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For a massive vector field with derivative self-interactions, the breaking of the gauge invariance allows
the propagation of a longitudinal mode in addition to the two transverse modes. We consider generalized
Proca theories with second-order equations of motion in a curved space-time and study how the
longitudinal scalar mode of the vector field gravitates on a spherically symmetric background. We show
explicitly that cubic-order self-interactions lead to the suppression of the longitudinal mode through the
Vainshtein mechanism. Provided that the dimensionless coupling of the interaction is not negligible, this
screening mechanism is sufficiently efficient to give rise to tiny corrections to gravitational potentials
consistent with solar-system tests of gravity. We also study the quartic interactions with the presence of
nonminimal derivative coupling with the Ricci scalar and find the existence of solutions where the
longitudinal mode completely vanishes. Finally, we discuss the case in which the effect of the quartic
interactions dominates over the cubic one and show that local gravity constraints can be satisfied under a
mild bound on the parameters of the theory.
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I. INTRODUCTION

The construction of theories beyond General Relativity
(GR) is motivated not only by the ultraviolet completion
of gravity but also by the accumulating observational
evidence of the late-time cosmic acceleration. If we
modify gravity from GR, however, additional degrees of
freedom (DOF) generally arise [1–5]. To keep the theories
healthy, these new DOF should give rise to neither ghosts
nor instabilities. If the equations of motion are of second
order, the lack of higher-order derivatives forbids the
propagation of further dangerous DOF associated with
Ostrogradski instabilities [6]. In the presence of one scalar
degree of freedom, it is known that Horndeski theories [7]
are the most general scalar-tensor theories with second-
order equations of motion in curved space-times.
Independently of the original work, the same action was
rederived by extending the so-called Galileon action
(“scalar Galileons”) [8,9] to curved space-time with the
second-order property maintained [10–16].
In 1976, Horndeski derived the most general action of an

Abelian vector field with a nonminimal coupling yielding
second-order equations of motion, under the assumption
that the Maxwell equations are recovered in the flat space-
time [17]. The cosmology and the stability of such
Horndeski vector-tensor theories were recently studied in
Refs. [18,19]. There have been attempts for constructing
theories of Abelian vector fields analogous to scalar

Galileons [20–22]. If we try to preserve the Uð1Þ gauge
invariance for one vector field and stick to second-order
equations of motion, there exists a no-go theorem stating
that the Maxwell kinetic term is the only allowed inter-
action [23,24]. However, dropping the Uð1Þ gauge invari-
ance allows us to generate nontrivial terms associated with
“vector Galileons” [25,26] (see also Refs. [27–32] for
related works).
In relativistic field theory, it is well known that intro-

duction of the mass term for a Maxwell vector field breaks
the Uð1Þ gauge invariance. In this massive vector Proca
theory, there is one propagating degree of freedom in the
longitudinal direction besides two DOF corresponding to
the transverse polarizations. In the presence of derivative
interactions like those appearing for Galileons, it is natural
to ask whether they do not modify the number of DOF in
Proca theory. In Ref. [25], one of the authors derived a
generalized Proca action for a vector field Aμ with second-
order equations of motion on curved space-times. The
analysis based on the Hessian matrix showed that only
three DOF propagate as in the original Proca theory
[25,31]. The action has nonminimal derivative couplings
to the Ricci scalar R and the Einstein tensor Gμν, whose
structure is similar to that in scalar Horndeski theories. In
fact, taking the limit Aμ → ∇μπ, the resulting action for the
scalar field π reproduces that of scalar Galileons with
suitable choices of free functions [25,26].
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It was shown in Refs. [26,27] that a subclass of these
generalized Proca theories can lead to the self-acceleration
of the Universe. If we apply these theories to the present
cosmic acceleration, not only a viable cosmic expansion
history could be realized but also the gravitational inter-
action similar to GR could be recovered inside the solar
system. In this paper, the issue of how the vector field
gravitates in the presence of derivative self-interactions is
addressed on the spherically symmetric space-time with a
matter source. We first show that the transverse components
of the spatial vector Ai vanish on the spherically symmetric
background by imposing their regularities at the origin.
Hence the longitudinal scalar component is the only
relevant contribution to Ai in addition to the time compo-
nent of Aμ.
We study how the longitudinal propagation affects the

behavior of gravitational potentials in the presence of the
vector Galileon interactions. We shall consider two cases:
(i) the self-interacting Lagrangian L3 ¼ β3X∇μAμ exists,
and (ii) the nonminimal derivative coupling β4X2R is taken
into account in the Lagrangian L4 in addition to L3. We
show that, due to derivative self-interactions, the screening
mechanism of the longitudinal mode can be at work. This
leads to the suppression of the propagation of the fifth force
in such a way that the theories are consistent with local
gravity constraints. This is analogous to the Vainshtein
mechanism [33] for scalar Galileons [8,34–37], but the
property of screened solutions exhibits some difference due
to the nontrivial coupling between the longitudinal mode
and the time component of Aμ.
This paper is organized as follows. In Sec. II we present

the action of the generalized Proca theories in the presence
of a matter source and derive the equations of motion up to
the Lagrangian L4 on general curved backgrounds. In
Sec. III we obtain the equations of motion on the spheri-
cally symmetric background (with coefficients given in the
Appendix). In Sec. IV we derive the vector field profiles in
the presence of the Lagrangian L3 both analytically and
numerically and compute corrections to leading-order
gravitational potentials induced by the longitudinal scalar.
In Sec. V we study the cases in which the contribution of
the Lagrangian L4 dominates over that of L3 and also
obtain analytic field profiles as well as gravitational
potentials. Section VI is devoted to conclusions.

II. GENERALIZED PROCA THEORIES

We begin with the generalized Proca theories described
by the four-dimensional action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLþ LmÞ; L ¼ LF þ
X5
i¼2

Li; ð2:1Þ

where g denotes the determinant of the metric tensor gμν,
Lm the matter Lagrangian, and LF ¼ −ð1=4ÞFμνFμν is the

standard kinetic term of the vector field Aμ with Fμν ¼
∇μAν −∇νAμ (∇μ is the covariant derivative operator).
The Lagrangians Li encode the nontrivial derivative inter-
actions [25]

L2 ¼ G2ðXÞ; ð2:2Þ

L3 ¼ G3ðXÞ∇μAμ; ð2:3Þ

L4 ¼ G4ðXÞRþG4;XðXÞ½ð∇μAμÞ2 þ c2∇ρAσ∇ρAσ

− ð1þ c2Þ∇ρAσ∇σAρ�; ð2:4Þ

L5 ¼ G5ðXÞGμν∇μAν −
1

6
G5;XðXÞ½ð∇μAμÞ3

− 3d2∇μAμ∇ρAσ∇ρAσ − 3ð1 − d2Þ∇μAμ∇ρAσ∇σAρ

þ ð2 − 3d2Þ∇ρAσ∇γAρ∇σAγ þ 3d2∇ρAσ∇γAρ∇γAσ�;
ð2:5Þ

where R is the Ricci scalar, Gμν is the Einstein tensor,
G2;3;4;5 as well as c2, d2 are arbitrary functions of

X ≡ −
1

2
AμAμ; ð2:6Þ

and Gi;X ≡ ∂Gi=∂X. Note that we could have allowed any
contractions of the vector field Aμ with Fμν and F�

μν (with
F� being the dual of F) in the function G2, for instance in
the form of AμAνFμρFν

ρ;…, etc., or contractions between
the vector field and the Einstein tensor GμνAμAν, since they
do not contain any time derivative applying on the temporal
component of the vector field, but for the purpose of our
present analysis of screened solutions we shall simply
assume G2ðXÞ.
The Lagrangians L2;3;4;5 given above keep the equations

of motion up to second order. They can be constructed from
the Lagrangian [25,26]

~Liþ2 ¼ −
1

ð4 − iÞ!Giþ2ðXÞEα1���αiγiþ1���4

× Eβ1���βiγiþ1���4∇β1A
α1 � � �∇βiA

αi ; ð2:7Þ

where i ¼ 0, 1, 2, 3, and Eμ1μ2μ3μ4 is the antisymmetric

Levi-Civita tensor. For i ¼ 0 and i ¼ 1, we have that L2 ¼
~L2 and L3 ¼ ~L3, respectively. For i ¼ 2, 3, besides the
terms ~L4 and ~L5, there are other Lagrangians L̄4 and L̄5,
respectively, derived by exchanging the indices in Eq. (2.7),
e.g., −ð1=2ÞF4ðXÞEα1α2γ3γ4E

