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I. INTRODUCTION

Causal dynamical triangulations (CDT) define a non-
perturbative approach to quantum gravity in which space-
time is divided into a lattice of four-dimensional Lorentzian
triangles. At first sight this seems to suggest that CDT
defines a discrete spacetime; however, the hope is that one
can study spacetime on lattices of ever decreasing edge
length, with the eventual aim of investigating the properties
of spacetime in the continuum limit. It is therefore
important to be able to reliably determine the lattice spacing
in CDT, as well as how it changes within the parameter
space. In this work we calculate the lattice spacing using
two independent methods at a number of different points in
the parameter space with the aim of gaining an insight into
how one might take a continuum limit in CDT.
As is well known, gravity as a perturbative quantum field

theory is not renormalizable by power counting [1].
However, as suggested in Weinberg’s seminal work [2]
the definition of renormalizability might be generalized to
the nonperturbative regime as detailed by the asymptotic
safety scenario [3]. The asymptotic safety scenario would
be realized if a finite number of couplings terminated at an
ultraviolet fixed point (UVFP) so that the theory remains
finite and predictive even in the infinite energy limit; there
is now a growing body of evidence supporting the existence
of such an UVFP [4–8]. In this way a lattice theory of
gravity, such as CDT, might also be used to provide
evidence for asymptotic safety by searching for a sec-
ond-order critical point in its parameter space which would
correspond to an UVFP. The divergent correlation length
characteristic of a second-order critical point would allow
for the possibility of taking the lattice spacing to zero while

simultaneously keeping observable quantities fixed in
physical units.
A defining feature of CDT is the existence of a causality

condition that allows one to distinguish between spacelike
and timelike links on the lattice. The existence of a
causality condition allows the foliation of the lattice into
spacelike hypersurfaces of fixed topology. There exist two
types of four-dimensional triangulations in CDT, the (4,1)-
simplex and the (3,2)-simplex, where the notation ði; jÞ
refers to the number of vertices i on hypersurface t, and the
number of vertices j on hypersurface t� 1. In CDT the
lattice spacing of timelike links at and that of spacelike
links as are not necessarily equal but are related via a α
parameter

a2t ¼ −αa2s : ð1Þ
For α ¼ −1 we have at ¼ as. By taking α ≠ −1 and
following Regge’s method for describing piecewise linear
geometries [9], we obtain a simple expression for the
Einstein-Hilbert action of CDT [10],

SE ¼ −ðκ0 þ 6ΔÞN0 þ κ4ðNð4;1Þ þ Nð3;2ÞÞ þ ΔNð4;1Þ; ð2Þ
where κ0 is proportional to a2s=G and G is the bare Newton
constant. The parameterΔ is related to the ratio of spacelike
and timelike links on the lattice, and κ4 is related to the
cosmological constant, which is fixed so one can extrapo-
late to the infinite volume limit. We can then independently
vary κ0 and Δ in order to explore the parameter space
of CDT.
The key features of the CDT parameter space have by

now been largely mapped out. It has been demonstrated that
phase C has semiclassical features that closely resemble
four-dimensional de Sitter space [11,12]. The solid red line
in Fig. 1, originally thought to separate phase B from phase
C, appears to be a second-order transition [13], allowing for
the possibility of taking a continuum limit. However, the
location of the newly discovered bifurcation phase [14]
separating phase C from phase B may prevent the
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possibility of approaching the second-order transition line
from within the physically interesting phase C (see Fig. 1).
Furthermore, recent studies suggest the continuum limit
may exist for sufficiently large κ0 and Δ, rather than near
the B-C transition as previously thought [15]. The aim of
this work is to independently check the findings of
Ref. [15] by determining how the lattice spacing changes
as a function of the bare parameters κ0 and Δ using two
independent methods.

II. SIMULATION DETAILS

The first of the two methods we use to determine the
effective lattice spacing in this work is based on analyzing
fluctuations of three-volume, as first introduced in
Refs. [12] and [11]. This method relies on the observation
that within phase C of the CDT parameter space, the
distribution of three-volume as a function of time has an
expectation value that closely matches de Sitter space.
Since the classical solution for de Sitter space does not
contain Newton’s constant but the semiclassical fluctua-
tions about de Sitter space do, one can exploit this fact to
estimate the lattice spacing in Planck units for each point in
phase C of the parameter space. We defer a detailed
discussion of this method to Sec. III. The second of our
two methods involves measurements of the so-called
spectral dimension, a measure of the effective fractal
dimension of a geometry. In CDT, the spectral dimension
DSðσÞ is defined via a discrete diffusion process and is
related to the probability PrðσÞ that a random walk on the
geometry returns to its origin after σ diffusion steps. In this
work we calculate the spectral dimension DSðσÞ as a
function of σ for a number of different points in phase
C of the CDT parameter space. As detailed in Sec. IV, a

comparison of DSðσÞ at different points in the parameter
space can then be used to determine the effective change in
lattice spacing.
We aim to reduce systematic errors associated with our

