they look exactly the same as those presented in Figs. 2 and
3. In this latter plot, we also show the Taylor expansion
(143) of the linearized solution around the origin η ¼ 0.
Therefore, we are quite confident that the analytical results
obtained here are a very good approximation to what one
would obtain with the solution of the full equation.
In order to calculate the quantum-gravitationally cor-

rected power spectra, we need to insert the real part
of the large-scale limit (143) together with Eq. (130) into
Eq. (116) for the scalar modes,

Pð1Þ
S ðkÞ ¼ 4πG

a2ϵ
k3

4π2
ðReΩð0Þ

k þRe ~Ωð1Þ
k Þ−1

¼ Pð0Þ
S ðkÞ

�
1 −

Re ~Ωð1Þ
k

ReΩð0Þ
k

þO
�
H4

0

m4
P

��
; ð145Þ

and into Eq. (118) for the tensor perturbations,

Pð1Þ
T ðkÞ ¼ 64πG

a2
k3

4π2
ðReΩð0Þ

k þRe ~Ωð1Þ
k Þ−1

¼ Pð0Þ
T ðkÞ

�
1 −

Re ~Ωð1Þ
k

ReΩð0Þ
k

þO
�
H4

0

m4
P

��
: ð146Þ

The real part of Eq. (143) can then be approximated as

Re ~Ωð1Þ
k ≈

H2
0η

2

4m2
P

�
1þ 3e2ReΓð0; 2Þ þ 9ReΓð0;−2Þ

e2

�
≈ −0.988

H2
0η

2

m2
P

: ð147Þ

Given that ReΩð0Þ
k ¼ k3η2 in the large-scale limit, the ratio

Re ~Ωð1Þ
k =ReΩð0Þ

k therefore does not exhibit any η-depend-
ence and thus we have a “freezing” of the quantum-
gravitationally corrected power spectra like in the uncor-
rected case. However, the k3-term remains, and therefore
the corrected power spectra become explicitly scale de-
pendent and we find an enhancement of power on the
largest scales:

Pð1Þ
S;TðkÞ ¼ Pð0Þ

S;TðkÞ
�
1þ 0.988

H2
0

m2
P

�
k0
k

�
3

þO
�
H4

0

m4
P

��
:

At this point we have also introduced a reference wave
number k0, which represents the inverse of the length scale
we have used in the replacement (53). As we have already
mentioned in Sec. III B, we need to introduce such a length
scale in order to make k dimensionful again, such that we
can relate it to observable quantities.
From a physical point of view, for the scalar perturba-

tions it only makes sense to choose the pivot scale used in
the analysis of the CMB anisotropies as a reference scale,
because this is the scale at which the scalar amplitude is
fixed by observation.
The magnitude of the effect can be estimated by the fact

that the tensor-to-scalar ratio of the inflationary perturba-
tions is related to the energy scale of inflation (cf. e.g.
Ref. [47])

V1=4 ∼
�

r
0.01

�
1=4

1016 GeV: ð148Þ

Using Eq. (120), we find

H2
0

m2
P
¼ 2V

m4
P
∼

2r
0.01

�
1016 GeV

mP

�
4

: ð149Þ

Given that with our definition of mP [Eq. (39)], we have

mP ¼
ffiffiffiffiffiffiffiffiffi
3

4πG

r
≈ 5.97 × 1018 GeV; ð150Þ

and using the result from the measurements of the Planck
satellite [48] that r≲ 0.11, we obtain as an upper limit

H2
0

m2
P
≲ 1.74 × 10−10; ð151Þ

which then immediately leads to the upper limit for the
magnitude of the quantum-gravitational correction for
k ∼ k0:
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����Pð1Þ
S;TðkÞ − Pð0Þ

S;TðkÞ
Pð0Þ

S;TðkÞ

����
k∼k0

≲ 1.72 × 10−10: ð152Þ

We shall discuss the issue of the observability of the
corrections in more detail in the follow-up paper.
In the de Sitter case, the tensor-to-scalar ratio is not

influenced by quantum-gravitational corrections due to the
fact that the scalar and tensor perturbations are modified by
exactly the same correction term,

rð1Þ ¼ Pð1Þ
T ðkÞ

Pð1Þ
S ðkÞ

¼ Pð0Þ
T ðkÞ

Pð0Þ
S ðkÞ

¼ rð0Þ ¼ 16ϵ: ð153Þ

This will no longer hold for a more realistic slow-roll
model, to which we shall turn in the next paper.