β1β2γ3γ4∇β1Aβ2∇α1Aα2 for
i ¼ 2 and −F5ðXÞEα1α2α3γ4E

β1β2β3γ4∇β1A
α1∇β2A

α2∇α3Aβ3
for i ¼ 3, where F4ðXÞ and F5ðXÞ are arbitrary func-
tions of X. Since L4 ¼ ~L4 þ L̄4 and L5 ¼ ~L5 þ L̄5,
the coefficients c2 and d2 appearing in Eqs. (2.4)
and (2.5) correspond to c2 ¼ F4ðXÞ=G4ðXÞ and
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d2 ¼ F5ðXÞ=G5ðXÞ, respectively. Throughout this paper,
we assume that c2 and d2 are constants. In Eqs. (2.4) and
(2.5) the nonminimal coupling terms G4ðXÞR and
G5ðXÞGμν∇μAν are included to guarantee that the equations
of motion are of second order [25].
The Proca Lagrangian corresponds to the functionsG2 ¼

m2X and G3;4;5 ¼ 0, where m corresponds to the mass of
the vector field. The generalized Proca theories given by
Eq. (2.1) generally break the Uð1Þ gauge symmetry. It is
possible to restore the gauge symmetry by introducing a
Stueckelberg field π [38], as Aμ → Aμ þ ∂μπ. To zeroth
order in Aμ, we can extract the longitudinal mode of
the vector field [25]. For the functional choices G2 ¼ X,
G3 ¼ X and G4 ¼ X2, G5 ¼ X2, this procedure gives rise
to the scalar covariant Galileon Lagrangian originally
derived in Refs. [8,9] by imposing the Galilean symmetry
∂μπ → ∂μπ þ bμ in flat space-time. The dependence on the
parameters c2 and d2 present in Eqs. (2.4) and (2.5)
disappears for the Stueckelberg field π. In fact, the terms
multiplied by the coefficients c2 and d2 are proportional to
G4;XFμνFμν and G5;X½ð∇λAλÞFμνFμν=2þ∇μAν∇νAρFρμ�,
respectively, which are both expressed in terms of
Fμν [25,31].
In the following we focus on theories given by the

action (2.1) up to the Lagrangian L4. We do not consider
the Lagrangian L5 due to its complexity, but we leave such
an analysis for a future work. We define the energy-
momentum tensor of the matter Lagrangian Lm as

TðmÞ
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δgμν
: ð2:8Þ

Assuming that matter is minimally coupled to gravity, there
is the continuity equation

∇μTðmÞ
μν ¼ 0: ð2:9Þ

Variation of the action (2.1) with respect to gμν and Aν

leads to

δS¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
Gμν−

1

2
TðmÞ
μν

�
δgμνþAνδAν

�
; ð2:10Þ

where

Gμν ≡ δL
δgμν

−
1

2
gμνL; Aν ≡ δL

δAν
: ð2:11Þ

The equation of motion of the gravity sector on general
curved space-times is given by

Gμν ¼
1

2
TðmÞ
μν ; ð2:12Þ

with

Gμν ¼ GðFÞ
μν þ

X4
i¼2

GðiÞ
μν : ð2:13Þ

Here each term comes from the standard kinetic term and
the Lagrangians (2.2)–(2.4), as

GðFÞ
μν ¼ 1

4
gμνð∇ρAσ∇ρAσ −∇ρAσ∇σAρÞ − 1

2
½∇ρAμ∇ρAν þ∇μAρ∇νAρ − 2∇ρAðν∇μÞAρ�; ð2:14Þ

Gð2Þ
μν ¼ −

1

2
gμνG2 −

1

2
G2;XAμAν; ð2:15Þ

Gð3Þ
μν ¼ −

1

2
G3;X½AμAν∇ρAρ þ gμνAλAρ∇λAρ − 2AρAðμ∇νÞAρ�; ð2:16Þ

Gð4Þ
μν ¼ G4Gμν −

1

2
G4;XAμAνR

þ 1

2
G4;Xgμν½ð∇ρAρÞ2 − ð2þ c2Þ∇ρAσ∇ρAσ þ ð1þ c2Þ∇ρAσ∇σAρ − 2Aρ□Aρ þ 2Aρ∇ρ∇σAσ�

þ G4;X½ð1þ c2Þ∇μAρ∇νAρ −∇ρAρ∇ðμAνÞ − ð1þ 2c2Þ∇ρAðν∇μÞAρ þ ð1þ c2Þ∇ρAμ∇ρAν

þ Aρ∇ðμ∇νÞAρ − Aρ∇ρ∇ðμAνÞ þ Aðν□AμÞ − 2Aðν∇μÞ∇σAσ þ Aðμ∇ρ∇νÞAρ�

−
1

2
G4;XXfAμAν½ð∇ρAρÞ2 þ c2∇ρAσ∇ρAσ − ð1þ c2Þ∇ρAσ∇σAρ� þ 2AρAσ∇μAρ∇νAσ

− 2Aα∇ρAα½Aρ∇ðμAνÞ − Aðν∇μÞAρ − Aðν∇ρAμÞ − 2gμνA½ρ∇σ�Aσ� − 4Aαð∇σAσÞAðν∇μÞAαg; ð2:17Þ
where∇ðμAνÞ ≡ ð∇μAν þ∇νAμÞ=2 and A½ρ∇σ�Aσ ≡ ðAρ∇σAσ − Aσ∇ρAσÞ=2. The equation of motion for the vector field Aν

corresponds to Aν ¼ 0, i.e.,
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∇μFμν −G2;XAν þ 2G3;XA½μ∇ν�Aμ − RG4;XAν − 2G4;X½∇ν∇μAμ þ c2□Aν − ð1þ c2Þ∇μ∇νAμ�
− G4;XX½Aνfð∇μAμÞ2 þ c2∇ρAσ∇ρAσ − ð1þ c2Þ∇ρAσ∇σAρg
− 2Aρ∇νAρ∇μAμ − 2c2Aρ∇μAρ∇μAν þ 2ð1þ c2ÞAρ∇μAρ∇νAμ� ¼ 0: ð2:18Þ

In GR we have G4 ¼ M2
pl=2, where Mpl is the reduced

Planck mass, so Gð4Þ
μν simply reduces to ðM2

pl=2ÞGμν.
Existence of the vector field with derivative self-couplings
induces additional gravitational interactions with matter
through Eq. (2.12). We shall study whether such a fifth
force can be suppressed in local regions with a matter
source.

III. EQUATIONS OF MOTION ON THE
SPHERICALLY SYMMETRIC BACKGROUND

We derive the equations of motion on the spherically
symmetric and static background described by the line
element

ds2 ¼ −e2ΨðrÞdt2 þ e2ΦðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ;
ð3:1Þ

where ΨðrÞ and ΦðrÞ are the gravitational potentials that
depend on radius r from the center of sphere. For the matter
Lagrangian Lm, we consider the perfect fluid with the
energy-momentum tensor Tμ

ν ¼ diagð−ρm; Pm; Pm; PmÞ,
where ρm is the energy density and Pm is the pressure.
Then, the matter continuity equation (2.9) reads

P0
m þΨ0ðρm þ PmÞ ¼ 0; ð3:2Þ

where a prime represents a derivative with respect to r.
We write the vector field Aμ in the form

Aμ ¼ ðϕ; AiÞ; ð3:3Þ

where i ¼ 1, 2, 3. From Helmholtz’s theorem, we can
decompose the spatial components Ai into the transverse
and longitudinal modes, as

Ai ¼ AðTÞ
i þ∇iχ; ð3:4Þ

where AðTÞ
i obeys the traceless condition ∇iAðTÞ

i ¼ 0 and χ
is the longitudinal scalar. On the spherically symmetric
configuration, it is required that the θ and φ components of

AðTÞ
i (i.e., AðTÞ

2 and AðTÞ
3 ) vanish. Then, the traceless

condition gives the following relation:

AðTÞ
1

0 þ 2

r
AðTÞ
1 − Φ0AðTÞ

1 ¼ 0; ð3:5Þ

whose solution is given by

AðTÞ
1 ¼ C

eΦ

r2
; ð3:6Þ

where C is an integration constant. For the regularity of

AðTÞ
1 at r ¼ 0, we require that C ¼ 0. This discussion shows

that the transverse vector AðTÞ
i vanishes, so we only need to

focus on the propagation of the longitudinal mode, i.e.,
Ai ¼ ∇iχ. Then, the components of Aμ on the spherical
coordinate (t, r, θ, φ) are given by

Aμ ¼ ðϕðrÞ; e−2Φχ0ðrÞ; 0; 0Þ: ð3:7Þ
The (0, 0), (1, 1) and (2, 2) components of Eq. (2.12)

reduce, respectively, to1

C1Ψ02 þ
�
C2 þ

C3
r

�
Ψ0 þ

�
C4 þ

C5
r

�
Φ0 þ C6

þ C7
r
þ C8

r2
¼ −e2Φρm; ð3:8Þ

C9Ψ02 þ
�
C10 þ

C11
r

�
Ψ0 þ C12 þ

C13
r

þ C14
r2

¼ e2ΦPm;

ð3:9Þ

C15Ψ00 þ C16Ψ02 þ C17Ψ0Φ0 þ
�
C18 þ

C3=4þ C15
r

�
Ψ0

þ
�
−
C13
2

þ C19
r

�
Φ0 þ C20 þ

C21
r

¼ e2ΦPm; ð3:10Þ

where the coefficients Ci (i ¼ 1; 2;…; 21) are given in the
Appendix. The mass term (2.6) can be decomposed as
X ¼ Xϕ þ Xχ , where

Xϕ ≡ 1

2
e2Ψϕ2; Xχ ≡ −

1

2
e−2Φχ02: ð3:11Þ

The ν ¼ 0 and ν ¼ 1 components of Eq. (2.18) reduce,
respectively, to

D1ðΨ00 þΨ02Þ þD2Ψ0Φ0 þ
�
D3 þ

D4

r

�
Ψ0

þ
�
D5 þ

D6

r

�
Φ0 þD7 þ

D8

r
þD9

r2
¼ 0; ð3:12Þ

1We note that the (0, 1) component of Eq. (2.12) reduces to the
same form as Eq. (3.13).
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D10Ψ02 þ
�
D11 þ

D12

r

�
Ψ0 þD13 þ

D14

r
þD15

r2
¼ 0; ð3:13Þ

where we introduced the short-cut notations for convenience:

D1 ¼ 2ϕð2c2G4;X − 1Þ; D2 ¼ 2ϕ½1 − 2c2ðG4;X þ 2XχG4;XXÞ�;
D3 ¼ ϕχ0G3;X − ϕ0½3 − 2c2ð3G4;X þ 2XϕG4;XXÞ� − 4c2e−2Φϕχ0χ00G4;XX;

