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Rotating fermions inside a cylindrical boundary
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We study a quantum fermion field inside a cylinder in Minkowski space-time. On the surface of the
cylinder, the fermion field satisfies either spectral or MIT bag boundary conditions. We define rigidly-
rotating quantum states in both cases, assuming that the radius of the cylinder is sufficiently small that the
speed-of-light surface is excluded from the space-time. With this assumption, we calculate rigidly-rotating
thermal expectation values of the fermion condensate, neutrino charge current and stress-energy tensor
relative to the bounded vacuum state. These rigidly-rotating thermal expectation values are finite
everywhere inside and on the surface of the cylinder, and their detailed properties depend on the choice
of boundary conditions. We also compute the Casimir divergence of the expectation values of these
quantities in the bounded vacuum state relative to the unbounded Minkowski vacuum. We find that the rate
of divergence of the Casimir expectation values depends on the conditions imposed on the boundary.
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I. INTRODUCTION

The definition of quantum states is of central importance
in quantum field theory (QFT) on both flat and curved
space-times. Of the possible quantum states on a given
space-time, defining a (not necessarily unique) vacuum
state is essential, as states containing particles can be built
up from a vacuum state using particle creation operators.
Even in flat space-time, the definition of a vacuum state is
nontrivial when the space-time contains boundaries or one
is interested in the definition of particles as seen by a
noninertial observer.

To define a vacuum state in the canonical quantization
approach to QFT, one starts with an expansion of the
quantum field in terms of a basis of orthonormal field
modes. These modes are split into “positive” and “neg-
ative” frequency modes. For a quantum scalar field, this
split is not completely arbitrary; it must be the case that
positive frequency modes have positive Klein-Gordon
norm and negative frequency modes have negative
Klein-Gordon norm. For a quantum fermion field, all
modes have positive Dirac norm, and the split between
positive and negative frequency modes is much less
constrained.

This difference between quantum scalar and fermion
fields was explored in Ref. [1] for rigidly-rotating fields on
unbounded Minkowski space-time. For a quantum scalar
field, the norm of a field mode is proportional to the
Minkowski energy E of that mode. As a consequence,
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positive frequency modes must have positive Minkowski
energy, and the only possible vacuum state is the (non-
rotating) Minkowski vacuum [2]. For a quantum fermion
field, two possible vacua have been considered in the
literature: the nonrotating (Vilenkin) vacuum [3] and the
rotating (Iyer) vacuum [4]. To construct the nonrotating
vacuum, positive frequency fermion modes have positive
Minkowski energy E as in the scalar field case. For the
rotating vacuum, positive frequency fermion modes have

positive corotating energy E (the energy of the mode as
seen by an observer rigidly rotating about the z-axis in
Minkowski space-time with angular speed €2). In general,

E+E for a particular field mode. On unbounded
Minkowski space-time, there exist fermion field modes
with EE <0, which means that the nonrotating and
rotating vacua are not equivalent [1].

Rigidly-rotating  thermal states on unbounded
Minkowski space-time can be defined from the above
vacuum states. The rigidly-rotating nature of these states
means that the thermal factor in the thermal Green’s
functions and corresponding expectation values involves
the corotating energy E. For a quantum scalar field, rigidly-
rotating thermal states are divergent everywhere in the
unbounded space-time [3,5]. The density of states factor
in the thermal expectation values (t.e.v.s) for a bosonic

field is [e/F — 1]_1, where /3 is the inverse temperature. This
thermal factor diverges when the corotating energy E
vanishes, even though such modes are nonzero in general
[S]. Modes with vanishing corotating energy therefore
make an infinite contribution to rigidly-rotating t.e.v.s,
leading to divergences.
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One way to resolve this difficulty is to enclose the system
in an infinitely long cylinder of radius R, with the axis of
the cylinder along the z-axis and QR < ¢, where c is the
speed of light. For this range of values of R, the boundary
of the cylinder is inside the speed-of-light surface (SOL)
(the surface on which an observer rigidly rotating about the
z-axis with angular speed Q must travel at the speed of
light). With the SOL removed from the space-time, it can be
shown that EE > 0 for all scalar field modes, so that the
modes which lead to divergences in t.e.v.s on unbounded
Minkowski space-time are absent [6]. The resulting rotating
t.e.v.s for a quantum scalar field on the space-time inside
the cylinder are regular everywhere inside and on the
boundary of the cylinder [5].

Rigidly-rotating thermal states for a quantum fermion
field on unbounded Minkowski space-time were studied in
Ref. [1] and exhibit different behavior from those for a
quantum scalar field. Rigidly-rotating t.e.v.s are regular
inside the SOL and diverge as the SOL is approached. If the
nonrotating (Vilenkin) vacuum is used, then t.e.v.s contain
spurious temperature-independent terms [1,7] which are
unphysical since t.e.v.s with respect to the vacuum state
should vanish in the limit of zero temperature. These
temperature-independent terms vanish if the rotating
(Iyer) vacuum is used instead [1].

In this paper, we study the fermionic analogs of the
rotating thermal states inside a cylinder, studied for the
scalar case in Ref. [5]. We construct rigidly-rotating quan-
tum states for Dirac fermions enclosed inside an infinitely
long cylinder in Minkowski space-time. The axis of the
cylinder is along the axis of rotation, the z-axis. On the
boundary of the cylinder, the fermions satisfy either spectral
boundary conditions [8] or one of two versions of the MIT
bag boundary conditions, the standard [9] and chiral [10]
MIT bag models. In each case, we find that the rotating and
nonrotating vacua coincide when the boundary of the
cylinder lies within the SOL. We compute rigidly-rotating
t.e.v.s of the fermion condensate, neutrino charge current
and stress-energy tensor for each set of boundary conditions,
comparing the results with those in Ref. [1] for the
unbounded space—time.1 We also study Casimir expectation
values, namely the expectation values for the bounded
vacuum state relative to the (nonrotating) vacuum state on
unbounded Minkowski space-time. Our Casimir expect-
ation values for a fermion field are compared with those in
Refs. [5] and [12] for a quantum scalar field and for fermions
obeying MIT bag boundary conditions, respectively.

The outline of this paper is as follows. In Sec. II, we
review the construction of mode solutions of the Dirac
equation in unbounded Minkowski space-time, the second
quantization procedure and the definition of the rotating
and nonrotating vacuum states. For the remainder of the

'A free Dirac field in thermal equilibrium within a rotating
cylinder is also considered in Ref. [11].
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paper, we consider the bounded space-time. For the spectral
and MIT bag boundary conditions, in Sec. III, we study
mode solutions of the Dirac equation satisfying the
boundary conditions, their energy spectra and the con-
struction of the vacuum state. Rigidly-rotating thermal
expectation values are computed in Sec. IV, and the
Casimir effect is analyzed in Sec. V. Finally, Sec. VI
contains some further discussion.

