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In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical
nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying
scalar field theory, we study the effective action and the entropy derived from this noncommutative model.
In particular, the entropy is calculated by making use of the two different approaches, the brick-wall method
and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent
structures of the entropy obtained through these two different methods agree with each other. It is also
shown that the same renormalization condition that removes the infinities from the effective action can also
be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the
NC model considered here is that it allows an interpretation in terms of an equivalent system comprising a
commutative massive scalar field but in a modified geometry: that of the rotational BTZ black hole, the
result that hints at a duality between the commutative and noncommutative systems in the background of a
BTZ black hole.
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I. INTRODUCTION

That the entropy can be assigned to a black hole with the
magnitude proportional to the horizon area was indicated
for the first time in [1,2], and later on, this idea was given
strong credibility [3]. In trying to understand why the black
hole has the entropy and why is it proportional to the area,
two different approaches were proposed in the 1980s. One
is due to ’t Hooft and is referred to as the brick-wall model
[4]. In this method, one considers a thermal bath of particles
propagating just outside of the horizon and calculates their
entropy. In the other seemingly unrelated approach, the
entropy is calculated via introducing an auxiliary but
important concept of reduced density matrix, which is
obtained by tracing over the degrees of freedom of a
quantum field that reside inside the horizon [5]. This latter
approach was, in fact, a seed which triggered the whole
stream of development, which over the subsequent years
and in conjunction with the series of other important
contributions in the field, gave rise to what may now be
called the conical space or conical singularity approach to
calculating the entanglement entropy [6–12].
Entropies obtained by either of these two approaches

appear to be divergent quantities, which naturally raises the
problem of their renormalization. In this respect, it was
suggested in [13] that the leading divergence in the entropy
can be removed by the standard renormalization of
Newton’s gravitational constant. Subsequently, the removal

of the subleading divergent terms in the entropy by
renormalizing the higher curvature couplings in the gravi-
tational action was demonstrated in [14–16].
The conical singularity method is based on the simple

replica trick first introduced in [8]. It has been proven
particularly elegant and powerful in a number of situations
of great physical interest. This method is particularly
interesting when applied to black holes in trying to
understand the dynamical origin of the entropy
[9,14,17,18]. In that situation, the entangling surface Σ
is the Killing type of black hole horizon. The characteristic
feature that regular metrics with Killing type of horizon
have is that their Euclidean time direction is compact with
periodicity 2πβH, with βH being the inverse Hawking
temperature. Such property is dictated by the regularity
condition. The Euclidean time τ then plays the role of the
angular coordinate on the two-dimensional disk which is
perpendicularly oriented with respect to the entangling
surface Σ. In the small neighborhood of the surface Σ, the
complete spacetime E can be represented as the direct
product E ¼ Σ × C of the entangling surface and the two-
dimensional disk C. With τ and ρ parametrizing the disk C,
and coordinates zi, i ¼ 1;…; d − 2 parametrizing the sur-
face Σ, the spacetime E is then assumed to be described by
the static and Euclidean metric of the general type

ds2 ¼ gμνdxμdxν ¼ fðρÞdτ2þdρ2þ γijðρ; ziÞdzidzj: ð1Þ

Accordingly, the surface Σ is determined by the condition
ρ ¼ 0 so that the expansion around the black hole horizon
corresponds to expanding around ρ ¼ 0.

*tjuric@irb.hr
†samsarov@unica.it

PHYSICAL REVIEW D 93, 104033 (2016)

2470-0010=2016=93(10)=104033(19) 104033-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.104033
http://dx.doi.org/10.1103/PhysRevD.93.104033
http://dx.doi.org/10.1103/PhysRevD.93.104033
http://dx.doi.org/10.1103/PhysRevD.93.104033


One way to introduce a singularity into this otherwise
regular spacetime manifold is to displace the black hole out
of its thermal equilibrium [8,9,19] by allowing it to have a
temperature T different from the Hawking temperature TH
ðTH ¼ 1=2πβHÞ. Naturally, such displacement causes the
appearance of a conical singularity which is attached to the
surface Σ at the origin and has the deficit angle
δ ¼ 2πðβT − βHÞ=βT . The regularity of the metric can then
be restored by relaxing the black hole back to its thermal
equilibrium at the temperature T ¼ TH, resulting in the
vanishing deficit angle, δ ¼ 0.
Concerning the thermal entropy S for a given field

theoretical system at some generic temperature T, one may
recall that it is given in terms of the partition function ZβT of
the field theoretical system in question,

S ¼ −
�
βT

∂
∂βT − 1

�
lnZβT : ð2Þ

This relation, in turn, may be reexpressed in terms of the
deficit angle δ as

SBH ¼
�
2π

d
dδ

þ 1

�
lnZδjδ¼0 ð3Þ

to give the Bekenstein-Hawking entropy as the thermal
entropy evaluated at the temperature T ¼ TH.
On the other side, one may recall the concept of the

reduced density matrix which appears to be very useful in
the current context. Thus, for the system described by the
pure quantum state jψi, the density matrix is given by
ρ0 ¼ jψihψ j. If the system under consideration is further
divided by some entangling surface Σ in such a way that a
portion of the degrees of freedom is located within the
surface, while the rest of them are located outside the
surface, then a reduced density matrix can be defined by
tracing ρ0 over the degrees of freedom residing within the
entangling surface. Even more, the reduced density matrix
pertaining to any of the two artificially created subsystems
can be defined, and this can be done by tracing the density
matrix ρ0 over the degrees of freedom that are located
within the remaining of the two subsystems. Hence, if a
given system is divided into two subsystems A and B by
some surface Σ, then the reduced density matrix for the
subsystem B is defined by tracing over the modes of the
quantum field that reside in the subsystem A,

ρB ¼ TrAρ0; ð4Þ
and the entanglement entropy for the subsystem B is given
by von Neumann’s entropy as

SB ¼ −TrρB ln ρB: ð5Þ
It is known that the reduced density matrix ρ, properly

normalized as ρ̂≡ ρ
Trρ, complies with the so-called “replica

trick”

S ¼ −Trρ̂ ln ρ̂ ¼
�
−

d
dn

þ 1

�
ln Trρnjn¼1; ð6Þ

which provides the efficient way to calculate the entangle-
ment entropy of the quantum (field theory) system under
consideration. Trace of the nth power of the reduced
density matrix appears to be a very important quantity
as the following line of arguments may plainly show.
To begin with, one first has to note that calculating the

expression Trρn corresponds to taking the path integral
over field configurations that are defined on the n-sheeted
covering En of the Euclidean spacetime E described by the
metric (1). When calculating this functional integral, one
has to introduce a cut in the spacetime E in order to
implement the boundary conditions obeyed by the quantum
field. The cut is determined by the points that lie on a half
of the hyperplane τ ¼ 0. Then, in the process of taking the
trace, the value of the quantum field that lies on one sheet
immediately below the cut has to be identified with the
value of the quantum field that lies on the next sheet
immediately above the cut (see, e.g., [20] for the nice
graphical presentation). In passing across the cut from one
sheet to the other, fields are glued analytically, and two
points which differ in angular variable by 2πn are iden-
tified. Thus, we have a manifold on which two points are
identified which differ in angular variable by some integral
multiple of 2π. Geometrically, this corresponds to a cone
with the deficit angle δ ¼ 2πð1 − nÞ.
Reexpressing the replica formula (6) in terms of the

deficit angle δ, rather than in terms of n, gives

S ¼ −Trρ̂ ln ρ̂ ¼
�
2π

d
dδ

þ 1

�
ln Trρnjδ¼0: ð7Þ

If we are about to correlate the two entropies, the geometric
entropy (7) and the Bekenstein-Hawking entropy (3), then
by comparing the relations (7) and (3), a clear physical
interpretation of the quantity Trρn emerges; namely, it
appears to be a partition function for the quantum field in
some gravitational background, Zn ¼ Trρn.
Thereafter, the space En, which is a n-fold cover of the

space E, is still described by the metric (1), with the only
exception that the variable τ=βH is no longer a periodic
variable with period 2π, but instead its period now is 2πn.
This space has a conical singularity attached to the surface
Σ at the origin so that in the small neighborhood of the
entangling surface Σ, the space En looks as a direct product
En ¼ Σ × Cn of the surface Σ and a two- dimensional cone
with the deficit angle δ ¼ 2πð1 − nÞ.
Because of an Abelian isometry, which exists in the

plane orthogonal to Σ and which is manifested by the
periodicity with period 2πn, it is possible to analytically
continue the above conclusions from integer n to arbitrary
noninteger α, so that in the small vicinity of Σ, it is possible
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to write Eα ¼ Σ × Cα. Correspondingly, the identification
Zα ¼ Trρα may also be drawn.
At the same time, the assumption about the spacetime as

being described by a smooth manifold at the energies of the
order of the Planck scale was being increasingly more
challenged over the past few decades. Indeed, different
approaches to quantum gravity in one way or another point
toward the necessity to revise such description. One of
the approaches to quantum gravity takes this route, and the
spacetime is assumed to be noncommutative (NC) at the
microscopic level [21]. Such an assumption is not an
arbitrary one, since general relativity and Heisenberg’s
uncertainty principle together imply that the spacetime has
a noncommutative structure [22–24]. With this prospect,
different types of noncommutative spacetimes and their
implications to physical models have been analyzed in
recent times [25,26]. Likewise, there have been various
attempts to construct noncommutative theories of gravity,
noncommutative black hole solutions, and noncommuta-
tive quantum cosmology [27–38]. In particular, it has been
shown that the noncommutative version of the BTZ black
hole is described by a κ-deformed algebra [39,40]. Similar
κ-deformed algebras have been found in the noncommu-
tative description of Kerr black holes [41] and certain
noncommutative versions of cosmology [30]. It, thus,
appears that there is a certain element of universality in
the appearance of the κ-deformed algebras, as they occur
in the noncommutative descriptions of various types of
classical geometries. Therefore, it is of interest to study the
properties of black holes in the framework of κ-deformed
noncommutative systems.
In this paper, we set up to investigate the effects induced