D4 ¼ 4ϕð2c2G4;X − 2XχG4;XX − 1Þ; D5 ¼ −ϕχ0G3;X þ ϕ0½1 − 2c2ðG4;X þ 2XχG4;XXÞ�;
D6 ¼ 4ϕðG4;X þ 2XχG4;XXÞ;
D7 ¼ e2ΦϕG2;X þ ϕχ00G3;X − ϕ00ð1 − 2c2G4;XÞ þ c2ðe2Ψϕϕ02 − 2e−2Φϕ0χ0χ00ÞG4;XX;

D8 ¼ 2ϕχ0G3;X − 2ϕ0ð1 − 2c2G4;XÞ þ 4e−2Φϕχ0χ00G4;XX; D9 ¼ −2ϕ½ð1 − e2ΦÞG4;X þ 2XχG4;XX�;
D10 ¼ 8c2e−2Φχ0XϕG4;XX; D11 ¼ 2ðXχ − XϕÞG3;X þ 4c2e2Ψ−2Φϕϕ0χ0G4;XX;

D12 ¼ 4e−2Φχ0½G4;X þ 2ðXχ − XϕÞG4;XX�; D13 ¼ −χ0G2;X − e2Ψϕϕ0G3;X þ c2e2Ψ−2Φϕ02χ0G4;XX;

D14 ¼ 4XχG3;X − 4e2Ψ−2Φϕϕ0χ0G4;XX; D15 ¼ −2χ0½ð1 − e−2ΦÞG4;X − 2e−2ΦXχG4;XX�: ð3:14Þ

Among the six equations of motion (3.2), (3.8)–(3.10),
(3.12), and (3.13), five of them are independent. For a given
density profile ρm of matter, solving five independent
equations of motion leads to the solutions to Pm, Ψ, Φ,
ϕ, χ with appropriate boundary conditions.
For the consistency with local gravity experiments

within the solar system, we require that the gravitational
potentials Ψ and Φ need to be close to those in GR. In GR
without the vector field Aμ, we have G2 ¼ G3 ¼ 0, G4 ¼
M2

pl=2 and ϕ ¼ 0 ¼ χ0, so Eqs. (3.8) and (3.9) read

2M2
pl

r
Φ0

GR −
M2

pl

r2
ð1 − e2ΦGRÞ ¼ e2ΦGRρm; ð3:15Þ

2M2
pl

r
Ψ0

GR þM2
pl

r2
ð1 − e2ΦGRÞ ¼ e2ΦGRPm: ð3:16Þ

Since ΦGR and ΨGR would be the leading-order contribu-
tions to gravitational potentials under the operation of the
screening mechanism, we first derive their solutions inside
and outside a compact body. We assume that the change of
ρm occurs rapidly at the distance r�, so that the matter
density can be approximated as ρmðrÞ≃ ρ0 for r < r� and
ρmðrÞ≃ 0 for r > r�. This configuration is equivalent to
that of the Schwarzschild interior and exterior solutions.
For r < r�, integration of Eq. (3.2) leads to Pm ¼
−ρm þ Ce−ΨðrÞ, where C is an integration constant known
by imposing the condition Pmðr�Þ ¼ 0.
Matching the interior and exterior solutions of Ψ and Φ

at r ¼ r� with appropriate boundary conditions (at r ¼ 0
and r → ∞), the gravitational potentials inside and outside
the body are given by

eΨGR ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ0r2�
3M2

pl

s
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ0r2

3M2
pl

s
;

eΦGR ¼
�
1 −

ρ0r2

3M2
pl

�−1=2
; ð3:17Þ

for r < r�, and

eΨGR ¼
�
1 −

ρ0r3�
3M2

plr

�
1=2

; eΦGR ¼
�
1 −

ρ0r3�
3M2

plr

�−1=2
;

ð3:18Þ

for r > r�. In the following, we employ the weak gravity
approximation under which jΨj and jΦj are much smaller
than 1, i.e.,

Φ� ≡ ρ0r2�
M2

pl

≪ 1: ð3:19Þ

This condition means that the Schwarzschild radius of the
source rg ≈ ρ0r3�=M2

pl is much smaller than r�. Then, the
solutions (3.17) and (3.18) reduce, respectively, to

ΨGR ≃ ρ0
12M2

pl

ðr2 − 3r2�Þ; ΦGR ≃ ρ0r2

6M2
pl

; ð3:20Þ

for r < r�, and

ΨGR ≃ −
ρ0r3�
6M2

plr
; ΦGR ≃ ρ0r3�

6M2
plr

; ð3:21Þ

for r > r�. For the theories with the action (2.1), the vector
field interacts with gravity through the derivative terms Ψ00,

SCREENING FIFTH FORCES IN GENERALIZED PROCA … PHYSICAL REVIEW D 93, 104016 (2016)

104016-5



Ψ0, Φ0 in Eqs. (3.12) and (3.13). The leading-order
contributions of such gravitational interactions follow from
the derivatives Ψ00

GR, Ψ
0
GR, Φ

0
GR of the GR solutions (3.17)

and (3.18). Then, we can integrate Eqs. (3.12) and (3.13) to
obtain the solutions to ϕ and χ0. The next-to-leading order
corrections to Ψ and Φ can be derived by substituting the
solutions of ϕ and χ0 into Eqs. (3.8) and (3.9). In Secs. IV
and V we apply this procedure to concrete theories.

IV. THEORIES WITH THE CUBIC LAGRANGIAN

Let us first consider theories in which the function G4

corresponds only to the Einstein-Hilbert term, i.e.,

G4 ¼
M2

pl

2
; ð4:1Þ

whereMpl is the reduced Planck mass. In this case the G4;X

term in the Lagrangian L4 vanishes, but the Lagrangian L3

gives rise to a nontrivial gravitational interaction with the
vector field. The equations of motion (3.12) and (3.13)
reduce, respectively, to

1

r2
d
dr

ðr2ϕ0Þ − e2ΦG2;Xϕ −G3;Xϕ
1

r2
d
dr

ðr2χ0Þ

þ 2ϕðΨ00 þΨ02 −Ψ0Φ0Þ −
�
ϕχ0G3;X − 3ϕ0 −

4ϕ

r

�
Ψ0

þ ðϕχ0G3;X − ϕ0ÞΦ0 ¼ 0; ð4:2Þ

χ0G2;X þ
�
e2Ψϕϕ0 þ 2

r
e−2Φχ02

�
G3;X

þ ðe2Ψϕ2 þ e−2Φχ02ÞG3;XΨ0 ¼ 0: ð4:3Þ

For concreteness, we shall focus on the theories given by
the functions

G2ðXÞ ¼ m2X; G3ðXÞ ¼ β3X; ð4:4Þ

where m is the mass of the vector field, and β3 is a
dimensionless constant. The choice of G3ðXÞ given above
is related with that of scalar Galileons. In what follows, we
obtain analytic solutions to Eqs. (4.2) and (4.3) under the
approximation of weak gravity.

A. Analytic vector field profiles

1. Solutions for r < r�
For the distance r smaller than r�, we substitute the

derivatives of Eq. (3.20) into Eqs. (4.2) and (4.3) to derive
leading-order solutions to ϕ and χ0. The terms containing
e2Ψ and e−2Φ provide the contributions linear in Ψ and Φ
[say, Ψϕϕ0G3;X in Eq. (4.3)]. After deriving analytic
solutions to ϕ and χ0, however, we can show that such
terms give rise to contributions much smaller than the

leading-order solutions. Hence it is consistent to employ
the approximations e2Ψ ≃ 1 and e−2Φ ≃ 1 in Eqs. (4.2) and
(4.3), such that

d
dr

ðr2ϕ0Þ −m2r2ϕ − β3ϕ
d
dr

ðr2χ0Þ

þ ρ0
6M2

pl

½6ϕþ rðϕ0 þ β3χ
0ϕÞ�r2 ≃ 0; ð4:5Þ

m2χ0 þ β3

�
ϕϕ0 þ 2

r
χ02 þ ρ0ϕ

2

6M2
pl

r

�
≃ 0: ð4:6Þ

From Eq. (4.6) it follows that

χ0 ¼ m2r
4β3

"
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8β23
m4r

�
ϕϕ0 þ ρ0ϕ

2

6M2
pl

r

�s #
: ð4:7Þ

The sign of (4.7) has been chosen in such a way that χ0

vanishes for β3=m2 → 0, which can be regarded as the GR
limit. Since we are interested in how the screening
mechanism is at work in the presence of the Lagrangian
L3 for a very light field (e.g., the vector field associated
with the late-time cosmic acceleration), we take another
limit β3=m2 → ∞ in the discussion below. In other words,
we focus on the case m → 0 with a nonzero dimensionless
coupling β3. For β3 > 0, Eq. (4.7) reduces to

χ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
r
2

�
ϕϕ0 þ ρ0ϕ

2

6M2
pl

r

�s
: ð4:8Þ

For the consistency of Eq. (4.8) we require the condi-
tion ϕϕ0 < 0.
We search for solutions where the scalar potential ϕ does

not vary much with respect to r, i.e.,

ϕðrÞ ¼ ϕ0 þ fðrÞ; jfðrÞj ≪ jϕ0j; ð4:9Þ

where ϕ0 is a constant and fðrÞ is a function of r. We also
focus on the case where ϕðrÞ decreases with the growth of
r, such that ϕ0ðrÞ < 0 with ϕ0 > 0. In Eq. (4.5) we also
neglect the terms rðϕ0 þ β3χ