measurements in two ways. First, we aim to reduce finite
size effects. In Ref. [16], finite size effects were shown
to be negligible for lattice volumes of N4;1 ¼ 160 k for the
bare parameters ðκ0 ¼ 2.2;Δ ¼ 0.6Þ, ðκ0 ¼ 3.6;Δ ¼ 0.6Þ,
and ðκ0 ¼ 4.4;Δ ¼ 0.6Þ. However, for bare parameters
corresponding to finer lattice spacings finite-size effects
appeared to increase. For this reason we simulate
with a larger lattice volume Nð4;1Þ ¼ 300 k close to the
C-A transition line in order to reduce finite size effects.
Second, the discretization effects of odd-even oscillations
in the short-distance spectral dimension have been removed
by omitting values ofDSðσÞ from the fit functions wherever
they become significant, as indicated in Fig. 3; typically
this occurs around σ ≈ 80.
We reduce statistical errors by ensuring that our con-

figurations are thermalized. This check is made by analyz-
ing DSð∞Þ as a function of Monte Carlo time and showing
that there is no statistical difference between the first
and second halves of the measured data set, as detailed
in Ref. [16].
The spectral dimension in this work is determined by

taking the starting point of diffusion processes to be in
the time slice containing the maximal number of (4,1)-
simplices, so as to ensure that we are probing the bulk
geometry with each diffusion. The maximal number of time
steps σ in our calculations is set to 500, and the time
extension of our ensembles is t ¼ 80. We use a linear
volume fixing constraint δS ¼ ϵjNð4;1Þ − Ntarget

ð4;1Þ j, with

ϵ ¼ 0.02 after thermalization when determining the change
in lattice spacing described in Sec. IV. For technical
convenience we use a quadratic volume fixing constraint
δS ¼ ϵðNð4;1Þ − Ntarget

ð4;1Þ Þ2, with ϵ¼ 0.00001 when determin-

ing the lattice spacing described in Sec. III.1

The ðκ0;ΔÞ coordinates of the points at which we
simulate in this work are schematically depicted in Fig. 1.

III. METHOD 1: FLUCTUATIONS AROUND DE
SITTER SPACE

In order to perform numerical simulations one typically
has to work with dimensionless quantities by expressing all
parameters in terms of the (absolute) lattice spacing aabs
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FIG. 1. A schematic representation of the parameter space of
CDT. The colored circles represent measured phase transition
points and the colored lines their interpolation. The open black
squares denote the eight points in the parameter space which we
study in this work.

1In order to determine the absolute lattice spacing, we fit the
parameters of the effective action as described in Sec. III. This is
done by analyzing the inverse of the covariance matrix of spatial
volume fluctuations. To get rid of the zero mode and make the
matrix invertible, we allow for total volume fluctuations around
Ntarget

ð4;1Þ and subtract the effect of volume fixing from the effective
action. For the quadratic volume fixing the effect is a simple shift
of the inverse matrix elements by a constant 2ϵ.
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and then assuming aabs ¼ 1. As a result, in order to
translate (dimensionless) numerical results into (dimen-
sionful) physical units, one should find a way to measure
the absolute lattice spacing. This can be achieved by
looking at effective observables and comparing them to
corresponding physical constants, which reintroduces a
scale into the numerical system.
The method for determining the absolute lattice spacing

that we study in this section was first proposed in
Refs. [11,12]. It is based on the observation that inside
phase C of the CDT parameter space, the distribution of
volume as a function of time has an expectation value that
closely matches de Sitter space and hence closely resem-
bles a maximally symmetric spacetime with a positive
cosmological constant with 3-volume distributed according
to the universal curve [12]

hN3ðtÞi ¼
3

4

Nð4;1Þ
s0Nð4;1Þ1=4

cos3
�

t

s0N
1=4
ð4;1Þ

�
: ð3Þ

N3ðtÞ is (twice) the number of tetrahedra2 comprising
each spatial slice at a (discrete) time t, where the result is
independent of the total lattice volume. The constant s0
depends on the radius of the extended part of the universe
(the so-called blob). At the same time quantum fluctuations
δN3ðtÞ ¼ N3ðtÞ − hN3ðtÞi are consistent with the effective
action [12]

Seff ¼
1

Γ

X
t

�ðN3ðtþ 1Þ−N3ðtÞÞ2
N3ðtþ 1ÞþN3ðtÞ

þμN3ðtÞ1=3− λN3ðtÞ
�
;

ð4Þ

where Γ is a dimensionless constant depending on the
amplitude of quantum fluctuations.
In this section we assume the CDT universe measured

inside phase C is that of Euclidean de Sitter space
(four-sphere) with superimposed quantum fluctuations of
the spatial volume obtained for a spatially isotropic and
homogeneous metric, having a line element

ds2 ¼ gττdτ2 þ a2ðτÞdΩ3: ð5Þ
The Einstein-Hilbert action calculated for the metric (5)

becomes a minisuperspace (MS) action which can be
parametrized by a spatial volume observable V3ðτÞ ¼R
dΩ3

ffiffiffiffiffiffiffiffi
gjS3

p ¼ 2π2a3ðτÞ in the following form:

