
Investigation of the spinfoam path integral with quantum
cuboid intertwiners

Benjamin Bahr* and Sebastian Steinhaus†

II. Institute for Theoretical Physics, University of Hamburg, Luruper Chaussee 149,
22761 Hamburg, Germany

(Received 8 September 2015; published 16 May 2016)

In this work, we investigate the 4d path integral for Euclidean quantum gravity on a hypercubic lattice, as
given by the spinfoam model by Engle, Pereira, Rovelli, Livine, Freidel and Krasnov. To tackle the
problem, we restrict to a set of quantum geometries that reflects the large amount of lattice symmetries.
In particular, the sum over intertwiners is restricted to quantum cuboids, i.e. coherent intertwiners which
describe a cuboidal geometry in the large-j limit. Using asymptotic expressions for the vertex amplitude,
we find several interesting properties of the state sum. First of all, the value of coupling constants in the
amplitude functions determines whether geometric or nongeometric configurations dominate the path
integral. Secondly, there is a critical value of the coupling constant α, which separates two phases. In both
phases, the diffeomorphism symmetry appears to be broken. In one, the dominant contribution comes from
highly irregular, in the other from highly regular configurations, both describing flat Euclidean space with
small quantum fluctuations around them, viewed in different coordinate systems. On the critical point
diffeomorphism symmetry is nearly restored, however. Thirdly, we use the state sum to compute the
physical norm of kinematical states, i.e. their norm in the physical Hilbert space. We find that states which
describe boundary geometry with high torsion have an exponentially suppressed physical norm. We argue
that this allows one to exclude them from the state sum in calculations.
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I. MOTIVATION

The spinfoam approach has been developed to give a
rigorous meaning to the path integral for quantum gravity
(see [1] for a review). Its central idea rests on the
observation that the first-order formalism of general rela-
tivity can be rewritten as a certain constrained topological
theory [2,3], dubbed “BF theory.”A quantization choice for
these constraints is what specifies the spinfoam model,
and in recent years there have been several proposals [4–7].
A popular choice has emerged in the so-called Engle,
Pereira, Rovelli, Livine, Freidel and Krasnov (EPRL-FK)
model [5,8,9], which possesses quite useful properties. In
particular, the resulting amplitude has an asymptotic expres-
sion for large quantum numbers which reproduces the Regge
action [10–12]. Furthermore, the resulting path integral for
the EPRL-FK model naturally has boundary states which
resemble the spin network states from canonical loop
quantum gravity [13–15], which is why it has been coined
“covariant loop quantum gravity” [16] (see also [17,18]).
There are several open questions, however. While there

are numerous results available which elucidate the property
of a single vertex amplitude, very little is known about the
behavior of the whole path integral.1 In particular, it is the

realm of many building blocks which is of utmost impor-
tance if one wants to understand the continuum limit of the
theory. This is closely connected to the question of
renormalizability of the model, as well as the challenge
of restoring the broken diffeomorphism invariance [22–24],
both of which are unsolved questions up to this point.
The nonperturbative and background-independent nature

of loop quantum gravity suggests that numerical methods
from lattice gauge theory could be very useful tools for
investigations, as well as extracting physical predictions
from the theory. This assumption is supported by the fact
that spinfoam models are by construction generalized
lattice gauge theories [25].2

There has been considerable progress in recent years on
understanding the continuum limit of so-called spin net
models, which are analogues of spinfoam models [28].
Using numerical algorithms in tensor network renormali-
zation [29,30], many results about the phase structure of
these models, as well as their continuum limit properties,
can be derived, in particular in the realm of finite and
quantum groups [31,32]. The methods can also be applied
to lattice gauge theories [33].

*benjamin.bahr@desy.de
†sebastian.steinhaus@desy.de
1There are some results on the asymptotic expression for more

than one vertex [19,20], as well as self-energy calculations [21].

2A complementary but closely connected road towards the
understanding of the continuum limit comes from the group field
theory and tensor field theory approaches [26,27], which is using
much more the particle physics understanding of the spinfoam
amplitudes.
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This, together with the fact that many results in lattice
gauge theory are accessed numerically, in particular high-
precision predictions of physical quantities, suggests that
the numerical investigation of the full spinfoam path
integral will be a crucial step on the road to a predictive
quantum gravity theory, as well as in understanding its
continuum limit and renormalization group flow [34,35]. It
is the goal of this article to make a step into this direction.

A. The symmetry-restricted state sum

In many calculations performed—both analytically and
numerically—in lattice gauge theory, the art is to approxi-
mate the path integral in the right way. The goal is to make
it simple enough to handle while still keeping an expression
fromwhich physical information can be extracted. Oneway
to perform this is to not sum over all histories of the fields in
the path integral but only over those which are relevant for
the physical process one is interested in. That way, one can
still hope to gain realistic approximations for the values of
certain observables. Of course, the approximation in
question therefore has to be tailored to the situation one
wants to investigate.
We intend to copy this strategy for the spinfoam

approach in this article. We believe that this could, if done
in the right way, provide very useful approximations for the
spinfoam state sum. Hence this might ultimately provide a
pathway to statements not only about the continuum limit
of spinfoams but about expectation values of physical
observables, as well as the renormalization group flow
of the model. In all of these, the spinfoam state sum has to
be performed, which in full generality can most likely not
be achieved.
As a first step, in our article we will look at a drastic

approximation of the whole path integral. These will render
the physical predictability of the model questionable in
certain regions. However, the model will still be compli-
cated enough so that certain concepts can be tested, and
specific open questions can be investigated.
In particular, we will work on a regular hypercubic

lattice in 4d. Furthermore, on this lattice, we will not
consider all possible states but only those which conform to
the lattice symmetry. This is a condition on the intertwiners,
which we pick to correspond to cuboids.3

A cuboid is completely determined by its three edge
lengths or, equivalently, by its three areas (see Fig. 1). All
internal angles are π

2
, and the condition of regular cuboids

on all dual edges of the lattice will result in a high degree of
symmetries on the labels: The area (and hence the spin) on
each two parallel squares of the lattice which are trans-
lations perpendicular to the squares have to be equal.

A few comments about this simplification are in order:
(i) The main reason for this symmetry is that it

simplifies the problem dramatically, making the
summation over states much more manageable.
Also, the lattice is directly tailored for making
contact with usual forms of lattice gauge theory,
which we will explore by coupling matter degrees of
freedom in a companion paper, in the spirit of [41].

(ii) As one can readily see, the high degree of sym-
metry will make all quantum geometries flat. The
analysis carried out in this article is therefore
definitely not suited for describing local curvature.
Still, there remain enough states to describe local
degrees of freedom. These will be nongeometric, as
a result of the twisted geometries appearing in the
spinfoam formalism [42,43]. The role and behavior
of this nongeometricity will form a major part in
this article.

(iii) The set of considered states is still large enough so
that an infinite-dimensional (Abelian) subgroup of
the diffeomorphisms acts on it. This makes this
model an ideal test bed for the question of how to
treat these diffeomorphisms on the lattice and how to
treat them in the state sum.

(iv) Restricting the state sum to only a subclass of states
is not only a tool to simplify the state sum. It results
in an approximation which can be valid for describ-
ing situations in which the removed states are not
suspected to have a great influence on the physics.
For instance, one could disregard states with high
curvature if one is only interested in the low-
curvature regime of the path integral. While con-
sidering only quantum cuboids is certainly a very
severe restriction, one could try to access, say, the
propagation of gravitational waves on a lattice, by
adding very specific states describing low local
curvature. A controlled enlargement of the states
beyond the set of quantum cuboids could therefore
provide an excellent tool for approximations of the
spinfoam path integral.