0ϕÞ relative to 6ϕ. The validity
of this approximation can be checked after deriving the
solutions to ϕ and χ0. Substituting Eq. (4.8) into Eq. (4.5)
with Eq. (4.9), we obtain the integrated solution

r2f0 − β3ϕ
3=2
0 r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
r
2

�
f0 þ ρ0ϕ0r

6M2
pl

�s
þ ρ0ϕ0

3M2
pl

r3 ¼ C;

ð4:10Þ

where C is a constant. Under the boundary condition
ϕ0ð0Þ ¼ 0, we can fix C ¼ 0 and hence
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f0 − β3ϕ
3=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
r
2

�
f0 þ ρ0ϕ0r

6M2
pl

�s
¼ −

ρ0ϕ0

3M2
pl

r: ð4:11Þ

Clearly, there is a solution of the form f0ðrÞ ∝ −r.
Substituting the solution fðrÞ ¼ −Br2 into Eq. (4.11),
we find that the positive constant B, which remains finite
in the limit β3 → ∞, is given by

B ¼ ρ0ϕ0

6M2
pl

F ðsβ3Þ; ð4:12Þ

where

sβ3 ≡
3ðβ3ϕ0MplÞ2

4ρ0
; ð4:13Þ

F ðsβ3Þ≡ ð1þ sβ3Þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sβ3

1þ sβ3

r �
: ð4:14Þ

Then, we obtain the following analytic field profiles:

ϕðrÞ ¼ ϕ0

�
1 − F ðsβ3Þ

ρ0
6M2

pl

r2
�
; ð4:15Þ

χ0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ϕ

2
0

6M2
pl

�
F ðsβ3Þ −

1

2

�s
r: ð4:16Þ

As sβ3 increases from 0 to ∞, the function F ðsβ3Þ
decreases from 1 to 1=2. This means that the terms inside
the square root of Eq. (4.8) remain positive. Since
F ðsβ3Þρ0r2=ð6M2

plÞ ≪ 1 from the condition (3.19) of weak
gravity, the solution (4.15) is consistent with the
assumption (4.9). In the limit that sβ3 ≪ 1, the field profiles
(4.15) and (4.16) reduce, respectively, to

ϕðrÞ≃ ϕ0

�
1 −

ρ0
6M2

pl

r2
�
; χ0ðrÞ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ϕ

2
0

12M2
pl

s
r; ð4:17Þ

whereas, for sβ3 ≫ 1, it follows that

ϕðrÞ≃ ϕ0

�
1 −

ρ0
12M2

pl

r2
�
; χ0ðrÞ≃ ρ0

6β3M2
pl

r: ð4:18Þ

The amplitude of χ0ðrÞ in Eq. (4.18) is about s−1=2β3
times

smaller than that in Eq. (4.17). For a larger coupling jβ3j,
the screening effect is efficient to suppress the propagation
of the longitudinal mode. On using the solutions (4.15) and
(4.16), we can confirm that the terms rðϕ0 þ β3χ

0ϕÞ in
Eq. (4.5) are much smaller than 6ϕ and that the approx-
imations e2Ψ ≃ 1 and e−2Φ ≃ 1 employed in Eq. (4.6) are
also justified.

2. Solutions for r > r�
Employing the GR solution (3.21) of gravitational

potentials in the regime r > r� and substituting them into
Eqs. (4.2) and (4.3), it follows that

d
dr

ðr2ϕ0Þ −m2r2ϕ − β3ϕ
d
dr

ðr2χ0Þ

þ ρ0r3�
9M4

plr
2
½ρ0r3�ϕþ 3M2

plr
2ð2ϕ0 − β3χ

0ϕÞ�≃ 0; ð4:19Þ

m2χ0 þ β3

�
ϕϕ0 þ 2

r
χ02 þ ρ0ϕ

2r3�
6M2

plr
2

�
≃ 0: ð4:20Þ

Taking the m → 0 limit and considering the branch χ0 > 0,
Eq. (4.20) gives the following relation:

χ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
r
2

�
ϕϕ0 þ ρ0ϕ

2r3�
6M2

plr
2

�s
: ð4:21Þ

The term ðρ0r3�Þ2ϕ=ð9M4
plr

2Þ in Eq. (4.19) is at most Φ�
times as small as the term ρ0ϕ=M2

pl in Eq. (4.5). Moreover,
after deriving the solutions to ϕ and χ0, we can confirm that
the contributions 3M2

plr
2ð2ϕ0 − β3χ

0ϕÞ in Eq. (4.19) are at
most of the order of ρ0r3�ϕ. Hence it is a good approxi-
mation to neglect the terms inside the square bracket of
Eq. (4.19). Substituting Eq. (4.21) into Eq. (4.19) with the
approximation (4.9) and matching the integrated solution at
r ¼ r� on account of Eq. (4.11), we obtain

r2ϕ0 − β3ϕ
3=2
0 r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
r
2

�
ϕ0 þ ρ0ϕ0r3�

6M2
plr

2

�s
≃ −

ρ0ϕ0r3�
3M2

pl

:

ð4:22Þ
More explicitly, the field derivative ϕ0 can be expressed

as

ϕ0ðrÞ ¼ −
ρ0ϕ0r3�
3M2

plr
2
F ðξÞ; ξ≡ sβ3

r3

r3�
: ð4:23Þ

From Eq. (4.21) the longitudinal mode is given by

χ0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0r3�ϕ2

0

6M2
plr

�
F ðξÞ − 1

2

�s
: ð4:24Þ

If sβ3 ≫ 1, then ξ ≫ 1 for r > r�. In this case it follows
that

ϕ0ðrÞ≃ −
ρ0ϕ0r3�
6M2

plr
2
; χ0ðrÞ≃ ρ0r3�

6β3M2
plr

2
: ð4:25Þ

If sβ ≲ 1, there is the transition radius rV at which
the r dependence of the longitudinal mode changes.
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The radius rV can be identified by the condition
ξ ¼ 1, i.e.,

rV ¼ r�
s1=3β3

: ð4:26Þ

For the distance r� < r ≪ rV we have F ≃ 1, so the
solutions reduce to

ϕ0ðrÞ≃ −
ρ0ϕ0r3�
3M2

plr
2
; χ0ðrÞ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0r3�ϕ2

0

12M2
plr

s
: ð4:27Þ

For r ≫ rV we have ξ ≫ 1 and hence the resulting
solutions are given by Eq. (4.25). In this regime, the
longitudinal mode χ0ðrÞ decreases faster than that for r� <
r ≪ rV with a suppressed amplitude. The distance rV can
be regarded as the Vainshtein radius above which χ0ðrÞ
starts to decay quickly. If jβ3j obeys the condition sβ3 ≫ 1,
χ0ðrÞ is strongly suppressed both inside and outside the
body due to the Vainshtein mechanism, see Eqs. (4.18) and
(4.25). Meanwhile, for sβ3 ≲ 1, the screening of the
longitudinal mode manifests for the distance r > rV . The
fact that the suppression of the longitudinal mode occurs

outside the radius rV for small jβ3j is a unique feature of
vector Galileons.

B. Numerical solutions for the vector field

To confirm the validity of the analytic solutions derived
above, we shall numerically solve Eqs. (4.2) and (4.3)
coupled with the gravitational equations (3.8)–(3.10). For
concreteness we consider the density distribution given by

ρmðrÞ ¼ ρ0e−ar
2=r2� ; ð4:28Þ

where a is a positive constant of the order of 1. With this
profile, the matter density starts to decrease significantly for
r≳ r�. For the numerical purpose, it is convenient to
introduce the following dimensionless quantities:

x ¼ r
r�
; y ¼ ϕ

ϕ0

; z ¼ χ0

ϕ0

; ð4:29Þ

where ϕ0 is the value of ϕ at r ¼ 0. In the massless limit
with G3 ¼ β3X, we can express Eqs. (4.2) and (4.3) in
the forms

d2y
dx2

þ 2

x
dy
dx

− β3r�ϕ0y

�
dz
dx

þ 2

x
z

�
þ 2y

�
d2Ψ
dx2

þ
�
dΨ
dx

�
2

−
dΨ
dx

dΦ
dx

�

−
�
β3r�ϕ0yz − 3

dy
dx

−
4

x
y

�
dΨ
dx

þ
�
β3r�ϕ0yz −

dy
dx

�
dΦ
dx

¼ 0; ð4:30Þ

z ¼ eΨþΦ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xy

�
dy
dx

þ y
dΨ
dx

��
2þ x

dΨ
dx

�
−1

s
; ð4:31Þ

where the quantity β3r�ϕ0 is related with sβ3 as
β3r�ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sβ3Φ�=3

p
. We take the x derivative of

Eq. (4.31) and then eliminate the term dz=dx by combining
it with Eq. (4.30) to obtain the second-order equation for
yðxÞ. To derive the leading-order gravitational potentials
ΦGR and ΨGR, we also solve Eqs. (3.15) and (3.16) with a
vanishing pressure Pm. This procedure gives rise to the
solutions derived under the weak gravity approximation,
e.g., Eq. (3.17). Numerically, we confirmed that the
approximation substituting ΦGR and ΨGR into Eqs. (4.30)
and (4.31) provides practically identical results to those
obtained by solving full Eqs. (3.8)–(3.10).
In Fig. 1 we plot the field profile for ρm ¼ ρ0e−4r

