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General cylindrical waves are the simplest axisymmetrical gravitational waves that contain bothþ and ×
modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational
waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation
method. The investigation consists of the numerical realization of concepts such as Bondi mass and the
news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news
functions associated with both polarization modes. We have interpreted each polarization mode as channels
from which mass is extracted. Under this perspective, we have presented the enhancement effect of the
polarization modeþ due to the nonlinear interaction with the mode ×. After discussing the role of matter in
cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
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I. INTRODUCTION

We describe here the evolution of general cylindrical
gravitational waves using a numerical code based on the
Galerkin-Collocation method [1]. The novelty is the
numerical realization of the characteristic framework
established by Stachel [2] in extending the Bondi-Sachs
formalism [3] to cylindrical symmetry. One can find
concepts like the Bondi mass, the news functions, the
Bondi formula governing the decay of the Bondi mass, and
the asymptotic structure of the Riemann tensor that are
crucial ingredients to describe properly the gravitational
radiation emitted by an isolated source.
In exploring the evolution of cylindrical waves, we have

exhibited the decay of the Bondi mass due to the action of
the news functions. In the general case, cylindrical waves
are unpolarized with two polarization modes, þ and ×,
hereafter represented by the metric potentials ψ and ω,
respectively. Each mode has the corresponding news
functions that according to the Bondi formula can be
understood as channels from which mass is carried out.
In this direction, we have shown an interesting enhance-
ment effect due to the nonlinear interaction between both
modes. It turns to be more evident when the potential ψ
vanishes initially, whereas the potential ω has its initial
amplitude as a free parameter. For small values of this
amplitude, the amount of mass extracted by the mode × is

greater than the corresponding extracted by the mode þ.
However, there exists a critical value above which the mass
extracted by the mode þ surpasses the amount carried out
by the mode ×.
One of the main motivations in studying cylindrical

gravitational waves is their simplicity that allows inves-
tigating the nonlinear interaction of distinct polarization
modes [4–8]. Polarized cylindrical waves can be described
analytically by solving the resulting linear wave equation.
These waves are known as the Einstein-Rosen waves that
became the first exact description of a gravitational wave
[9]. Piran et al. [5] presented the first numerical evolution
of general cylindrical waves in the Cauchy formalism. They
have exhibited the gravitational counterpart of the Faraday
rotation valid for electromagnetic waves.
Another relevant scenario for cylindrical gravitational

waves is their interaction with cosmic strings. These objects
are topological defects possibly produced during the phase
transitions in the early Universe. Infinitely long static
cosmic strings have received considerable attention [10].
Sperhake et al. [11,12] have implemented an entirely
characteristic code to study the interaction of strings with
cylindrical waves.
We have organized the paper as follows. Section II shows

the basic equations of cylindrical spacetimes in the char-
acteristic scheme including the expressions for the Bondi
mass, the news functions, and the Bondi formula. We have
presented the Galerkin-collocation code in Sec. III, and the
convergence tests are in Sec. IV. Section V discusses
physical aspects such as the enhancement effect resulting
from the nonlinear interaction of the polarization modes
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and the role of matter in cylindrical symmetry. In this
direction, we have extended the code to describe the
dynamics of electromagnetic waves in cylindrical sym-
metry. The enhancement effect takes place as a conse-
quence of the nonlinear interaction of the gravitational and
electromagnetic potentials. Finally, in Sec. VI, we sum-
marize and trace some perspectives of the present work.

II. SPACETIMES WITH CYLINDRICAL
SYMMETRY

We have considered the general cylindrical line element
originally proposed by Kompaneets [13] and Jordan et al.
[14] in null coordinates,

ds2 ¼ − e2ðγ−ψÞðdu2 þ 2dudρÞ þ e2ψ ðdzþ ωdϕÞ2
þ ρ2e−2ψdϕ2; ð1Þ

where u is the retarded null coordinate that foliates the
spacetime in hypersurfaces u ¼ constant and ðρ; z;ϕÞ are
the usual cylindrical coordinates. The metric functions ψ ,
ω, and γ depend on u and ρ. The relevant field equations in
vacuum are

2ρψ ;uρ þ ψ ;u − ψ ;ρ − ρψ ;ρρ − e4ψ

2ρ
ð2ω;uω;ρ − ω2

;ρÞ ¼ 0

ð2Þ

2ω;uρ − ω;ρρ þ
ω;ρ − ω;u

ρ
− 4ðω;ρψ ;ρ − ω;ρψ ;u − ω;uψ ;ρÞ

¼ 0 ð3Þ

γ;ρ ¼ ρψ2
;ρ þ

e4ψ

4ρ
ω2
;ρ ð4Þ

γ;u ¼ 2ρðψ ;uψ ;ρ − ψ2
;uÞ þ

e4ψ

2ρ
ðω;uω;ρ − ω2

;uÞ: ð5Þ

The subscripts u and ρ denote partial derivatives with
respect to these coordinates. As a well-known important
aspect of cylindrical spacetimes [4], the functions ψ and ω
represent the two dynamical degrees of freedom of the
gravitational field, in which ψ accounts for the polarization
mode þ while ω accounts for the polarization mode × [4].
The function γ plays the role of the gravitational energy of
the system; it is connected to the C energy [2,4,6]; more
precisely, γðρ; uÞ gives the total energy per unit length
enclosed within a cylinder of radius ρ at the time u.
The dynamics of the spacetime is fully described by the

coupled wave equations (2) and (3) for the functions
ψðu; ρÞ and ωðu; ρÞ. Equations (4) and (5) determine the
function γðu; ρÞ from which, as we are going to see, the
Bondi mass and the news functions can be defined. To
evolve the spacetime, it is necessary to specify the initial
data expressed as