SMS ¼ 1

24πG

Z
dτ

ffiffiffiffiffiffi
gττ

p �
gττð∂τV3ðτÞÞ2

V3ðτÞ

þ ~μV3ðτÞ1=3 − ~λV3ðτÞ
�
; ð6Þ

where G is the dimensionful (½G� ¼ L2) Newton constant.
For the MS action (6) the semiclassical spatial volume
profile is given by

hV3ðτÞi ¼ 2π2R3 cos3
� ffiffiffiffiffiffi

gττ
p

τ

R

�
¼ 3

4

V4

~s0V
1=4
4

cos3
� ffiffiffiffiffiffi

gττ
p

τ

~s0V
1=4
4

�
;

ð7Þ

whereR is the radius and V4 ¼ 8π2

3
R4 is the total 4-volume

of the four-sphere [and ~s0 ¼ ð 3
8π2

Þ1=4].
A natural identification of discrete expressions (3)

and (4) with their continuous counterparts (7) and (6),
respectively, via simple dimensional analysis leads to the
conclusion that

l2pl ≡G ∝ Γ · a2abs; ð8Þ
where lpl ¼

ffiffiffiffi
G

p
is the Planck length (in units ℏ ¼ c ¼ 1)

and aabs is the physical lattice spacing. The dimensionless
proportionality factor in (8) is derived in Appendix A,
giving the formula for absolute lattice spacing that we will
use in this section, namely,

aabs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
6

p
ffiffiffiffiffiffi
C4

p
s20Γ

s
lpl; ð9Þ

where C4 is the dimensionless effective volume of a unit 4-
simplex, while s0 is the extension of the universe defined by
Eq. (3) and Γ is the amplitude of quantum fluctuations
defined by Eq. (4). In order to estimate s0 we make a fit of
Eq. (3) to the average volume profile hN3ðtÞi measured in
numerical simulations. The procedure of estimating Γ is
based on the analysis of the covariance matrix
Ctt0 ≡ hδN3ðtÞδN3ðt0Þi, where δN3ðtÞ≡ N3ðtÞ − hN3ðtÞi,
and it follows the procedure described in detail in Ref. [17].
We use the inverse of the empirical covariance matrix C−1

tt0 ,
whose elements are (in a semiclassical approximation)
given by second-order derivatives of the effective action
(4), to fit the action parameters to numerical data.
We use three methods for determining aabs. Each method

uses formula (9) but differs in the wayC4 is determined (the
measurement of s0 and Γ is universal). The three methods
are as follows (see Appendix A for more details):

(i) In method (a) we set C4 ¼ const. (independent of
the position in CDT parameter space). This is
consistent with the assumption that spatial layers
of equal (integer) t, which are built of equilateral
tetrahedra, are separated by a universal time distance
of constant lattice length. As such, tetrahedra are
constituents (faces) of (4,1)-simplices; in this ap-
proach one takes into account only simplices of this
type, disregarding all (3,2)-simplices.

(ii) In method (b) we assume C4 ¼ C4ðξÞ, where
ξ ¼ Nð3;2Þ=Nð4;1Þ. In Ref. [17] it was shown that

2Note that in order to have
P

tN3ðtÞ ¼ Nð4;1Þ we set
N3ðtÞ≡ Nð4;1ÞðtÞ ¼ 2NtetrahedraðtÞ.
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(3,2)-simplices form closed layers which can be
attributed to a half-integer t variable. The number of
(3,2)-simplices in each layer is consistent with the
volume profile of (4,1)-simplices (tetrahedra) in
integer t by a simple rescaling of ξ. This method
is more general than (a), as it takes into account both
(4,1)- and (3,2)-simplicial layers. A simplification
and approximation comes from the fact that one
assumes that all 4-simplices are symmetric and thus
the volume of each 4-simplex is constant and
universal, independent of the position in the param-
eter space (C41 ¼ C32 ¼ const.).

(iii) In method (c) we assume C4 ¼ C4ðξ; C41; C32Þ,
where ξ ¼ Nð3;2Þ=Nð4;1Þ. This is the most general
assumption as it accounts for the fact that the volume
of a unit 4-simplex depends on the position in the
bare parameter space of CDT and, in principle,
C41ðαÞ ≠ C32ðαÞ. This method requires determining
the value of the parameter α ¼ αðκ0;Δ; κ4Þ which
defines the asymmetry between the length of time-
like and spacelike links on the lattice.

The reason for using various methods is due to the fact
that we want to compare the results of the absolute lattice
spacing derived in this section with the relative lattice
spacing defined by the rescaling of the spectral dimension
(see Sec. IV), and check which method gives the closest
agreement. Additionally, method (c), which naively seems
to be the most accurate, breaks down close to the C-A phase
transition (where double-valued or complex α solutions are
possible).
In principle, all three parameters in formula (9),

s0, Γ and C4 [in methods (b) and (c)] depend on the actual
position in the CDT bare parameter space. As a result
aabs ¼ aabsðκ0;Δ; κ4Þ. One can check how aabs changes by

following various trajectories in the parameter space and
determining those for which aabs → 0 monotonically. The
values of aabs at each sampled point of the bare parameter
space in phase C are presented in Table I and Fig. 2, where
we compare the absolute lattice spacing calculated using
the three different methods described. The error bars shown
in Table I and Fig. 2 are related to fitting errors of
parameters Γ, s0 and ξ used to calculate aabs by formula (9)
and do not take into account statistical errors. The error bars
clearly increase close to the C-A phase transition, which is
mainly due to the increased error associated with Γ. Γ → ∞
as one approaches the phase transition, resulting in a high
signal-to-noise ratio in the measured inverse covariance
matrix, which produces the increased error estimate.