The plan of our article is as follows.
We will give a brief review of the EPRL-FK spinfoam

model in Sec. II. Before performing computations in the
quantum regime, wewill look at the semiclassical regime of
the path integral. The corresponding geometrical intuition,
which we will develop in Sec. III, will be very useful for the
rest of the article.
The actual construction of the quantum cuboid inter-

twiner will be carried out in Sec. IV. Afterwards, the full
vertex amplitude will be considered in Sec. V, where we in
particular describe its asymptotic expression for large spins
(i.e. areas). Finally, the results of our numerical inves-
tigation of the quantum path integral for more than one
building block, in particular in terms of the geometric
interpretation developed earlier, will be given in Sec. VI.

3This choice has also been considered in [36] in the canonical
context and in [37,38] in the cosmological setting. The hyper-
cubic lattice has also been investigated in the loop quantum
gravity path integral framework in [39,40].
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We will see that, despite the severe simplification of
the system by restricting to quantum cuboids, the analysis
will reveal a surprising amount of insight into the path
integral.

II. INTRODUCTION

The spinfoam state sum we will employ in this article
will be the Euclidean EPRL-FK model with Barbero-
Immirzi parameter γ < 1. The main reason for this is that
this model is, at the current state, one of the best understood
ones, with a lot of literature already existing on the
subject.
The EPRL-FK model was originally defined on a

2-complex dual to a 4d triangulation, but there is a clear
generalization to arbitrary 2-complexes [44], which we will
use in this article. A 2-complex Γ is determined by its
vertices v, its edges e connecting two vertices, and faces f
which are bounded by the edges. While these data are
purely combinatorial, we will think of Γ as being embedded
in a manifold. For practical purposes one needs to choose
fiducial orientations of edges and faces, where however the
result does not depend on that choice.
The spinfoam model can either be written in an operator

formulation [45] or in a dual holonomy formulation [25].
In the former one, the path integral is formulated as a sum
over states. A state in this context is given by a collection of
spins, i.e. irreducible representations jf ∈ 1

2
N of SUð2Þ to

the faces, as well as a collection of intertwiners ιe on edges.
Here an intertwiner on the edge e is an invariant tensor in
the space Vj1 ⊗ Vj2 ⊗ � � � ⊗ Vjn , where j1;…jn are the
spin on the faces meeting at e and the representation spaces
Vji are either the usual one or the dual representation space
for that spin, depending on whether the relative orientations
of e and f agree or disagree.
The actual sum is given by

ZΓ ¼
X
jf;ιe

Y
f

Af

Y
e

Ae

Y
v

Av; ð1Þ

where Af, Ae and Av are the face-, edge- and vertex-
amplitude functions, depending on the state. The sum has
to be carried out over all spins and over an orthonormal
basis in the intertwiner space at each edge.4

The allowed spins jf in the EPRL-FK model are such

that j�f ≔ j1�γj
2

jf both are also spins, i.e. half-integers.5

Popular choices6 for the face amplitudes are either Af ¼
2jf þ 1 or Af ¼ ð2jþf þ 1Þð2j−f þ 1Þ. In what follows, we
keep an open mind about the precise form of the face
amplitude and allow for some freedom. We in particular
introduce an additional parameter α, write

Af ¼ ðð2jþf þ 1Þð2j−f þ 1ÞÞα; ð2Þ

and investigate the influence different choices for α have on
the state sum.
The edge amplitudes Ae are usually taken to be equal to

1 in our formulation, but there are certain ways of
formulating the vertex amplitude, in which one puts the
normalization of the intertwiners or leftover sign factors
here.
The main ingredient to the state sum (1) is the vertex

amplitude, the construction of which we briefly describe in
what follows. For this we need to describe the boosting map
Φ, which maps the SUð2Þ intertwiners ιe to an SUð2Þ ×
SUð2Þ intertwiner by

Φ∶ InvSUð2Þ⨂
i
Vji → InvSpinð4Þ⨂

i
Vjþi

⊗ Vj−i
:

The map Φ is given by Φ ¼ P∘β⊗n, where P is the
projector on SUð2Þ × SUð2Þ intertwiners, and the map
β∶Vj → Vjþ ⊗ Vj− is given, in the case that γ < 1 which
we use throughout this article, by the isometric embedding
of Vj into Vjþþj− , the highest weight space in the Clebsch-
Gordan decomposition of Vjþ ⊗ Vj− in the SUð2Þ repre-
sentation category.
The vertex amplitude at the vertex v is the contraction

Av ¼ trð⨂
e⊃v

ΦðιeÞÞ; ð3Þ

where one takes either ΦðιeÞ or the dual ðΦιeÞ†, depending
on whether the edge e is incoming or outgoing of the vertex
v. The tr contraction is to be understood in the sense that the
tensor product in (3), for each face f touching v, there will
be two Spinð4Þ indices in the representation ðjþf ; j−f Þ which
can be contracted since they appear in opposite positions.

A. Coherent intertwiners

A particular advancement in the spinfoam model
approach was the observation that the intertwiners ιe can

4There is a subtlety at this point: If one sees the state sum as
coming from a restriction of the 4d BF amplitude on which the
simplicity constraints have been imposed, one should actually not
sum over an orthonormal basis of SUð2Þ intertwiners, but rather
over a set ιe such that ΦðιeÞ form an orthonormal subset of the
SUð2Þ × SUð2Þ intertwiners, where Φ is the boosting map. These
two choices are not the same, since it can be shown that Φ is not
an isometry [46]. Since in this article, we will only have one
specific intertwiner for each edge, the issue does in fact not arise.
It will, however, emerge as soon as one allows for intertwiner
fluctuating in the path integral.

5This means that, depending on γ, the set of allowed spins can
actually be very small, or even just be the trivial representation, if
γ is irrational. This feature is very particular to the Euclidean
version of the model and disappears in the Lorentzian setting,
where all real γ are allowed.

6This choice has influence on the convergence of the state sum;
see e.g. [21,47].
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be given a geometric interpretation in terms of polyhedra in
R3 [48–50]. For a spin j, denote by jjji the highest weight
vector with respect to τ3 ¼ i

2
σ3, corresponding to the unit

vector in the 3 or z direction. For any other unit vector
~n ∈ S2, choose g ∈ SUð2Þ such that g⊳e3 ¼ ~n, and then
the coherent vector

jj~ni ¼ g⊳jjji: ð4Þ

Given a collection of spins j1;…jn and vectors ~n1;…~nn
which close, i.e.

P
ji~ni ¼ 0, one can define the coherent

polyhedron

jιi ¼
Z
SUð2Þ

dg g⊳⨂
i
jji~nii: ð5Þ

The geometric interpretation is that of a polyhedron, with
face areas jf and face normals ~ni. The closure condition
ensures that such a polyhedron exists and is unique up to
translation. The formula (5) also exists for nonclosing
normals, which do not have a polyhedral interpretation.
However, it can be shown that the state sum model (1) can
be written solely as an integral over coherent polyhedra, i.e.
having closing normals [51].
This concludes the recap of the general setup. In the

following we will describe the specific simplifications
within this setup that we will use in order to obtain physical
intuitions for the full path integral.