by noncommutativity on the coupling of matter to gravity.
For that purpose, the dynamics of the scalar matter in the
background of the BTZ geometry [42,43] has been sampled
out as a working model for describing the matter coupled to
gravity. On the other hand, as a conceptual framework for
mimicking the noncommutative nature of spacetime at the
Planck scale, the κ-deformed Minkowski spacetime has
been envisioned as a convenient and sufficiently general
one, as explained above. Likewise, it is noteworthy that a
nonsmooth, grainlike nature of spacetime calls for different
types of symmetries which are compatible with it, since
those embraced by the ordinary Poincaré are not.
Symmetries that underlie κ-deformed systems are, how-
ever, embodied within the κ-deformed Poincaré algebra
[44–46], a specific type of quantum deformation of the
Poincaré algebra.
The model we investigate is, therefore, based on the

noncommutative scalar field coupled to the classical BTZ
black hole background. It was first laid down in [47], and in
[48] quasinormal modes are investigated in light of
searching for the effects induced by noncommutativity.
We bear on these results and expand the research along
some novel lines, with the strong emphasis on two main

aspects of the problem. The first one is the validity of the
renormalization statement1 for the above-described NC
model in the spirit of [13] and the other is the evaluation
of the entropy for the same NC model. As for the latter
case, in particular, the entropy for the NC model is
calculated by using two different methods, namely, the
brick-wall method [4] and the heat kernel method for
conical spaces and the results, especially their UV diver-
gent structures, are confronted with each other. In trying to
reach the stated milestones, we heavily rely on the heat
kernel method designed for the spaces with conical
singularity. The latter procedure fits neatly into the picture
based on the long-lasting idea of Sakharov [49–51], in
which the gravity is not a fundamental property but instead
arises as a result of the quantum fluctuations that are due to
the underlying quantum field theory. In the present case, the
underlying quantum field theory is given by the NC scalar
field in the classical BTZ background.

II. MODEL FOR NC SCALAR FIELD IN BTZ
BACKGROUND AND MAPPING TO THE
EQUIVALENT COMMUTATIVE MODEL

In [47], a model was put forth based on the action

Ŝ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
gμνð∂μϕ ⋆ ∂νϕÞ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
gμνð∂μϕ̂∂νϕ̂ ⊳ 1Þ ð8Þ

that describes the coupling of the scalar particle to the
metric of the form (in units where 8G ¼ 1)

gμν ¼

0
BB@

M − r2

l2 0 0

0 1
r2

l2
−M

0

0 0 r2

1
CCA ð9Þ

and within the noncommutative setting realized through the
presence of symmetries that are described with κ-deformed
Poincaré algebra. In this framework, the noncommutativity
gets in by means of the insertion of the star product (A3)
compatible with the quantum (deformed) symmetry. As
suggested by Eq. (8), one may equally say that non-
commutativity enters the formalism through the scalar
field, which while describing matter, is treated as a non-
commutative object (see the Appendix). The gravity, on the
other hand, is treated classically. This approach, therefore,
amounts to considering a noncommutative scalar field

1The renormalization statement refers to the assertion that for
renormalizing the entropy one does not need to invent a separate
procedure, since the entropy renormalization can be carried out
by the same redefinition of the couplings that served to renorm-
alize the effective gravitational action.
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coupled to the classical geometrical background produced
by the spinless (J ¼ 0) BTZ black hole with mass M.
Salient features of the model are encoded within the

radial equation of the form [47,48]

r

�
M −

r2

l2

� ∂2R
∂r2 þ

�
M −

3r2

l2

� ∂R
∂r

þ
�
m2

r
− ω2

r
r2

l2 −M
− aβω

8r
l2

3r2

2l2 −M
r2

l2 −M

�
R ¼ 0; ð10Þ

which is the radial component of the field equation derived
from the action (8), and a is the deformation parameter
a ¼ 1

κ (therefrom, the phrase κ deformation). It fixes the
energy scale at which NC effects are supposed to start
occurring. Most frequently, it is taken to be of the order of
the Planck length. l is related to the cosmological constant

Λ as l ¼
ffiffiffiffiffiffiffi
− 1

Λ

q
. Furthermore, ω andm are, respectively, the

energy and the angular momentum (magnetic quantum
number) of the scalar particle. The constant β is the
parameter determining the differential operator representa-
tion of the κ-Minkowski algebra. In the Appendix are given
principal technical and physical arguments that lead to
Eq. (10). Further details are elaborated in [47,48].
As a matter of fact, the field equation (Klein-Gordon

equation) for the NC scalar field ϕ̂ can be rephrased in
terms of the commutative reduction ϕ of ϕ̂, in which case,
the field equation takes the general form

ð□g þOðaÞÞϕ ¼ 0: ð11Þ

By commutative reduction, we mean the result of the
limiting procedure ϕ̂ → ϕ, as a → 0. Having said that,
Eq. (10) is, in fact, the radial component of Eq. (11) that
governs the dynamics of the commutative reduction ϕ of
the NC scalar field ϕ̂. As it can be seen, (11) consists of two
parts, the first one being the standard Klein-Gordon
operator for the geometry (9) and the second one represents
a novel contribution. It goes linearly with the NC scale a
and above all, introduces a new physics. Note that this a-
dependent term in (11) is induced by the noncommutative
nature of spacetime at the Planck scale (or NC scale in
general, whatever it may be). It also gives rise to the
corresponding term in the radial equation (10) which scales
linearly with a.
Using the substitution

z ¼ 1 −
Ml2

r2
; ð12Þ

Eq. (10) can be reexpressed as

zð1 − zÞ d
2R
dz2

þ ð1 − zÞ dR
dz

þ
�
A
z
þ Bþ C

1 − z

�
R ¼ 0;

ð13Þ

where the constants A, B, and C are

A ¼ ω2l2

4M
þ aβω; B ¼ −

m2

4M
; C ¼ 3aβω: ð14Þ

Equation (13) together with the coefficients (14) describes
the dynamics of massless NC scalar field with energyω and
angular momentumm probing the geometry of a BTZ black
hole with mass M and vanishing angular momentum
(J ¼ 0). Closer inspection of its form leads to an interesting
observation. Namely, the analytical form of Eq. (13) is
exactly the same as that of the equation of motion that
governs the massive scalar field of mass μ0, energy ω, and
angular momentum m, and probing the geometry of the
rotational BTZ black hole with mass M0 and angular
moment J0 [see Eq. (8) in Ref. [52]]. On purely technical
grounds, the reason why this happened is due to the fact
that it was possible to absorb the term with the non-
commutative contribution right into those terms in the
equation of motion that have already been present there in
the absence of noncommutativity. As a result of this purely
mathematical peculiarity, an interesting physical picture
pops up. It appears that independent of the mass of the
black hole whose geometry is being probed by the massless
scalar particle, this scalar particle will though acquire the
mass in the presence of noncommutativity and will simul-
taneously undergo some type of backreaction deforming
the geometry through which it propagates. In particular, the
latter feature pertains to both the modification of the black
hole mass as well as the change in the very nature of the
geometrical background that is being probed, forcing it to
alter from a nonrotational into a rotational one (with the
angular momentum J different from zero). In accordance
with the above observations, a novel perspective may be
given to spacetime noncommutativity. Not only that it may
be given a role of the driving force that lies behind the mass
generating mechanism, but it may also be responsible for or
give rise to certain backreaction effects.
Thereby, since we have an equivalence between two

equations of motion, which pertain to two completely
different physical situations, a question naturally arises
as to whether it is possible to find some kind of math-
ematical correspondence between them. The answer is
positive. Namely, it appears that it is possible to find a
direct mapping between the case considered here, that is,
the NC massless scalar field in the nonrotational BTZ
background and the physical setting where the ordinary
massive scalar field probes a BTZ geometry with non-
vanishing angular momentum. In what follows, the latter
setting we shall refer to as the fictitious one (see Ref. [52]
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for the explicit expressions that correspond to this fictitious
situation).
Therefore, by comparing the constants A, B, and C

appearing in (13), with the appropriate constants from
Ref. [52], we get the following set of conditions:

A ¼ ω2l2

4M
þ aβω ¼ l4

4ðr02þ − r02−Þ2
�
ωr0þ −

m
l
r0−

�
2

¼ A0;

B ¼ −
m2

4M
¼ −

l4

4ðr02þ − r02−Þ2
�
ωr0− −

m
l
r0þ

�
2

¼ B0;

C ¼ 3aβω ¼ −
μ0

4
¼ C0; ð15Þ

with r0þ; r0− being the outer, i.e., inner radius of the
equivalent spinning BTZ black hole, respectively.
Note that the radii pertaining to the spinless BTZ are,

respectively, given by rþ ¼ l
ffiffiffiffiffi
M

p
and r− ¼ 0. In addition,

to keep the notation as simple as possible, we omit the
superscript from μ0 so that hereafter we have μ0 ≡ μ.
Furthermore, since [42]

M0 ¼ r02þ þ r02−
l2

; J0 ¼ 2r0þr0−
l

; ð16Þ

we can express the parameters of the commutative fictitious
situation completely in terms of the parameters defining the
NC case we analyze here