ψ0ðρÞ≡ ψðρ; u0Þ; ω0ðρÞ≡ ωðρ; u0Þ: ð6Þ

According to the characteristic scheme, the initial distri-
butions ψ0ðρÞ and ω0ðρÞ are free from any constraint
relation but must satisfy the requirements of regularity.
Notice that ω0ðρÞ ¼ 0 implies that ωðu; ρÞ ¼ 0 in all
subsequent instants.
The boundary conditions reflect the coordinate and

regularity conditions for the spacetime. Performing a direct
inspection of the field equations, the conditions of regu-
larity and flatness of the metric near the origin ρ ¼ 0
impose that

ψðρ; uÞ ¼ constantþOðρ2Þ ð7Þ

ωðρ; uÞ ¼ Oðρ2Þ: ð8Þ

The second boundary conditions are specified at the outer
boundary or at the future null infinity, J þ (ρ ¼ ∞). It can
be shown [2] that the asymptotic analysis of the wave
equations (2) and (3) results in

ψðρ; uÞ
ρ1=2

¼ Oðρ−1Þ; ð9Þ

ωðρ; uÞ
ρ1=2

¼ βðuÞ þOðρ−1Þ; ð10Þ

where βðuÞ is an arbitrary function. Notice ψ decays in
series of ρ−1=2−n (n ¼ 0; 1; 2…) instead of integer powers
of the radial coordinate, and ω does not vanish at J þ. It
means that the spacetime is not asymptotically flat.
We have followed the work of Stachel [2] and presented

the relevant physical aspects of cylindrical gravitational
waves in the characteristic scheme. We start with the
definition of the news functions that encompass the flow
of information or the mass carried out by the gravitational
radiation to infinity [3]. Stachel [2] had defined the news
functions as the following asymptotic quantities:

dc1
du

≡ lim
ρ→∞

ρ
1
2ψ ;u ð11Þ

dc2
du

≡ lim
ρ→∞

ρ
1
2

�
e2ψω
2ρ

�
;u
: ð12Þ

These two news functions are associated with each degree
of freedom of the gravitational waves.
The definition of the cylindrical analog of the Bondi

mass arises from the concept of the mass aspect in
cylindrical symmetry. Thorne [4] and Stachel [2] arrived
at the same result in identifying the function γðu; ρÞ as the
measure of the amount of energy per unit of length
enclosed by a cylinder of radius ρ at the time u.
Consequently, the Bondi mass in cylindrical symmetry,
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MðuÞ, is proportional to the asymptotic value of
γðu; ρÞ or

MðuÞ ¼ 1

2
lim
ρ→∞

γ: ð13Þ

This definition is valid in the case ψ does not contain a
static term a ln ρþ b; otherwise, we have to remove the
infinite contribution according to MðuÞ ¼ 1

2
limρ→∞ðγ −

a2 ln ρÞ since γstatic ¼ a2 ln ρþ b. As mentioned, the above
definition agrees with the definition of the mass per unit of
length obtained by Thorne [4] that has followed a different
approach with the introduction of the C energy. It is worth
mentioning the slightly different formula for the energy
obtained by Asthekar et al. [15] and also by Sjodin et al.
[11]. The formula depends on γ and agrees with the C
energy in the linearized case.
Another useful expression to calculate the Bondi mass

arises after the integration of Eq. (4),

MðuÞ ¼
Z

∞

0

�
ρψ2

;ρ þ
e4ψ

4ρ
ω2
;ρ

�
dρ: ð14Þ

It shows the contribution of both degrees of freedom of the
gravitational wave to the Bondi mass explicitly.
We now take into account the asymptotic of the field

equation (5) together with the definition of the Bondi
mass (13); we arrive at the Bondi formula in cylindrical
symmetry,

dM
du

¼ −
��

dc1
du

�
2

þ
�
dc2
du

�
2
�
; ð15Þ

that states that the mass per unit of length always decreases
if there are any news functions.

III. NUMERICAL SCHEME USING THE
GALERKIN-COLLOCATION METHOD

We have adopted a spectral code based on the
Galerkin-collocation method [1] to integrate the wave
equations (2) and (3). The central idea of any spectral
method is to approximate the relevant fields ψ and ω as
appropriate series with respect to sets of certain basis

functions. It will be convenient first to introduce a new
radial coordinate y,

ρ ¼ y2; ð16Þ

followed by the new fields ψ̄ and ω̄, respectively, by [7]

ψ̄ ¼ yψ ð17Þ

ω̄ ¼ ω

y
: ð18Þ

With the new radial variable, the asymptotic expressions for
ψ̄ and ω̄ consist of powers of 1=y, which is compatible with
known analytical functions.
The spectral approximations for the metric functions