2=r2� and
Φ� ¼ 10−4 with two different values of sβ3 . The boundary
conditions of y and dy=dx around the center of body are
chosen to match with Eq. (4.15). As we see in Fig. 1, both
−ϕ0ðrÞ and χ0ðrÞ linearly grow in r for the distance smaller
than r�. The left panel of Fig. 1 corresponds to sβ3 ¼ 10−4,
in which case the solutions to ϕðrÞ and χ0ðrÞ are well

described by Eq. (4.17) in the regime r < r�. For sβ3 larger
than the order of 1, the longitudinal mode χ0ðrÞ tends to be
suppressed according to Eq. (4.18). The right panel of
Fig. 1, which corresponds to sβ3 ¼ 1, is the case in which
the suppression of χ0ðrÞ occurs in a mild way for r < r�.
For the distance r larger than r�, both −ϕ0ðrÞ and χ0ðrÞ

start to decrease with the growth of r. When sβ3 ¼ 10−4, the
distance rV is of the order of 10r�. Hence the solutions to
ϕ0ðrÞ and χ0ðrÞ are given by Eq. (4.27) for r� < r≲ 10r�
and by Eq. (4.25) for r≳ 10r�. In the left panel of Fig. 1,
we can confirm that the qualitative behavior of χ0ðrÞ
changes around r ≈ 10r� [i.e., from χ0ðrÞ ∝ r−1=2 to
χ0ðrÞ ∝ r−2]. Note that jϕ0ðrÞj decreases as jϕ0ðrÞj ∝ r−2

for r > r�.
When sβ3 ¼ 1, as seen in the right panel of Fig. 1, we

find that there is almost no intermediate regime corre-
sponding to the solution χ0ðrÞ ∝ r−1=2 and that the longi-
tudinal mode decreases as χ0ðrÞ ∝ r−2 for r > r�. This
reflects the fact that, even when sβ3 ¼ Oð1Þ, the quantity ξ
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in Eq. (4.23) quickly becomes much larger than 1 with the
growth of rð> r�Þ. Then, for sβ3 ≳ 1, the solutions in the
regime r > r� are well approximated by Eq. (4.25). For
increasing jβ3j, the suppression for the amplitude of χ0ðrÞ
tends to be more significant outside the body.
In Fig. 1 we also find that ϕðrÞ stays nearly constant in

the whole regime of interest. This is associated with the fact
that the r-dependent correction to ϕðrÞ is at most of the
order of ϕ0Φ�, i.e., much smaller than ϕ0 under the weak
gravity approximation. The numerical solutions to ϕðrÞ and
χ0ðrÞ are fully consistent with the analytic field profiles
derived under the assumption (4.9), so we resort to the
analytic solutions for discussing corrections to the leading-
order gravitational potentials in Sec. IV C.

C. Corrections to gravitational potentials

We compute the corrections to ΦGR and ΨGR induced by
the longitudinal propagation of the vector field. Since the
leading-order gravitational potentials obey Eqs. (3.15) and
(3.16), we can express Eqs. (3.8) and (3.9) in the forms

2M2
pl

r
Φ0 −

M2
pl

r2
ð1 − e2ΦÞ ¼ e2Φρm þ ΔΦ; ð4:32Þ

2M2
pl

r
Ψ0 þM2

pl

r2
ð1 − e2ΦÞ ¼ e2ΦPm þ ΔΨ; ð4:33Þ

where ΔΦ and ΔΨ are correction terms. We are interested in
the behavior of gravitational potentials outside a compact

object (r≳ r�), so we employ the solutions (4.23) and
(4.24) with the leading-order potentials (3.21) to estimate
the corrections ΔΦ and ΔΨ. Note that ϕðrÞ is given by
Eq. (4.9) with jfðrÞj at most of the order of ϕ0Φ�.
Let us first consider the case sβ3 ≳ 1. Since the solutions

to ϕ0ðrÞ and χ0ðrÞ are approximately given by Eq. (4.25), it
follows that

ΔΦ ≃ 5Φ2�ϕ2
0r

2�
72r4

; ΔΨ ≃ −
Φ2�ϕ2

0r
2�

72r4
; ð4:34Þ

where we used the condition ξ ≫ 1. Integrations of
Eqs. (4.32) and (4.33) lead to

ΦðrÞ≃ Φ�r�
6r

�
1 −

5Φ�
24

�
ϕ0

Mpl

�
2 r�
r

�
;

ΨðrÞ≃ −
Φ�r�
6r

�
1 −

Φ�
8

�
ϕ0

Mpl

�
2 r�
r

�
: ð4:35Þ

To recover the behavior close to GR in the solar system, we
require that Φ�ðϕ0=MplÞ2ðr�=rÞ ≪ 1. Under this condition,
the post-Newtonian parameter γ ≡ −Φ=Ψ is given by

γ ≃ 1 −
Φ�
12

�
ϕ0

Mpl

�
2 r�
r
: ð4:36Þ

The local gravity experiments give the bound jγ − 1j <
2.3 × 10−5 [39]. For the Sun (Φ� ≃ 10−6) we have
jγ − 1j≃ 10−7ðϕ0=MplÞ2ðr�=rÞ, so the experimental bound

FIG. 1. The numerical solutions to y ¼ ϕ=ϕ0, −dy=dx, and z ¼ χ0=ϕ0 as a function of x ¼ r=r� for the matter profile ρm ¼ ρ0e−4r
2=r2�

with Φ� ¼ 10−4. Each panel corresponds to sβ3 ¼ 10−4 (left) and sβ3 ¼ 1 (right), respectively. The boundary conditions of Ψ, Φ, y, and
dy=dx are chosen to be consistent with Eqs. (3.17) and (4.15) at x ¼ 10−3. The vertical lines represent the scales r ¼ r� and rV ¼ 20r�
(left panel) and the scale r ¼ r� (right panel).
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is well satisfied for ϕ0 ≲Mpl. We also note that the
deviation of γ from 1 decreases for larger r.
We proceed to the case sβ3 ≲ 1. On using the solutions

(4.27) for the distance r� < r < rV , the correction terms in
Eqs. (4.32) and (4.33) read

ΔΦ ≃
ffiffiffiffiffiffiffiffiffiffiffiffi
3Φ�r�

p
β3ϕ

3
0

4r3=2
; ΔΨ ≃

ffiffiffi
3

p ðΦ�r�Þ5=2β3ϕ3
0

432r7=2
; ð4:37Þ

which means that ΔΨ is about 10−2Φ2�ðr�=rÞ2 times as
small as ΔΦ. Integrating Eqs. (4.32) and (4.33), the
gravitational potentials are given by

ΦðrÞ≃ Φ�r�
6r

�
1þ ffiffiffiffiffiffi

sβ3
p �

ϕ0

Mpl

�
2
�
r
r�

�
3=2

�
;

ΨðrÞ≃ −
Φ�r�
6r

�
1 − 2

ffiffiffiffiffiffi
sβ3

p �
ϕ0

Mpl

�
2
�
r
r�

�
3=2

�
; ð4:38Þ

where we used sβ3 instead of β3. The correction to
ΨGRðrÞ ¼ −Φ�r�=ð6rÞ is negligibly small for ϕ0 ≲Mpl.
The post-Newtonian parameter can be estimated as

γ ≃ 1þ 3
ffiffiffiffiffiffi
sβ3

p �
ϕ0

Mpl

�
2
�
r
r�

�
3=2

; ð4:39Þ

which increases for larger r. The maximum value of jγ − 1j
is reached at the distance r ¼ rV , i.e., jγ − 1jmax≃
3ðϕ0=MplÞ2. To satisfy the experimental bound of γ at this
radius, we require that

ϕ0 ≲ 3 × 10−3Mpl: ð4:40Þ

For r > rV the solutions of the vector field change to
Eq. (4.25), so the parameter jγ − 1j starts to decrease.
The above discussion shows that, when sβ3 ≳ 1, the extra

gravitational interaction induced by the longitudinal mode
χ0ðrÞ is suppressed due to the Vainshtein mechanism. If

sβ3 ≲ 1, the screening mechanism of the fifth force is at
work only at r > rV , so the field value ϕ0 is constrained as
Eq. (4.40) for the consistency with local gravity tests at
r ¼ rV . If rV is larger than the solar-system scale
(rsolar ∼ 1014 cm), the upper bound of ϕ0 gets weaker than
Eq. (4.40). For the Sun (r� ∼ 1011 cm), we have rV > rsolar
for sβ3 ≲ 10−9. In the limit that sβ3 → 0 the distance rV goes
to infinity, so there is no upper bound of ϕ0.
From Eq. (4.13) the following relation holds:

ffiffiffiffiffiffi
sβ3

p ≃ 2.5 × 1045β3
ϕ0

Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 g=cm3

ρ0

s
: ð4:41Þ

For the Sun (ρ0 ≈ 100 g=cm3), we have ffiffiffiffiffiffisβ3
p ≈

1044β3ϕ0=Mpl. Even if ϕ0 is much smaller than the order
of Mpl, it is natural to satisfy the condition sβ3 ≳ 1 except
for a very tiny coupling β3. In this sense, we can say that the
screening mechanism, which occurs for sβ3 ≳ 1, is very
generic in the presence of a nonvanishing coupling β3.