M0 ¼ f1ða;MÞ; ð17Þ

J0 ¼ f2ða;MÞ; ð18Þ

μ0 ≡ μ ¼ f3ða;MÞ: ð19Þ

This mapping is similar to the one obtained in [53], where
the analogy between the NC version of the Schwarzschild
black hole and the commutative Reisner-Nordstrom black
hole was drawn.
Turning back to the conditions (15), it is possible to solve

them and get the fictitious parametersM0 and J0 in a closed
form. This looks as

1

M0
1

ω2l2 þm2 − 2ωm J0
M0

¼
�
1

M
þ 4aβω
ω2l2 −m2

�
2 1
ω2l2þm2

M þ 4aβω
; ð20Þ

where the ratio J0=M0 appearing in (20) is given by

J0

M0 ¼
σλγ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2σ2 − γ2λ2

l2 þ 1
l2

q
γ2σ2 þ 1

l2
: ð21Þ

The remaining abbreviations γ, λ, and σ appearing in the
last two expressions are listed as follows:

γ ≡
1
M þ 4aβω

ω2l2−m2

ω2l2þm2

M þ 4aβω
; ð22Þ

λ≡ ω2l2 þm2; ð23Þ

σ ≡ 2ωm: ð24Þ

The mass M0 and the angular momentum J0 of the
equivalent black hole can be expressed explicitly within
the first order in the deformation,

M0 ¼ M

�
1þ 4aβωM

�
1

λ
−

2

ω2l2 −m2

þ l2

λ2
2σ2λ2 − σ2l2 þ λ2

σ2l2 þ λ2

�
1

ω2l2 −m2
−
1

λ

���
;

J0 ¼ 4aβωM2
l2

λσ

2σ2λ2 − σ2l2 þ λ2

σ2l2 þ λ2

�
1

ω2l2 −m2
−
1

λ

�
:

ð25Þ

In order to understand the physical meaning behind the
above equivalence, it should be noted that when the
noncommutative parameter a (NC scale) goes to zero,
the parameters of the two situations coincide with each
other. In particular, the ratio J0=M0 goes to 0, as expected.
Moreover, it should be noted that the right-hand sides of the
relations (20) and (21), besides depending on a and the
“old” parameter M, also depend on the quantum state of
the scalar field through their dependence on the quantum
numbers m and ω. For example, the relation (25) implies
that the scalar particle with zero orbital angular momentum
(m ¼ 0) cannot change the spin of the black hole, although
it can change its mass. We may additionally portray the
whole situation by saying that the more energetic the
incoming scalar field is, the more intensive is its impact
on the geometry it is probing. This observation speaks in
favor of the above-posed assertion that the noncommuta-
tivity of the scalar field generates, possibly through some
backreaction, the additional mass, and angular momentum
of the system with the fictitious black hole.
To summarize this part, the picture that has emerged so

far is the following. The dynamics of the NC massless
scalar field in the geometry (9) is described by Eq. (11),
where □g is the Klein-Gordon operator for the metric (9).
Likewise, the dynamics of the massive commutative scalar
field in the geometry
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gμν ¼

0
BBB@

M0 − r2

l2 0 −J0
2

0 1
r2

l2
þJ02

4r2
−M0 0

−J0
2

0 r2

1
CCCA ð26Þ

is described by the equation

ð□g0 − μ02Þϕ ¼ 0; ð27Þ

where□g0 is the Klein-Gordon operator for the metric (26).
As demonstrated above, these two different physical sit-
uations are mathematically equivalent due to the fact that
Eq. (11) can be rewritten and reduced to the form (27).
As already indicated, such direct mathematical corre-

spondence enables one to give a physical interpretation to
NC effects. Consequently, we may say that probing a BTZ
ðM; J ¼ 0Þ black hole with a massless NC scalar field
appears to be equivalent to a fictitious commutative setting
where this same scalar field (its commutative reduction, to
be more precise) acquires the mass and simultaneously
modifies the geometry through which it propagates, pos-
sibly through some mechanism of backreaction. We know
that the gravitational background influences the particle.
However, it may be that the opposite is also true, with the
grainlike, noncommutative nature of spacetime providing a
sufficiently suitable medium/agent for making something
like this come true.
In the next three sections, the focus will be on the

entropy issue for the NC model just described. In Sec. III
the entropy will be calculated by using the brick-wall
method. After reviewing in Sec. IV the essentials of the heat
kernel method for the spaces with conical singularity, in
Sec. V the entanglement entropy for the same NC model
will be discussed. However, when carrying out the calcu-
lations within the latter framework, one has to work with
the Euclidean metric. Therefore, before commencing the
analysis of Secs. IV and V, it is necessary to make an
analytic transformation of the Lorentzian metric into the
Euclidean one. We do this by changing the real variables of
time t and angular momentum J0 into

τ ¼ it; JE ¼ −iJ0; ð28Þ

leading to the metric

ds2E ¼
�
r2

l2
−

J2E
4r2

−M0
�
dτ2 þ dr2

r2

l2 −
J2E
4r2 −M0

þ r2
�
dφ −

JE
2r2

dτ
�

2

: ð29Þ

The idea here is to carry out the calculations in the
Euclidean setting and then after the final result is reached,
one again switches back to the Lorentzian form by using

the same transformations. One more thing that one has to
keep in mind is that the conical singularity method is an off-
shell method, meaning that the metric for which the
entanglement entropy is calculated does not necessarily
need to be a solution to any field equations. Even if it is, one
inserts the specific metric into the formulas only after the
final formula for the entropy is derived.

III. ENTROPY AND ITS DIVERGENT
STRUCTURE FOR THE NC SCALAR FIELD
IN THE CLASSICAL BTZ BACKGROUND

FROM THE BRICK-WALL METHOD

The method for calculating the entropy of the black hole
by using the “brick-wall model” was introduced in the
seminal paper by ’t Hooft [4]. For the case of the BTZ black
hole, the method has been applied in [54], and in [55] it was
used to study the rotational BTZ case. By following the
same line of arguments as in these papers, we find from
Eq. (10) that the r-dependent radial wave number has the
following form [47]:

k2ðr;m;ωÞ ¼ −
m2

r2ðr2l2 −MÞ þ ω2
1

ðr2l2 −MÞ2

þ aβω
8

l2

3r2

2l2 −M

ðr2l2 −MÞ2 : ð30Þ

In obtaining the last expression, we have used the WKB
approximation, which assumes the ansatz of the form

RðrÞ ¼ ei
R

kðrÞdr. According to the semiclassical quantiza-
tion rule, the radial wave number is quantized as

πn ¼
Z

L

rþþh
kðr;m;ωÞdr; ð31Þ

where the quantum number n > 0 and the angular
momentum quantum number m should be fixed so that
k2ðr;m;ωÞ > 0. Note that n≡ nðm;ωÞ. Alongside, h and
L are the ultraviolet and infrared regulators, respectively. In
the subsequent calculation for the free energy and entropy,
we shall take the limit L → ∞ at the end of calculation and
set h ≈ 0. In Ref. [47], the leading, i.e., the most dominant
term, was calculated. Here, we shall extend the calculation
and isolate all UV divergent terms. Special focus will be on
calculating the next-to-leading term in the entropy and free
energy.
The total number ν of single particle solutions with

energy not exceeding ω is given by

ν≡ νðωÞ ¼
Xm0

m¼−m0

nðm;ωÞ ¼
Z

m0

−m0

dmnðm;ωÞ

¼ 1

π

Z
m0

−m0

dm
Z

L

rþþh
kðr;m;ωÞdr; ð32Þ
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where m2
0 ¼ ω2l2

z þ aβω 8M
z

zþ1=2
1−z is fixed by the requirement k2ðr;m;ωÞ > 0. Note that for reaching the conclusion on the

value ofm0, the change of the variable (12) has been made in the above integral, so that kðrÞdr ¼ κðzÞdz, for an appropriate
function κðzÞ [see (36) for its explicit form]. Accordingly, the bounds of integration in (32) are changed to zh ¼ 1 − Ml2

ðrþþhÞ2

and zL ¼ 1 − Ml2

L2 .
The free energy at the inverse temperature βT of the black hole is

e−βTF ¼
X
ν

e−βTE ¼
Y
ν

1

1 − e−βTE
; ð33Þ

which after taking the logarithm on both sides leads to

βTF ¼
X
ν

ln ð1 − e−βTEÞ ¼
Z

dν ln ð1 − e−βTEÞ

¼ −
Z

∞

0

dE
βTνðEÞ
eβTE − 1

; ð34Þ

where the last line is obtained by the partial integration. For this, we find the free energy F as

F¼−
1

π

Z
∞

0

dω
eβTω− 1

Z
zL

zh

dz
Z

m0

−m0

dmκðz;m;ωÞ; ð35Þ

or more explicitly,

F ¼ −
1

2π

Z
∞

0

dω
eβTω − 1

Z
zL

zh

dz
Z

m0

−m0

dm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

zð1 − zÞ
�
−
m2

M
þ ω2l2

Mz
þ 8aβω

zþ 1
2

zð1 − zÞ
�s
: ð36Þ

The integration over m can be performed exactly and it yields

F ¼ −
1

4

Z
∞

0

dω
eβTω − 1

Z
zL

zh

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

zð1 − zÞ

s
ω2l2ffiffiffiffiffi
M

p
z
−
1

4

Z
∞

0

dω
eβTω − 1

Z
zL

zh

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

zð1 − zÞ

s
8aβω

ffiffiffiffiffi
M

p zþ 1
2

zð1 − zÞ :

After carrying out the integrations over z, one gets

F ¼ −
1

4

Z
∞

0

dω
eβTω − 1

ω2l2ffiffiffiffiffi
M

p ð−2Þ
ffiffiffiffiffiffiffiffiffiffi
1 − z
z

r ����zL
zh

−
1

4

Z
∞

0

dω
eβTω − 1

8aβω
ffiffiffiffiffi
M

p 4z − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp ����zL

zh

: ð37Þ

Next, we extract all divergent contributions to the free energy. For that purpose, both terms in (37) are expanded in the brick-
wall cutoff h. Keeping all divergent terms in the first term gives