ψ̄ðu; yÞ and ω̄ðu; yÞ are

ψ̄a ¼
XNψ

k¼0

akðuÞΨkðyÞ ð19Þ

ω̄a ¼
XNω

k¼0

bkðuÞΦkðyÞ; ð20Þ

where Nψ and Nω are the truncations orders, not neces-
sarily equal, that dictate the number of unknown modes
ajðuÞ and bkðuÞ, respectively. According to the Galerkin
method, the basis functions ΨjðyÞ and ΦkðyÞ satisfy the
following boundary conditions: Ψj ¼ OðyÞ, Φk ¼ Oðy3Þ,
near the origin y ¼ 0, and Ψj¼ constantþOðy−2Þ, Φk ¼
constantþOðy−1Þ. To reproduce these conditions, we have
constructed basis functions as suitable combinations (see
Appendix A) of the rational Chebyshev functions [16],

TLkðyÞ ¼ Tk

�
x ¼ y − L0

yþ L0

�
; ð21Þ

where TkðxÞ represents the standard Chebyshev polyno-
mials of k order and L0 is the map parameter.
The next step is to substitute the spectral approximations

(19) and (20) for the new fields into the wave equations (2)
and (3) with the new radial variable y to obtain the
corresponding residual equations,

Resψ̄ ðu; yÞ ¼ yψ̄a;uy − e
4ψ̄a
y

2y
ðyω̄aÞ;yω̄a;u − 1

4

�
y

�
ψ̄a

y

�
;y

�
;y

þ e
4ψ̄a
y

8y3
ðyω̄aÞ2;y ð22Þ

Resω̄ðu; yÞ ¼ yω̄a;uy þ
2

y
ðyω̄aÞ;yψ̄a;u þ 2y

�
ψ̄a

y

�
;y
ω̄a;u − y2

4

�ðyω̄aÞ;y
y3

�
;y
− 1

y
ðyω̄aÞ;y

�
ψ̄a

y

�
;y
: ð23Þ

In general, the residuals Resψ̄ðu; yÞ and Resω̄ðu; yÞ do not vanish since ψ̄a and ω̄a are approximations to the exact ψ̄
and ω̄. According to the collocation method, these residual equations vanish at the collocation or grid points. Schematically,
we have
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Resψ̄ðu; ykÞ ¼ 0; k ¼ 0; 1;…; Nψ ð24Þ

Resω̄ðu; ykÞ ¼ 0; k ¼ 0; 1;…Nω: ð25Þ

Here, yk denotes the collocation points in the physical
domain that are calculated from the Chebyshev-Gauss
points xk,

xk ¼ cos

�ð2kþ 1Þπ
2N þ 2

�
; ð26Þ

with k ¼ 0; 1;…; N and N ¼ Nψ , Nω using the algebraic
map yk ¼ L0ð1þ xkÞ=ð1 − xkÞ.
We have approximated the field equations into a set of

ordinary differential equations written in the matricial form

M

0
B@

∂ψ̄k

∂ω̄j

1
CA ¼ B ð27Þ

for all k ¼ 0; 1;…; Nψ and j ¼ 0; 1;…; Nω. In the above
expression, we have

∂ψ̄kðuÞ≡
�∂ψ̄a

∂u
�

k
¼

XNψ

i¼0

ai;uðuÞΨiðykÞ ð28Þ

∂ω̄jðuÞ≡
�∂ω̄a

∂u
�

j
¼

XNψ

i¼0

bi;uðuÞΦiðykÞ; ð29Þ

where ∂ψ̄kðuÞ and ∂ω̄jðuÞ are the values of the derivatives
of ψ̄ and ω̄ with respect to u at the collocation points. Note
that these values are related to the time derivatives of the
unknown modes ak;uðuÞ, bj;uðuÞ. The matrices M and B
depend on the unknown modes akðuÞ, bjðuÞ as well the
values of ψ̄ at the collocation points, or

ψ̄kðuÞ≡ ψ̄aðu; ykÞ ¼
XNψ

i¼0

aiðuÞΨiðykÞ; ð30Þ

which provides a set of relations between the values and the
unknown modes. The integration processes as follows:
starting from the initial modes akðu0Þ; bkðu0Þ, we can
determine the initial values ψ̄kðu0Þ as well as the initial
matrices M, B. The dynamical system gives the initial
values ∂ψ̄kðu0Þ, ∂ω̄jðu0Þ, which allows one to determine
ak;uðu0Þ; bk;uðu0Þ and, as a consequence, the modes at the
next time step repeating the whole process. We have used a
fourth-order Runge-Kutta integrator in all cases.

IV. NUMERICAL TESTS

A. Einstein-Rosen waves: Testing the code

The Einstein-Rosen waves [9] represent the exact non-
static solution of the field equations when ω ¼ 0. The field
equation (2) becomes a free wave equation for ψ in
cylindrical coordinates. For the sake of convenience, we
present a particular form of the solution obtained by Weber
and Wheeler [17] to test our code. Using the variables
ðu; yÞ, the Weber-Wheeler solution is expressed as

ψ exactðu; yÞ ¼ A0


a2 þ y4 þ ðuþ y2Þ2½2a2 − 2y4 þ ðuþ y2Þ2�

p
þ a2 − u2 − 2uy2

a2 þ y4 þ ðuþ y2Þ2½2a2 − 2y4 þ ðuþ y2Þ2�

s
; ð31Þ

where A0 and a are constants identified as the amplitude
and the width of the wave, respectively. Physically,
ψ exactðu; yÞ represents an ingoing gravitational wave with
polarization mode þ that hits the axis of symmetry and
rebounds back to infinity. One can obtain the exact Bondi
mass and the news functions after a straightforward
calculation with the solution (31).
We have tested the spectral code by comparing the exact

solution (31) with the numerical solution obtained with the
initial data ψ0ðyÞ ¼ ψ exactðu0; yÞ and ω0ðyÞ ¼ 0, where in
this case the field equations yield ωðu; yÞ ¼ 0. We have
considered two numerical tests. The first is to compare the
exact and approximate Bondi masses by evaluating the
deviation δM given by