I1I. UNBOUNDED SPACE-TIME

In this section, we review the construction of mode
solutions and vacuum states in a rigidly-rotating,
unbounded, Minkowski space-time [1]. The Dirac equation
is introduced in Sec. II A, while the construction of its
solutions is presented in Sec. II B. The section closes with a
discussion of the choice of vacuum state on the unbounded
space-time in Sec. 11 C.

A. Dirac equation in rotating Minkowski space-time

The world line of an observer rotating with a constant
angular velocity Q about the z-axis can be parametrized in
cylindrical coordinates as x* = (¢, p, Qt, z) for fixed p and
z. The coordinate frame with respect to which the observer
is at rest can be obtained from the usual Minkowski
coordinates xj; by setting ¢ = ¢y — Qt. The Minkowski
metric then takes the form

ds® = —(1 = p*Q2)dt*> +2p*Qdt do + dp* + p*de?® + dz°.
(2.1)

Throughout this paper, we use units in which ¢ =#f =
kg = 1. The Killing vector 0, defining the corotating
Hamiltonian H = id,, becomes null on the SOL, which
is defined as the surface where p = Q!.

To construct the Dirac equation, we introduce the
following tetrad in the Cartesian gauge [13],

I
2
|
o)
S

@ e’i - aiv

o =dx' + (Qxx)idt, (22)

with respect to which the Dirac equation for fermions of
mass y reads
(ir* Dy — )y (x) = 0. (2.3)

The gamma matrices are in the Dirac representation [14],

3 1 0 3 0 O;
"=\o 1) "7\ o) @Y

where the Pauli matrices o; are given by
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The gamma matrices obey the following canonical anti-
commutation rules,
{r". "} = =20, (2.6)

where r]&ﬁ is the inverse of the Minkowski metric
Najp = diag(—1,1,1,1). We use the convention that hatted

indices denote tensor components with respect to the
orthonormal tetrad introduced in Eq. (2.2) and are raised
and lowered using the Minkowski metric 7, B

The covariant derivatives D, in Eq. (2.3) are given by

iD; =H+ QM_, —iD}. =P;. (2.7)
In the above, H = i0, is the corotating Hamiltonian, P =

—i0; are the momentum operators and

1 0
M, ——i8¢+—(63 )

2.8
ACER (2.8)

is the z-component of the angular momentum operator.

B. Mode solutions

The rotating system under consideration is just
Minkowski space-time written in terms of corotating
coordinates. Therefore, mode solutions of Eq. (2.3) can
be obtained from any complete set of mode solutions found
on Minkowski space by applying a suitable coordinate
transformation. Mode solutions of the Dirac equation on
Minkowski space with respect to cylindrical coordinates
have been reported in Refs. [1,3,4,12,15-20].

In this paper, we follow Ref. [1] and construct the
solutions of the Dirac equation (2.3) as simultaneous
eigenvectors of the complete set of commuting operators
{H, PZ,MZ,WO}, where the helicity operator Wy =P -
M/ p is the time component of the Pauli-Lubanski vector,
with P the momentum operator and M the angular
momentum operator. The helicity operator W has the
following form,

<h 0) c-P
WOZ 5 hzia
0 h 2p

where p is the magnitude of the momentum.
To solve the eigenvalue equations corresponding to the
above operators, the eigenspinors U; can be put in the form

.
Ujlt.p, . 2) = 55 5%u;(p, ), (2.10)

where
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j=(E; k,m;x) (2.11)

Jr g s 4
collects the eigenvalues of the set of operators
(H,P,, M_,W,). In this paper, sometimes we will explic-
itly keep the index j (2.11) on various quantities; however,
at other times, we shall suppress the index j to keep
expressions manageable. Further, in some expressions, it
will be necessary to explicitly show individual eigenvalues
in j (2.11). When this is the case, we will use the notation
U%, .. for spinors. B

In (2.10), the corotating energy E; is linked to the
Minkowski energy E; through

- 1
Ej:E.i_Q<mj+§>’

where E; = &,/ p? + % can be written in terms of the

modulus p; of the momentum of the mode. The four-
spinors u; introduced in Eq. (2.10) are eigenvectors of Wy,
and M, corresponding to the eigenvalues 4; = i% and
m; + %, respectively, where mj = 0,+1,+£2,....

Due to the diagonal form of W, and M _, the four-spinors
u;j can be written as

(2.12)

0001 (g

where C;p and C?OW“ are constants. The angular momentum

equation,
—id, +3 0 1
(™ o, _%)qs,(p,fp) = (m+3)00.0).

(2.14)

can be solved by setting

g5 (p)

bi(p @) = e"(’”ﬁ%)‘”( ,-
! ¢t (p)

), (2.15)

where ¢ji are scalar functions of p. The two-spinors ¢; also
obey the helicity eigenvalue equation

o (r =4 2.16
2Pﬁ<P+ —kj>¢f(p’(”)— bilp.w).  (2.16)

where P, = P, & iP, are differential operators given by
P, = —ieii‘/’(ap + i,o‘]aq,). (2.17)

The helicity eigenvalue equation (2.16) can be used to show
that the scalar functions q’;jt satisfy Bessel-type equations,
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605 3%, +8 = (my +1719) =0, (218
6105, + 205 + 3] = mjld; =0, (2.180)

where 3; = q;p is written in terms of the transverse
momentum

q; =+\/p; — k5. (2.19)

The solutions of Egs. (2.18) which are regular at the origin
have the form

¢ (p)
¢7 (p)

= N7 Jwi1(ap),

=N7Ju(qp), (2.20)

where m is understood to refer to m; and g to g;. The
constants N Ji can be determined as follows.

The operators P (2.17) act like shift operators for the
angular momentum quantum number m, i.e.,

Pieim(p']m(qp) = iiqei(mil)(p‘]m:tl (qp) (221)
Hence, the helicity equation (2.16) implies that
v Y - (2.22)

Tk 2ap

enabling ¢; (2.15) to be written as

pae™ T, (qp)

1
, 2.23
#(0.9) =5 (MP . ey +1<qp>> (223)

where

P+ =P+ = (2.24)

k
1+—
p
For brevity, the index j was dropped from the right-hand

side of Eq. (2.23). The overall 1/+/2 factor in Eq. (2.23)
comes from the generalized orthogonality relation [15],

Z <bEkm(p D)l (02 9) = 8111, (2.25)

m=—oo

where T denotes the Hermitian conjugate of the two-spinor.
Returning to the four-spinors (2.13), the Dirac
equation (2.3) can be used to constrain the constants C;p

and C?OW“:
E—u =2pi cP
( goomop >< / ):0. (2.26)
2]7/1 —FE — u C;;own
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Imposing the generalized completeness relation [15]

o0

Z ”élm@c)”gkm( ) =

m=—oo

(2.27)

gives the following expression for the spinor u; introduced
into the mode U; in Eq. (2.10),

1 +¢j
2.28
(P ‘P) \/_<2|/}€fE 45]) ( )
where
E,= /1% % (2.29)

The normalization of u; means that the mode U (2.10) has
unit norm with respect to the Dirac inner product, which for
the metric (2.1) takes the form [1]

(W) = /_ : dz A " dy A " dp pyrt (0 ().