V. THEORIES WITH THE CUBIC
AND QUARTIC LAGRANGIANS

In this section we study the theories given by the
functions

G2ðXÞ ¼ m2X; G3ðXÞ ¼ β3X; G4ðXÞ ¼
M2

pl

2
þ β4X2;

ð5:1Þ

where m, β3, β4 are constants (β4 has a dimension of
½mass�−2). Our interest is how the vector Galileon term
β4X2 modifies the screening mechanism discussed in
Sec. IV. For the functions (5.1), the vector field equations
of motion (3.12) and (3.13) read

1

r2
d
dr

ðr2ϕ0Þ − e2Φm2ϕþ 2ϕðΨ00 þΨ02 −Ψ0Φ0Þ þ
�
3ϕ0 þ 4ϕ

r

�
Ψ0 − ϕ0Φ0 − β3ϕ

�
1

r2
d
dr

ðr2χ0Þ þ ðΨ0 − Φ0Þχ0
�

−
2β4e−2Φϕ

r2
½4rχ0χ00 þ e2Ψþ2Φϕ2ðe2Φ − 1þ 2rΦ0Þ − χ02fe2Φ − 3þ 2rð3Φ0 − 2Ψ0Þg�

þ 2β4c2e−2Φ

r
½2rχ0χ00ðϕ0 þ 2ϕΨ0Þ þ χ02f4ϕΨ0 þ ½ϕ00 þ 2ϕðΨ00 − 3Ψ0Φ0 þΨ02Þ�rþ ϕ0ð2 − 3rΦ0 þ 3rΨ0Þg

− e2Ψþ2Φϕfrϕ02 þ ϕϕ0ð2 − rΦ0 þ 5rΨ0Þ þ ϕð4ϕΨ0 þ ½ϕ00 þ 2ϕðΨ00 −Ψ0Φ0 þΨ02Þ�rÞg� ¼ 0; ð5:2Þ

m2χ0 þ β3

�
e2Ψðϕϕ0 þ ϕ2Ψ0Þ þ e−2Φχ02

�
2

r
þΨ0

��
þ 2β4χ

0

r

�
e2Ψ

ϕ2

r
ð1 − e−2ΦÞ

þ e2Ψ−2Φð4ϕϕ0 − c2rϕ02 − 4c2ϕϕ0rΨ0 − 4c2ϕ2rΨ02 þ 2ϕ2Ψ0Þ − e−2Φ
χ02

r
ð1 − 3e−2Φ − 6rΨ0e−2ΦÞ

�
¼ 0: ð5:3Þ
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If β3 ¼ 0, then there is a solution χ0 ¼ 0 to Eq. (5.3).
This means that, in the absence of the Lagrangian L3, the
β4X2 term admits the solution where the longitudinal mode
completely vanishes. In what follows, we shall consider the
theories with β3 ≠ 0 and β4 ≠ 0 by dealing with the
coupling β3 as a small correction to the solution χ0 ¼ 0.
As we will see below, the longitudinal mode χ0 does not
completely vanish in such cases.
As for the coupling β4, the condition under which the

term β4X2R in G4ðXÞR is subdominant to the Einstein-
Hilbert term M2

plR=2 gives

jβ4jϕ4 ≪ M2
pl: ð5:4Þ

More specifically, we focus on the case in which the
coupling β4 is in the range

jβ4jϕ2 ≪ 1; ð5:5Þ

under which Eq. (5.4) is satisfied for jϕj≲Mpl. We also
assume that the constant jc2j is at most of the order of 1.

A. Vector field profiles

To derive analytic solutions to the vector field, we
employ the weak gravity approximation (Φ� ≪ 1) and
expand Eqs. (5.2) and (5.3) up to first order in Ψ, Φ,
and their derivatives. Analogous to the discussion in
Sec. IV, we search for the solutions in the form (4.9) with
χ02 suppressed relative to ϕ2, i.e.,

jrϕ0j ≪ jϕj; χ02 ≪ ϕ2: ð5:6Þ

The consistency of these approximations can be
checked after deriving analytic solutions of ϕ and χ0.
Under this approximation scheme, Eqs. (5.2) and (5.3)
reduce, respectively, to

ð1 − 2c2β4ϕ2Þ d
dr

ðr2ϕ0Þ −m2r2ϕ − β3ϕ
d
dr

ðr2χ0Þ − 4β4ϕ
d
dr

ðrχ02Þ

þ 2ϕ
d
dr

ðr2Ψ0Þ þ β3ϕχ
0r2ðΦ0 −Ψ0Þ − 4β4ϕ

3½Φþ rðΦ0 þ 2c2Ψ0 þ c2rΨ00Þ�≃ 0; ð5:7Þ

χ0
�
4β4
r

�
2ϕϕ0 þ χ02

r
þ ϕ2

r
ðΦþ rΨ0Þ

�
þm2

�
≃ −β3

�
ϕϕ0 þ 2χ02

r
þ ϕ2Ψ0

�
: ð5:8Þ

In the following, we take the massless limit m → 0. Then,
Eq. (5.8) can be expressed as

χ0 ¼ −
β3r
4β4

rϕϕ0 þ 2χ02 þ ϕ2rΨ0

2rϕϕ0 þ χ02 þ ϕ2ðΦþ rΨ0Þ : ð5:9Þ

1. In the regime r < r�
For the distance r < r� the leading-order gravitational

potentials are given by Eq. (3.20), so Eq. (5.9) reads

χ0 ¼ −
β3r
4β4

rϕϕ0 þ 2χ02 þ ρ0ϕ
2r2=ð6M2

plÞ
2rϕϕ0 þ χ02 þ ρ0ϕ

2r2=ð3M2
plÞ

: ð5:10Þ

If the condition

χ02 ≪ rjϕϕ0j ð5:11Þ

is satisfied, Eq. (5.10) reduces to

χ0ðrÞ≃ −
β3
8β4

r; ð5:12Þ

whose magnitude linearly grows in r. In the limit that
β3 → 0, χ0 vanishes as expected. Under the assumption

(4.9), the field ϕ stays nearly a constant value ϕ0. On using
the solution (5.12), Eq. (5.7) is integrated to give

ð1 − 2c2β4ϕ2
0Þr2ϕ0 þ β23ϕ0r3

16β4

≃ −
ρ0ϕ0r3

3M2
pl

½1 − 2ð1þ c2Þβ4ϕ2
0�: ð5:13Þ

Provided that

δ≡ 3β23M
2
pl

16β4ρ0
≪ 1; ð5:14Þ

the term containing β3 in Eq. (5.13) is subdominant
relative to other terms. Then, we obtain the following
solution:

ϕ0ðrÞ≃ −
ρ0ϕ0r
3M2

pl

1 − 2ð1þ c2Þβ4ϕ2
0

1 − 2c2β4ϕ2
0

; ð5:15Þ

which is close to ϕ0ðrÞ≃ −ρ0ϕ0r=ð3M2
plÞ. On using this

solution with Φ� ≪ 1, it follows that jrϕ0j ≪ jϕj for r < r�.
The condition (5.11) translates to
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ε≡ 3β23M
2
pl

64β24ρ0ϕ
2
0

≪ 1: ð5:16Þ

Since ε is related to δ in Eq. (5.14) as δ ¼ 4εβ4ϕ
2
0, the

condition (5.16) is tighter than (5.14) under the assumption
(5.5). We also note that, under the condition (5.11) with
jrϕ0j ≪ jϕj, the second relation of Eq. (5.6) is automati-
cally satisfied.

2. In the regime r� < r < rt
For r > r� the leading-order gravitational potentials are

given by Eq. (3.21), so integration of Eq. (5.7) leads to

ð1 − 2c2β4ϕ2
0Þr2ϕ0 − β3ϕ0r2χ0 − 4β4ϕ0rχ02 ≃ −

ρ0ϕ0r3�
3M2

pl

;

ð5:17Þ

whereas Eq. (5.9) reduces to

χ0 ≃ −
β3r
4β4

rϕϕ0 þ 2χ02 þ ρ0ϕ
2r3�=ð6M2

plrÞ
2rϕϕ0 þ χ02 þ ρ0ϕ

2r3�=ð3M2
plrÞ

: ð5:18Þ

Unlike Eq. (5.13), the rhs of Eq. (5.17) is constant. For the
distance r < r� the field derivative jϕ0j linearly grows in r
as Eq. (5.15), but jϕ0j starts to decrease for r > r�.
Meanwhile, as long as the condition (5.11) is satisfied,
Eq. (5.18) gives the following solution:

χ0ðrÞ≃ −
β3
8β4

r; ð5:19Þ

so that jχ0j continues to grow. Substituting this solution into
Eq. (5.17), we obtain

ϕ0ðrÞ≃ −
ρ0ϕ0r3�

3M2
plð1 − 2c2β4ϕ2

0Þr2
�
1þ δ

r3

r3�

�
: ð5:20Þ

Under the condition (5.14) the second term in the bracket of
Eq. (5.20) is much smaller than 1 around r ¼ r�. Provided
that δr3=r3� ≪ 1, the leading-order solution of Eq. (5.20)
decreases for larger r.
Substituting the approximate solutions ϕ≃ ϕ0 and ϕ0 ≃

−ρ0ϕ0r3�=ð3M2
plr

2Þ into Eq. (5.18), it follows that

χ0 ≃ −
β3r
2β4

χ02 − ρ0ϕ
2
0r

3�=ð12M2
plrÞ

χ02 − ρ0ϕ
2
0r

3�=ð3M2
plrÞ

: ð5:21Þ

The increase of jχ0j gradually saturates as χ02 approaches
the value ρ0ϕ

2
0r

3�=ð12M2
plrÞ. We define the transition

distance rt according to the condition χ02ðrtÞ ¼
ρ0ϕ

2
0r

3�=ð12M2
plrtÞ. On using the solution (5.19), we obtain

rt ¼
1

ð4εÞ1=3 r�; ð5:22Þ

which is larger than r� under the condition (5.16). Around
r ¼ rt the growth of jχ0j changes to decrease.