IV. METHOD 2: RESCALING OF THE
SPECTRAL DIMENSION

The spectral dimension is related to the probability Prð ~σÞ
that a random walk returns to the origin after a fictitious
diffusion time ~σ. The spectral dimension can be derived
from the d-dimensional diffusion equation

∂
∂ ~σKgðζ0; ζ; ~σÞ − gμν▽μ▽νKgðζ0; ζ; ~σÞ ¼ 0; ð10Þ

where Kg is the heat kernel defining the probability density
of diffusing between ζ0 and ζ. Here ▽ is the covariant

TABLE I. The table shows aabs for eight points ðκ0;ΔÞ in phase
C of the CDT parameter space. The absolute lattice spacing aabs
was determined by analyzing fluctuations about de Sitter space
using three different methods, (a), (b) and (c), described in the
text. The lattice spacing is in units of the Planck length lpl.

Label
in Fig. 1 ðκ0;ΔÞ aabs (a) aabs (b) aabs (c)

P1 (2.20,0.6) 1.82� 0.01 1.48� 0.01 2.01� 0.01
P2 (3.60,0.6) 1.34� 0.01 1.18� 0.01 1.52� 0.01
P3 (4.40,0.6) 0.98� 0.02 0.92� 0.02 1.12� 0.02
P4 (4.67,0.6) 0.56� 0.06 0.55� 0.06 0.65� 0.06
P5 (4.64,0.5) 0.61� 0.05 0.60� 0.05 0.70� 0.05
P6 (4.62,0.4) 0.60� 0.04 0.58� 0.04 0.68� 0.04 *

P7 (4.57,0.3) 0.63� 0.04 0.61� 0.04 0.71� 0.04*

P8 (4.53,0.2) 0.65� 0.03 0.64� 0.03 0.73� 0.03*

*For the last three points method (c) breaks down, as there exist
two real solutions for α (with α < 1 and α ≫ 1) and thus two
solutions for aabs (among the two, we have chosen the one with
α < 1, which is also the case for the points where only one
solution is possible—this fact is denoted by “*”).
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FIG. 2. Visualization of the data in Table I. The top chart shows
the dependence of aabs on κ0 for fixed Δ ¼ 0.6, and the bottom
chart shows the dependence of aabs on Δ along the C-A phase
transition line. Note that the scale is different in each chart.
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derivative of the metric gμν. For infinitely flat Euclidean
space, Eq. (10) has the solution

Kgðζ0; ζ; ~σÞ ¼
exp ð−d2gðζ; ζ0Þ=4~σÞ

ð4π ~σÞd=2 ; ð11Þ

where d2gðζ; ζ0Þ defines the geodesic distance between ζ
and ζ0.
The quantity that is measured in the numerical simu-

lations is the probability of return Prð ~σÞ, which in asymp-
totically flat space is given by

Prð ~σÞ ¼
1

~σd=2
: ð12Þ

The scale-dependent spectral dimension DSð ~σÞ is then
computed by taking the logarithmic derivative with respect
to ~σ,

DSð ~σÞ ¼ −2 d loghPrð ~σÞi
d log ~σ

: ð13Þ

In CDT, Euclidean space is discretized by a simplicial
manifold, and the diffusion time ~σ is counted by the number
of discrete diffusion steps σ on the dual lattice; i.e., each
diffusion step consists of moving from the center of one 4-
simplex to the center of a neighboring 4-simplex. One starts
the diffusion process from a randomly chosen simplex and
numerically calculates the probability of return to the origin
PrðσÞ after σ diffusion steps. Measured values of PrðσÞ are
averaged over different starting points and different trian-
gulations, and then one uses a discrete version of Eq. (13) to
calculate DSðσÞ.
In a lattice formulation of an asymptotically safe field

theory, an ultraviolet fixed point is expected to manifest as a
second-order critical point. At a second-order critical point
macroscopic observables become independent of the
microscopic regularization and should therefore become
scale invariant. A scale-invariant spectral dimension would
appear as a perfectly flat DSðσÞ curve over all distance
scales σ. Therefore, we should expect to see progressively
flatter spectral dimension curves as we approach such a
fixed point. The amount by which we must rescaleDSðσÞ at
a particular point in the parameter space such that it agrees
with DSðσÞ at another point in the parameter space will
then be related to the change in relative lattice spacing
when transforming between the two points, a method first
proposed in Ref. [16].
To test the validity of this method we calculate the

spectral dimension for eight different points in the param-
eter space (see Fig. 1) and compare the results with those
obtained using the independent method of calculating the
absolute lattice spacing via fluctuations about de Sitter
space as described in Sec. III. Our results for the spectral
dimension as a function of diffusion time for the eight
points sampled in the parameter space are presented in
Fig. 3. Typically, we find a small scale spectral dimension

that is more consistent with the lower bound DSðσ → 0Þ ∼
3=2 (see Ref. [16] for typical error estimates) than with
DSðσ → 0Þ≃ 2, thereby supporting the findings of
Ref. [16]. Furthermore, except for the points close to the
C-A transition, we find a large scale spectral dimension that
is consistent with DSðσ → ∞Þ ∼ 4.
Within phase C of CDT, the fit function