ð−2Þ
ffiffiffiffiffiffiffiffiffiffi
1 − z
z

r ����zL
zh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l

ffiffiffiffiffi
M

p

h

s �
1 −

h

l
ffiffiffiffiffi
M

p þOðh2Þ
�
;

while the second term leads to

4z − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp ����zL

zh

¼
�
1 −

8h

l
ffiffiffiffiffi
M

p
� ffiffiffiffiffiffiffiffiffiffi

l
ffiffiffiffiffi
M

p

2h

s �
1 −

2h

l
ffiffiffiffiffi
M

p
�

−1=2
¼

ffiffiffiffiffiffiffiffiffiffi
l
ffiffiffiffiffi
M

p

2h

s �
1þ h

l
ffiffiffiffiffi
M

p þOðh2Þ
�
:

This means that only the leading term is divergent, while all other terms including the next-to-leading term are UV finite.
Therefore, the total divergent part of the free energy is given as
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F ¼ −
l
5
2

ðMÞ14
ζð3Þ
β3T

1ffiffiffiffiffiffi
2h

p − 2aβ
ðMÞ34 ffiffi

l
pffiffiffiffiffiffi

2h
p ζð2Þ

β2T
; ð38Þ

which is the exact result in the sense of the WKB method,
and ζ is the Riemann zeta function.
The corresponding divergent structure of the entropy for

the NC massless scalar field is calculated using the relation
S ¼ β2T

∂F
∂βT , and it accordingly amounts to

S ¼ 3
l
5
2

ðMÞ14
ζð3Þ
β2H

1ffiffiffiffiffiffi
2h

p þ 4aβ
ðMÞ34 ffiffi

l
pffiffiffiffiffiffi

2h
p ζð2Þ

βH

¼ S0

�
1þ 4

3
aβ

M
l2
ζð2Þ
ζð3Þ βH

�
; ð39Þ

where S0 is the undeformed entropy for BTZ at the
Hawking temperature βT ¼ βH ¼ 2πl2

rþ
. The result for S0

coincides with the result of [54], while the additional term
that scales linearly with a is a consequence of the presumed
noncommutative nature of spacetime.

A. Dimensional analysis

We work in units ℏ ¼ c ¼ kB ¼ 8G ¼ 1. From the well-
known relations E¼kBT, E¼mc2, E ¼ ℏω, p ¼ ℏ

λ, l ¼ ct,
βT ¼ 1

kBT
, we have the following dimensional relationships:

½E� ¼ ½T� ¼ ½m� ¼ ½ω� ¼ ½p�;
¼ ½l�−1 ¼ ½E�;
¼ ½t�;

½βT � ¼ ½T�−1 ¼ ½E�−1 ¼ ð½l�−1Þ−1 ¼ ½l�: ð40Þ
The more explicit relation between the brick-wall cutoff h
and the invariant proper length ϵ between the horizon and
the brick wall is visible [55] from ϵ ¼ R rþþh

rþ
ffiffiffiffiffiffi
grr

p
dr.

Namely,

ϵ ¼
Z

rþþh

rþ

drffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 −M
q

leads to the relation

rh ¼ rþ þ πϵ2

βH
¼ rþ þ h: ð41Þ

From this and (40), a dimensional analysis gives ½h� ¼
½ϵ2�
½βH � ¼

½ϵ�2
½l� . Since h has the dimension of length, ½h� ¼ ½l�, it

follows ½l� ¼ ½ϵ�2
½l� ; that is, the geodesic invariant distance ϵ

between the horizon and an imaginary brick wall also has
the dimension of length, ½ϵ� ¼ ½h� ¼ ½l�.
Expressed in terms of the geodesic invariant distance

cutoff ϵ and upon utilizing the area formula AðΣÞ ¼ 2πrþ,
the entropy (39) takes the form

S ¼ 3

8π3
ζð3ÞAðΣÞ

ϵ

�
1þ 4

3
aβ

M
l2
ζð2Þ
ζð3Þ βH

�
ð42Þ

manifesting the area law for the NC model.

IV. HEAT KERNEL METHOD FOR SPACES
WITH CONICAL SINGULARITY

As we have already noted, the black hole spacetime E in
the vicinity of the horizon Σ, which plays the role of the
entangling surface here, may be represented by the direct
product of the compact surface Σ and a two-dimensional
disc C, E ¼ Σ × C, with the Euclidean time τ playing the
role of the angular coordinate on the disc, with the period
2πβH. The conical singularity may then be introduced into
this spacetime by virtue of displacing the black hole out of
its thermal equilibrium, which is effectively achieved by
allowing the horizon temperature T to depart from the
Hawking temperature TH by some small amount, thus,
resulting in the Euclidean spacetime Eα with a conical
singularity. The conical singularity introduced in such way
is then located at the horizon, and the spacetime Eα in the
neighborhood of the singular horizon surface then looks as
Eα ¼ Σ × Cα, where Cα is the two-dimensional cone with
the angular deficit δ ¼ 2πð1 − T

TH
Þ≡ 2πð1 − αÞ. This

means that in the vicinity of the horizon, the metric is still
described by (1), except for the fact that the Euclidean time
τ is now a periodic variable with period 2πβT .
Moreover, in theories in which the gravity emerges from

the underlying (bosonic) quantum field theory, one usually
considers the quantity which is called the effective action
Weff . This effective action then describes the gravity theory
that one is about to analyze. The crucial notion in
constructing the effective action is the trace of the heat
kernel of the field operator, which in the case of the bosonic
scalar quantum field of mass μ coupled to the classical
gravitational background described by the metric tensor gμν
is given by the d’Alembertian operator extended with the
mass term, □g − μ2. On the spacetime with the regular
geometry gμν, whose metric in the near horizon region
complies with the general form (1), the trace of the heat
kernel of the operator □g is given by the well-known
Schwinger-DeWitt expansion [56–62],

Tre−s□g ¼ 1

ð4πÞd=2
X∞
n¼0

ansn−d=2; ð43Þ

where the first few coefficients an are given by

a0 ¼
Z
E
ddx

ffiffiffi
g

p
;

a1 ¼
Z
E
ddx

ffiffiffi
g

p 1

6
R; ð44Þ
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a2 ¼
Z
E
ddx

ffiffiffi
g

p �
1

180
RμνρσRμνρσ −

1

180
RμνRμν

þ 1

72
R2 þ 1

30
□gR

�
: ð45Þ

Hence, as for the first few terms in the small s expansion,
there comes out in a sequence the vacuum energy term, the
Einstein-Hilbert term, and the higher curvature terms,
respectively.
If, on the other hand, the conical singularity is intro-

duced, then the resulting spacetime Eα requires a modified
small s expansion for the trace of the heat kernel of the field
operator □g. This is due to the fact that the Riemann
curvature tensor for the space with conical singularity
acquires an additional singular, delta-function-like contri-
bution [12,62–64] when restricted to the surface Σ. At the
same time, outside the surface Σ, it is completely identical
to the curvature tensor of the regular smooth manifold E.
Correspondingly, the small s expansion (43) for the trace of
the heat kernel KðsÞ ¼ e−s□g on a space with a conical
singularity appropriately modifies

TrEα
e−s□g ¼ 1

ð4πÞd=2
X∞
n¼0

ðaregn þ asingn Þsn−d=2; ð46Þ

where the coefficients in the expansion acquire additional
singular, i.e., surface integral contributions asingn . The compo-
nents aregn of the expansion coefficients constitute their regular
part. The first three aregn are the same as a0, a1, and a2
appearing in (44) and (45) above, except only for
the additional factor of α multiplying the integrals in the
expressions fora0,a1,a2. This factor ofα is due to the fact that
the calculationofaregn assumes performing the integrationover
Eα, instead of over E, which, in turn, amounts to carrying the
integration over E followed by an additional multiplication
withα. In otherwords,aregn are the coefficients thatwould have
ruled the expansion (46) as the sole coefficients if the conical
singularity had not been present at all (that is, for α ¼ 1).
When, however, the conical singularity is switched on

(α ≠ 1), the regular components aregn get accompanied by
the singular components asingn , which for the first three look
as [6,11,62,65–68]

asing0 ¼ 0; asing1 ¼ π

3

ð1 − αÞð1þ αÞ
α

AðΣÞ; ð47Þ

asing2 ¼ π

18

ð1−αÞð1þαÞ
α

Z
Σ
R−

π

180

ð1−αÞð1þαÞð1þα2Þ
α3

×
Z
Σ

�X2
k¼1

Rμνnk;μnk;ν−2
X2
k¼1

X2
j¼1

Rμνσρnk;μnj;νnk;σnj;ρ
�
:

ð48Þ

Here, α ¼ βH=βT ¼ T=TH and AðΣÞ is the area of the
horizon surface. The quantities R;Rμν; Rμνσρ are, respec-
tively, the curvature, Ricci tensor, and the curvature tensor
of the regular black hole spacetime. Since the surface Σ is a
codimension-two hypersurface, it has two mutually ortho-
normal vectors nk;μ, k ¼ 1, 2, that are orthogonal to it. The
indices μ, ν label the spacetime components of these
vectors.
It has to be noted that there exists an even more general

expansion for the trace of the heat kernel on both regular as
well as on the conical space. The necessity for the
generalization may arise for generally two reasons. One
reason may be that the geometry that is being analyzed is
somewhat more involved, meaning that in the vicinity of
the horizon surface it may not simply be reduced to the
direct product Σ × C. This may, e.g., be the case with the
geometries describing the rotational spacetimes, like, for
example, that of the Kerr black hole or the rotational BTZ,
where the geometry in the near horizon region is no more
described by (1). In these cases, there may appear addi-
tional terms in the heat kernel expansion. In particular, the
singular coefficients asingn ; n ≥ 2 might suffer a mayor
revision which may consist of including the extrinsic
curvature effects [62,69,70]. This means that asingn might
be affected by the additional surface integrals of the
quadratic invariants like

P
2
j¼1 κ

j;μνκjμν and
P

2
j¼1 κ

jκj,
which would accompany the Riemann spacetime curvature
terms that already exist in the expressions for asingn . Here,
κj ¼ gμνκj;μν, and κjμν ¼ −γαμγ

β
ν∇αn

j
β is the extrinsic curva-

ture of the horizon surface Σ with respect to the normal
vectors nj; j ¼ 1, 2 introduced above.2 As observed in
[69,71], the presence of the extrinsic curvature terms of the
above type is necessary for asing2 to manifest a general
conformal invariance. Without such terms, asing2 may at best
be invariant only under a highly special class of conformal
transformations.
Another reason for generalizing the small s expansion

(46) may appear when one considers the gravity theory that
emerges from the underlying higher spin field theories. In
that case, the actual field operator for the quantum field of
spin σ is

OðσÞ ¼ □g þ XðσÞ; ð49Þ

where □g is the same d’Alembertian operator as before,
and XðσÞ is generally a matrix depending on the spin of the
field. Correspondingly, the coefficients in the small s
expansion of the trace of the heat kernel KðsÞ ¼ e−sO

ðσÞ

of the operator OðσÞ appropriately modify.