3. In the regime r > rt
As jχ0j decreases for the distance r > rt, the lhs of

Eq. (5.8), which is multiplied by the factor 4β4χ
0=r,

becomes subdominant to the rhs, so that we obtain

ϕϕ0 þ 2

r
χ02 þ ρ0ϕ

2r3�
6M2

plr
2
≃ 0: ð5:23Þ

Since the term −4β4ϕ0rχ02 in Eq. (5.17) is negligible
relative to −β3ϕ0r2χ0, we have

ð1 − 2c2β4ϕ2
0Þr2ϕ0 − β3ϕ0r2χ0 ≃ −

ρ0ϕ0r3�
3M2

pl

: ð5:24Þ

Apart from the small difference of the coefficient in front of
r2ϕ0, the system described by Eqs. (5.23) and (5.24) has the
same structure as that studied in Sec. IV. Physically, this
means that the effect of the Lagrangian L3 manifests itself
for the distance r > rt.
Following the same procedure as that in Sec. IV, we

obtain the following field profiles:

ϕ0ðrÞ ¼ −
ρ0ϕ0r3�
3M2

plr
2
GðηÞ; ð5:25Þ

χ0ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ϕ

2
0r

3�
6M2

plr

�
GðηÞ − 1

2

�s
; ð5:26Þ

where

η ¼ sβ3
1 − 2c2β4ϕ2

0

r3

r3�
; ð5:27Þ

GðηÞ ¼ 1þ η

1 − 2c2β4ϕ2
0

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1þ ð1 − 2c2β4ϕ2
0Þη

ð1þ ηÞ2

s #
:

ð5:28Þ

In Eq. (5.28) we have chosen the branch where GðηÞ
does not diverge in the limit that η → ∞. If the ratio
β3=β4 is positive (negative), then χ0 has a negative (positive)
sign. On using Eq. (5.22), the quantity η can be expressed
as

η ¼ 4β24ϕ
4
0

1 − 2c2β4ϕ2
0

r3

r3t
: ð5:29Þ
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At the distance r ¼ rt we have that η≃ 4β24ϕ
4
0 ≪ 1, but η

increases for larger r. The distance rv at which η is
equivalent to 1 can be estimated as

rv ≃ 1

ð4β24ϕ4
0Þ1=3

rt: ð5:30Þ

For the distance rt < r < rv, Eqs. (5.25) and (5.26) reduce,
respectively, to

ϕ0ðrÞ≃ −
ρ0ϕ0r3�

3M2
plð1 − 2c2β4ϕ2

0Þr2
; ð5:31Þ

χ0ðrÞ≃�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ϕ

2
0r

3�
12M2

plr
1þ 2c2β4ϕ2

0

1 − 2c2β4ϕ2
0

s
: ð5:32Þ

The behavior of ϕ0ðrÞ is practically unchanged compared
to Eq. (5.20). The solution (5.32) smoothly matches with
Eq. (5.19) at r ¼ rt with the amplitude jχ0ðrtÞj≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ϕ

2
0r

3�=ð12M2
plrtÞ

q
.

For the distance r > rv we obtain the following solution:

ϕ0ðrÞ≃ −
ρ0ϕ0r3�
6M2

plr
2
; ð5:33Þ

χ0ðrÞ≃�ð1þ 2c2β4ϕ2
0Þ

ρ0r3�
6β3M2

plr
2
: ð5:34Þ

As in the case of Sec. IV, the behavior of the longitudinal
mode changes from jχ0j∝ r−1=2 to jχ0j ∝ r−2 around r ¼ rv.
In Fig. 2 we plot an example of the field profile derived

by numerically solving the vector-field equations of motion
[(5.2) and (5.3)] coupled with the leading-order gravita-
tional equations (3.15) and (3.16). The ratio β3=β4 is
chosen to be negative in this case, so the sign of χ0 is
positive. Since ε ¼ sβ3=ð16β24ϕ4

0Þ≃ 2.4 × 10−4, the tran-
sition distance rt corresponds to rt ≃ 10r�. As estimated
from Eqs. (5.12) and (5.19), the numerical simulation of
Fig. 2 shows that χ0 linearly grows in r up to the distance
rt ≃ 10r�. We also find that the longitudinal mode behaves
as χ0ðrÞ ∝ r−1=2 for rt < r < rv ≃ 100r� and χ0ðrÞ ∝ r−2

for r > rv.
As seen in Fig. 2, the derivative of ϕðrÞ has the

dependence −ϕ0ðrÞ ∝ r for r≲ r� and −ϕ0ðrÞ ∝ r−2 for
r≳ r�. Since jrϕ0ðrÞj is at most of the order of ϕ0 for the
whole distance range of interest, the field ϕ stays nearly
constant around ϕ0. Thus, our numerical results are fully
consistent with the analytic solutions of χ0ðrÞ and ϕðrÞ.

B. Corrections to gravitational potentials

Let us proceed to the calculations of corrections to
gravitational potentialsΨ andΦ induced by the vector field.

We shall study the two regimes: (i) r� < r < rt and
(ii) r > rt, separately.

1. r� < r < rt
At this distance, the leading-order vector field solutions

are given by ϕ≃ ϕ0, ϕ0 ≃ −ϕ0Φ�r�=ð3r2Þ, and χ0≃
−β3r=ð8β4Þ, where Φ� ¼ ρ0r2�=M2

pl. In Eqs. (3.15) and
(3.16) we expand the gravitational potentials Ψ, Φ, and
their derivatives up to linear order. The correction terms in
Eqs. (4.32) and (4.33) are approximately given by

ΔΦ ≃ −
2β4ϕ

4
0Φ�εðΦ�εx2 þ 3Þ

3r2�
−

ϕ2
0Φ

2�
18r2�x4

; ð5:35Þ

ΔΨ ≃ −
2β4ϕ

4
0Φ�ð5Φ�ε2x5 þ 3εx3 − 3Þ

9r2�x3
þ ϕ2

0Φ
2�

18r2�x4
; ð5:36Þ

where we have employed the approximation (5.5) and used
the parameter ε given by Eq. (5.16) with ρ0 ¼ Φ�M2

pl=r
2�

and x ¼ r=r�. Integrating Eqs. (4.32) and (4.33) with these
corrections, the resulting gravitational potentials are

ΦðrÞ≃Φ�r�
6r

�
1−

2β4ϕ
4
0εx

3ðΦ�εx2þ5Þ
5M2

pl

þ ϕ2
0Φ�

6M2
plx

�
; ð5:37Þ

FIG. 2. The numerical solutions to y ¼ ϕ=ϕ0, −dy=dx, and z ¼
χ0=ϕ0 as a function of x ¼ r=r� for the theories with sβ3 ¼
1.0 × 10−6 with β3 > 0 and β4ϕ

2
0 ¼ −1.6 × 10−2, c2 ¼ 1, and

ϕ0 ¼ 1.0 × 10−3Mpl. The matter profile is given by ρm ¼
ρ0e−4r

2=r2� with Φ� ¼ 10−6. The boundary conditions of Ψ, Φ,
y, and dy=dx are chosen to be consistent with Eqs. (3.17), (4.9),
and (5.15) at x ¼ 10−3. The vertical lines stand for the scales
r ¼ r�, rt ¼ 10r� and rv ¼ 100r� respectively.
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ΨðrÞ≃ −
Φ�r�
6r

�
1þ 2β4ϕ

4
0ð7Φ�ε2x5 þ 15εx3 þ 15Þ

15M2
pl

þ ϕ2
0Φ�

6M2
plx

�
: ð5:38Þ

Provided that the corrections to the leading-order gravita-
tional potentials are small, the post-Newtonian parameter
γ ¼ −Φ=Ψ reads

γ ≃ 1 −
2β4ϕ

4
0ð2Φ�ε2x5 þ 6εx3 þ 3Þ

3M2
pl

: ð5:39Þ

At r ¼ r� the first two terms inside the bracket of
Eq. (5.39) are subdominant to the last term, so
Eq. (5.39) reduces to

γ ≃ 1 −
2β4ϕ

4
0

M2
pl

: ð5:40Þ

The parameter jγ − 1j increases for larger r and it reaches
the maximum value at r ¼ rt, i.e.,

γ ≃ 1 −
3β4ϕ

4
0

M2
pl

: ð5:41Þ

Under the condition (5.4), the deviation of γ from 1 is
small. From the local gravity bound jγ − 1j < 2.3 × 10−5,
we obtain

jβ4jϕ4
0 < 8 × 10−6M2

pl: ð5:42Þ

This shows that, as long as the nonzero coupling β3 obeys
Eq. (5.16), the local gravity constraint is satisfied under the
condition (5.42) for the distance r < rt.

2. r > rt
For r larger than rt, we only need to study the behavior of

Ψ and Φ in the regime rt < r < rv (because jγ − 1j
decreases for r > rv as we discussed in Sec. IV). The
leading-order field solutions for rt < r < rv are given by
ϕ≃ ϕ0, ϕ0 ≃ −ϕ0Φ�r�=ð3r2Þ with the two branches of χ0,
i.e., χ0 ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0Φ�r�=ð12rÞ

p
for β3=β4 > 0 and χ0 ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2
0Φ�r�=ð12rÞ

p
for β3=β4 < 0. By using the relation

β3 ¼ �8β4ϕ0

ffiffiffiffiffiffiffiffi
Φ�ε

p
=ð ffiffiffi

3
p

r�Þ, the correction terms in
Eqs. (4.32) and (4.33) can be expressed independently
of the sign of β3=β4, as

ΔΦ ≃ −
2β4ϕ

4
0Φ�

ffiffiffi
ε

p
r2�x3=2

−
ϕ2
0Φ

2�
18r2�x4

; ð5:43Þ

ΔΨ ≃ −
β4ϕ

4
0Φ�ð5Φ2�

ffiffiffi
ε

p
− 27

ffiffiffi
x

p Þ
54r2�x7=2

þ ϕ2
0Φ

2�
18r2�x4

; ð5:44Þ

where we used the approximation (5.5). The integrated
solutions to gravitational potentials are given by