Antiparticle modes V; are obtained from the particle
modes (2.10) through charge conjugation, i.e.,

(2.30)

Vi(x) = iyzU;f(x), (2.31)
and have the following expression,
1 & ik;
Vj(t’p’(p’z) :Eel iRty (,0, (/7), (2323)

where v;(p, ) = v}y, (p. @) is given by

(=)™ iE S —

| e . (2.32b)
] E+PE —k-m—1

The V; modes can be written in terms of the U; modes, as
follows,

Ujékm (/0’ (p) =

iE;
V.= (-1)"—LU;, (2.33)
J |Ej| J
where

C. Second quantization

As discussed in Refs. [1,4], the vacuum state for the
Dirac field on a rigidly-rotating space-time is not uniquely
defined. This nonuniqueness arises from the freedom to
choose how fermion field modes are split into “particle”
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and “antiparticle” modes. This freedom is constrained for a
quantum scalar field by the requirement that particle modes
must have positive Klein-Gordon norm (and antiparticle
modes must have negative Klein-Gordon norm) in order for
the particle creation and annihilation operators to obey
canonical commutation relations. For a quantum fermion
field, all field modes have positive norm, and so this split is
unconstrained, leading to freedom in how particle creation
and annihilation operators are defined and, correspond-
ingly, freedom in the definition of the vacuum state [1].
Two possible choices for the vacuum state on unbounded
rotating Minkowski space-time are the (nonrotating)
Minkowski vacuum, considered by Vilenkin [3], and the
rotating vacuum, introduced by Iyer [4]. For the non-
rotating Minkowski vacuum, particle modes have positive
Minkowski energy E > 0; for the rotating vacuum, particle

modes have positive corotating energy E > 0, with these
two energies linked by (2.12).

Rigidly-rotating t.e.v.s constructed with respect to the
nonrotating Minkowski vacuum state contain spurious
temperature-independent terms, due to the inclusion of
modes satisfying £ < 0 in the set of particle modes [1]. The
temperature-independent terms disappear when the rotating

vacuum is considered, where modes with E > 0 (including
modes with negative E) are interpreted as particle modes
[1]. Rigidly-rotating t.e.v.s of the fermion condensate,
neutrino charge current and stress-energy tensor are com-
puted for both the Iyer and Vilenkin quantizations in
Ref. [1]. It is found that, using the Iyer quantization, these
t.e.v.s are regular everywhere inside the SOL but diverge as
the SOL is approached.

The difference between the Iyer and Vilenkin quantiza-
tion methods rests in the interpretation of the modes for
which EE < 0, namely whether such modes are considered
to be particle or antiparticle modes. For a quantum scalar
field, enclosing the system inside a boundary of radius not
greater than that of the SOL eliminates energies satisfying
EE < 0 from the particle spectrum [6]. Vilenkin [3] argues
that the same holds for fermions. In Sec. III, we show that
this is indeed the case for spectral and MIT bag boundary
conditions (defined in Secs. III B and III C, respectively),
for a cylindrical boundary placed inside or on the SOL. In
this case, the nonrotating (Vilenkin [3]) and rotating (Iyer
[4]) vacua are therefore equivalent. _

Assuming that there are no modes with EE < O in the
particle spectrum, the second quantization can be per-
formed as in unbounded nonrotating Minkowski space, by
expanding the field operator y(x) as

w(x) = Ze(Ej)[Uj(x)bj + V;(x)d]], (2.35)

where the step function 6(E;) ensures that the Minkowski
energy E; is positive and
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$o% 5 [ [,

J i,':ié mj=—oo Pj

(2.36)

where p; is the modulus of the momentum of a particle of
Minkowski energy E;. The negative E; values, excluded by
the step function O(E;) in Eq. (2.35), are included in the
domain of integration in Eq. (2.36) for later convenience.
The one-particle operators b; and bj- in Eq. (2.35) obey
canonical anticommutation relations,

{607} =6(j. 7). {00} =5(j./), (2.37)
where
. O(E; - Ey)
8(j.J') = T‘S(l‘j =k )om,my 01,0, (238)
J

The vacuum state |0) is defined as that state which is
annihilated by the annihilation operators b; and b;:

b;|0) =0 = d,(0). (2.39)
In the next section, we shall investigate the properties of
rigidly-rotating t.e.v.s for thermal states constructed from

this vacuum state, for a fermion field satisfying either
spectral or MIT bag boundary conditions.

III. BOUNDARY CONDITIONS

Our focus in this paper is a quantum fermion field on
rotating Minkowski space-time, inside a cylinder centered
on the z-axis (the axis of rotation) and having radius R. We
exclude the space-time exterior to the cylinder from our
considerations. For RQ < 1 (where Q is the angular speed
about the z-axis), the cylinder lies completely inside the
SOL, which is therefore removed from our space-time.
For RQ = 1, the boundary of the cylinder is the SOL.
For RQ > 1, the SOL lies within the cylinder—we do not
consider this possibility.

We consider two models for the implementation of
boundary conditions for a quantum fermion field on the
surface of the cylinder: the spectral [8] and MIT bag [9]
models. In Sec. III A, the self-adjointness of the Hamiltonian
is used to derive a constraint on the behavior of the fermion
field on the boundary. Sections III B and III C introduce the
spectral and MIT bag models, respectively. For each model,
the energy spectrum and corresponding vacuum states are
discussed, confirming that if the SOL is not inside the
boundary, the rotating and Minkowski vacua coincide.