2The object γμν ¼ gμν − n1μn1ν − n2μn2ν is the metric of the
horizon surface [62,70] induced by embedding it into a larger
space with the metric gμν.
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Here we shall only stick with the scalar field operator
with minimal coupling (Xðσ¼0Þ ¼ 0). Moreover, for what
concerns the analysis in this paper, only the coefficients
areg0 ; areg1 ; asing1 will be important for drawing the main
conclusions of this article. Namely, since the main focus
here is on finding and identifying the UV divergent part of
the effective action and the entanglement entropy of the
classical BTZ probed by the minimally coupled massless
NC scalar field, only terms areg0 ; areg1 , and asing1 will be of
interest. Higher terms govern the UV finite contributions to
the effective action and the entropy in (2þ 1) dimensions
and thereby do not contain an inevitable piece of informa-
tion as long as the testing of the renormalization statement
and the comparison of the UV divergent structures obtained
by different methods are the only things to look after.
Recall that in Sec. II, it was shown that a massless NC

scalar field in the background of a classical spinless BTZ is
mathematically equivalent to an ordinary (commutative)
massive scalar field coupled to a classical spinning BTZ. In
this respect, the calculation of the effective action and the
entanglement entropy for the NC scalar field coupled to a
classical nonrotating BTZ is reducible to finding the
effective action and the entanglement entropy for the
rotational BTZ, though with different black hole parameters
[ðJ ¼ 0;MÞ → ðJ0;M0Þ]. Hence, in our particular model,
the features induced by noncommutativity can be inferred
by applying the conical singularity method onto the
physical system describing the massive commutative scalar
field, minimally coupled to a rotating BTZ black hole.
On the other side, the term asing1 will be unaffected by the

nonstatic nature of the rotational black hole spacetime, as
shown below. The nonstatic nature of the geometry in
question is not supposed to change the regular coefficients
areg0 ; areg1 either. Naively, this can be expected on the
grounds of the general behavior of the entanglement
entropy, which for the d-dimensional curved spacetime
is given by the Laurent series in the UV cutoff parameter ϵ,
with the generic nth term [62,71] in the expansion scaling
as 1=ϵd−2−2n and with the most divergent term behaving
as 1=ϵd−2. Therefrom, it is evident that in the (2þ 1)-
dimensional case, only the first term will be UV divergent,
and as being readily seen from the conical singularity
method, this one draws its origin from the term in the heat
kernel expansion that contains the singular coefficient asing1 .
This is why to this purpose the higher coefficients can be
ignored. It still remains to give a more direct argument as to
why this coefficient will stay unaffected by the intrusion of
the extrinsic curvature terms that may enter the formulas for
the singular coefficients, owing to the nonstatic nature of the
actual geometry (in the present case the rotational BTZ).
In order to put forth the statement on insensitivity of asing1

to the rise of the rotational character of the black hole
spacetime with the horizon Σ, one may recall [69] that for
some general metric having the conical singularity located

at the entangling surface Σ, the only source of modification
in the singular terms in the small s expansion (46) can come
from the extrinsic curvature of Σ (see the discussion above).
Moreover, since the coefficient Sd−2−2n, which stands next
to the generic term 1=ϵd−2−2n (nth in a row; see [72]) in the
UV divergent part of the entanglement entropy expansion,
cannot depend on the direction of vectors normal to Σ, the
components κj;μν of the extrinsic curvature may appear in
Sd−2−2n only with even powers. This is the reason [62,71]
why the general coefficient Sd−2−2n has the formP

kþj¼n

R
Σ R

kκ2j, where R and κ represent symbolically
the components of the spacetime curvature tensor, e.g., the
components of the extrinsic curvature of Σ, respectively.
Since the leading divergent term (n ¼ 0), Sd−2=ϵd−2 in the
entropy originates from the term with asing1 in the heat
kernel expansion, it is clear that no change in the asing1

coefficient is possible due to the extrinsic curvature.
Therefore, we may conclude that in finding the UV
divergent structure of the entanglement entropy for the
model considered here, we can rely on the expressions
given in (44) and (47).
Once having the heat kernel expansion, the effective

action on the space with conical singularity is given as

WðαÞ ¼ −
1

2

Z
∞

ϵ2

ds
s
TrEα

e−s□g : ð50Þ

The entanglement entropy is calculated by using the replica
trick

S ¼ ððα∂α − 1ÞWðαÞÞα¼1: ð51Þ

If the scalar field has the mass μ, then the corresponding
effective action can be written in terms of the trace of the
heat kernel (46) in the following way:

WðαÞ ¼ −
1

2

Z
∞

ϵ2

ds
s
ðTrEα

e−s□gÞe−sμ2 : ð52Þ

V. ENTANGLEMENT ENTROPY AND ITS
DIVERGENT STRUCTURE FOR THE

NC SCALAR FIELD IN THE CLASSICAL
BTZ BACKGROUND FROM THE

CONICAL SINGULARITY METHOD

We return to the model described by Eq. (10) describing
the NC scalar field in the background of the classical
spinless BTZ black hole. It was shown that this system is
equivalent to the massive scalar field probing the geometry
described by the metric (26). As explained in the previous
section, the entanglement entropy of this system may be
calculated by the method of conical singularity which
consists of introducing the conical defect into the spacetime
(29). This conical defect is located at the horizon and
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has the small deficit angle δ ¼ 2πð1 − αÞ. The parameter
α ¼ T=TH is close to 1, and it measures the departure of the
black hole temperature from its equilibrium temperature
TH. With this, the Riemann curvature tensor acquires an
additional δ-function-like contribution at the horizon, and
the trace of the heat kernel as well as the effective action
become functions of α. The entanglement entropy is then
found by the replica trick (51).
Although the method assumes that the geometry to

which it is applied has the near horizon limit (1), so that

it can be represented as Σ × C, and (29) is not of that kind,
we can still pursue the method along the lines described in
Sec. IV, as long as our primary goal is merely to extract out
the UV divergent part of the effective action and entropy in
the model considered. To this purpose, we only need to
consider the coefficients areg0 ; areg1 , and asing1 .
Thus, by applying the heat kernel method to the field

operator □g defined on the background (29), one gets for
the effective action

WðαÞ ¼ −
α

3

1

ð4πÞ3=2
1

ϵ3

Z
d3x

ffiffiffi
g

p þ α

ð4πÞ3=2 ð−1Þ
1

ϵ

Z
d3x

ffiffiffi
g

p �
1

6
R − μ2

�

−
α

ð4πÞ3=2 ð
ffiffiffiffiffiffiffi
ΛIR

p
− ϵÞ

Z
d3x

ffiffiffi
g

p �
1

180
RαβμνRαβμν −

1

180
RαβRαβ þ 1

6
□g

�
1

5
R − μ2

�
þ 1

2

�
1

6
R − μ2

�
2
�

þ 1

ð4πÞ3=2 ð−1Þ
1

ϵ

π

3

1 − α2

α
AðΣÞ − 1

ð4πÞ3=2 ð
ffiffiffiffiffiffiffi
ΛIR

p
− ϵÞ

�
π

3

1 − α2

α

Z
Σ

�
1

6
R − μ2

�

−
π

180

1 − α4

α3

Z
Σ

�X2
k¼1

Rμνnk;μnk;ν − 2
X2
k¼1

X2
j¼1

Rμνσρnk;μnj;νnk;σnj;ρ
�
þ fðαÞ

Z
Σ
Oðκkκk; κk;μνκk;μνÞ

�
; ð53Þ

where the ΛIR is some conveniently chosen infrared cutoff,
and nk;μ, k ¼ 1, 2 are two mutually orthonormal vectors
that are orthogonal to the horizon surface Σ of the
equivalent spinning BTZ. As stated earlier, in the effective
action there may also appear the additional extrinsic
curvature terms of the horizon surface Σ due to the
nonstatic nature of the geometry. They are indicated in
the above expression within the last term, where fðαÞ is
some generic function of the parameter α, with the property
fðα ¼ 1Þ ¼ 0, whose exact form is not essential for the
forthcoming analysis. The gravitational action that emerges
from the underlying quantum scalar field theory and which
contains the divergent and finite parts is given by the
regular part of the heat kernel expansion, for which purpose
we have to set α ¼ 1 in (53),