III. SEMICLASSICAL CONSIDERATIONS

In this article, we will consider the case where the space-
time manifoldM ∼ T3 × ½0; 1� is the product of the 3-torus
T3 and a closed interval. Hence space is compactified
toroidally. We cover M by 4d hypercubes, which form a
regular hypercubic latticeH. The 2-complex Γwe use is the
2-skeleton of the dual complex. So there is a vertex for each
hypercube, and two vertices are connected by an edge
whenever two hypercubes intersect in a 3d cube. The faces
of Γ are dual to squares in H, on which four hyper-
cubes meet.
Note that this hypercubic lattice does not carry any

geometric information at this point. The geometry will later
be encoded in the state, by specification of spins jf and
intertwiners ιe.
In what follows, we consider the geometric interpretation

of the semiclassical regime, not only of one intertwiner but
of the whole lattice. We are in particular interested in the
large-j regime of the quantum cuboids. In this limit, these
become classical cuboids as in Fig. 1, which are completely
specified by their three areas. The fact that opposite areas
are identical leads to a translation symmetry in the areas of
the lattice. Therefore, a semiclassical configuration is given
by an assignment of areas a ¼ jl2

P to the squares of the
hypercubic lattice, where two areas agree whenever they

are parallel and one is reached from the other by a
translation perpendicular to them.
Denote the four directions in the lattice by x, y, z, t, and

numerate the hypercubes by ~n ∈ Z4. The areas a~n
μν then

satisfy

a
~nþpeρþqeσ
μν ¼ a~n

μν ð6Þ

with μ, ν, ρ, σ all different directions, eρ, eσ unit vectors in
the ρ and σ direction, respectively, and p, q ∈ Z.
Dual to one vertex ~n in the lattice is then a semiclassical

quantum hypercuboid, which is determined by the values of
six of its areas a~n

xy; a~n
xz;…; a~n

zt. Since a classical hyper-
cuboid in R4 is determined by its four edge lengths, this
means there are two excess degrees of freedom. It is
straightforward to see that these cannot correspond to
geometric configurations: Assume that six areas are given;
these determine uniquely the three areas for each individual
3d cuboid in the hypercuboid’s boundary. In turn, for each
such 3d cuboid, the three areas determine three edge
lengths. In order for there to be a geometric hypercuboid,
not only do the areas of two cuboids meeting in a rectangle
have to match, but both individual edge lengths of that
rectangle have to agree. It is not difficult to derive that the
conditions the areas have to satisfy, so that both edge
lengths of each rectangle, as seen from neighboring
cuboids, agree. This condition can be written as

axyazt ¼ axzayt ¼ axtayz: ð7Þ

It seems worthwhile noting that this problem—of match-
ing areas but nonmatching shape—is well known and
usually referred to as twisted geometries in the litera-
ture [42,43].
The 4-volume of a geometric hypercube is given by the

product of areas of two perpendicular faces, so the geo-
metricity constraints (7) are the condition that the three
choices of opposite pairs among the six faces deliver the
same result. For a nongeometric configuration, we define
the 4-volume of a hypercube as

FIG. 1. A cuboid in R3. The face normals ni are orthogonal and
normalized by the face areas.
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V4 ≔ ðaxyaxz…aztÞ13; ð8Þ

which reduces to the original definition at geometricity.
If one were to define the four diameters to be

dx ≔
V4

ðayzaytatzÞ12
¼ ðaxyaxzaxtÞ13

ðayzaytatzÞ16
ð9Þ

with similar definitions for the other three directions in the
lattice, one would have that V4 ¼ dxdydzdt, even for
nongeometric configurations. We also define the nongeo-
metricity

ξ~n ≔

0
B@

axyazt − axzayt
axzayt − axtayz
axyazt − axtayz

1
CA ð10Þ

as a measure of the deviation from the constraints (7).

A. Lattice deformations

The fact that the hypercubic lattice in the manifold is not
prescribed with an ab initio geometry, but obtains geo-
metric interpretation via the state, has important conse-
quences. In particular, there are some configurations which
arise as lattice deformations of one another. These can be
seen as the result of either an active or a passive
diffeomorphism.
Imagine, for definiteness, the manifold to be equipped

with a standard, flat Euclidean metric η, and the lattice Γ
inserted being completely regular; i.e. all lengths (and
hence all areas) are equal. Now consider a diffeomorphism
ϕ which deforms the metric in a thin 3d strip, say, the
slightly thickened hyperplane around t ¼ 0. Assume that ϕ
is such that it stretches space below and contracts the space
above the hyperplane. As a result, with respect to the new
metric g ¼ ðϕ−1Þ�η, the areas of the “timelike” squares
above the hyperplane will be smaller, and the ones below it
will be larger (see Fig. 2).
So this diffeomorphism of the manifold M induces a

change in the areas of the lattice, since it changes the
metric, but leaves the lattice where it is (if it were to
transform the lattice in a similar way, the areas would
remain unchanged trivially). This can be regarded as an
“active” diffeomorphism—the “passive” version can be
seen as keeping the metric fixed but changing the embed-
ding of the lattice Γ → ϕðΓÞ, by moving the t ¼ 0 hyper-
plane into the positive t direction. The result on the values
of the areas in the lattice will be the same, so by just looking
at the lattice and not at the manifold, the difference between
active and passive diffeomorphism vanishes.
The continuum diffeomorphisms prescribed in this way

are generated by vector fields which only act in the t
direction on the manifold, i.e. Xðx; y; z; tÞ ¼ TðtÞ∂t, with T
a smooth function. Together with the deformations in the

other three major directions, the resulting collection of
diffeomorphisms forms an Abelian subgroup of the full
group of DiffðMÞ.
The variable transformation we have just described can

be extended to the possibly nongeometric configurations
that arise in the large-j regime of the EPRL-FK model. Just
as in the example, there is one generator of the group for
each 3d hypersurface in the lattice, “moving” that hyper-
surface in a direction orthogonal to it while keeping the
rest of the lattice fixed. As one can see, this group is finite-
dimensional for compact manifolds, but the dimension
grows as the number of hypercubes increases, becoming
infinite in the limit of infinitely large lattices.
To describe the action of these “lattice deformations” on

the areas a~n
μν, consider, for definiteness, a 3d hypersurface

in the xyz directions. Let ~n be a hypercube whose future
xyz cuboid is part of the chosen hypersurface, and then the
transformation is defined to be

a~n
it → a~n

itð1þ Δ~nÞ; i ¼ x; y; z; ð11Þ

for all such ~n, while a~n
ij remains unchanged. The timelike

areas of the following hypersurface get changed as well, by

a~nþet
it → a~nþet

it ð1 − Δ~nþetÞ; i ¼ x; y; z: ð12Þ

The parameters Δ~n, Δ~nþet quantify the stretching and
compressing of the respective hypersurfaces. It is easy to
see that, in order not to violate (6), Δ~n has to be the same
among the whole hypersurface, i.e. Δ~nþmxexþmyeyþmzez ¼
Δ~n ≕ Δ1 for all mi. A similar statement holds for
Δ2 ≔ Δ~nþet .
There is an interesting observation to be made at this

point: In general a diffeomorphism should not change the
total 4-volume of space-time. Depending on the areas a~n

μν

there might be no choice for Δ1;2 so that the 4-volume is
preserved, however. So, while the action of the diffeo group
can be defined on all configurations, there are only some on

FIG. 2. Action of a diffeomorphism in the t direction on the
areas a~n

it.
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which it can be defined in a 4-volume-preserving way. We
call these configurations semigeometric. A sufficient con-
dition for semigeometricity is that the sum of the 4-volumes
of a pair of hypercubes ~n, ~nþ et stays constant under a
diffeomorphism, so 4-volume is preserved not only in
general, but also locally. It is not difficult to show that this is
equivalent to the following condition: For every 2 × 2
arrangement of squares in the lattice, the two respective
products of diagonally opposite areas in that arrangement
are equal (see Fig. 3). It should be clear that the diffeo-
morphisms, as we have defined them here, preserve the
notion of semigeometricity.
It should also be noted that semigeometricity is weaker

than geometricity (7): A totally translation-symmetric
configuration where all hypercubes are congruent is cer-
tainly semigeometric. However, the six areas of the hyper-
cube can be chosen in a nongeometric way. Note that
geometricity is purely local, in terms of one hypercube,
while semigeometricity is a condition on relations of areas
between neighboring hypercubes.