IX. CONCLUSIONS AND OUTLOOK

Making use of a semiclassical Born-Oppenheimer type
of approximation to the Wheeler-DeWitt equation, quan-
tum-gravitational effects on scalar and tensor perturbations
during inflation have been computed. We have found that
these effects, described by correction terms to the usual
Schrödinger equation for the perturbative modes, lead to an
enhancement of power on the largest scales for both scalar
and tensor perturbations.
Let us briefly compare the present results with the results

found earlier. In Ref. [8], only perturbations of the scalar
field were considered, whereas the perturbations of the
metric were neglected. There a suppression of power was
found. Nonetheless, in Ref. [9] it was pointed out that the
considered differential equation, with the imposed boun-
dary condition, actually allows for two solutions, one of
them becoming discontinuous in some limit. Choosing the
continuous solution, one finds, in fact, an enhancement
of power.
We now outline the main differences of the present

analysis as compared to Ref. [9]. First of all, we have
incorporated tensor perturbations in our discussion and
have dealt with the perturbative gauge invariance for the
scalar sector by constructing the corresponding gauge-
invariant master variable, that is, the Mukhanov-Sasaki
variable. This allows us to perform a reduced phase space
quantization. Besides, we have used a different method to
implement the Gaussian form of the corrected wave
function. Additionally, we have not a priori neglected
the explicitly imaginary terms in the quantum-gravitation-
ally corrected Schrödinger equation (91). In fact, the full
solution of this equation has been numerically analyzed and
several physically undesirable properties produced by the
imaginary terms have been found. Furthermore, we have
discussed the natural initial conditions to be imposed when
solving the corrected Schrödinger equation, and have
defined a modified Bunch-Davies-like initial quantum

state. Finally, this initial state has been used to obtain
the numerical solution of Eq. (91) with all unitarity-
violating terms removed, as well as the analytic solution
of the linearized equation (108) that gave us the explicit
correction to the power spectra.
An important point is the use of the Mukhanov-Sasaki

variable v as defined in Eq. (44). This variable invokes, in
particular, a rescaling with respect to the scale factor a.
Such a rescaling has no effect in the classical theory, but it
is relevant in quantum cosmology where a is quantized.
The quantum theory is, in fact, not invariant with respect to
field redefinitions. The use of v is a preferred one, among
other reasons, because it allows a physical regularization of
decoherence factors [34]. We thus believe that this is the
correct variable to use also in the present context.
In the alternative method to implement the Born-

Oppenheimer approximation to the Wheeler-DeWitt equa-
tion that was advocated in Refs. [13–15], an enhancement of
power was found for the de Sitter case [13], whereas the
analysis of the slow-roll case led to a loss of power for the
scalar modes, while the tensor modes remained enhanced
[14]. In Ref. [15], the authors adopted the point of view that
they can fit the observed loss of power by their results if they
take the reference scale to be much smaller than the pivot
scale; they gave a value of k0 somewhat smaller than 2 Mpc,
which corresponds to the scale of galaxy clusters. Whether
such a small scale turns out to become relevant in quantum
gravity, is so far an open, yet intriguing, question. We note
that in all the above-cited papers, including the present one,
the quantum-gravitational correction term is proportional to
k−3 and thus violates the (approximate) scale invariance.
Such a k−3-dependence was already found in Ref. [12].
In loop quantum cosmology, there are several

approaches available to discuss quantum-gravitational cor-
rections [49]. In some of them, also an enhancement of
power was found; a summarized discussion is given, for
instance, in Refs. [10,50]. In general, loop quantum
cosmology models contain more free parameters that need
to be constrained than the present approach. The method
that most resembles ours is the one outlined in
Refs. [31,51], and concrete calculations leading to a
suppression of power on large scales for scalar perturba-
tions can be found in Ref. [52]. Apart from loop quantum
cosmology, an application of supersymmetric quantum
cosmology to such a situation would also be of interest [7].
In our follow-up paper, we shall apply the methods