Weff ¼ −
1

3

1

ð4πÞ3=2
1

ϵ3

Z
d3x

ffiffiffi
g

p
−

1

ð4πÞ3=2
1

ϵ

×
Z

d3x
ffiffiffi
g

p �
1

6
R − μ2

�
−

1

ð4πÞ3=2 ð
ffiffiffiffiffiffiffi
ΛIR

p
− ϵÞ

×
Z

d3x
ffiffiffi
g

p �
1

180
RαβμνRαβμν −

1

180
RαβRαβ

þ 1

30
□gRþ 1

2

�
1

6
R − μ2

�
2
�
: ð54Þ

The BTZ solution, despite sharing many similarities with
ordinary (3þ 1)-dimensional black holes, has important
differences as well, rooted in the simplicity of (2þ 1)-
dimensional gravity. Therefore, due to the fact that in three

spacetime dimensions, the full curvature tensor is com-
pletely determined by the Ricci tensor,

Rμνρσ ¼ gμρRνσ þ gνσRμρ − gνρRμσ − gμσRνρ

−
1

2
ðgμρgνσ − gμσgνρÞR;

the corresponding terms in (53) and (54) should be
appropriately modified in accordance with that.
Nevertheless, as already announced earlier, we shall only
be interested in the divergent part of the effective gravi-
tational action,

WdivðϵÞ≡ −
1

3

1

ð4πÞ3=2
1

ϵ3

Z
d3x

ffiffiffi
g

p

−
1

ð4πÞ3=2
1

ϵ

Z
d3x

ffiffiffi
g

p �
1

6
R − μ2

�
; ð55Þ

as one of our main goals is to test the renormalization
hypothesis within the particular NC scalar field model
presented in Sec. II. This task includes the renormalization
of the bare gravitational action WgrðGB;ΛBÞ, with GB and
ΛB being the bare couplings, that is the bare Newton’s
gravitational constant and the bare cosmological constant,
respectively. The standard way of treating the UV diver-
gences in the action is to absorb them into a redefinition of
the couplings. While the UV divergent part in the gravi-
tational action has already been isolated, it still remains to
set up the renormalization condition that will sweep away
the divergences. To this purpose, one proceeds as follows.
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Taking into account that the bare and the renormalized
gravitational actions are given by

WgrðGB;ΛBÞ ¼
Z

d3x
ffiffiffi
g

p �
−

1

16πGB
ðRþ 2ΛBÞ

�
;

WgrðGren;ΛrenÞ ¼
Z

d3x
ffiffiffi
g

p �
−

1

16πGren
ðRþ 2ΛrenÞ

�
;

and that the UV divergences in the effective action
computed by the heat kernel method read as

WdivðϵÞ ¼−
1

3

1

ð4πÞ3=2
1

ϵ3

Z
d3x

ffiffiffi
g

p
−

1

ð4πÞ3=2
1

ϵ

Z
d3x

ffiffiffi
g

p 1

6
R

þ μ2

ð4πÞ3=2
1

ϵ

Z
d3x

ffiffiffi
g

p
;

the renormalization of the effective action can be carried
out by imposing the requirement

WgrðGB;ΛBÞ þWdivðϵÞ ¼ WgrðGren;ΛrenÞ: ð56Þ

This requirement plays the role of the renormalization
condition, and it leads to the redefinition of the couplings

ΛB

GB
þ 1

3
ffiffiffi
π

p 1

ϵ3
−

μ2ffiffiffi
π

p 1

ϵ
¼ Λren

Gren
; ð57Þ

1

GB
þ 1

3
ffiffiffi
π

p 1

ϵ
¼ 1

Gren
: ð58Þ

It should be noted that the noncommutativity scale a enters
the first condition through the mass μ of the scalar probe,
which was given by the third relation in Eq. (15). Eventual
impact of the scale a on the cosmological constant would
certainly be an interesting issue to study and would perhaps
deserve a special analysis, but it is beyond the scope of the
present paper.
In order to test the renormalization statement, it is

necessary to know what the entropy looks like for the
case of the NC scalar field model of Sec. II. Hence,
applying the replica trick to the effective action (53)

S ¼ ðα∂α − 1ÞWðαÞjα¼1; ð59Þ

one gets the following result for the entanglement entropy:

S¼ AðΣÞ
12

ffiffiffi
π

p 1

ϵ
þ 1

12
ffiffiffi
π

p ð
ffiffiffiffiffiffiffi
ΛIR

p
−ϵÞ

�Z
Σ

�
1

6
R−μ2

�

−
1

30

Z
Σ

�X2
k¼1

Rμνnk;μnk;ν−2
X2
k¼1

X2
j¼1

Rμνσρnk;μnj;νnk;σnj;ρ
�

þðα∂αfðαÞÞα¼1

Z
Σ
Oðκkκk;κk;μνκk;μνÞ

�
: ð60Þ

This is the entanglement entropy for the massless NC scalar
field minimally coupled to the classical nonrotational
BTZ geometry (9). It is calculated by applying the heat
kernel method for the spaces with conical singularity onto
the mathematically equivalent system that consists of the
ordinary (commutative) massive scalar field probing the
rotational BTZ geometry (26). As it can be seen from
Eq. (60), this entropy is an UV divergent quantity. The
leading (and, at the same time, the only) UV divergent term
in the entanglement entropy obtained by the heat kernel
method on the space with conical singularity is given by

SdivðϵÞ ¼
AðΣÞ
12

ffiffiffi
π

p 1

ϵ
; ð61Þ

showing that it scales linearly with the UV cutoff parameter
ϵ. The horizon area AðΣÞ is here determined by

AðΣÞ ¼ 2πr0þ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0l2

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

J02

M02l2

s !vuut ; ð62Þ

with the mass M0 and the angular momentum J0 calculated
in (25). It is worthy to note that the same result for the UV
divergent contribution to the entanglement entropy is
obtained in [73] where the heat kernel on the conical
BTZ geometry is constructed by solving exactly the heat
equation on a maximally symmetric constant curvature
space and then utilizing the Sommerfeld formula [74] to
obtain the heat kernel with the required periodicity. The
heat kernel method for AdS3 spaces was also considered
in [75].
The next-to-leading term in the Eq. (60) is already UV

finite. We point out that this same UV divergent structure is
exhibited by the entropy that was calculated for the same
NC model but within the framework of the ’t Hooft brick-
wall method of Sec. III. The leading term in the entropy
obtained there was also linearly divergent in ϵ, while the
next following term was UV finite [see Eq. (42)].
Besides comparing the brick-wall result in Eq. (42) with

that in (61), the potentially interesting conclusions may also
be drawn by confronting the result (42) with that in [55],
where the entropy of the quantized scalar field in the
background of a rotating BTZ black hole has been analyzed
within the brick-wall model by distinguishing explicitly
between the contributions to the entropy that are coming
from the superradiant and nonsuperradiant modes. What
has been shown in [55] is that, although both of these
contributions to the entropy have the subleading logarith-
mically divergent terms, these subleading terms in the
superradiant and nonsuperradiant parts come with the
opposite sign, implying that in the total entropy they
cancel with each other. Moreover, the leading terms in
the superradiant and nonsuperradiant contributions are
exactly the same, so that in the total entropy they double.
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Consequently, the UV divergent structure of the total
entropy for the quantized scalar field in the rotating
BTZ background geometry according to [55] is determined
only by a linearly UV divergent term which, in addition, is
proportional to the area of the event horizon. This result,
besides being consistent with that in [73], where the
entanglement entropy has been analyzed for the same
physical situation, though within the framework of the
heat kernel method on spaces with conical singularity, is
also consistent with the result (42) and the main tenet of the
present paper.
In order to explain the potentially interesting implica-

tions of the above-described similarities between the results
obtained here and in the literature, it is useful to note that
the result (42) has been calculated by applying the brick-
wall method to the case of the nonrotational BTZ geometry,
though in the presence of noncommutativity. Contrary to
that, the entropy (61), as well as the corresponding results
in [55,73], have been obtained by analyzing a basically
rotational BTZ geometry, thus, clearly indicating that the
results (42) and (61) refer to two different physical
situations. Nevertheless, although pertaining to two physi-
cally different settings, these results anyway appear to be
structurally equivalent. By equivalent, it is meant that the
entropy of each one of them is proportional to the area of
the event horizon, and in addition, they have the same UV
divergent structure, which is characterized by the linear
divergence in ϵ. This observation may be found useful
when studying some specific rotational geometry and
trying to simplify the analysis by reducing the problem
to a more simple but equivalent one. It may be found useful,
particularly in light of the observation that a rotational
black hole background geometry appears to be fundamen-
tally different from the nonrotational one, at least as far as
the quantization of the matter fields is concerned [76,77].
Even more so with regard to the entropy calculation since,
along the standard nonsuperradiant modes, in these new
circumstances one also has to care about the superradiant
modes. The presence of these superradiant modes makes
the case with a rotational geometry fundamentally different
and accordingly more involved when compared to the case
with a nonrotational geometry. It is also likely that these
superradiant modes that call for special care in the brick-
wall model, in fact, mirror the extrinsic curvature effects
that one encounters in studying the rotational geometries
within the framework of the conical singularity method.
Nonetheless, based on the equivalence between the

nonrotational geometry in the presence of noncommuta-
tivity and the rotational geometry, the feature that was
explicitly exhibited through the mapping (15), it turns out
that a noncommutative spacetime may provide a suitable
medium in which the bridging between these two physi-
cally different settings might be possible to enforce by
connecting and correlating their respective parameters. In
particular, this might help to reduce one situation that is

technically more involved (a rotational one) with another
which is less involved (a nonrotational one), the very
feature which might appear beneficial from the practical
and calculational point of view.
From the present results and from the results known in

the literature, it is clear that the BTZ geometry, no matter if
it is rotational or nonrotational, gives rise to an entropy that
is in the leading order characterized by a linearly UV
divergent contribution of the Bekenstein-Hawking type.
Thereby, in the leading order, the entropy is proportional to
the area A ¼ 2πrþ of the event horizon, where rþ ¼ l

ffiffiffiffiffi
M

p
for the nonrotational case, while for the rotational case, the
radius of the outer horizon gets modified by the interference
of the angular momentum. Moreover, a brief look at
Eq. (42) shows that the presence of noncommutative setting
does not bring any change to this conclusion. As a matter of
fact, a closer inspection of Eq. (42) specifying the entropy
of the nonrotational BTZ in the presence of noncommu-
tativity leads to an interpretation of noncommutativity as
giving rise to a stretch/shrinkage of the event horizon.
Likewise, an interesting observation may be drawn by
making an explicit comparison of this result with the result
(61) or with the formula (31) in [55] or the analogous one in
[73] (the latter three being basically the same up to distinct
numerical prefactors). Based on this comparison, a
common picture emerges in which the noncommutative
contribution in (42) appears as if it has been soaked up into
an effective angular momentum, which, in turn, gives rise
to a stretch of the event horizon.
We now turn the attention toward the problem of

validation of the renormalization statement within the
framework of the NC scalar field model discussed in this
article. In this respect, note that the divergency in the
entanglement entropy identified in (61) can be removed by
the standard renormalization procedure, during which the
divergency becomes reabsorbed within the redefined cou-
pling constants. To this end, the bare and the renormalized
entropy can, respectively, be written as