IV. QUANTUM CUBOIDS

We now turn to the quantum theory.
In the 2-complex we consider, every edge has six faces

attached to it, corresponding to the six faces of the cubes.
So any intertwiner in the state sum will be six-valent and
therefore can be described by a coherent polyhedron with
six faces. In our setup, we restrict the state sum to coherent
cuboids, or quantum cuboids. A cuboid is characterized by
areas on opposite sides of the cuboid being equal and
the respective normals being negatives of one another
(see Fig. 1).
The state ιj1;j2;j3 is given by

jιj1;j2;j3i ¼
Z
SUð2Þ

dg g⊳⨂
3

i¼1

jji; eiijji;−eii: ð13Þ

Here e1 ¼ expð−iπσ2=4Þ⊳e3, e2 ¼ expðiπσ1=4Þ⊳e3,
and e3 are taken to be unit vectors in R3. It is worth
noting that the intertwiner space is nonempty for every
choice of spins j1, j2, j3, and the state (13) always exists
and is nonvanishing.

V. THE AMPLITUDE

The vertices in the four-dimensional hypercubic lattice
are all eight-valent, since a 4d hypercube is bounded by
eight cuboids (see Fig. 4). The vertex amplitude is defined
with the help of a boundary spin network Γ, which in our
case is of the special form depicted in Fig. 5. The amplitude
is given in terms of spins jl associated to links l of Γ, as
well as coherent intertwiners ιa (5) associated to the nodes
a of Γ. The intertwiner can be given in terms of normal
vectors ~nab, which is thought of being the normal vector of
the link l ¼ ðabÞ, sitting at the polyhedron at a.
The vertex amplitude for a Barbero-Immirzi parameter

γ < 1 factorizes as Av ¼ Aþ
v A−

v , with

A�
v ¼

Z
SUð2ÞN

dgaeS
�½ga� ð14Þ

with the complex action

S�½ga� ¼
1� γ

2

X
l

2jl lnh−~nabjg−1a gbj~nbai

≕
1� γ

2
S½gc�; ð15Þ

where, in formula (15), a is the source node of the link l,
while b is its target node, and all states are in the
fundamental representation.

A. Large-j asymptotics

The amplitudesA�
v possess an asymptotic expression for

large jl, which has been investigated in [10,11]. To
compute this expression, we follow the analysis in [10]
and refer to that article for calculational details.
Firstly, we note that, out of the N ¼ 8 group integrations

in (14), one is obsolete due to the invariances of the Haar

FIG. 3. The areas of flat squares in Euclidean space arranged in
a tile satisfy a1a4 ¼ a2a3.

FIG. 4. A four-dimensional hypercuboid represented by its
boundary, consisting of eight cuboids. They are labeled by
a ¼ 0…7, as depicted.
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measure dg. The remaining integral possesses isolated
critical points and can therefore be evaluated by an
extended stationary phase approximation. The action
(15) is readily seen to be invariant under any ga → −ga,
so there is a 27-fold symmetry.
Modulo this symmetry, there are two distinct stationary

and critical points, satisfying the equations

ñab ≔ ga⊳~nab ¼ −gb⊳~nba ð16Þ

for all links ðabÞ (the closure condition is automatically
satisfied by the choice of quantum cuboids, for any
selection of spin jl). Using the convention in Fig. 4, having
fixed g0 ¼ 1, the two solutions Σ1 and Σ2 are shown in
Table I.
It can be easily checked that these are, in fact solutions to

the extended stationary phase approximation equa-
tions (16). Also, one can readily see that these are the
only solutions: The six equations for the edges (01) up to
(06) force each of the respective six group elements

gi ði ¼ 1;…6Þ to lie in some one-parameter subgroup,
corresponding to a rotation around the respective normal
~n0i ¼ ñ0i of cuboid 0. These angles are fixed by the
equations (16) for a; b ∈ 1;…6, and there are two overall
solutions (modulo 26 signs). Remaining are six vector
equations for one SUð2Þ element g7, so the system appears
drastically overdetermined. However, one finds that the
solution g7 ¼ � expði π

2
σ1Þ solves all of these simultane-

ously, and these are the only ones which do so. This leaves
us with two solutions (up to 27 signs), depicted in Table I.
Another comment about these solutions are in order: As

in the case for the 4-simplex, there are “nongeometric”
boundary data, which cannot be used to define a continuous
3-metric on all of the boundary of the hypercuboid (in the
4-simplex case, these are called “non-Regge-like”). Unlike
in the 4-simplex case, however, not all of these non-
geometric boundary data are suppressed by the stationary
phase approximation method. Rather, there are nondegen-
erate, but non-Regge-like, states which appear in the large-j
limit. These are described in Sec. III, as states violating
the geometricity condition (7). This issue can be traced
back to the differences in geometry of a 4-simplex and a
4-hypercuboid, in particular the fact that specifying all
areas (satisfying certain inequalities) in the former deter-
mines a geometric state, while it does not in the latter.
This point certainly deserved more attention, and we will
come back to it at another point.7

Each critical stationary point ~gc contributes one term of
the form

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ21
detð−Hð~gcÞÞ

s
eSð~gcÞ ð17Þ

to the approximation formula, where Hð~gcÞ is the Hessian
matrix of S, evaluated on the points ~g ¼ ~gc.
One can readily see that both critical stationary points

listed in Table I lead to S½~gc� ¼ 0. This is not surprising,
since all dihedral angles equal π

2
, and at each square in the

lattice precisely four hypercuboids meet, leading to a
vanishing deficit angle. In other words, the choice of
quantum cuboids as the only allowed intertwiners prevents
local curvature (intrinsic and extrinsic) to be excited. Hence
the Einstein-Hilbert action part vanishes, as well as the
boundary terms.
The stationary phase approximation for the amplitude is

therefore completely determined by the determinant of the
Hessian matrix H of second derivatives of S. This deter-
mines the (first-order) quantum corrections to the classical
solution in the path integral. It therefore contains nontrivial
quantum information about the path integral measure,
beyond the Einstein-Hilbert action.

TABLE I. The two solutions for g1;…g7 of (16) not connected
by symmetry, corresponding to the stationary and critical points
of the action (15). Note that g1;…; g6 all correspond to rotations
by π=2, while g7 corresponds to rotations by π.

Σ1 Σ2

g1 exp ði π
4
σ1Þ exp ð−i π

4
σ1Þ

g2 exp ði π
4
σ2Þ exp ð−i π

4
σ2Þ

g3 exp ði π
4
σ3Þ exp ð−i π

4
σ3Þ

g4 exp ð−i π
4
σ3Þ exp ði π

4
σ3Þ

g5 exp ð−i π
4
σ2Þ exp ði π

4
σ2Þ

g6 exp ð−i π
4
σ1Þ exp ði π

4
σ1Þ

g7 exp ði π
2
σ1Þ exp ði π

2
σ1Þ

FIG. 5. The spin network for a hypercuboid. Each node is six
valent, and spins of edges emanating opposite of each other from
a node coincide. Therefore, only six different spins exist. In the
semiclassical limit these become the six areas aμν of the hyper-
cuboid.