A. Self-adjointness of the Hamiltonian

The Hamiltonian is, by definition, a self-adjoint operator
with respect to the Dirac inner product,
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(w,Hy) = (Hy, %), (3.1)

for any combination of solutions (y,y) of the Dirac
equation (2.3). On a general background, the Dirac inner
product is given by

o) = / Py (. (3.2)

where 7 = y'y’ and y* = ey® are the covariant versions
of the gamma matrices introduced in Eq. (2.4), satisfying

{r'.r} =-29" (3.3)
For H = i0,, Eq. (3.1) is equivalent to
Iy, x) =0. (34)

This time derivative can be obtained from the Dirac
equation (2.3), which reads for a general space-time as
follows,

iy O + iy' Ty = (35)

where I'; is the spin connection [21], defined to preserve
the general covariance of the gamma matrices:

Dy 7] = 01" + T¥37" + [T ] = 0. (3.6)
Taking into account the following properties,
YOy =~ 7' 0 —v'Toux — ipy,
Oy == 0wy’ + 9y + iy,
0i(v=gr') == 0i(r'v=9) = v=gll:.7"].  (3.7)
an integration by parts in Eq. (3.4) shows that
O lw.x) = - /a § dZin/=gur'x. (3.8)

where OV is the 2-boundary of the integration 3-surface V.
In our case, the integration domain is the volume contained
inside an infinite cylinder of radius R, and its boundary is
the enclosing cylinder. Thus, the Hamiltonian is self-adjoint

only if
oo 27 A
R/ dZA dewy’xl,—r = 0.

Equation (3.9) provides necessary and sufficient conditions
for a set of boundary conditions to yield a consistent
quantization. In the following two sections, two types of
boundary conditions satisfying (3.9) are presented.

(3.9)
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B. Spectral boundary conditions

To implement spectral boundary conditions, the integral
over ¢ in Eq. (3.9) is performed by considering the Fourier
transform of the solutions y of the Dirac equation with
respect to the polar angle ¢:

[se]

W(x) _ Z pi@(m+3)

m=—0o

2 —i(/) 3 i(/l 4 T
2 p
m+1 ¢ l//er% ¢ wm-&-% ) :

(3.10)

I 1 i
2(/} 2(/}
X <€ l//m+% exry

The inner product of any two solutions y and y is time
invariant if

/ dz Z +1)(m+1 +W +'1m+1

m=—oo
+y +1)( +1+‘I/ +1)(m+1):0- (3.11a)
The inner product of the charge conjugate ., = iyﬁy/* of

and an arbitrary solution y must also be time invariant. This
is the case if

o0

D SR
—00

m=—0oo

—v ) = 0. (3.11b)

To satisfy both equations (3.11), the solution employed in
the spectral model is to set equal to zero either the top and
third or the second and fourth components of y, depending
on their spectral index m, as follows [15]:

1
‘/’3n+%Jp:R = l//fn+%Jp:R =0, form+ 5> 0,

1
for m +§ < 0. (3.12)

l//fn+%Jp=R = lllilJr%Jp:R =0,
We note that it is also possible to satisfy Egs. (3.11) by
letting the second and fourth components of y vanish for
positive m + % with the first and third components vanish-
ing when m + % < 0. For brevity, we only consider the first
implementation in this paper. We would expect the second
implementation to give physically similar results for
expectation values.

1. Discretization of the transverse momentum

Applying the prescription (3.12) to the mode solutions
(2.10) requires that the transverse momentum ¢ must be
discretized according to
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" m+1>0,
qmeR = {5 ‘ : (3.13)

E iy m+i<0,

where ¢, » is the Zth nonzero root of the Bessel function
J,,. Hence, the mode solutions of the Dirac equation which
satisfy spectral boundary conditions can be written as

U3t (x)

with j defined by analogy to Eq. (2.11), now including the
new index 7,

=CPU,(x), (3.14)

J=(Ej kj,mj,2;,¢;), (3.15)

where E; = 4,/q; + k7 +u* is the Minkowski energy.

The constants Cj-p in Eq. (3.14) are calculated in Sec. III B 3
to ensure that the modes have unit norm.

2. Energy spectrum

As discussed in Sec. II C, if modes with EE < 0 are not
present in the particle spectrum, then the rotating and
nonrotating Minkowski vacua are equivalent. To show that
this is the case for the spectral boundary conditions, we
start with the following inequality for the first zero of the
Bessel function J,, [22]:

1
Hence, for E > 0, we have
1
ERZqR>m+§, (3.17)
and therefore, using (2.12),
~ 1
ER > (1—9R)<m+5>, (3.18)

showing that EE > 0 for all values of u, k, mand 7, as long
as the boundary is inside or on the SOL (QR < 1). Thus,
the rotating and nonrotating Minkowski vacua are equiv-
alent. This will enable us, in Sec. Il B 4, to perform the
second quantization for a fermion field satisfying spectral
boundary conditions along the lines discussed in Sec. 11 C.

3. Normalization

Before we can proceed with the second quantization, the
modes (3.14) must be normalized with respect to the Dirac
inner product (3.2), which in the case under consideration
takes the form (2.30). For the case of two particle modes
(3.14), Eq. (2.30) reads

PHYSICAL REVIEW D 93, 104014 (2016)

1 o~
(UP.U) = 2 (CF)CPo(k = K)3eF
E/
E, E’ a4 —E_F
< T TER >

R
X [mp;/ A Jn(ap)dw(d'p)pdp +420°p_;0"

R
X A Jmi1(ap) i1 (q’p)pdp] : (3.19)

where the labels m and £ are implicit on ¢ and any quantities
derived from it (e.g. E). The labels j and j' have also been
dropped. Furthermore, the quantities p: and E are defined in
(2.24) and (2.29), respectively, and AE = E E ..
The modes (3.14) are normalized if the constants Cj-p are
chosen such that the right-hand side of Eq. (3.19) equals
6(j.J') = 0(k = K')8 0 66,4 0(EE"), (3.20)
where the step function (EE") ensures that the Minkowski
energies E; and E' = E; have the same relative sign.
Since the boundary conditions (3.12) preserve the self-
adjointness of the Hamiltonian, the time independence of
the inner product requires that modes of differing energies
(i.e. AE=E-F # 0) are orthogonal. For the evaluation
of the integrals of the Bessel functions in Eq. (3.19) when
g = ¢, it is convenient to use the following results [23]:

R
S = A dpp3|Tnlap) + 751 (ap)]

1
2

R? 2m +1
=—|J? R) —
2 |: m+l(q ) qR

Jm(qR)Jm+l (qR)
n J@(qm} ,

S .= dpp [J%(qp) Jm+1(q,0>]
+ 0 2

1
2

= R (@R 1 (4R). (3.21)

2q

The spectral boundary conditions (3.13) ensure that the
product J,,(¢R)J,,1(gR) vanishes for all m. For positive
m + 3, the normalization constants C} (3.14) take the
following values:

V2
R i1 ()|
Using Eq. (2.33), it can be seen that antiparticle and

particle modes obeying spectral boundary conditions are
linked through

A, A,
CElsc[:nf - CESIS —-m—-1.¢ — (322)

1y g,

|E;

VP (x) = |

; (3.23)
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where

J=(=Ej.=kj,—m; = 1,2;,¢;). (3.24)
Since the modes U;p are normalized (the above calculation
is valid for E; <0, as well as for E; > 0), so too are the

antiparticle modes (3.23).