ΦðrÞ≃ Φ�r�
6r

�
1 −

4β4ϕ
4
0x

3=2 ffiffiffi
ε

p
M2

pl

þ ϕ2
0Φ�

6M2
plx

�
; ð5:45Þ

ΨðrÞ≃−
Φ�r�
6r

�
1þβ4ϕ

4
0ð16x3=2

ffiffiffi
ε

p þ3Þ
2M2

pl

þ ϕ2
0Φ�

6M2
plx

�
: ð5:46Þ

As long as the corrections to ΦGR and ΨGR remain small,
the post-Newtonian parameter can be estimated as

γ ≃ 1 −
3β4ϕ

4
0ð8x3=2

ffiffiffi
ε

p þ 1Þ
2M2

pl

: ð5:47Þ

At r ¼ rt this reduces to γ − 1≃ −15β4ϕ4
0=ð2M2

plÞ, so
the bound jγ − 1j < 2.3 × 10−5 translates to jβ4jϕ4

0 <
3 × 10−6. Taking into account Eq. (5.42), local gravity
constraints can be satisfied for

jβ4jϕ4
0 ≲ 10−6M2

pl: ð5:48Þ

At r ¼ rv it follows that

γ ≃ 1 − 3
ϕ2
0

M2
pl

: ð5:49Þ

Hence the resulting experimental bound is the same as
Eq. (4.40), i.e.,

ϕ0 ≲ 3 × 10−3Mpl: ð5:50Þ

If rv is far outside the solar-system scale, we do not need to
impose the condition (5.50).
In summary, under the conditions (5.48) and (5.50) with

β3 in the range (5.16), the deviation from GR is sufficiently
small such that the model is consistent with local gravity
experiments. When β3 → 0, it follows that rt goes to
infinity and that χ0 vanishes for both r < r� and r > r�.
In the limit β3 → 0 (i.e., ε → 0), Eq. (5.39) reduces to
γ ≃ 1 − 2β4ϕ

4
0=M

2
pl, so the local gravity bound is satisfied

for jβ4jϕ4
0 ≲ 10−5M2

pl. In this case, the deviation of γ from 1
is directly related with the existence of the β4X2 term inG4.

VI. CONCLUSIONS

In this paper, we have studied the screening mechanism
of the fifth force in a generalized class of Proca theories.
The breaking of Uð1Þ gauge invariance for an Abelian
vector field gives rise to nontrivial derivative self-
interactions described by the Lagrangians (2.3)–(2.5), in
addition to the Lagrangian L2 associated with the mass
term. The equations of motion in these generalized Proca
theories are of second order without Ostrogradski insta-
bilities, while the number of propagating DOF remains
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three (two transverse and one longitudinal) as in the
original Proca theory.
In the presence of a matter source, we derived the

equations of motion up to the Lagrangian L4 for a general
curved space-time and then applied them to a spherically
symmetric and static background described by the line
element (3.1). First, we showed that the transverse com-
ponents of the spatial vector field Ai vanish identically to
satisfy the compatibility with the spherically symmetric
background and the regularity of solutions at the origin.
Thus, we focused on the propagation of the longitudinal
scalar component of Ai with Aμ of the form (3.7).
The leading-order gravitational interaction in the vector-

field equations should come from the gravitational poten-
tials ΨGR and ΦGR, whose interior and exterior solutions
around a compact body (ρm ≃ ρ0 for r < r� and ρm ≃ 0 for
r > r�) are given, respectively, by Eqs. (3.17) and (3.18).
After substituting these solutions into the vector equations
of motion under the weak-gravity approximation (Φ� ¼
ρ0r2�=M2

pl ≪ 1), it is possible to derive analytic solutions of
the vector field Aμ (the temporal component ϕ and the
transverse mode χ0) for a given Lagrangian.
In Sec. IV we obtained analytic vector field profiles and

corrections to the leading-order gravitational potentials
ΦGR and ΨGR in the presence of the vector Galileon
Lagrangian L3 ¼ β3X∇μAμ by assuming that the temporal
component ϕ is of the form (4.9). Provided that the
parameter sβ3 ¼ 3ðβ3ϕ0MplÞ2=ð4ρ0Þ is larger than the order
of 1, derivative self-interactions lead to the suppression of
the longitudinal mode χ0ðrÞ. The fifth force can be screened
in such a way that the model is compatible with solar-
system constraints of gravity. For sβ3 ≪ 1 the screening
occurs partially at the distance larger than rV given by
Eq. (4.26), in which case the solar-system experiments lead
to the bound ϕ0 ≲ 3 × 10−3Mpl. As shown in Fig. 1, we
have numerically confirmed that our analytic solutions of
the vector field are sufficiently trustable even for the
continuous density profile like Eq. (4.28).
In Sec. V we studied the vector Galileon theories

up to the Lagrangian L4 which contains a derivative
self-coupling term β4X2 in the function G4. When
β3 ¼ 0, we showed the existence of the solution where

χ0ðrÞ vanishes everywhere. If the Lagrangian L3 is present
in addition to L4 and the former is subdominant to the
latter, we obtained the solution χ0ðrÞ ¼ −β3r=ð8β4Þ for
r≲ rt ¼ r�=ð4εÞ1=3, where ε is given by Eq. (5.16).
For r > rt the effect of the coupling β3 manifests itself
in the longitudinal mode, such that its amplitude decreases
as jχ0ðrÞj ∝ r−1=2 for rt < r < rv ¼ rt=ð4β24ϕ4

0Þ1=3 and
jχ0ðrÞj ∝ r−2 for r > rv (see Fig. 2). The solar-system
constraint at r ¼ rt provides a mild bound jβ4jϕ4

0 ≲
10−6M2

pl. If rv is within the solar-system scale, we also
obtain the bound ϕ0 ≲ 3 × 10−3Mpl from the estimation
(5.49) of the post-Newtonian parameter.
We have thus shown that the screening mechanism of the

longitudinal scalar for the vector field is at work in the
presence of cubic and quartic derivative self-interactions. It
will be of interest to study whether the similar mechanism
holds or not with the Lagrangian L5. We leave this analysis
for a future work.
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APPENDIX EXPRESSIONS FOR THE
COEFFICIENTS Ci

The coefficients of the gravitational equations (3.8)–
(3.10) are given by

C1 ¼ 4Xϕ½1 − 2c2ðG4;X þ 2XϕG4;XXÞ�;
C2 ¼ 4χ0XϕG3;X þ 2e2Ψϕϕ0½1 − 2c2ðG4;X þ 2XϕG4;XXÞ�;
C3 ¼ −32XϕXχG4;XX;

C4 ¼ −2χ0ðXϕ þ XχÞG3;X;

C5 ¼ −4½G4 − 2ðXϕ þ 2XχÞG4;X − 4XχðXϕ þ XχÞG4;XX�;

C6 ¼ −e2ΦðG2 − 2XϕG2;XÞ þ ½e2Ψϕϕ0χ0 þ 2χ00ðXϕ þ XχÞ�G3;X þ 1

2
e2Ψϕ02½1 − 2c2ðG4;X þ 2XϕG4;XXÞ�;

C7 ¼ 4χ0XϕG3;X þ 4e−2Φχ0χ00G4;X þ 8½e−2Φχ0χ00ðXϕ þ XχÞ − e2Ψϕϕ0Xχ �G4;XX;
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C8 ¼ 2ð1 − e2ΦÞG4 − 4½Xχ þ ð1 − e2ΦÞXϕ�G4;X − 8XϕXχG4;XX;

C9 ¼ 4Xϕ½1 − 2c2ðG4;X þ 2XχG4;XXÞ�;
C10 ¼ 2χ0ðXχ − XϕÞG3;X þ 2e2Ψϕϕ0½1 − 2c2ðG4;X þ 2XχG4;XXÞ�;
C11 ¼ 4½G4 þ 2ðXϕ − 2XχÞG4;X þ 4XχðXϕ − XχÞG4;XX�;

C12 ¼ −e2ΦðG2 − 2XχG2;XÞ − e2Ψϕϕ0χ0G3;X þ 1

2
e2Ψϕ02½1 − 2c2ðG4;X þ 2XχG4;XXÞ�;

C13 ¼ 4χ0XχG3;X þ 4e2Ψϕϕ0ðG4;X þ 2XχG4;XXÞ;
C14 ¼ 2ð1 − e2ΦÞG4 − 4Xχð2 − e2ΦÞG4;X − 8X2

χG4;XX;

C15 ¼ 2½G4 þ 2ðXϕ − XχÞG4;X�;
C16 ¼ 2½G4 þ 2f2ðc2 þ 2ÞXϕ − XχgG4;X þ 4XϕðXϕ − XχÞG4;XX − 2Xϕ�;
C17 ¼ −2½G4 þ 2ðXϕ − 2XχÞG4;X þ 4XχðXϕ − XχÞG4;XX�;
C18 ¼ 2χ0XϕG3;X − 2e2Ψϕϕ0½1 − 2ðc2 þ 3ÞG4;X

þ 2ðXχ − 2XϕÞG4;XX� þ 2e−2Φχ0χ00½G4;X þ 2ðXχ − XϕÞG4;XX�;
C19 ¼ −2½G4 − 4XχðG4;X þ XχG4;XXÞ�;

C20 ¼ −e2ΦG2 þ ð2χ00Xχ þ e2Ψϕϕ0χ0ÞG3;X −
1

2
e2Ψϕ02½1 − 2ðc2 þ 2ÞG4;X − 8XϕG4;XX�

þ 2e2Ψϕϕ00G4;X − 2e2Ψ−2Φϕϕ0χ0χ00G4;XX;

C21 ¼ 2e2Ψϕϕ0ðG4;X − 2XχG4;XXÞ þ 2e−2Φχ0χ00ðG4;X þ 2XχG4;XXÞ: ðA1Þ
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