δM ¼
�
1

Δu

Z
Δu

0

ðMexact −MðuÞÞ2du
�1

2

; ð32Þ

where we have assumed that a ¼ 2, Δu ¼ 7.0, and
A0 ¼ 1.0. We have calculated the deviation δM for the
truncation orders Nψ ¼ 20; 30;…; 80, and as expected, the
graph of Fig. 1 shows the exponential decay of δM.
The second test consists in the verification of the global

energy conservation provided by the Bondi formula
expressed as [18]

CðuÞ ¼ MðuÞ −M0

M0

þ 1

M0

Z
u

u0

��
dc1
du

�
2

þ
�
dc2
du

�
2
�
du;

ð33Þ

whereM0 ¼ Mðu0Þ is the initial Bondi mass and dc2=du ¼
0 for the case of a polarized wave. Whereas the exact
solution (31) yields CðuÞ ¼ 0, any deviation indicates the
error of the numerical solution. We have proceeded using
truncation orders Nψ ¼ 20; 30;…; 80, evolved the field
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equations until u ¼ 7.0, and selected the maximum
deviation, Cmax, for each truncation order. The result is
presented in Fig. 1 with the exponential decay of the
maximum deviation Cmax.

B. Nonlinear evolution

We describe now the convergence tests for the nonlinear
evolution which is characterized by ω̄ðu0; yÞ ≠ 0. As a
consequence, both modes of polarization of the wave are
present. We have considered two initial data families
representing pulses of the gravitational wave. The first is
of compact support,

ψ̄0ðyÞ ¼ A0y2e−ðy−y1Þ
2=σ2

1 ð34aÞ

ω̄0ðyÞ ¼
B0y3

1þ y2
e−ðy−y2Þ2=σ22 ; ð34bÞ

where A0, B0 play the roles of the initial amplitudes of the
wave modes, the constants y1, y2 denote the position, and
σ1, σ2 denote the widths of the waves. For the sake of
convenience, we have fixed y1 ¼ 1.0, y2 ¼ 1=3 and
σ1 ¼ 1, σ2 ¼ 2. The second family arises from the exact
solution due to Xanthopoulos [19] and is given by

ψ̄0ðyÞ ¼ ψ̄ exactðu0 ¼ −3; yÞ ð35aÞ

ω̄0ðyÞ ¼ ω̄exactðu0 ¼ −3; yÞ; ð35bÞ

where the exact expressions are found in Appendix B.
From these expressions, we can calculate the initial modes
ajðu0Þ and bkðu0Þ to evolve the dynamical equations (28)
and (29).
We have provided two convergence tests for the non-

linear evolution of cylindrical waves starting with the initial
data described by the Eqs. (34a) and (34b). The first we
have borrowed from Piran et al. [5] and consists of
comparing the values of γðu; yÞ evaluated from the spatial
and time integrations of Eqs. (4) and (5), respectively. We
have chosen y ¼ 4.0 and u ¼ 0.14, taking into account
increasing truncation ordersNψ andNω. We have presented
the results showing the convergence tests for γ in both
graphs of Fig. 2. It is worth mentioning that similar
convergence is observed for other values of y and u.
The second test is the verification of the global energy

conservation provided the Bondi formula expressed by
Eq. (33). In the nonlinear case, the cylindrical waves are
unpolarized, meaning that both news functions are present.
In Fig. 3, we have illustrated the qualitative agreement
between the decay of the Bondi mass with the amount of
mass carried out by the gravitational waves. This last

FIG. 2. Convergence of γ evaluated at y ¼ 4.0 and u ¼ 0.14
after integrating Eqs. (4) and (5) (circles and diamonds, respec-
tively). In the lower plot is the decay of the difference between
these values for each truncation order. We have set A0 ¼ 1.0 and
B0 ¼ 0.7 for the initial data (34a) and (34b). Here,
δγ ¼ jγðuÞ − γðρÞj=γðρÞ × 100, where γðρÞ; γðuÞ result from the
integration of Eqs. (4) and (5), respectively.

FIG. 1. Exponential decays of δM and Cmax shown by the upper
and lower panels.
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quantity is the integral of the integral in time of the rhs of
Eq. (15). Figure 4 exhibits the exponential decay of Cmax
until reaching its saturation value for N ¼ Nψ ¼ Nω ≥ 50.
We turn now to test the code against the Xanthopoulos

exact solution from which the initial data (35a) and (35b)
are derived. Instead of comparing the exact and numerical
metric functions ψ̄ , ω̄ directly, we have opted to verify the
global energy conservation. In this case, CðuÞ ¼ 0 since we
are dealing with an exact solution with both polarization
modes. We have evolved the numerical solution with
increasing truncation orders N, which rendered the
expected exponential decay of the maximum CðuÞ corre-
sponding to each truncation order as shown in Fig. 5. We
can infer that the increase of the truncation orders would
imply that the maximum deviation would be zero up to the