presented here to the more realistic slow-roll case, which
will allow us to discuss the issue of observability more
precisely. It can, however, already be said that an effect of
the order of 10−10 on large scales cannot be seen in the
CMB anisotropies, because of the statistical uncertainty
implied by cosmic variance, which is also most prominent
on large scales. It remains to be seen whether the magnitude
of the correction turns out to be larger in some alternative,
but still observationally justified, inflationary model.
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APPENDIX: DERIVATION OF THE FINAL
FORM OF THE CORRECTED
SCHRÖDINGER EQUATION

Here,we are going to derive the final formof the quantum-
gravitationally corrected Schrödinger equation (91) using
only theminisuperspacevariableαand thusneglecting ~ϕ.We
start with Eq. (90), which restricted to α reads

i
∂
∂η ψ

ð1Þ
k ¼ Hkψ

ð1Þ
k þ e−2αψ ð1Þ

k

m2
Pψ

ð0Þ
k

�
−
1

γ

∂ψ ð0Þ
k

∂α
∂γ
∂αþ 1

2

∂2ψ ð0Þ
k

∂α2
�
:

ðA1Þ

The Hamilton-Jacobi equation of the background (79)
consequently takes the following form:�∂S0

∂α
�

2

¼ e2αVðαÞ; ðA2Þ

such that we can write the derivative of the conformal WKB
time (83) as

∂
∂η ¼ −e−2α

∂S0
∂α

∂
∂α ¼ −e−α

ffiffiffiffi
V

p ∂
∂α : ðA3Þ

Now, we use this relation and the Schrödinger equation (84)

to rewrite the derivative of ψ ð0Þ
k with respect to α,

∂ψ ð0Þ
k

∂α ¼ ie2α
�∂S0
∂α

�
−1
i
∂
∂η ψ

ð0Þ
k ¼ ieαffiffiffiffi

V
p Hkψ

ð0Þ
k : ðA4Þ

The second derivative can then be expressed as

∂2ψ ð0Þ
k

∂α2 ¼ ieαffiffiffiffi
V

p Hkψ
ð0Þ
k −

ieα

2V3=2

∂V
∂αHkψ

ð0Þ
k

þ ieαffiffiffiffi
V

p ∂Hk

∂α ψ ð0Þ
k −

e2α

V
ðHkÞ2ψ ð0Þ

k : ðA5Þ

Furthermore, we have to use the condition imposed on the
WKB prefactor γ in Eq. (82), which reads

0 ¼ 1

γ

∂S0
∂α

∂γ
∂α −

1

2

∂2S0
∂α2

¼ eα
� ffiffiffiffi

V
p

γ

∂γ
∂α −

ffiffiffiffi
V

p

2
−

1

4
ffiffiffiffi
V

p ∂V
∂α

�
; ðA6Þ

and can thus be simplified to

1

γ

∂γ
∂α ¼ 1

2
þ 1

4V
∂V
∂α : ðA7Þ

Plugging the expressions (A4) and (A5) into Eq. (A1) and
also using Eq. (A7), we obtain

i
∂
∂η ψ

ð1Þ
k ¼ Hkψ

ð1Þ
k þ e−2αψ ð1Þ

k

m2
Pψ

ð0Þ
k

�
−

ieα

2V3=2

∂V
∂αHkψ

ð0Þ
k

þ ieα

2
ffiffiffiffi
V

p ∂Hk

∂α ψ ð0Þ
k −

e2α

2V
ðHkÞ2ψ ð0Þ

k

�
: ðA8Þ

Combining the first two terms inside the bracket and using
Eq. (A3), we finally recover Eq. (91):

i
∂
∂η ψ

ð1Þ
k ¼ Hkψ

ð1Þ
k −

ψ ð1Þ
k

2m2
Pψ

ð0Þ
k

�ðHkÞ2
V

ψ ð0Þ
k

þ i
∂
∂η

�
Hk

V

�
ψ ð0Þ
k

�
: ðA9Þ
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