DSðσÞ ¼ a − b
cþ σ

ð14Þ

has been shown to accurately fit the spectral dimension
data [16,18], a result that is also supported by purely
analytic models [19]. In Fig. 4 we rescale the fit function
according to3

DSðσÞ ¼ a − b
cþ σ=a2rel

; ð15Þ

where arel is chosen such that the curves give the best
overlap. The curves are normalized such that the scale
factor arel is set to unity for the point ðκ0 ¼ 2.2;Δ ¼ 0.6Þ

DS

0 2.2, 0.6, N4,1 160k
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0 4.67, 0.6, N4,1 300k

0 4.64, 0.5, N4,1 300k

0 4.62, 0.4, N4,1 300k

0 4.57, 0.3, N4,1 300k

0 4.53, 0.2, N4,1 300k
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FIG. 3. The spectral dimensionDSðσÞ as a function of diffusion
time σ for eight different points in phase C of the CDT parameter
space.
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FIG. 4. The spectral dimension fits rescaled according to
DSðσÞ ¼ a − b

cþσ=a2rel
, where arel is chosen such that the curves

give the best overlap.

3In order to compare the results of arel with the absolute lattice
spacing aabs, one should rescale σ by a2rel due to the squared
covariant derivative of the metric in Eq. (10).
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[this choice is arbitrary since any pair of ðκ0;ΔÞ values
could be defined as the point relative to which all other
points are compared]. The resulting values of arel and their
associated error estimates at each sampled point in the
parameter space are shown in Table II.
Since we wish to minimize systematic errors associated

with determining arel, we make a statistical comparison
between the spectral dimension curves we wish to compare.
We calculate the standard deviation by comparing central
data points for DSðσÞ at 10 different σ values for our
canonical point ðκ0 ¼ 2.2;Δ ¼ 0.6Þ with the rescaled
DSðσÞ at our comparison point. To reduce discretization
effects we only compare values for which σ ≥ 100. We
compare 10 evenly spaced DSðσÞ values between σ ¼ 100
and σ ¼ 460. We determine the corrected sample standard
deviation S via

S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj¼9

j¼0 ðDSðσ ¼ 100þ 40jÞ−DC
S ðσ ¼ 100þ 40jÞÞ2

n− 1

s
;

ð16Þ

where DC
S ðσÞ is the spectral dimension at the canonical

point ðκ0 ¼ 2.2;Δ ¼ 0.6Þ and DSðσÞ is the rescaled spec-
tral dimension curve with which we make the comparison,
e.g., ðκ0 ¼ 3.6;Δ ¼ 0.6Þ, and n is the number of compared
points. Using this method we can determine how the
standard deviation S varies as a function of arel, as shown
by the black curve in Fig. 5. The value of arel for which S is
minimized, as indicated by the black dashed vertical line in
Fig. 5, then corresponds to the value of arel for which the
curves give the best overlap.
It is important to estimate the errors associated with

determining the relative lattice spacing. To estimate this
error we calculate S as a function of arel by comparing
the minimum possible values of DSðσÞ allowed by the
error bars with the maximum possible values of DC

S ðσÞ
allowed by the error bars, as shown by the red curve in
Fig. 5, which is calculated by comparing DSðσÞ values at
the points ðκ0 ¼ 3.6;Δ ¼ 0.6Þ and ðκ0 ¼ 2.2;Δ ¼ 0.6Þ.

The difference in the values of arel for which the red
and black curves are minimized then gives an estimate of
the error associated with arel. For the points close to the
C-A transition we typically find DSðσ → ∞Þ < 4, and so
to aid a better comparison with DC

S ðσÞ we constrain a ≈ 4

in the fit function while still ensuring a good fit to the
data. Furthermore, for the points close to the C-A
transition we compare only the central values of
DSðσÞ with the central and maximal values of DC

S ðσÞ;
consequently, the error estimate associated with arel for
the points close to the C-A transition is likely to be
significantly underestimated.

TABLE II. The table shows arel for eight points in phase C of the CDT parameter space. The values of arel are
normalized such that arel ¼ 1 for the point ðκ0 ¼ 2.2;Δ ¼ 0.6Þ, a choice which is of course arbitrary. For
comparison we also show the lattice spacing aabs rescaled [independently for each of the methods (a), (b) and (c)]
such that aabs ¼ 1 for the point ðκ0 ¼ 2.2;Δ ¼ 0.6Þ.
Label in Fig. 1 ðκ0;ΔÞ arel aabs (a) aabs (b) aabs (c)