machine precision. The rapid convergence of the global
energy conservation is indeed a robust indicator that the
Galerkin-collocation code reproduces the Xanthopoulos
solution accurately.
We remark that the above numerical experiments were

performed using an extended version of the code of
Sec. III using the technique of domain decomposition
[20]. Accordingly, we have divided the spatial domain
into two subdomains, say D1: 0 ≤ y ≤ y0 and D2:
y0 ≤ y < ∞; each domain has distinct spectral approxima-
tions for the functions ψ̄ and ω̄ that satisfy the appropriate
junction conditions. The motivation for such an improve-
ment was the lack of exponential convergence with the
single domain code due to the rapid variations of the initial
profiles described by the initial data (35a) and (34b). In the
simulations of Fig. 5, we have set y0 ¼ 1.7, and N is the
truncation order of the potentials ψ̄ and ω̄ in each domain.

V. PHYSICAL ASPECTS

A. Nonlinear interaction between the
polarization modes þ and ×

We discuss here the consequences of the nonlinear
interaction between the gravitational waves of distinct
polarization modes in the realm of the characteristic
scheme. To this aim, we have looked closely at the process
of mass extraction described by the Bondi formula (15).
Accordingly, the news functions associated to both polari-
zation modes dictate the amount of Bondi mass carried
away. For the sake of convenience, it will be useful to
define the quantities

FIG. 5. Exponential decay of the maximum deviation of the
energy conservation for the truncation orders N ¼ Nψ ¼ Nω at
each domain. We have evolved the initial data corresponding to
the exact Xanthopoulos solution [Eqs. (35a) and (35b)]. Both
domains intercept at y0 ¼ 1.7. There is an interesting oscillatory
component superposed to the exponential decay. It seems that if
we increase the truncation orders at each domain the maximum
deviation will approach zero up to the machine precision.

FIG. 4. Exponential decay of the maximum deviation of the
energy conservation for each truncation order N ¼ Nψ ¼ Nω.
After N ≥ 50, the maximum error approaches its saturation value.
Here, we have considered the initial data given by Eqs. (34a)
and (34b).

FIG. 3. Decay of the Bondi mass together with the integral of
the news functions for the evolution of nonlinear waves starting
from the initial data (34a) and (34b) with A0 ¼ 1.0 and B0 ¼ 0.7.
In this illustration, we have considered N ¼ Nψ ¼ Nω ¼ 40.
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I1ðuÞ ¼
Z

u

u0

�
dc1
du

�
2

du ð36Þ

I2ðuÞ ¼
Z

u

u0

�
dc2
du

�
2

du ð37Þ

that are the amount of mass extracted by the gravitational
wave modes ψ and ω, respectively.
We have already mentioned that if ω̄0ðyÞ ¼ 0 then

ω̄0ðu; yÞ ¼ 0 at any instant u > u0 as a direct consequence
of the field equations. Thus, in this case, I2ðuÞ ¼ 0 for all
u > u0. However, we are interested in the behavior of I1ðuÞ
and I2ðuÞ generated with the initial data ψ̄0ðyÞ ¼ 0 and
ω̄0ðyÞ ≠ 0 [A0 ¼ 0 and B0 ≠ 0 in Eqs. (34a) and (34b)].
Because of the nonlinear interaction between the distinct
wave modes, ψ̄ðu; yÞ will be excited, and both wave modes
will act in the mass extraction process.

The numerical simulations consist in evolving cylindri-
cal waves with the initial data (34a) and (34b) with A0 ¼ 0
and B0 as a free parameter. We have expressed the results in
Fig. 6 by a sequence of joint plots of I1ðuÞ and I2ðuÞ. The
first aspect to be noticed is that I1ðuÞ saturates more quickly
than I2ðuÞ irrespective of the value of B0. In general, we
should expect I2ðuÞ > I1ðuÞ throughout all evolution since
A0 ¼ 0, but this is true for those values of B0 smaller than a

certain critical value, BðcritÞ
0 ≈ 2.0114, from which the

asymptotic values of both I1ðuÞ and I2ðuÞ are approxi-

mately equal. For values B0 > BðcritÞ
0 , it follows that

I1ðuÞ > I2ðuÞ for all u > u0, signalizing the dominance
of the mode ψ in extracting mass. In other words, the
growth of the mode ψ is such that it starts to be the
dominant channel from which mass is carried away. We call
this feature as the enhancement effect resulting from the
nonlinear interaction between the modes ψ and ω.
A more compelling way of showing the nonlinear

interaction between polarization modes þ and × and the
enhancement effect is to collect the asymptotic values of

FIG. 6. Behavior of I1ðuÞ (continuous line) and I2ðuÞ (dashed
line) starting with ψ̄ð0; yÞ ¼ 0 and ω̄ð0; yÞ ≠ 0 or A0 ¼ 0 and
B0 ≠ 0, respectively, in Eqs. (34a) and (34b). The graphs
correspond to B0 ¼ 1.7, 1.8, 1.9, 2.011, 2.05, 2.1 from left to
right and up to down. Notice the enhancement effect of the mode
þ due to the nonlinear interaction with the mode ×. We have

defined the critical value BðcritÞ
0 ≈ 2.011 such that the asymptotic

values of I1ðuÞ and I2ðuÞ are approximately equal.