SðGBÞ ¼
AðΣÞ
4GB

; SðGrenÞ ¼
AðΣÞ
4Gren

: ð63Þ

The renormalization condition,

SðGBÞ þ SdivðϵÞ ¼ SðGrenÞ; ð64Þ

together with the relation (61), then leads to the renorm-
alization of Newton’s gravitational constant,

1

GB
þ 1

3
ffiffiffi
π

p 1

ϵ
¼ 1

Gren
; ð65Þ

in the manner as first proposed in [13]. Herefrom, it is
readily seen that the same renormalization condition
which removes divergences in the effective action also
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renormalizes the entanglement entropy. Hence, the renorm-
alization statement for the particular model considered in
this article describing the NC scalar field coupled to the
classical BTZ geometry has been validated explicitly.
Upon utilizing the renormalization condition to remove

the divergences in the entanglement entropy, a relation
1

Gind
∼ 1

3
ffiffi
π

p
ϵ
naturally arises, making for a precise balance

between the induced gravitational constant Gind and the
entanglement entropy so that the entanglement entropy
appears to be precisely equal to the Bekenstein-Hawking
entropy expressed in terms of the induced gravitational
constant. As already observed, this result is congruent with
[55,73] when restrained to the leading order.
Interesting enough, a study of a two-dimensional con-

formal field theory (CFT) within the framework of the
holography and AdS=CFT correspondence may lead to the
same conclusion [78,79]. That is, the information on
the holographic entanglement entropy in the bulk of
AdS3 spacetime may be obtained by studying the dual
CFT on the two-dimensional boundary which has a top-
ology of a cylinder. The corresponding entanglement
entropy [80,81] for the thermal two-dimensional CFT on
the cylinder for a spacelike slice of length 2πl is

SCFT ¼ l
4Gind

ln

�
l2

π2ðr0þ þ r0−Þðr0þ − r0−Þ

× sinh
πðr0þ þ r0−Þ

l
sinh

πðr0þ − r0−Þ
l

�
:

In the above expression, the renormalization was already
undertaken by subtracting the vacuum contribution coming
from the left and right movers describing the rotational
BTZ. The macroscopic, that is, the large temperature limit

r0þ ≫ l and r0þ ≫ r0− then gives πr0þ
2Gind

for the leading
contribution, that is, the Bekenstein entropy (61).
The calculation of the heat trace in this section was made

possible due to the fact that we were able to recognize the
actual operator as a Laplace operator on the definite curved
background (26). It is, however, noteworthy that even in the
case that we were not able to make such reduction, we
would have been able to calculate the appropriate heat trace
still by using the heat trace expansion developed for
elliptical operators (see Refs. [60,82] and the results in
Refs. [83–85] in the commutative limit), though in a
somewhat more general form due to the presence of conical
singularity.
In the case that we followed a-exact approach and did

not truncate the star product, then bearing on the experience
with the Moyal star product, certain subtle points could
potentially appear. Namely, the nonanalyticity in the non-
commutativity parameter may pop up at the one-loop order
on a fixed background through nonanalyticity of the
corresponding heat kernel expansion. On the Moyal plane,
this effect may appear or not, depending on the type of the

differential operator in question. For this, see Refs. [83,85]
where the heat trace has been studied for the operator
that, respectively, contains either only left (or right) Moyal
multiplication or contains both right and left Moyal
multiplication. In the case that the operator contains a
Moyal star multiplication from only one side, the corre-
sponding heat kernel expansions were constructed in [83]
on the torus and in [84] on the plane.

VI. FINAL REMARKS

In the present paper, we have considered the NC scalar
field model coupled to the classical nonrotational BTZ
geometry. For this particular model, we have calculated the
entropy within the two different frameworks, one being that
of the ’t Hooft brick-wall model and the other one being
that of the heat kernel method developed for the spaces with
conical singularity and then we have compared the results
of these two approaches. When using the heat kernel
method in particular, we have relied on the small s
expansion for the trace of the heat kernel of the actual
field operator □g, rather than on the exact solution of the
corresponding heat equation. A comparison of the results
for the entropy obtained from these two different
approaches shows that they both predict the identical
UV divergent structure for the entropy, with the leading
term being linearly divergent in the UV cutoff parameter ϵ
and the next-to-leading-order term being UV finite, as well
as the rest of the expansion for the entropy. The second goal
of the paper was to test the renormalization statement for
the NC model considered. Here we have found that the
same renormalization condition that removes divergences
in the effective action is also responsible for the removal of
the divergences in the entanglement entropy. Hence, the
renormalization statement for the particular model describ-
ing the NC scalar field in the background of the classical
BTZ geometry has been validated.
In carrying out the analysis, we have utilized the exact

mathematical equivalence between the noncommutative
model considered and the equivalent model consisting of
the massive commutative scalar field coupled to a spinning
BTZ geometry. This mathematical equivalence itself has an
interesting and novel physical interpretation. Namely, it
gives rise to a novel view on noncommutativity, which
emerges from our analysis, by assigning it a role of a mass
generating agent, as well as a driving force that lies behind
the black hole spin.
Furthermore, there is an interesting observation that can

be made regarding the effect of noncommutativity on the
divergent character of the entropy. To wit, we have seen that
the mere effect of the noncommutative nature of spacetime
was to shrink or stretch the event horizon of a black hole,
seemingly without any impact whatsoever on the UV
structure of the entropy, neither changing it for the better
nor worsening it further. However, there may be an indirect
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impact, as may be seen from the following line of
reasoning.
As it is well known, when the UV cutoff parameter ϵ

approaches 0, the entropy blows up. However, the presence
of noncommutativity implicitly presumes the existence of
the minimal distance scale a beyond which it is not possible
to go. This, in turn, means that the limit ϵ → 0 cannot be
applied to the full extent, since, otherwise, ϵ would at some
stage cross the barrier set out by the noncommutative scale
a. By way of, ϵ at best can reach a but cannot go beyond;
i.e., it cannot reduce further. Because of the existence of
this natural length barrier, one may argue that the non-
commutative nature of spacetime provides a setting which
avoids the problem with the divergences in the entropy
because no matter how small amay be, the entropy, though
very large, will still remain finite.
As a matter of fact, the UV cutoff ϵ can be fixed by

relating it with the NC scale parameter a as3

ϵ ¼ 3ζð3Þ
2π3

G

�
1þ a

�
8π

3
β

ffiffiffiffiffiffiffiffiffiffiffi
8GM

p

l
ζð2Þ
ζð3Þ −

1

2

��
; ð66Þ

with the latter bound stemming from the comparison of
(42) with (61) and by utilizing (65). Therefrom, it is readily

seen that a pushes the brick-wall cutoff h ¼
ffiffiffiffiffiffiffiffi
8GM

p
2l ϵ2

slightly below or above the classical ’t Hooft bound,
depending on the value of the black hole mass M and
the sign of the parameter β.
An important matter that was so far left untouched is that

of UV/IR mixing, a feature characteristic for the non-
commutative field theories. It was first observed [86] in the
theories with the Moyal-Weyl star product, where the
appearance of a nontrivial phase factor in the loop
calculation regulated the ultraviolet divergence in the
one-loop two point function, but at the same time intro-
duced an infrared divergent term. A similar feature was
noticed in the noncommutative ϕ4 theory built from the κ-
deformed star product [87]. It is, therefore, important to
discuss why this feature does not show up in the analysis
presented here. Closely related to this issue is the question
of the validity of the small a ¼ 1=κ expansion used in this
paper, so we need to address that also. First, we stress that
what we have initially considered was not an interacting
theory, thereby rendering even, in principle, UV/IR mixing
effects unlikely to occur.4 Instead, it was the free non-
commutative scalar field propagating in a classical curved
background that was considered. After carrying out the

κ-expansion, the initial model turns into an effective theory
described by the standard scalar field action extended with
a correction that is induced by the noncommutativity. In
this picture, the gravity is classical, and noncommutativity
enters the formalism in a form no other than a mere
coupling to gravity. Effectively, this amounts to considering
a nonminimal coupling of the commutative scalar field to
the metric tensor, with the noncommutativity parameter
a ¼ 1=κ playing the role of the coupling constant.
Introducing noncommutativity in such way seems to be
consistent with a viewpoint where the noncommutativity is
seen as a low-energy remnant of the quantum gravity, with
the entire contribution due to noncommutativity being
reduced to nothing more than the few novel terms in the
Lagrangian. Moreover, as the NC effects are expected to
occur at the Planck scale and the deformation parameter
would be suppressed in powers of the Planck mass, it seems
reasonable to consider the NC effects only to the lowest
order.
It is also worthy to note that a phenomenon like