P1 (2.20,0.6) 1 1 1 1
P2 (3.60,0.6) 0.791� 0.008 0.74� 0.01 0.80� 0.01 0.76� 0.01
P3 (4.40,0.6) 0.336� 0.006 0.54� 0.01 0.62� 0.02 0.56� 0.01
P4 (4.67,0.6) 0.116� 0.001 0.31� 0.03 0.37� 0.04 0.32� 0.03
P5 (4.64,0.5) 0.134� 0.001 0.34� 0.03 0.40� 0.04 0.35� 0.03
P6 (4.62,0.4) 0.118� 0.003 0.33� 0.02 0.40� 0.03 0.34� 0.02
P7 (4.57,0.3) 0.122� 0.001 0.34� 0.02 0.41� 0.03 0.35� 0.02
P8 (4.53,0.2) 0.122� 0.001 0.36� 0.02 0.43� 0.02 0.37� 0.02

0.77 0.78 0.79 0.80 0.81
arel

0.082

0.084

0.086

0.088

0.090

0.092

S

FIG. 5. The standard deviation S (filled dots) calculated by
comparing DSðσÞ at ðκ0 ¼ 2.2;Δ ¼ 0.6Þ with the rescaled curve
at ðκ0 ¼ 3.6;Δ ¼ 0.6Þ as a function of arel. An interpolating
function has been used to smoothly interpolate between data
points. The value of arel for which the solid black curve is
minimized yields the best overlap between the two DSðσÞ curves.
The solid red curve is determined by comparing the minimum
values of DSðσÞ allowed by the error bars at the point ðκ0 ¼
3.6;Δ ¼ 0.6Þ with the maximal values of DSðσÞ allowed within
error bars at the point ðκ0 ¼ 2.2;Δ ¼ 0.6Þ. The difference in the
minimum of these two curves gives an estimate of the error
associated with arel.
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V. INDICATIONS OF A CONTINUUM LIMIT

The changes in lattice spacing determined by analyzing
fluctuations about de Sitter space and by rescaling the
spectral dimension both indicate the lattice spacing is
strongly dependent on κ0, but that it is either independent
or only very weakly dependent on Δ. The results summa-
rized in Table II and Fig. 6 suggest that maximizing κ0
within phase C is predominately responsible for minimiz-
ing the lattice spacing. Since the C-A transition defines the
line of maximal κ0 values in phase C, it should also then
define the set of points for which the lattice spacing is
minimized for any given Δ value. Extrapolating the
measured transition points along the C-A line over the
entireΔ range suggests that κ0 is maximized within phase C
for very large, possibly infinite Δ. If this scenario is correct
it suggests one should tune the bare parameters to the C-A
transition and move in the direction of increasingΔ in order
to approach the continuum limit.4

The data presented in this work suggest the lattice
spacing in phase C is minimized when κ0 is maximized

within phase C, which implies one must tune to the C-A
transition line to take a continuum limit. Conversely, the
point at which κ0 is minimized within phase C may then be
a candidate for an infrared fixed point (IRFP). Based on
our current picture of the CDT parameter space (Fig. 1)
such an IRFP would exist on the transition line dividing
phase C and the bifurcation phase for the minimal allowed
value of κ0. Our measurements may then be interpreted as
suggesting a renormalization group trajectory within the
parameter space shown schematically in Fig. 7.

VI. DISCUSSION AND CONCLUSIONS

If causal dynamical triangulation is to be a viable
candidate for a nonperturbative theory of quantum gravity,
then the expectation is that it should realize the asymptotic
safety scenario for gravity. If CDT is to realize the asymp-
totic safety scenario, then it should contain a nontrivial fixed
point, which in a lattice formulation such as CDT would
appear as a second-order critical point, the approach to
which would define a continuum limit. In this work we
search the parameter space for such a continuum limit.
An UV limit is obtained by shrinking the lattice spacing

a to zero while simultaneously keeping observable quan-
tities fixed in physical units. To give physical meaning to
the process of taking an UV limit, we must therefore
specify the observable we are fixing in physical units. In
this work we use fluctuations of three-volume about de
Sitter space and the scaling of the spectral dimension as our
physical observables.
Using these two independent methods we find the lattice

spacing to be strongly dependent on κ0, but either indepen-
dent or only veryweaklydependent onΔ. Our results suggest
one must maximize κ0 within phase C in order to take a
continuum limit. The C-A transition line defines the set of
points for which κ0 is maximized for each Δ value within
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FIG. 6. Visualization of data from Table II. The lattice spacing
data are normalized such that a ¼ 1 for the point ðκ0 ¼ 2.2;
Δ ¼ 0.6Þ. The top chart shows the dependence of aabs and arel on
κ0 for fixed Δ ¼ 0.6. The bottom chart shows the dependence of
aabs and arel on Δ close to the C-A phase transition line.
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D (bifurcation)
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0

IRFP

FIG. 7. A possible renormalization group trajectory in phase C
of CDT. The trajectory flows from an IRFP in the direction of
decreasing lattice spacing (as indicated by the arrows), as inferred
from calculations of aabs and arel at eight different points in the
parameter space (as shown in Fig. 1).