FIG. 7. Sequence of plots of I1ðufÞ (blue) and I2ðufÞ (black) vs
the initial amplitude B0 for fixed A0 in each graph; more
specifically, A0 ¼ 0, 0.1, 0.2, 0.3, 0.4, 0.5 from top to bottom
and from the left to the right. The enhancement effect occurs for
larger B0 if the initial A0 is distinct from zero.
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I1ðuÞ and I2ðuÞ and I1ðufÞ and I2ðufÞ, respectively, with
uf being the final value of u, in the function of the
parameter B0. However, instead of fixing A0 ¼ 0, we have
considered several values of A0, namely, A0 ¼ 0, 0.1, 0.2,
0.3, 0.4, 0.5 (cf. Fig. 7). The case of Fig. 6 (A0 ¼ 0) is
summarized in the first graph of Fig. 7, where for B0 ≈
2.011 the amount of mass released by both gravitational
wave modes of polarization becomes equal. In the remain-
ing plots, the mode ψ is initially excited (A0 ≠ 0). Notice
that for the initial values of B0, I2ðufÞ grows steadily while
I1ðufÞ experiences a slight decrease. At some value of B0,
I2ðufÞ surpass I1ðufÞ; moreover, by a further increase of
B0, the enhancement effect takes place when I1ðufÞ
becomes larger than I2ðufÞ at some critical amplitude

BðcritÞ
0 that changes with the initial parameter A0.

B. About the matter fields in cylindrical symmetry

There are several works dealing with the cylindrical
collapse of matter fields such as dust [21], shells of dust,
perfect fluids [22–24], null fluids [25–27], dissipative
fluids [28,29], and scalar fields [30,31]. The main moti-
vations are concerning the cosmic censorship hypothesis,
the emission of gravitational waves during the collapse, and
the critical phenomena. In most of them, the line element is
not written in the hyperbolic canonical form we are
adopting, and also the additional degree of freedom
represented by the function ω is absent. In the present
discussion, we are going to consider the line element in the
hyperbolical canonical form [see Eq. (1)]. To include any

matter field, the following condition must be satisfied by
the corresponding energy-momentum tensor:

Tu
u þ Tρ

ρ ¼ 0: ð38Þ

Then, null fluids and massless scalar fields, for instance,
satisfy the above condition. However, these matter fields do
not couple with the gravitational potentials ψ or ω. Only
Eqs. (4) and (5) are altered by these matter fields adding
contributions to the Bondi mass and news functions. In
particular, considering ω ¼ 0 and introducing a massless
scalar field, φðu; ρÞ, the field equations are equivalent to a
pure gravitational wave after the change ψ → ψ þ φ=

ffiffiffi
2

p
.

Electromagnetic fields satisfy the condition (38) and
couple with the gravitational potentials ψ̄ and ω̄. It means
that electromagnetic waves can generate gravitational
radiation and the other way around. A similar conversion
occurs in the scattering of electromagnetic waves by a black
hole where gravitational radiation emerges as after having
been disturbed by a package of electromagnetic waves [32].
The introduction of electromagnetic fields in cylindrical
spacetimes has been discussed by Melvin [33] with the
cylindrical electromagnetic universes and the presentation of
the most general static configuration for such spacetimes.
We consider briefly here the dynamic of electromagnetic

fields in cylindrical spacetimes. Following Thorne [4], we
have set ω ¼ 0 and assumed that the potential vector
components Aμ ¼ ð0; 0; A2; A3Þ depend on the coordinates
u and ρ (or y) such that the resulting electric and magnetic
fields lie on the plane zϕ. The field equations read as

yψ̄ ;uy − 1

4

�
y

�
ψ̄

y

�
;y

�
;y

þ ye−
2ψ̄
y

�
Ā2

y

�
;y

�
Ā2;u − 1

4

�
Ā2

y

�
;y

�
− ye

2ψ̄
y ðyĀ3Þ;y

�
Ā3;u − ðyĀ3Þ;y

4y2

�
¼ 0 ð39Þ

yĀ2;uy − 1

4

�
y

�
Ā2

y

�
;y

�
;y

− y

�
Ā2

y

�
;y
ψ̄ ;u − y

�
ψ̄

y

�
;y
Ā2;u þ

y
2

�
ψ̄

y

�
;y

�
Ā2

y

�
;y
¼ 0 ð40Þ

yĀ3;uy − y2

4

�ðyĀ3Þ;y
y3

�
;y
þ 1

y
ðyĀ3Þ;yψ̄ ;u þ y

�
ψ̄

y

�
;y
Ā3;u − 1

2y

�
ψ̄

y

�
;y
ðyĀ3Þ;y ¼ 0: ð41Þ

In the above equations, Ā2 ¼ yA3, and Ā3 ¼ A3=y. We
have adapted the spectral code for the evolution of pure
gravitational waves to the present case [now ψ̄0ðyÞ ¼
ψ̄ðu0; yÞ, Ā20ðyÞ ¼ Ā2ðu0; yÞ, and Ā30ðyÞ ¼ Ā3ðu0; yÞ con-
stitute the initial data]. The corresponding spectral approxi-
mation for the potentials Ā2ðu; yÞ and Ā3ðu; yÞ use the same
basis functions for the gravitational potentials ψ̄ and ω̄,
respectively. It means that the potentials ψ̄ðu; yÞ; Ā2ðu; yÞ,
and ω̄ðu; yÞ, Ā3ðu; yÞ obey the same boundary conditions.
Moreover, the similarity between these potentials can be
inferred by inspecting the corresponding field equations.