4. Second quantization

As shown in Sec. III B2, the condition EE >0 is
satisfied by all modes obeying spectral boundary condi-
tions if the boundary is placed on or inside the SOL. We do
not consider the case when RCQ > 1 and the boundary is
outside the SOL. Thus, the rotating and Minkowski vacua
are identical, and the second quantization can be performed
as outlined in Sec. II C. First, we expand the quantum
fermion field in terms of the normalized modes (3.14),
(3.23),

SPY.S Sp&SpT
UPeY + Vi, (3.25)

- ZQ(EJ)[

where j is defined in Eq. (3.15) for the spectral case and

ZE / dk;
j Y il/ZmJ*—ooff E; j:|E\

J

(3.26)

The vacuum for the spectral case, |0%), is then defined as

that state annihilated by the operators 6" and d}’:
sp () &SP

BP[0P) = 0 = d|O). (3.27)

In Sec. IV B, we will calculate expectation values for
thermal states constructed from |0%).

C. MIT bag boundary conditions

First introduced in Ref. [9], the MIT boundary con-
ditions are defined in a purely local manner, by ensuring
that the integrand in Eq. (3.8) vanishes at any point x;, on
the boundary 9V. This is achieved by setting

iny (xy,) = gy (xp), (3.28)
where n, represents the normal to the boundary and
1 = yn,. The coefficient ¢ can take the general form [10],

¢ = exp(—iys®) = cos ® — iy5 sin O, (3.29)
where © is referred to as the chiral angle. In this paper,
only the cases ® = 0 (MIT) [9] and ® = z (chiral) [10]
are considered, in which case the parameter ¢ takes the
following values:

PHYSICAL REVIEW D 93, 104014 (2016)
1 (MIT),
S=1_4

3.30
(chiral). (3.30)
1. Discretization of the transverse momentum

In the present case, n = —dp, and thus the boundary
conditions (3.28) are

iy (xy) = =gy (xp). (3.31)

It can be checked that if y(x) obeys the above boundary
conditions, so does its charge conjugate iy*y*(x).

Mode solutions that satisfy MIT boundary conditions
can be constructed starting from the complete set of modes
described in Sec. II B. The desired solutions of the Dirac
equation can be simultaneous eigenvectors of the corotating
Hamiltonian H, z-component of momentum P, and z-
component of angular momentum M, (2.8), since these
operators commute with iy”. However, the helicity operator
W, (2.9) does not commute with iy”. Hence, y/(x) must be a
linear combination of solutions corresponding to 4 = j:%,

Ubime (X) =

where b, . are constants, E is the Minkowski energy and
the index £ has been introduced anticipating the quantiza-
tion of the transverse momentum ¢. For a given value of m,
the allowed values of the transverse momentum are labeled
by ¢ in increasing order, such that ¢,, » < ¢q,, .. To avoid
cumbersome notation, the indices m, £ are omitted from the
corresponding momentum p,, , or Minkowski energy E,, »
where there is no risk of confusion.
Thus, Eq. (3.31) becomes

b 5ime Uon(X) + 0pine Upin (), (3.32)

B (PrimePrime T PrimePrime)
iE
== E E—(bgkmfapq&gkmf - bEkmpr¢Eknzf>’ (333)
where E, is defined in Eq. (2.29) and ¢* are given in
Eq. (2.23). Equation (3.33) can be written as a set of linear
equations in b,

gE+p+Jm_£E—p—Jm+l sEip_J,, _LE—erJmH

cE_piJn +| E.p-Jmi1 —cE_p_J E+p+Jm+l
b

X ( f"""”) =0, (3.34)
Ekm¢

where the argument of the Bessel functions is ¢,, ,R and p..
are defined in (2.24). The system (3.34) has nontrivial
solutions if

2¢u
i, + jmf —-1=0, (3.35)
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where

_ Jm(quR)

= o\ dm ) 3.36
Ime Jm+1(Qm,fR) ( )

Equation (3.35) can be solved numerically to yield an
infinite number of roots. Equation (3.35) is invariant under
E — —E, and hence ¢,, » does not depend on the sign of E.
Moreover, the relation J_,,(z) = (—=1)"J,,(z) (valid for all
integer values of m) ensures that

9d-m-1,¢6 = 4m.¢- (337)

Equation (3.34) fixes b = by = s/ Prime 1O bE
SEE by —E.p, LEp_jn +E
5 E+P-lme ~E-P+ g E-P-Jur +EP;

f_g E piime — E_p- % E_Pijme +Eip_
(3.38)

where we have used the definitions (2.24), (2.29),
(3.36). The result (3.38) is invariant under (E,k,m) —
(—E,—k,—m —1).

For consistency of notation, we now write the modes
(3.32) in a form analogous to that for the modes (3.14)
satisfying the spectral boundary conditions,

U.I;AIT = C?/HT [bUEkm + Ul_fkm]’ (339)
where b is given by (3.38),
C?AIT = Dimr (3.40)
and the index j on the modes is

Note that the index j (3.41) does not contain any explicit
dependence on the helicity A. This is because the MIT
modes (3.39) are a linear combination of positive and
negative helicity spinors. The normalization constants CY'"
will be found in Sec. III C 3 below.

2. Energy spectrum

We now examine whether modes with EE < 0 are
excluded from the particle spectrum when we use MIT
bag boundary conditions.

We begin with massless particles, 4 = 0. In this case, the
equation satisfied by j,, (3.35) does not depend on c.
Therefore, the energy spectrum is also independent of ¢. The
solutions of Eq. (3.35) when y = O are simply j,,, = +1,i.e.
the points where the graph of J,, intersects either J,,, | or
—J i1 1. According to Theorem 3.1 of Ref. [24], the values of
gmR such that j,, = %1 [or, equivalently, J,,(¢,/R) =
+J,11(gmeR) using (3.36)] satisfy

PHYSICAL REVIEW D 93, 104014 (2016)

/m,f < Gmar—1R <E&py < quaR < fin,fﬂ’ (3.42)

where £, » and &, , are the £th zeroes of J,,(z) and J,(z),
respectively. The roots ¢g,, /R are also staggered such that

Jm(‘]mfR) = (_l)erlmeLl(meR)' (343)
Using the property [22]
1 >/ m(m+2), (3.44)

the following lower bound can be established for the energy
of the modes obeying MIT bag boundary conditions:

1
|Em,f|R > qm,fR >m+ 5 . (345)
The argument of Sec. III B 2 then shows that, if the boundary
is inside or on the SOL,
EE > 0, (3.46)
where E is given by (2.12).
When the mass y is nonzero, solving (3.35) enables us to

write j,, in terms of the (as yet unknown) transverse
momenta g, , as follows:

2
- u H
e = —— + 1+ -5
Qm,f qm,f

When ¢ = 1 (the original MIT case), it can be seen that

2
O<—g—ﬂ—|— 1+P2£—<1.
qm,f q}n‘f

Now, consider the lowest value of the transverse momen-
tum, g, ;. We have J,,(¢,,1R) = ju1Jms1(gm.1R); in other
words, when g = ¢,, 1, the graphs of the functions J,,(¢R)
and j,,1J,,+1(¢gR) intersect. The inequality (3.48) tells that
jmi <1, so J,(quiR) < Jpi1(quiR). Therefore, the
value of g,, 1 R is in the interval where J,, decreases toward
its first zero, after the first zero of J,,,’. Figure 1(a) illustrates
this behavior. Hence, in this case, we can use the
same argument as that given above in the massless case
to show that the lowest allowed positive energy obeys
ER > (1 —QR)(m + 1). Therefore, when ¢ = 1, we again
have EE > 0 for all R < Q"

In the chiral case (¢ = —1), from (3.47), j,,, increases as
the mass increases, and ¢,, ;R approaches the origin, as
illustrated in Fig. 1(b). Rearranging Eq. (3.47) as

(3.47)

(3.48)

Jn(qR)

Ts1(4R) 349

=u+ E(p),
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s=1

0.3
==== Jio[qR]
0.2f ===-=j10>0
0af
— qR
-0.1
k)
Al
e 3
~0.2 w &
(a)
s=-1
0.3} AN
- JulaR] i/
0.2  ===-=j10>0 3
----- J10<0
0.1
-0.1
-0.2
FIG. 1. Graphs for finding the first value of the transverse

momentum ¢,, ; allowed by the MIT bag boundary conditions for
m = 10. The roots of Eq. (3.35) are located at the intersection
between the solid line [representing J,,(¢R)] and the dashed lines
[representing J,,(¢R) multiplied by the right-hand side of
Eq. (3.47)]. The dashed lines correspond to masses uR = 0, 2,
4,6, 8 and 10, while ¢ = 1 in (a) and ¢ = —1 in (b). The two sets
of dashed lines correspond to the sign of j,.; i.e. the dash-dot
lines (red curves, positive for small gR) correspond to j,,, > 0,
while the dashed lines (green curves, negative for small gR)
represent the case j,,» < 0.

where E(u) = /u? + ¢ is the smallest positive Minkowski
energy for a particle of mass y and transverse momentum ¢
(i.e. corresponding to k = 0), it can be seen that gR = Oisa
solution of (3.35) when yR = m + 1, by using

lim ¢ /()
=0 Sy (Z)

=2(m+1). (3.50)

If the mass u increases further, the first root no longer
corresponds to j,, > 0 (i.e. the root satisfying ¢,, ,R <
&1 disappears). In this case, with uR > 1+ m, we have
ER > m+1 just from the mass contribution to E(u).
Knowing that, by virtue of Eq. (3.45), the same condition
is satisfied when p =0, it remains to investigate the
behavior of the smallest allowed energy E,, ;(u) for g,
between uR = 0 and uR = m + 1.

To this end, let us consider the derivative of E,,, | (1) with
respect to i,

PHYSICAL REVIEW D 93, 104014 (2016)

1

E, (1) = —< + qma (W) g, (W),

By (0) (3.51)

where the prime denotes differentiation with respect to the
argument y. Since g, (1) decreases as the mass increases,
q,,.1 () < O for this range of R and E;, | (4 = 0) < 0. The
energy reaches a minimum when

dm,1 (ﬂO)Q:n,l (ko) = —Ho- (3.52)

A second expression for E), | (1) can be obtained by taking
the derivative of Eq. (3.49) with respect to u:

, In(gR) (4R) _ o
Jms1(qR) (qR)

J:nH(qR)

=1+F.
Jm+1 (qR)

J/

1 +R=E
7,
(3.53)

Using Eq. (3.51) to eliminate ¢;, ; in favor of E,, ;, together
with the following properties of the Bessel functions,

Tn(@) = ~Ti1(2) + 7).
T = I =" 0. (354)
Eq. (3.53) can be solved to yield
E,(ﬂ)_ﬂ(2m—|—1)—2,uER+E (355)

EQm+1)=2ER+u’

Since E'(u) < 0 at u = 0, either E,, | reaches its minimum
when uR=m+1 [in which case ¢,; =0 and
E,;=u=R"'(m+1)] or there must be at least one
value u =y, between O and R~ '(m+1) where
E'(1g) = 0. At such a point, Eq. (3.55) predicts that the
value of the energy would be

2uoR 1
2poR — 1 <m+§>.
Since E was assumed to be positive, Eq. (3.56) implies that
E cannot be minimized with respect to the mass for
poR < 1. If a stationary point occurs for any yoR > 1, the
corresponding value of the energy will be greater than
R™'(m +1). Since the energy is above R™'(m + 1) at the
end points y = 0 and 4 = m + 1 (where the corresponding
value of ¢ would be zero) and since at its stationary points

we also have E > R™'(m +1), we can conclude that the
energy will always satisfy

E(puo)R = (3.56)

1
Em,fR >m+ (357)

57

and therefore, using (2.12),
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qm ,1 R

FIG. 2. The dependence of the smallest allowed transverse
momentum (a) and energy (b) in the MIT bag model correspond-
ing to ¢ = —1 for uR between 0 and m 4+ 1 and m = 0, 5, 15, 30.
The x axis represents the ratio uR/(m + 1), normalizing the mass
such that for any value of m the range of the x axis is from O to 1.

The transverse momentum g,, ; and energy E,, ; are divided by
R~!'(m + 1). Plot (b) shows the difference IZQIR — 1 in terms of
uR/(m+ 1). The energy E,,; is monotonically decreasing and

has no stationary points for this range of values of uR.

E, ,R> (1-QR) <m - %) : (3.58)

Our numerical experiments confirm Eq. (3.57).
Furthermore, the energy seems to decrease monotonically
toward its minimum value of (m + 1)/R as uR increases
from O to m + 1, as shown in Fig. 2.

Hence, the MIT bag boundary conditions with ¢ = £1
restrict the energy spectrum such that EE > 0 for all values
of i, k, m and £, as long as the boundary of the cylinder is
inside or on the SOL.

3. Normalization

We now turn to the normalization of the MIT modes
(3.39). We require these modes to have unit norm with
respect to the Dirac inner product (2.30),

(OO = 55, ), (3:59)

PHYSICAL REVIEW D 93, 104014 (2016)

where 5(j, j') is defined in analogy to Eq. (3.20),

6(j.J') = 6(k; — k)0, m,0¢,¢,0(E;E), (3.60)
where, as in the spectral case, 0(E iE j/) ensures that £; and
E; have the same sign. There is no helicity dependence in
(3.60) because the MIT modes (3.39) are linear combina-
tions of positive and negative helicity spinors.