4It is unlikely that one can take a continuum limit anywhere on
the C-A transition itself since it is almost certainly first order [20];
however, it may be that the C-A transition terminates at a second-
order critical point for some Δ value, just as it appears to do at the
quadrupole point (see Fig. 1).
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phase C.We therefore propose that one must tune to the C-A
transition line in order to take a continuum limit. Using the
same logic an IRFPmay also then exist when κ0 isminimized
along the transition dividing phase C from the bifurcation
phase (see Fig. 7). If this picture is correct a unique RG
trajectory would likely follow the path indicated in Fig. 7.
This picture is consistent with the finding of Refs. [15,16];
however, further study is needed to confirm or refute this
proposal.
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APPENDIX A

We derive the proportionality factor in Eq. (8) to be

G ¼
ffiffiffiffiffiffi
C4

p
s20

3
ffiffiffi
6

p · Γ · a2abs;

by analyzing quantum fluctuations of the spatial volume
about de Sitter space, as first proposed in Refs. [11,12].
We analyze the relation between (dimensionful)

continuous and (dimensionless) discrete spatial volume
profiles:

hV3ðτÞi ¼ 2π2R3 cos3
� ffiffiffiffiffiffi

gττ
p

τ

R

�
¼ 3

4

V4

~s0V
1=4
4

cos3
� ffiffiffiffiffiffi

gττ
p

τ

~s0V
1=4
4

�
;

ðA1Þ

hN3ðtÞi ¼
3

4

Nð4;1Þ
s0N

1=4
ð4;1Þ

cos3
�

t

s0N
1=4
ð4;1Þ

�
; ðA2Þ

and actions:

SMS ¼
1

24πG

Z
dτ

ffiffiffiffiffiffi
gττ

p �
gττð∂τV3ðτÞÞ2

V3ðτÞ

þ ~μV3ðτÞ1=3 − ~λV3ðτÞ
�
; ðA3Þ

Seff ¼
1

Γ

X
t

�ðN3ðtþ 1Þ−N3ðtÞÞ2
N3ðtþ 1ÞþN3ðtÞ

þμN3ðtÞ1=3− λN3ðtÞ
�
;

ðA4Þ
respectively. In the above expressions R is the physical
radius of the Euclidean de Sitter space (four-sphere) and

V4 ¼
Z

dτ
ffiffiffiffiffiffi
gττ

p
V3ðτÞ ¼

8π2

3
R4 ⇒ ~s0 ¼

�
3

8π2

�
1=4

:

We also have

X
t

N3ðtÞ ¼ Nð4;1Þ:

We assume that the CDT universe (inside phase C) is
represented by Euclidean de Sitter space with superim-
posed quantum fluctuations of the scale factor aðτÞ, with a
spatially homogeneous and isotropic metric

ds2 ¼ gττdτ2 þ a2ðτÞdΩ3;

where dΩ3 is a line element on an S3 sphere.

1. Method (a)

Let us assume that consecutive spatial layers of integer
time (t and tþ 1) are separated by a universal lattice
distance of constant length:

atime ¼
ffiffiffi
~α

p
· aabs ð ~α ¼ positive constÞ:

By construction, a spatial layer in time t is built of 1
2
N3ðtÞ

equilateral tetrahedra,5 each with equal and constant 3-

volume C3 · a3abs, where C3 ¼
ffiffi
2

p
12

is the volume of a unit
tetrahedron. By construction, the total 4-volume of the
CDT universe is

V4 ¼
X
t

1

2
N3ðtÞC3a3abs atime ¼ Nð4;1ÞC4a4abs; ðA5Þ

where

C4 ≡
ffiffiffi
~α

p
C3

2
: ðA6Þ

Let us assume that6

N3ðtÞ ¼
ffiffiffiffiffiffi
gττ

p
V3ðτÞ

C4a3abs
: ðA7Þ

By applying ansatz (A7) and relation (A5) to formula (A2)
for the discrete volume profile, one indeed obtains

hV3ðτÞi ¼
3

4

V4

ð
ffiffiffiffi
gττ

p
s0

C1=4
4

ÞV1=4
4

cos3
� ffiffiffiffiffiffi

gττ
p

aabst

ð
ffiffiffiffi
gττ

p
s0

C1=4
4

ÞV1=4
4

�
; ðA8Þ

which compared to the continuous expression (A1) natu-
rally leads to the identifications

τ≡ aabst; ðA9Þ
ffiffiffiffiffiffi
gττ

p
s0

C1=4
4

≡ ~s0 ¼
�

3

8π2

�
1=4

: ðA10Þ

5See footnote 1.
6Note that, as τ is just a (continuous) time coordinate, the

physical proper time is given by
ffiffiffiffiffiffi
gττ

p
τ, and for the physical 3-

volume one should use
ffiffiffiffiffiffi
gττ

p
V3ðτÞ rather than V3ðτÞ .
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Substituting ansatz (A7) into the effective action (A4), one
obtains

Seff ¼
1

Γ

X
t

ðN3ðtþ 1Þ − N3ðtÞÞ2
N3ðtþ 1Þ þ N3ðtÞ

þ � � �

¼ gττ
ΓC4a2abs

X
t

Δτ
ffiffiffiffiffiffi
gττ

p ðV3ðτþΔτÞ−V3ðτÞffiffiffiffi
gττ

p Δτ Þ2

V3ðτ þ ΔτÞ þ V3ðτÞ
þ � � �

¼ gττ
2ΓC4a2abs

Z
dτ

ffiffiffiffiffiffi
gττ

p gττð∂τV3ðτÞÞ2
V3ðτÞ

þ � � � ; ðA11Þ

where we used the identifications Δτ≡ aabs andP
tΔτ↔

R
dτ. Comparing Eqs. (A3) and (A11) implies

gττ
2ΓC4a2abs

¼ 1

24πG
; ðA12Þ

which combined with Eq. (A10) gives the final formula

G ¼
ffiffiffiffiffiffi
C4

p
s20

3
ffiffiffi
6

p · Γ · a2abs; ðA13Þ

where [as defined in Eq. (A6)]