7We thank the anonymous referee who pointed out the
importance of this issue.
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Introducing, around each critical point ~gc coordinates
fXI

ag via ga ¼ ga;c expðiσIXI
a=2Þ, one obtains for the

entries of the Hessian matrix

∂2S
∂XI

a∂XJ
a
¼ −

X
ðabÞ⊃a

jab
2

ðδIJ − ñIabñ
J
abÞ; ð18Þ

∂2S
∂XI

a∂XJ
b
¼ jab

2
ðδIJ − iϵIJKñKab − ñIabñ

J
abÞ; ð19Þ

where the vectors ñ are given by (16). Note that the second
expression (19) is symmetric, because ñab ¼ −ñba. The
Hessian matrix is 21 × 21, and its determinant can be
computed by a computational algebra program. The result
is a quite long expression, which can nevertheless be
handled analytically and numerically. As it turns out, the
two determinants for Σ1 and Σ2 are complex conjugates of
each other, so that the whole amplitude is real.
It is worth noting at this point that, because S ¼ 0 on

critical stationary points for the quantum hypercuboid,
the only dependence on the Barbero-Immirzi parameter γ
is via the Hessian matrix determinant detH. Since
detHðλjÞ ¼ λ21 detHðjÞ, i.e. H is homogenous in the
spins, one can readily see that the amplitudes A�

v satisfy,
in the large-j limit,

Ãv ≔
�
1þ γ

2

�21
2

Aþ
v ¼

�
1 − γ

2

�21
2

A−
v : ð20Þ

Similarly, in the large-j limit, the norm squared of the
quantum cuboid states (13) is given by

∥Φιj1j2j3∥
2 ∼

8ð1 − γ2Þ−3
2

ðj1 þ j2Þðj2 þ j3Þðj1 þ j3Þ
: ð21Þ

With this, we get for the state sum, in the large-j limit on
a regular hypercubic lattice, that

Z ∼
�
1 − γ2

4

�
αF−3

2
Eþ21

2
VX

jf

Y
f

j2αf

×
Y
e

ðj1 þ j2Þðj2 þ j3Þðj1 þ j3Þ
Y
v

Ã2
v

≕
�
1 − γ2

4

�ð6α−9=2ÞVX
jf

Y
v

Âv: ð22Þ

In the last line, we have defined the dressed vertex
amplitude Âv, in which the face and edge amplitudes have
been absorbed in such a way that boundary amplitudes are
taken care of correctly. Note that the only way the
asymptotic state sum (22) depends on the Barbero-
Immirzi parameter γ is via the prefactor, which does not
influence the physics. This is a direct consequence of the

fact that no curvature degrees of freedom are excited in our
simplified state sum.

B. Properties of the amplitude

For the following section, we will use the following
notation: The (dressed) vertex amplitude Âv depends on six
spins j1;…; j6, so we write

Âvð~jÞ ¼ Âvðj1; j2; j3; j4; j5; j6Þ; ð23Þ

using the notation in Fig. 5. In particular, j1;2;3 denote the
spins on spacelike and j4;5;6 the spins on timelike faces.
On some occasions in what follows, we will treat space-
and timelike faces separately, so we also introduce the
short-hand

Âvð~j; ~kÞ ≔ Âvðj1; j2; j3; k1; k2; k2Þ ð24Þ

for the amplitude of the equilateral hypercuboid. So
whenever the amplitude has two arguments, they refer to
space- and timelike spins, respectively.
In the hypercubic lattice the relation V ¼ F

6
¼ E

4
between

the numbers of vertices, faces and edges, holds. A term Âv
in the state sum therefore scales with the spins as

Âvðλ~jÞ ∼ λ12α−9: ð25Þ

This means that for a critical value of α∞ ¼ 3
4
, the amplitude

becomes scale invariant. For larger α, the state sum is most
definitely divergent, while there can be found a value of α
small enough so that the state sum converges.
The situation is different if we do not consider the state

sum for a closed manifold, but one with a boundary.
Consider a finite regular hypercubic lattice decomposition
of M ¼ T3 × ½0; 1�. The spatial boundary manifolds are
three-tori, and fixing boundary spin networks is equivalent
to fixing all spatial spins throughout the lattice, due to the
symmetry (6). The scaling of an amplitude with respect to
the timelike spins goes like

Âvð~j; λ~kÞ ∼ λ6α−9: ð26Þ

This means that, when computing the physical inner
product with the help of the state sum (22) on a hypercubic
lattice, one can expect the sum to converge absolutely for
α < 3

2
, when the lattice is large enough.

VI. RESULTS

In the following, we will investigate the asymptotic
amplitude for the hypercuboid. This will give an insight
into the quantitative and qualitative behavior of the spin-
foam state sum.
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A. Nongeometricity in the path integral

One interesting question is how much configurations
with high nongeometricity ξ (10) contribute to the path
integral (22). To investigate this, we consider a regular
geometric hypercube, i.e. with all spins aμν ¼ jl2

P equal.
Then we consider the value of the amplitude Âv, depending
on the two independent nongeometric directions of con-
figurations ξ around the regular configuration. We vary the
three timelike areas ait, i ¼ x, y, z, by

δξ1 ¼
1ffiffiffi
2

p ðδaxt − δaytÞ;

δξ2 ¼
1ffiffiffi
6

p ðδaxt þ δayt − 2δaztÞ: ð27Þ

Note that this variation is isochoric, i.e. satisfies δV ¼ 0.
The value of the amplitude is shown in Fig. 6.
The amplitude shows a clear maximum at the geometric

configuration. It is noteworthy that this is not a local
maximum in all of state space, though. The reason is that
there are four more directions in which the amplitude can
be varied, which can change the shape of the hypercube.
These directions preserve geometricity. Of those will be
one direction corresponding to simply scaling the hyper-
cube. Since the amplitude scales as (26) with respect to this
direction, the statement can therefore be phrased as follows:
Among all configurations with a fixed 4-volume, the ones
contributing most to the path integral will be the ones with
vanishing nongeometricity.
The analysis suggests that fluctuations in the nongeo-

metricity ξ around ξ ¼ 0 do contribute to the path integral,
proportional to the width of the Gaussian in Fig. 6. This
width m2

ξ can be interpreted as a mass term for ξ, since it
measures the ease with which ξ can be excited locally. The
precise value of this mass depends on the parameter α in the

path integral. The connection between the two can readily
be computed from the exact form of the large-j asymptotic
formula, to be

m2
ξðαÞ ¼ 2α −

233

240
; ð28Þ

so for α < 233
480

≈ 0.4854, the mass m2
ξ < 0 will be negative.

This will result in the main contribution to the path integral
coming from highly nongeometric configurations. One
could argue that this restricts the desired value of α on
physical grounds, since the path integral should deliver
geometric states in the classical limit.
The presence of a mass term suggests that there could

also be a kinematical term for ξ, turning the nongeome-
tricity into a propagating degree of freedom. To investigate
this further, one would not only use more than one building
block, one would in particular have to consider more
intertwiners than just the quantum cuboid, to investigate
realistic propagation of local excitations of ξ.
In particular, there is the possibility that there exists a

regime in the full path integral in which the nongeome-
tricity ξ becomes effectively described by a fluctuating
quantum field on some background geometry. This point
warrants further investigation.