The time invariance of the Dirac inner product (3.1),
guaranteed to hold in the MIT bag model by Eq. (3.28),
ensures that the result of the inner product of modes with
different corotating energies (i.e. nonzero AE = E E )
vanishes. Thus, the following result is obtained,

1
(U, URT) = 3 6(k = k)8 600 0(EE") Cy

x [(ST + SDSZ% + (ST +S80)S

m+%] ’

(3.61)

where the integrals <5 i were introduced in Eq. (3.21) and

their coefficients are glven by

Si = E?F(bEkmfp+ + p—)2 =+ E%(bEkmfp— + p+)2’
(3.62a)

-pi)?,
(3.62b)

87 = E2(bgimePs — P-)? £ E% (bgpmeb-

where p_. are defined in (2.24), E. are defined in (2.29) and
b is given in (3.38). The combinations of S and S}
occurring in Eq. (3.61) can be evaluated using the following
identities,

4k? 1+
St = —mt. . (3.63a)
R (\5\ E Piime — E_p-)?
) 0
57 =% L £ e . (3.63b)
(\E| E_pijn +E p_)?
where j,,, is given by (3.36). Then, we have
1£}2
stz = S L) (3.63¢)

piin, + P2

Hence, the modes (3.39) are normalized according to
Eq. (3.59) if

CMIT _
! R|J i1 (qmeR)|

p2 +pijz, _
1= 22510) = (e = D

(3.64)

X

(e + Do +
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In the massless limit, C}''" (3.64) simplifies to

C?/HT J =0 =

1 |:1 _ jmf(m + %):| _%.
R\/il‘]m-&-l (qm,fR)| qm,fR
(3.65)

The normalization constant CY'T (3.64) is invariant under
(E,k,m) - (—E,—k,—m — 1). The quantity b, defined in
Eq. (3.38), is also invariant under the same transformation.
Therefore, using the property (2.33), the relationship
between particle and antiparticle spinors satisfying the
MIT bag boundary conditions is
iE;

V?-/HT — <_1>m‘/- ] U.I7\/HT’

|E;|

(3.66)

where

Since the particle modes UM are normalized, so too are
the antiparticle modes (3.66).

4. Second quantization

For the remainder of this paper, we shall assume that
RQ <1 and the boundary is located inside or on the SOL.

In this case, we have shown in Sec. III C 2 that EE > 0 for
all fermion field modes satisfying MIT bag boundary
conditions. As discussed in Sec. II C, this means that the
rotating and nonrotating Minkowski vacua are the same
and the second quantization of the field is straightforward.
The quantum fermion field is expanded in terms of the
normalized modes (3.39), (3.60),

w = O(E;)[UYTHYIT 4 yMITpHITH (3.68)
J

where j is defined in Eq. (3.41) and the sum over j is
defined as

zj:E

i i:/_:dkj S (3.69)

mj=—oo ¢;=1 E;=%|E||

There is no sum over helicity because the modes (3.39)
are linear combinations of positive and negative helicity
spinors.

The vacuum for the MIT case,
as that state which is annihilated by the operators

and b?m:

OMIT) is then defined
pMIT
j

BMIT|OMIT) = 0 = pWIT|OMIT). (3.70)
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In Sec. IVC, we will calculate expectation values for
thermal states constructed from [OMIT).

D. Summary

In this section, we have considered a quantum fermion
field on rotating Minkowski space-time inside a cylinder of
radius R with the axis of the cylinder along the z-axis. We
have examined two boundary conditions for the fermion
field on the surface of the cylinder: spectral [8] and MIT
bag [9,10]. In each case, we have studied the quantization
condition for the transverse momentum, the resulting
energy spectrum and the corresponding normalized mode
solutions. An important conclusion pertaining to the energy
spectrum, summarized in Secs. III B 2 and III C 2 for the
spectral and MIT cases, respectively, was that modes with
E jE. ; <0 are excluded from the energy spectrum if the
boundary is placed inside the SOL, thatis, RQ2 < 1 where Q
is the angular speed about the z-axis. In this case, the
rotating and nonrotating Minkowski vacua are identical,
and the second quantization of the fermion field is
straightforward.

IV. THERMAL EXPECTATION VALUES

In this section, we calculate rigidly-rotating t.e.v.s of the
fermion condensate Wy (FC), parity-violating neutrino
charge current Jj (CC) and stress-energy tensor T,
(SET) for a quantum fermion field inside a cylinder of
radius R, where RQ < 1 and the boundary is inside or on
the SOL. We use the thermal Hadamard function and the
point-splitting method, as outlined in Ref. [21]. The
spectral and MIT bag boundary conditions are considered
separately. We compare our results with those for rotating
fermions on unbounded Minkowski space-time, as dis-
cussed in Refs. [1,3,7].

For completeness, the main steps for the construction of
the thermal Hadamard function, presented in Ref. [21],
are summarized below. We start with the Pauli-Jordan
(Schwinger) function,

S(x,x") = (O{y (x), w(x'}0), (4.1)
the Fourier transform of which can be written as
S(x,x') = /oo dw e" M e(w;x,x'), (4.2)

where x is the spatial part of the space-time point x. We
note that, since {y(x),(x’)} is proportional to the identity
operator, the Schwinger function S(x,x’) (4.1) is state
independent (i.e. is evaluated to the same number regard-
less of the state |0) under consideration). The Fourier
coefficients c¢(w;x,x’) can be used to compute the thermal
Hadamard function at inverse temperature /:
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S/(;)(x, x) = /_oo dw e 2 c(w; x, x") tanhﬂ?w. (4.3)

The thermal Hadamard function S;l)(x, x') (4.3) is inde-
pendent of the initial choice of vacuum |0) in (4.1).
Since we consider only the case where the boundary
is inside the SOL, as discussed in Secs. IIC, IIIB4
and IIT C 4, the rotating and nonrotating Minkowski vacua
inside the cylinder are identical for each set of boundary
conditions. However, the two vacua for the different
boundary conditions, namely |0*P) (spectral) and |OMIT)
(MIT) are not the same. In this section, we compute rigidly-
rotating t.e.v.s with respect to the |0°P) and |OM!T) vacuum

states, using the difference AS/(,I) (x,x") between the thermal

Hadamard function S;l)(x, x') (4.3) and its vacuum
counterpart, defined as

S (x, x') = (07w (x), w(x')]|0%),

(4.4)
where |0*) is either |0°P) or |OMIT). We first derive a general
expression for the thermal Hadamard function (4.3) in
terms of fermion field modes, before considering separately
the situations where the field satisfies spectral or MIT bag
boundary conditions.