Before exhibiting some numerical results, we list the
amended expressions for the Bondi mass and the Bondi
formula modified by the introduction of the electromag-
netic field. Expressing the Bondi mass as an integral
analogous to Eq. (14) and taking into account the functions
ψ̄ , Ā2, Ā3 and the new coordinate y, we obtain

MðuÞ ¼ 1

2

Z
∞

0

�
y

�
ψ̄

y

�
2

;y
þ ye−

2ψ̄
y

�
Ā2

y

�
2

;y
þ e

2ψ̄
y

y3
ðyĀ3Þ2;y

�
dy:

ð42Þ
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The second and third terms of the integral are contributions
of the electromagnetic field to the Bondi mass of the
system. The Bondi formula is straightforwardly derived
from the field equations for the function γðu; yÞ (not
presented here),

dMðuÞ
du

¼ −
��

dc1
du

�
2

þ
�
dc2
du

�
2

e
þ
�
dc3
du

�
2

e

�
; ð43Þ

where �
dc2
du

�
e
¼ lim

y→∞
e−

2ψ̄
y Ā2;u ð44Þ

�
dc3
du

�
e
¼ lim

y→∞
e
2ψ̄
y Ā3;u ð45Þ

are the news functions associated to the electromagnetic
potentials Ā2 and Ā3, respectively.
We have explored some consequences of the interaction

of electromagnetic and gravitational waves. Following the

case of unpolarized waves, we have focused on the
behavior of I1ðuÞ resulting from the initial gravitational
potential distribution ψ̄0 ¼ ψ̄ðu0; yÞ ¼ 0, while Ā2ðu0; yÞ
and Ā3ðu0; yÞ are given by the initial data functions (34a)
and (34b), respectively. It is necessary to add the corre-
sponding quantities that measure the amount of mass

carried out by electromagnetic waves, IðeÞ2 ðuÞ and

IðeÞ3 ðuÞ, defined by

IðeÞ2 ðuÞ ¼
Z

u

u0

�
dc2
du

�
2

e
du ð46Þ

IðeÞ3 ðuÞ ¼
Z

u

u0

�
dc3
du

�
2

e
du: ð47Þ

We have evolved the field equations (39)–(41) such that
Nψ ¼ N2 ¼ N3 ¼ 60, where N2;3 are the truncation orders
of the spectral expansions of the electromagnetic potentials
(not shown here).

FIG. 8. Behavior of I1ðuÞ (continuous line) and IðeÞ2 ðuÞ (dashed
line) in which ψ̄ð0; yÞ, Ā3ð0; yÞ ¼ 0, and Ā2ð0; yÞ ≠ 0 or A0 ≠ 0
in Eq. (34a). The graphs correspond to A0 ¼ 0.70, 0.90, 1.06,
1.10, 1.30, 1.50 from left to right and up to down. The
enhancement of the gravitational mode is effective here, triggered
by the interaction with the electromagnetic field.

FIG. 9. Behavior of I1ðuÞ (continuous line) and IðeÞ3 ðuÞ (dashed
line) in which ψ̄ð0; yÞ, Ā2ð0; yÞ ¼ 0 and Ā3ð0; yÞ ≠ 0 or B0 ≠ 0
in the initial data (34a) and (34b). The graphs correspond to A0 ¼
0.5 and B0 ¼ 1.70, 1.80, 1.90, 2.0, 2.10, 2.20 from left to right
and up to down. Again the enhancement effect takes place.
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The results are exhibited as sequences of plots of I1ðuÞ,
IðeÞ2 ðuÞ, and IðeÞ3 ðuÞ. Besides setting the initial gravitational
potential null, we have considered the following cases:
(i) Ā2ðu0; yÞ ≠ 0, Ā3ðu0; yÞ ¼ 0 (Fig. 6); (ii) Ā2ðu0; yÞ ¼ 0,
Ā3ðu0; yÞ ≠ 0 (Fig. 7); and (iii) Ā2ðu0; yÞ; Ā3ðu0; yÞ ≠ 0
(Fig. 8). In cases i and ii, we noticed that if one of the
potentials vanishes initially it remains null for all u > u0.
For this reason, there are two curves in Figs. 8 and 9, where
the continuous line represents I1ðuÞ, and the dashed line

represents IðeÞ2 ðuÞ and IðeÞ3 ðuÞ.
A close inspection of Figs. 8 and 9 reveals that there is

always an initial critical amplitude such that final value of

I1ðuÞ is greater than the corresponding values of IðeÞ2 ðuÞ or
IðeÞ3 ðuÞ. The enhancement effect is now due to the nonlinear
interaction between electromagnetic and gravita-
tional waves.
The last case is shown in Fig. 10 and has the contribution

of both electromagnetic fields with the behavior of IðeÞ2 ðuÞ

(dashed line) and IðeÞ3 ðuÞ (dashed-dotted line) together with
I1ðuÞ (continuous line). By changing both initial ampli-
tudes A0 and B0, we noticed the reproduction of the
enhancement effect. The critical amplitude depends on
the initial amplitudes of the electromagnetic potentials. For
the results shown in Fig. 10, we have fixed A0 ¼ 0.5 and
changed B0.