B. Vertex-displacement symmetry
and the amplitude

We now come to an investigation of the amplitude for
more than one building block. To this end, we first consider
two hypercubes, which are glued together along a common
(spacelike) cuboid. One hypercuboid can therefore be
regarded as being “in the future” of the other. We assume
that the main contribution comes from the geometric
configurations, i.e. α > 0.4854.
We consider the transition between two spin network

functions. Because of the chosen symmetry (6) within our
lattice, this fixes all the spatial spins (and hence the initial
and final spin networks) to be equal. The only fluctuating
spins are, therefore, the timelike ones, i.e. three per
hypercuboid, six in total. Out of these three degrees of
freedom per hypercube, there are two which are non-
geometric. We disregard these in the following and observe
that only two degrees of freedom remain in total for the two
hypercuboids. While one is obviously related to the total
4-volume, the other corresponds to a (generalized) diffeo-
morphism direction connected to a timelike translation of
the bulk Cauchy hypersurface (as in Fig. 2). In other words,
when computing the physical inner product between two
spin networks, using the 2-complex described above, the
sum over spins will, essentially, be the sum over two
parameters, corresponding to the total 4-volume of the
Universe and a (quasi)diffeomorphism degree of freedom.
To shed light on the behavior of the amplitude with

respect to this diffeomorphism, we consider the total

1.0

1.0

0.5

0.5

0.0

0.0

–0.5
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–1.0
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0.5

0.0

FIG. 6. Value of the dressed vertex amplitude depending on the
nongeometricity of the labels.
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amplitude for the whole lattice, which is the product of two
vertex amplitudes. The spatial spins are all set to some large
spin j, while the timelike spin of the two hypercuboids are
set to jð1þ xÞ and jð1 − xÞ, respectively. The amplitudes
are normalized for x ¼ 0. The findings are shown in Fig. 7,
for different values of α.
Due to symmetry, it is clear that the derivative of the total

amplitude Iðα; xÞ ¼ Âvðj; jð1þ xÞÞÂvðj; jð1 − xÞÞ is zero
at x ¼ 0. The second derivative depends linearly on α and
obeys

I00ðα; 0Þ ¼ 182

25
− 12α: ð29Þ

This can be rephrased the following way: The contri-
butions from different points along the diffeomorphism
orbit parametrized by x are different and depend on α.
There is a critical value αc ¼ 182

300
≈ 0.6067, and for α > αc,

the main contribution to the path integral comes from the
point x ¼ 0, i.e. the point where both hypercuboids are
regular and of equal size. Conversely, for α < αc, the main
contribution to the path integral comes from very irregular
configurations, i.e. the points x ¼ �1. Note that in the case
of the path integral for more than two hypercuboids, the
situation will be even more pronounced, because the total
amplitude factorizes over the vertices.
One can therefore assert the following: The parameter α

distinguishes between two different regions, in which the
path integral behaves quantitatively different. For α > αc,
the main contribution to the path integral, among all
geometric configurations of equal volume, comes from
the completely regular configuration, i.e. all spins, and
therefore all hypercuboids, being equal. This can be
interpreted as very regular geometry, approximating
four-dimensional Euclidean space.
On the other hand, for α < αc, the main contribution to

the path integral (again, among all geometric configurations
of equal 4-volume) come from configurations in which

almost all 4-volume is concentrated in one time slice, while
all other time slices contain nearly none of it. These
configurations can be interpreted as very irregular.
A comment is in order here: While this configuration can

be regarded as highly irregular, it is nevertheless flat and
describes the same classical 4-d metric as the one in which
all j’s are equal, i.e. the completely regular case. Although
the j values are different, these two states can be regarded
as diffeomorphically equivalent, since they are results of a
vertex translation symmetry as described in Sec. III.
Geometrically, they correspond to different ways in which
a 4-torus can be cut up into two hypercuboids—one in
which the two hypercuboids have the same size and one in
which one contains much more volume than the other.
In other words, we have a clear example of a coupling

constant α, which distinguishes between two regions in the
phase diagram in which the path integral behaves qualita-
tively very different. Furthermore, on the critical value
α ¼ αc, the amplitude function is nearly invariant under
change of x, which one can readily interpret as invariance
under vertex translation symmetry, or diffeomorphism
invariance. This fosters the scenario for this point as a
second-order phase transition: One can assume that corre-
lation lengths become infinite (in terms of lattice distance)
because of diffeomorphism invariance. The reason for this
is that close and far separation on the lattice become
diffeomorphically equivalent (see also discussion in
[34,52]). Of course, this point deserves much more inves-
tigation, in order to make this correspondence more precise.
One should note that the precise numerical value of αc

should not be taken too seriously at this point: It rests on the
simplifications we have employed, as well as taking all
spatial spins to be equal. For the spatial spins different, one
finds qualitatively similar results, however, with slightly
changed values of αc.

VII. PHYSICAL INNER PRODUCT
AND TORSION

A. The role of the physical norm

The path integral can be used to compute the physical
inner product between states and in particular to compute
the physical norm of kinematical states. More precisely, the
path integral functions as a rigging map

η∶Hkin ⊃ Dkin → Dphys ⊂ Hphys ð30Þ

from (a dense subset of) the kinematical to (a dense subset
of) the physical Hilbert space. Usually, Dkin is taken to be
the linear span of the spin network functions. Different spin
network functions (which are all normalized in the kin-
ematical inner product) will have images under the rigging
map η with different norm in Hphys.
If a spin network state ϕ on the (say, initial) boundary is

given by spins je (and uniquely determined quantum

3.0

2.5

2.0

1.5

1.0

0.5

–1.0 –0.5 0.5 1.0

FIG. 7. Value of the product of two amplitudes Iðα; xÞ depend-
ing on vertex translation x, for different values of the coupling
constant α.
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cuboid intertwiners) for boundary edges e, then the
physical norm of such a state is given by

hηðϕÞjηðϕÞiphys ∼
X
jf

Y
v

Âv

Y
fe∈∂Γ

δjfe ;je ; ð31Þ

where fe is the unique face whose intersection with the
boundary is e. Note that in (31) the boundary of the
manifold has two connected components: the initial and
the final spatial hypersurface. In an abuse of notation, ϕ is
considered to be a state on both.
This physical norm indicates how much the respective

spin network contributes to the overall path integral, as we
argue in the following.
Consider a manifoldM with boundary Σi⊔Σf, being the

product M ¼ M1#M2 of two manifolds in the sense of
cobordisms (see Fig. 8). If the Hilbert spaces are all finite-
dimensional, then Z provides a functor in the cobordism
category, satisfying

ZðMÞ ¼ ZðM1ÞZðM2Þ: ð32Þ

For any observable O, its matrix element in boundary
states Ψi;f ¼ ηðϕi;fÞ therefore satisfies

hΨijOjΨfi ¼
X
ϕn

hΨijηðϕnÞiphyshηðϕnÞjOjΨfiphys: ð33Þ

Note that in this last equation, the sum is being
performed over an orthonormal basis fϕng in the kinemati-
cal Hilbert space Hkin. By using the Cauchy-Schwarz
inequality, each term in that sum is dominated by a constant
times ∥ηðϕnÞ∥2phys. In other words, it can be expected that
terms with a very small physical norm do contribute very
little to the matrix element.