C4 ¼
ffiffiffiffiffiffi
2~α

p

24
¼ const:

The absolute lattice spacing calculated using
formula (A13) depends on the choice of the dimensionless
parameter ~α which defines the (temporal) lattice spacing
between neighboring spatial layers. In this work we are
interested in the relative change in lattice spacing when
moving between different points in theCDT parameter space,
a result that does not depend on the particular choice of ~α.
However, in order to compare the absolute lattice spacingwith
the results obtained by using methods (b) and (c) described
below, we choose ~α ¼ 5=4, which sets C4 ¼

ffiffiffi
5

p
=96, i.e.,

equal to the 4-volume of the equilateral unit 4-simplex.

2. Method (b)

We now assume a more realistic picture, where the CDT
universe is built of Nð4;1Þ identical (4,1)-simplices and
Nð3;2Þ identical (3,2)-simplices, each with physical volume
C41 · a4abs and C32 · a4abs, respectively. Therefore, Eq. (A5)
changes to

V4 ¼ ðNð4;1ÞC41 þ Nð3;2ÞC32Þa4abs ¼ Nð4;1ÞC4a4abs; ðA14Þ

where

C4 ≡ C41 þ ξC32; ξ≡ Nð3;2Þ
Nð4;1Þ

: ðA15Þ

The rest of the derivation presented inMethod (a) remains
intact, so one again arrives at formula (A13). Let us now
make a simplifying assumption that all 4-simplices are
symmetric and

C41 ¼ C32 ¼
ffiffiffi
5

p

96
;

where the numerical value is the volume of a unit equilateral
4-simplex. As a result, we obtain

C4 ¼
ffiffiffi
5

p

96
ð1þ ξÞ:

Note that for ξ ¼ 0 [zero (3,2)-simplices] one recovers the
result of Method (a). Actually, as shown in Fig. 8, ξ → 0 as
one approaches the C-A phase transition; thus, close to the
transition the results of Methods (a) and (b) are very similar.

3. Method (c)

As inMethod (b) we assume that the CDTuniverse is built
of both (4,1)- and (3,2)-simplices, but we additionally take
into account that C41 ≠ C32. The volume of a 4-simplex is a
function of the asymmetry parameter α, defining the ratio of
the length of timelike and spacelike links on the lattice
(a2t ¼ α · a2s ≡ α · a2abs), and so one has [10]7

C41 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8α − 3

p

96
; C32 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12α − 7

p

96
: ðA16Þ

The asymmetry parameter α is also related to the bare
coupling constants κ0, Δ and κ4 in the bare Regge-
Einstein-Hilbert action of CDT (2),

SE ¼ −ðκ0 þ 6ΔÞN0 þ κ4ðNð4;1Þ þ Nð3;2ÞÞ þ ΔNð4;1Þ;

by the following set of equations [10]:

κ0 þ 6Δ ¼ 1

8G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4α − 1

p
; ðA17Þ
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FIG. 8. The dependence of ξ≡ Nð3;2Þ
Nð4;1Þ

on κ0 for fixed Δ ¼ 0.6.

Here, ξ → 0 as one approaches the C-A phase transition observed
for κc0 ≈ 4.7.

7Here we use the Wick rotated (Euclidean) version of the
formulas in [10], i.e., the one obtained by an analytical continu-
ation of square roots in the lower half of the complex α plane:ffiffiffiffiffiffiffi−αp ¼ −i ffiffiffi

α
p

.
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κ4 þ Δ ¼ Λ
8πG

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8α − 3

p

96
þ

ffiffiffi
3

p

8πG

�
arccos

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24α − 8

p − π

2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4α − 1

p

8πG

�
3

2
arccos

2α − 1

6α − 2
− π

2

�
; ðA18Þ

κ4 ¼
Λ

8πG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12α − 7

p

96
þ

ffiffiffi
3

p

32πG
arccos

6α − 5

6α − 2
þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4α − 1

p

8πG

�
3

4
arccos

4α − 3

8α − 4

þ 3

2
arccos

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
8α − 4

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
6α − 2

p − π

�
; ðA19Þ

where G and Λ are the bare Newton and cosmological
constants, respectively. For given values of κ0;Δ and κ4, one
can solve Eqs. (A17)–(A19) for α and then use it to calculate
C41 and C32 according to Eq. (A16). Summing up, once
again, we obtain formula (A13), but now we have

C4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8α − 3

p

96
þ ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12α − 7

p

96
;

where α ¼ αðκ0;Δ; κ4Þ. Unfortunately, it turns out that close
to the C-A phase transition (for large κ0), double-valued or
complex α solutions are possible for Eqs. (A17)–(A19). As a
result, Method (c) is only valid well inside phase C.
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