VI. CONCLUSIONS

In this paper, we have investigated the numerical
evolution of general cylindrical gravitational waves using
a code based on the Galerkin-collocation method. We have
established for the first time the numerical realization of the
characteristic scheme adapted to cylindrical symmetry due
to Stachel [2]. Relevant quantities like the Bondi mass,
news functions, and the Bondi formula were presented and
studied numerically. Therefore, we have exhibited the
decay of the Bondi mass due to the action of the news
functions associated with the polarization modes of the
gravitational waves.
Rigorously speaking, cylindrical symmetry is not of

astrophysical interest, but it is the simplest axisymmetric
spacetime in which the gravitational waves possess both
polarization modes. Therefore, it is a valid theoretical
arena for exploring the nonlinear interaction of these
polarization modes. In this direction, Piran and Stark
have shown the equivalent gravitational effect of the
Faraday rotation. We have presented the enhancement
effect that consists in the preferred increase of the mode
þ even if this mode vanishes initially. We have noticed
that by increasing the initial amplitude of the mode ω the
amount of mass extracted by the mode ψ increases such
that above a certain critical value it becomes greater than
the counterpart due to the mode ω.
We have made a brief discussion of the role of matter

fields in cylindrical symmetry focusing on the hyper-
bolical canonical form of the line element. In this case,
the most natural matter field that can interact directly
with the gravitational waves is the electromagnetic field.
Thus, we have extended the spectral code to integrate
the Maxwell-Einstein equations that describe the
electromagnetic universes [4,33] in the scheme of
characteristics. In this case, we have considered only
one gravitational potential, ψ , together with the potential
vector components compatible with the cylindrical
symmetry. Therefore, the expressions for the Bondi
mass and the news functions have now the signature
of the electromagnetic field. We have performed some
numerical investigation and shown the same effect of
enhancement with the initially vanishing gravitational
potential, ψðu0; ρÞ ¼ 0. Because of the nonlinear inter-
action with electromagnetic potentials, the gravitational
waves can be excited such that they start to extract most
of the mass.

FIG. 10. Behavior of I1ðuÞ (continuous line), IðeÞ2 ðuÞ (dashed

line), and IðeÞ3 ðuÞ (dashed-dotted line) in which ψ̄ð0; yÞ ¼ 0 and
Ā2ð0; yÞ, Ā3ð0; yÞ ≠ 0 or A0, B0 ≠ 0 in Eqs. (34a) and (34b),
respectively. The graphs correspond to fixed A0 ¼ 0.5 and
A0 ¼ 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 from left to right and up to
down. The enhancement of the gravitational mode is again
effective here, but the critical amplitude depends on particular
combinations of A0 and B0.
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We would like to point out two possible lines of
investigation. The first is the extension of the code to
evolve electromagnetic fields in a more general cylindrical
spacetime; that is with both potentials ψ and ω. The second
deals with the critical collapse of matter fields in cylindrical
symmetry since there are few works on this subject in
axisymmetric spacetimes. We intend to proceed with the
collapse of massless scalar fields but relax the condition of
hyperbolic canonicity of the line element.
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APPENDIX A: BASIS FUNCTIONS

First, we define the auxiliary basis χkðyÞ as

χkðyÞ ¼
1

2
ðTLkþ1ðyÞ þ TLkðyÞÞ; ðA1Þ

and the basis functions ΨkðyÞ and ΦkðyÞ are

ΨkðyÞ ¼
ð2k2 þ 2kþ 3Þ
ð2k2 þ 6kþ 7Þ χkþ1ðyÞ þ χkðyÞ ðA2Þ

ΦkðyÞ ¼
ðkþ 1Þð2kþ 3Þ
8ðkþ 2Þð2kþ 5Þ χkþ2ðyÞ þ

ð2kþ 3Þ
8ðkþ 2Þ χkþ1ðyÞ

þ ð2kþ 3Þ
8ð2kþ 1Þ χkðyÞ: ðA3Þ

APPENDIX B: XANTHOPOULOS SOLUTION

From Ref. [19] and after a straightforward calculation,
the exact expressions for the potentials ψ̄ and ω̄ in null
coordinates u; ρ ¼ y2 are

ψ̄ exactðu; yÞ ¼
y
2
log

�
p2ðη2 þ μ2Þ þ μ2 þ 1

ð1 − pηÞ2 þ ð1þ p2Þμ2
�

ðB1Þ

ω̄exactðu; yÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
ðμ2 − 1Þð1 − pηÞ

py½p2ðη2 þ μ2Þ þ μ2 − 1� ; ðB2Þ

where p is a free parameter and μ and η are functions
of ðu; yÞ,

μðu; yÞ ¼ ½−u2 − 2uy2 þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−u2 − 2uy2 þ 1Þ2 þ 4ðuþ y2Þ2

p
�1=2ffiffiffi

2
p ðB3Þ

ηðu; yÞ ¼
ffiffiffi
2

p ðuþ y2Þ
½−u2 − 2uy2 þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−u2 − 2uy2 þ 1Þ2 þ 4ðuþ y2Þ2

p
�1=2 : ðB4Þ

The second parameter, α, appears in the expression of γðu; yÞ as

e2γ ¼ α2½p2ðη2 þ μ2Þ þ μ2 − 1�
η2 þ μ2

: ðB5Þ
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