This argument can be generalized for arbitrary splitting
of the manifold: The 2-complex Γ embedded in M is
separated into two 2-complexes Γ1#Γ2. Then, each term in
the state sum for ZðMÞ, i.e. each collection of spins (and
intertwiners) on Γ, can be found as part of a term in the sum
(33). In other words, in the general state sum for ZðMÞ, one
can approximately neglect the sum over all states which, for
some decomposition (32) would result in a boundary spin
network with a small physical norm.
Therefore, it is of interest for the evaluation of the state

sum to identify boundary states with a small physical norm.
By excluding the corresponding states from the state sum,
one can drastically simplify the state sum, making only
small approximation errors. In particular, the error can be
estimated by the physical norm of the excluded state.
It should be noted that the whole argument has to be

slightly refined in the case of infinite-dimensional boun-
dary Hilbert spaces. In that case, the state sum ZðMÞ does
not exist as an operator on Hkin, but at most as a quadratic
form on the dense subset Dkin. In particular, an equation

FIG. 8. The separation of space-time M≃M1#M2.

FIG. 9. Torsion measures the failure of an infinitesimal paral-
lelogram to close.

FIG. 10. Due to the nongeometric properties of twisted (spin-
ning) geometries, the boundary geometry can contain torsion. In
this case, Tx

xy ¼ 1
2
ðd1 þ d2 − d3 − d4Þ.

FIG. 11. Boundary spin network with torsion: The four vertical
lines (dual to the xy squares in the boundary cubulation) carry
spins jð1� Δx � ΔyÞ, while all horizontal lines (dual to the xz
and yz squares) carry the spin j.
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like (33) will not hold in a straightforward sense. Still, since
in this case the state sum will in many cases be defined as a
limit of expressions which satisfy some sort of (33), one
can still expect the states with a small (in particular those
with a vanishing) physical norm to be negligible.

B. Torsion of boundary spin networks

Motivated by this philosophy, we now compute the
physical norm of boundary states for the special case of
M≃ ½0; 1� × T3. Using the geometric interpretation used
in Sec. III, we will show that one can define boundary states
which are nongeometric in the sense that they contain
nonvanishing torsion. Furthermore, we will show that
boundary states with large torsion have a small physi-
cal norm.
In the continuum, the torsion tensor T is defined via

eIaTc
bc ¼ D½beIc� − ½eb; ec�I . Geometrically, T describes the

failure of an infinitesimal square to close (see Fig. 9). After
going around an infinitesimal parallelogram spanned by
vectors Xa and Ya, one gets translated by the vector
Ta
bcX

bYc (and rotated by the matrix Ra
bcdXcYd).

Taking literally the geometric interpretation of boundary
geometries as provided by coherent polyhedra, this sug-
gests a way to identify torsion in the boundary spin
networks we use in our analysis.
The spatial hypersurfaces on the boundary are separated

into cuboids, the areas of which are given in terms of the
spins of the spin network function dual to it. This gives a
geometric meaning to each cuboid, since its edge lengths
are uniquely determined by its areas. These cuboids do not
necessarily fit together without curving them, since for any
square two of them are meeting, only the two respective
areas agree, not necessarily the individual edge lengths.
Consider a path going along a minimal square in the

boundary spin network function (say, in the xy plane), i.e.
passing subsequently through the centers of four cuboids
all meeting at one edge of the cubulation. The flat geometry

suggests that each pair of neighboring sides are orthogonal
to each other. So opposing sides are parallel but do not
necessarily have the same length. The difference between
the two lengths (say, in the x direction) are precisely given
by the Tx

xy component of the torsion tensor (see Fig. 10).
With this in mind, we can construct spin networks which

describe boundary geometry with torsion. For this, we
choose a boundary of 2 × 2 × 2 cuboids. The spin network
under consideration will have one (large) j distributed
among the edges, apart from those on squares lying in the
xy plane. There are four of those, and they will each have
one of the four possibilities of jð1� Δx � ΔyÞ (see
Fig. 11). It can be readily seen that the components of
the torsion tensor are Tx

xy ¼ 2Δx and Ty
xy ¼ 2Δy.

C. Results

In our analysis, we have computed the physical norm
(31) of the state ψΔx;Δy

by using a hypercubic lattice of
2 × 2 × 2 × N, resulting in a norm

FIG. 12. Physical norm of states, depending on their torsion (color-coded). The plots are given for (from left to right) α ¼ 4, α ¼ 0.8,
and α ¼ 0.6.
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FIG. 13. The inverse widths of the Gaussians in Fig. 12,
depending on the coupling constant α. Numerical investigations
show that Cα ¼ 17.22α − 10.45 is an excellent fit.
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∥ψΔx;Δy
∥2N;α ¼

X
timelike jf

Y
v

Âv; ð34Þ

where the sum is being performed over all spins on timelike
squares, while the spins over spacelike squares are fixed by
the lattice symmetry condition (6). This means that the
physical norm satisfies

∥ψΔx;Δy
∥2N;α ¼ ∥ψΔx;Δy

∥2N1;α; ð35Þ

so we can restrict ourselves to N ¼ 1. In this case, there are
six free spins in total, over which we integrate numerically,
using Mathematica 10. We show the results, depending on
the torsion of the boundary state, which is parametrized by
Δx, Δy, for three different values of α. The parameters Δx,
Δy are varied from −0.4 to 0.4 in steps of 0.1, respectively.
The results are normalized so that the state with Δx ¼
Δy ¼ 0 has physical norm one.
The numerical calculation of the physical norm shows

very similar features for all three values of α: The states
with Δx ¼ Δy ¼ 0 have a maximal physical norm (nor-
malized to 1), while states with higher torsion have a
smaller physical norm (see Fig. 12). The norm of a
kinematical state ψT with torsion T is suppressed with a
factor

∥ψT∥2phys ∼ e−CαjTj2 : ð36Þ

The rate of suppression Cα depends on α, and the
connection between the two is depicted in Fig. 13. As
one can see, the larger α, the more one can disregard
torsion.

It should be noted that our definition of torsion is a
nonlocal property, in the sense that it requires more than
one vertex to define it. It is closely related to the non-
geometricity ξ, in the sense that torsion can only exist if
there is nongeometricity in the vertices. However, the
converse is not true: One can show that there are semi-
classical configurations which are highly nongeometric but
have vanishing torsion. In that sense torsion freedom is a
weaker condition than geometricity.

VIII. SUMMARY, CONCLUSION, AND OUTLOOK

In this article, we have investigated properties of the
quantum gravity path integral as given by the EPRL-FK
spinfoam model. We used the method of symmetry
restriction, which resulted in considering the sum only
over spins and intertwiners which satisfy certain symmetry
requirements.
The discretization of space-time we considered consisted

of a four-dimensional hypercubic lattice, embedded in
M≃ ½0; 1� ×R3. The intertwiners were restricted to the
set of quantum cuboids, i.e. coherent polyhedra with six
faces, where the pairs of normals were negative of each
others.
Due to this choice, every edge was six-valent, and

opposite faces had to have equal spins. This enforced a
large amount of symmetry throughout the lattice, restricting
the configurations immensely. Despite the drastic simpli-
fication, we gained several insights into the path integral,
which should be useful in future analyses.
The Barbero-Immirzi parameter γ proved to be irrelevant

for the semiclassical analysis, which was a direct conse-
quence of the fact that only flat configurations were

FIG. 14. Different phases of the EPRL-FK model, depending on the coupling constant α. It should be noted that the precise numerical
values should not be taken too literally, due to the simplifications and choices we have made in our analysis. However, we do expect that
a qualitatively similar phase diagram could be found also in the full path integral.
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considered. For the same reason, Newton’s constant could
be set to 1 and did not appear in the analysis.
The only relevant coupling constant in our analysis was

α, the power of the face amplitude. Several properties of the
path integral crucially depend on it.