UV/IR mixing is generally a consequence of a nonlocal
character of the noncommutative field theory. In this way,
the noncommutative theories that are studied via the θ-
expansion method are rendered local, and, consequently,
the effect like UV/IR mixing does not occur there. Since in
our approach we use κ expansion and accordingly truncate
the star product expansion at the first order, the nonlocality
is lost right from the beginning, and, thus, nonperturbative
features like UV/IR mixing are not likely to occur either.
However, although the method that uses the expansion in
terms of the deformation parameter loses some of the
crucial nonperturbative information (due to the cutoff at the
finite order of θ=a), it has, nevertheless, shown some
good points and has even demonstrated some advantages
over the fully nonperturbative treatment [88–94]. The θ-
expansion method has also been pursued within the context
of noncommutative grand unified theories [95]. Therefore,
an approach based on θ expansion has been demonstrated
to work finely in the model building and for this reason
could legitimately be considered to lead to a minimal
noncommutative extension of the corresponding commu-
tative model. Since this approach appeared to be relatively
fruitful in a variety of cases, it seems plausible to expect
that it might also borrow some of its good features when
carried over to our scheme.
Finally, it should be noted that in the first place, when the

brick-wall method was used, it was applied to a static black
hole, though in the presence of noncommutativity. On the
contrary, when the conical space approach was used later
on, the full equivalence with the model of rotational BTZ
geometry was utilized, and the method was applied directly
to this rotational case. Besides that, both results are
consistent with each other, and they also turn out to be
consistent with the results established in the earlier liter-
ature. Here we specifically have in mind the leading

3So far, we were carrying the study in the units where 8G ¼ 1.
For the purpose of the remaining analysis, we switch to the
standard unit system, which, in turn, formally corresponds to
putting 8GM everywhere in place of M.

4The UV/IR effect, e.g., occurs in a ϕ4 NC theory as a result of
an extra phase factor appearing in the one-loop nonplanar
diagrams.
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contribution to the entropy that was obtained for the
rotational BTZ geometry within the brick-wall method
[55] and also the leading contribution to the entropy that
was obtained for the same geometry, yet analyzed within
the framework of the heat kernel method on spaces with
conical singularity [73]. Moreover, a direct comparison of
the two results (42) and (61) attributes to noncommutativity
the role of a medium that mediates in the process of
stretching a horizon through the appearance of an effective
black hole angular momentum, which seemingly takes over
the whole noncommutativity onto itself.
As the model of the NC scalar field in the background of

the classical spinless BTZ was shown to be equivalent to
the rotational BTZ geometry probed by a massive scalar
field, our confirmation of the renormalization statement for
the NC model may then be seen as a mere consequence of
the similar statement as applied to the rotational BTZ. In
this respect, the conclusions presented here are, in fact, an
indirect consequence of the results that are so far acquired
with regard to the entropy of the rotational BTZ [55,73]. To
put it differently, they have just been rediscovered in the
new context, that of the noncommutative setup mingled
with the (2þ 1)-dimensional gravity.
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APPENDIX: DERIVATION OF THE
RADIAL EQUATION

The starting point in the derivation of Eq. (10) is the
following action

Ŝ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
gμνð∂μϕ ⋆ ∂νϕÞ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
gμνð∂μϕ̂∂νϕ̂ ⊳ 1Þ ðA1Þ

describing the dynamics of the NC scalar field in the
background with the classical geometry gμν. The non-
commutativity is introduced by replacing the usual point-
wise multiplication between the fields in the action
functional with the NC star product, i.e., ϕðxÞϕðxÞ →
ϕðxÞ ⋆ ϕðxÞ.
The compatibility with the κ-deformed Poincaré sym-

metry is secured through the implementation of the star
product

ðf ⋆ gÞðxÞ ¼ lim
y→x
z→x

μ0ðexαð△−△0Þ∂αfðyÞ ⊗ gðzÞÞ; ðA2Þ

where μ0 is the multiplication map μ0ðf ⊗ gÞ ¼ f · g and
△ð∂μÞ is the coproduct for translation generators pμ ¼ i∂μ,
and △0ð∂Þ ¼ ∂ ⊗ 1þ 1 ⊗ ∂ is the primitive coproduct.
This structure map belongs to a coalgebra sector of the κ-
Poincaré Hopf algebra. It obviously provides a passage
where the quantum symmetry pours into the description.
We point out that the formula (A2) is a general one [96–98]
being valid for the star products corresponding to any Lie-
algebra-type of deformation, of which κ deformation is one
particular example (but interestingly, the θ deformation is
not). For elucidating the origin of formula (A2) and other
issues related to the κ deformation, particularly, those
related to the “method of realizations” and the correspon-
dence between the star product, differential operator
realization, coproduct, and the operator ordering prescrip-
tion one may consult [96–98].
When expanded up to first order in a, the star product

looks as

fðxÞ ⋆ gðxÞ ¼ fðxÞgðxÞ þ iβ0
�
ημνxμ

∂f
∂xν
��

ηλσaλ
∂g
∂xσ
�

þ iβðημνaμxνÞ
�
ηλσ

∂f
∂xλ

∂g
∂xσ
�

þ iβ̄

�
ημνaμ

∂f
∂xν
��

ηλσxλ
∂g
∂xσ
�
: ðA3Þ

Here, β0; β; β̄ are the parameters determining the differential
operator representation of the κ-Minkowski algebra. On the
other side, each choice of the operator representation
corresponds [96] to a different choice of the coproduct
(and different basis of κ Poincaré), which, in turn,
corresponds to the vacuum of the theory, and this should
be fixed by experiment, in principle. Alongside, aμ is
a 4-vector of deformation. In the subsequent analysis, we
choose one particular orientation aμ ¼ ða; 0; 0; 0Þ so that
the symbol a from now on and in the main text is reserved
for the time component of the deformation 4-vector. This
choice of the orientation leads to the original κ-Minkowski
algebra [44–46].
There exists an isomorphism between the NC algebra Â

generated by the noncommutative coordinates x̂μ and the
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commutative algebra A⋆ generated by the commutative
coordinates xμ but with ⋆ as the algebra multiplication. The
star product between any two elements fðxÞ and gðxÞ inA⋆
is defined as

fðxÞ ⋆ gðxÞ ¼ f̂ðx̂Þĝðx̂Þ ⊳ 1; ðA4Þ

where f̂ðx̂Þ and ĝðx̂Þ are the elements in Â that are uniquely
assigned to the elements fðxÞ and gðxÞ, respectively,
through the following correspondences, f̂ðx̂Þ ⊳ 1 ¼
fðxÞ, ĝðx̂Þ ⊳ 1 ¼ gðxÞ. The element 1 is the unit element
in the algebra A, and the action ⊳∶H ↦ A is defined by

xμ ⊳ fðxÞ ¼ xμfðxÞ; pμ ⊳ fðxÞ ¼ i
∂f
∂xμ : ðA5Þ

Here, xμ and pμ are the generators of the Heisenberg
algebra H satisfying the relations,

½xμ; xν� ¼ ½pμ; pν� ¼ 0; ½pμ; xν� ¼ iημν; ðA6Þ

where ημν ¼ diagðþ;−;−;−Þ. Furthermore, the coordi-
nates x̂μ define κ-Minkowski algebra [44–46], and they
admit a differential operator representation within the
enveloping algebra of H in terms of the formal power
series in xμ and pν. The correspondence just described

between the elements of Â and A⋆ provides a ground for
establishing the isomorphism between these two structures.
As a next step, two approximations are in order that are

motivated on the physical grounds. The first approximation
is related with the observation that we are looking for, the
NC correction to the lowest order in the deformation
parameter. The NC effects are expected to arise at the
Planck scale, and the deformation parameter would be
suppressed in powers of the Planck mass. It is, therefore,
logical to consider the NC effects only to the lowest order.
In addition to that, we also look at the long wavelength or
low frequency limit for the solutions to the wave equation
describing the matter propagation in the background of the
black hole. The reason for this is that these long wavelength

solutions are associated with the leading contributions of
the gravitational perturbations, which are inherently very
weak (see the article [99] for a review). There is also a
considerable effort from the experimental side to detect the
low frequency signals (see [100]). It is, therefore, both
logical and important to consider the long wavelength limit.
Following this line of argument, after setting in (A3)

f ¼ g ¼ ∂ϕ, we expand the action up to first order in the
deformation parameter aμ as

Ŝ ¼ S0 þ
Z

d4x
ffiffiffiffiffiffi
−g

p
gμν
�
iβ0xσ

∂2ϕ

∂xσ∂xμ a
λ

þ iβðησρaσxρÞ
∂2ϕ

∂xλ∂xμ þ iβ̄
∂2ϕ

∂xα∂xμ aαx
λ

�
ð∂λ∂νϕÞ;

ðA7Þ

where S0 is the standard action functional describing the
commutative scalar field coupled to gμν. Since the action in
Eq. (A7) contains the terms involving higher derivatives in
the scalar field, that is, the Lagrangian is of the general form
L ¼ Lðϕ; ∂ϕ; ∂2ϕ; xÞ, the actual Euler-Lagrange equations
accordingly modify, as in the case of higher derivative
theories. They read as

∂μ
δL

δð∂μϕÞ
− ∂μ∂ν

δL
δð∂μ∂νϕÞ

¼ δL
δϕ

: ðA8Þ

The equation of motion following from (A8) is further
subject to the long wavelength approximation, where we
keep terms in the equations of motion that are of the lowest
order in derivatives. In this approximation, the terms
dependent on β0 and β̄ do not contribute since they are
all proportional to higher derivatives of the scalar field.
Consequently, in the lowest order of the long wavelength
approximation, only terms depending on β will contribute
to that part of the equation of motion that is induced by the
noncommutativity. With the above two approximations, the
equation of motion reduces to the form given in (10).
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