A. Nongeometricity is suppressed in the
path integral

The states in spinfoam models have a certain description
in terms of twisted (or spinning) geometries. It is well
known that these do not necessarily correspond to four-
dimensional metrics. We identified the constraints that
states had to satisfy to describe a four-dimensional metric
geometry, in terms of local constraints on the spins (i.e.
areas). The constraints were equivalent to the existence of
an unambiguously defined 4-volume of the vertex.
Deviation from this constraints were identified as non-

geometricity ξ. Its physical role in the path integral crucially
depends on the value of the parameter α. For α < αξ ≈ 0.49,
out of all hypercuboids of a fixed 4-volume, the non-
geometric ones contributed the most. On the other hand, for
α > αξ, the geometric configurations dominate the non-
geometric ones. In particular, for large enough values of α,
nongeometricity is duly suppressed (see also the analysis
in [53]).
Furthermore, the effective action for the state sum in the

large-j limit contains a mass term m2
ξ for the nongeome-

tricity ξ, which grows linearly with α.
All of this analysis results from investigations around a

regular hypercuboid—for irregular hypercuboids, as far as
we can see, the qualitative features of the analysis remain
the same, while e.g. the numerical value of αξ changes
slightly. As a general rule, it seems that nongeometricity is
suppressed in the path integral, the stronger the larger α is.

B. Diffeomorphism symmetry in the
path integral

As it turned out, despite the simplification of the path
integral due to the restriction to quantum cuboids, the
remaining state space is large enough so that an Abelian
subgroup of the diffeomorphisms acts on it. In the geo-
metric large-j limit, this action can be interpreted as
vertex-translation symmetry. It can be defined even on
nongeometric configurations. Some of them, called semi-
geometric, were such that the diffeomorphism action could
be defined in a volume-preserving way. The states could
therefore be separated into three categories:

all

states
⊂

semi-

geometric
⊂ geometric:

As it turned out, the value of the coupling constant α
crucially influences the behavior of the amplitude under the
action of the diffeomorphisms. There is a critical value

αc ≈ 0.61, which separates two regions in phase space. The
region α < αc is such that those configurations dominate
the path integral, in which almost all of the 4-volume is
concentrated in one time slice, while the other time slices
contain almost no 4-volume at all. On the other hand, for
α > αc, the state with the major contribution to the path
integral is the one in which the 4-volume is separated
equally among all vertices.
A state (or a collection of states) which dominates the

state sum can be interpreted as “vacuum” in accordance
with lattice gauge theory nomenclature. The reason is that it
corresponds to ground states of the Hamiltonian and the
state sum describes fluctuations around it. We adopt this
notion in the following discussion and call the state (or the
collection of them) which dominates the path integral as
vacuum.
The vacuum state in the two phases is quite different:

While below the critical point α ¼ αc it is a superposition
of space-times with one “fat time slice” and many “thin
time slices,” above the critical point the vacuum is
described by a regular lattice, i.e. where all spins through-
out the hypercubic lattice are equal.
These two different states can be viewed as two different

realizations of flat Euclidean space (i.e. a flat geometry on a
torus). In one the vacuum describes the hypercubic lattice
as very regularly embedded in the torus, while the other is a
superposition of many different irregular ways in which the
hypercubic lattice is embedded. Equivalently, the α > αc
case can be seen as the completely regular metric ds2 ¼P

idϕ
2
i (where ϕ1;…ϕ4 are four angular coordinates on the

4-torus), while the highly irregular configurations domi-
nating in α < αc can be regarded as metrics of the form
ds2 ¼ P

ifiðϕiÞdϕ2
i for some highly fluctuating functions

f1ðϕ1Þ;…; f4ðϕ4Þ. Obviously, these two types of metrics
are diffeomorphism equivalent.
So the point α ¼ αc separates two different vacua, both

of which break diffeomorphism symmetry (i.e. the state
sum picks out different representatives of the diffeomor-
phism orbit, see Fig. 14 for the full phase structure).
There is furthermore some reason to assume that the

critical point α ¼ αc could constitute a phase transition of
second order. The reason is that, at this point, vertex
translation symmetry is nearly realized: To a certain
numerical accuracy, all diffeomorphism-equivalent metrics
describing the same geometry contribute the same value to
the path integral. If one interprets vertex translation
symmetry as coming from diffeomorphisms, this would
indicate that here one could find a diffeomorphism-
invariant fixed point, even in the full path integral. Since
diffeomorphism invariance means that correlation lengths
diverge (in terms of lattice distance), this could also
indicate the existence of a continuum limit at this critical
point. Obviously, this deserves a lot more investigation and
is an exciting prospect for the search of the theory of
quantum gravity.
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C. Torsion and the physical inner product

In the last part of the article, we investigated the physical
inner product as defined by the symmetry-restricted state
sum. In particular, we looked at the dependence of the
physical norm of kinematical states, depending on the
amount of torsion that was contained in its boundary
geometry. We defined the torsion in terms of the naive
geometric interpretation of the coherent polyhedra as
cuboids in the large-j limit. It should be noted that, at this
point, the connection to the quantum continuum torsion
usually discussed in the literature [54–57] is not completely
understood. This certainly warrants further study.
What we found was that kinematical boundary states

with high torsion have a suppressed physical norm. The
rate of suppression grows with increasing α. Since torsion,
in the way that we have defined it, on the boundary implies
nongeometricity in the bulk, this fits together with the
observation that, for higher values of α, nongeometricity is
suppressed in the path integral. However, the statement is
stronger than that. The physical norm is not just the value of
the amplitude for a specific state but includes a sum over
states.
This has an important implication: To a good approxi-

mation, one can restrict the state sum to only those states,
which are such that if the 2-complex is divided along any 3d
hypersurface, the determined boundary geometry on that
hypersurface has no torsion. This is a nonlocal condition on
states, given the naive definition of torsion we have used, in
the sense that it is not a restriction of spins and intertwiners
or vertices but a property of the labels of bunches of
neighboring vertices. Understanding this condition better,
to find an effective approximation and restriction of the state
sum, would be very interesting. It could also allow one to get
a much better and efficient way of computing state sums, at
least for not too small values of α.

D. Outlook

Although some interesting statements about the spin-
foam state sum could be derived in this article, it remains to
be shown that these statements survive if more states are
included than just the ones containing quantum cuboids. In
particular, it is paramount to include states which allow for
the summation over curvature degrees of freedom, to arrive
at a more realistic approximation to the whole state sum.
Furthermore, it should be noted that we used the

unrenormalized EPRL-FK amplitude. In working on a
fixed lattice, this disregards radiative corrections from finer
lattices.8 What one should actually do is use the renormal-
ized amplitude instead, which serves as an effective action
on the fixed lattice. This should in particular contain more
coupling constants, such as e.g. the cosmological constant
or prefactors in front of higher curvature and even non-
local terms.
At this moment, however, this amplitude does not exist.

In fact, the situation is such that very little is known about
the renormalization group flow of the EPRL-FK model.
Performing actual calculations in this direction with the full
state sum might prove very challenging, both analytically
and numerically. This is why, to tackle this problem, the
methods shown in this article could prove useful to
that end.
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