A. Thermal Hadamard function

Using the notation in Eq. (2.10), the fermion field
operator can be written as

1

o ZQ(E/) [e—igjmik,zcj u; (x) bj

w(x) =5

+ etk Cry; (x)bj‘] .

(4.5)
where the sum over j, the normalization constants Cj,
the four-spinors u; and their charge conjugates v; depend
on the boundary conditions employed and are described
in detail in Sec. IIl. The corotating energy E ; and the
Minkowski energy E; are related by Eq. (2.12). The
Schwinger function (4.1) takes the form

Ze

xX) ® Uj(x') + V;(x) ® V;(x)],
(4.6)

where ® denotes an outer product, the U; are particle
modes and the V; are antiparticle modes. The expression
(4.6) is valid irrespective of the state in which it is evaluated
[21]. Thus, the Fourier coefficients of the Schwinger
function take the form
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I
e

+ 6(w + Ej)e

- Ej)eik/Azuj(x) ® ﬁ](x/)

c(w;x,x)
“ikibiy (x) @ 1;(x)]. (4.7)

where Az = z — 7. From these Fourier coefficients, the
thermal Hadamard function (4.3) can be derived:

Ze

X[ Uj(x) @ U(x') -

tanh

Vi(x) @ V;(x)].

Subtracting the vacuum Hadamard function (4.4) from the
above thermal Hadamard function gives

ASS) Zw Uj(x') = V;(x) @ V;(x')].

(4.8)

(4.9)

where the thermal factor w; takes the form

20(E;)

=—= . (4.10)

ePEi -1
In (4.10), the step function O(E;) ensures that the sum over
j in Eq. (4.9) runs only over positive Minkowski energies
(e E; > 0).

In this section, we calculate the (rigidly-rotating) t.e.v.s
for the FC (:gy:)j, charge current (:J%:); and SET
(:T44: )5 where all components are with respect to the
tetrad (2.2). The notation (:O:)j, for an operator O,
indicates that we are considering t.e.v.s relative to the
vacuum state (either |0?) or |OMIT) as applicable). The
superscript * will be either ** or MIT depending on which
boundary conditions we are considering. For the rest of this
section, all expectation values will be for rotating thermal
states, relative to the appropriate (bounded) vacuum state.
We will consider expectation values in the bounded vacuum
state relative to the unbounded Minkowski vacuum state
in Sec. V.

The te.v.s are calculated from the difference (4.9)
between the thermal Hadamard function and the vacuum
Hadamard function, as follows:

1
(:pyt)y = — - lim w[ASS) (x, 2')]. (4.11a)
. 1 .
(1d71); =3 }/iir}(tr[y“ASzl)(x, X)), (4.11b)
(1Ta5); = _ilir}ctr[ Y@Ds AS}, )(x x')
— A8 (x.X)D a7 (4.11c)
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It will turn out, in Secs. IVB2 and IV C2, that the
expectation value (4.11b) for the charge current vanishes
identically for both spectral and MIT bag boundary con-
ditions. We will therefore also consider the charge current
for fermions of negative chirality only. It has been remarked
by Vilenkin [7] that the restriction of the particle spectrum
to fermions of negative chirality induces a nonvanishing
charge current antiparallel to the rotation vector €. Since
these particles are traditionally called (in the massless case)
neutrinos, we will use the term neutrino charge current (and
abbreviate this to CC) for this quantity. The t.e.v.s of the CC
JZ of particles of negative chirality can be calculated using

X' —x

) 1 1=y
(:J8)5 = —lim tr [yaTyAs}})(x, x’)]. (4.11d)

Here, (1 —7p°
negative chirality with the

)/2 projects onto the space of modes of
help of the matrix

75 = iy%1y2y3, which in the Dirac representation has the

form [14]
0 1
5
! _<1 0)‘

We now turn to the computation of the t.e.v.s (4.11),
considering the spectral and MIT bag boundary conditions
separately. In each case, we first construct the thermal
Hadamard function before computing the t.e.v.s and exam-
ining their properties.

(4.12)

B. Spectral boundary conditions

Using the relation (3.23) to write the antiparticle modes
in terms of the particle modes, the difference between the
thermal and vacuum Hadamard functions (4.9) can be
written as

|Cbp|2 ~

1 o iE;Ar+ik;
AS; )(x, x) = Z o EjAtHikiz (. — wj)Mj.,

(4.13)

where E is the corotating energy, Ar =t -1, Az =z -7
and the normalization constant C}’ = cy £ k nye, is given in
Eq. (3.22). The sum over j can be found in (3.26). The
thermal factors w; and w; are given by (4.10) with
the indices j and j in Eqgs. (3.15) and (3.24), respectively.
. 2 1
The matrix M} = M}(x.x') =, ¢, (%) ® U5 1y 7, (¥)
is given explicitly by
L1 E2 ‘ EI EE E_
M =~
72\ 2EE E. -E2

1E[

® [¢(x) ® ¢} (x)],

(4.14)
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where E are given in (2.29) and the spinors ¢; in (2.23).
In (4.14), the first occurrence of @ has the meaning of a
Kronecker product of two 2 x 2 matrices, i.e.

ap a
( 1 12> ® B
a1 dp
In other words, the outer product ¢;(x) ® gb; (x) is to be

copied into each of the four matrix elements to the left of
the Kronecker ® sign, thus producing a 4 x 4 matrix.
Introducing the notation

1 [ MP
M;= ZW:—(
J J
2 M]X

A=%1/2

. (allB alzB
d21B

>. (4.15)

azzB

—_Mx

J
g ) (4.16)
)

the following expressions can be found for the 2 x 2
matrices introduced on the right-hand side of (4.16), by
using the explicit form (2.23) of the ¢; spinors:

. 10
Mlp:Ei(O 1>0Mj,

1 0
Mdown = E%( >0Mj,
! 0 1

1/k ¢
M* = — oM ..
/ E(cz —k> M;

In (4.17), the Hadamard (Schur) product symbol o has been
used for the element-wise product of two matrices of the
same size, defined for two 2 x 2 matrices A, B as

an b apb
AoBz( 11011 12 12>‘
an by aybxn
The matrix M; on the right of the Hadamard product
symbol o in (4.17) is defined as

(4.17)

(4.18)

JmeeimA(p

Mo ( —id s
J iJm+1JmeimA(p+i(/1

i(m+1)A(/1—iqa >
’

Jm+1*]m+le im+1)ag

(4.19)

where Ap = ¢ — ¢’ and the arguments of the first and
second Bessel functions in the products above are gp and
qp', respectively, e.g. J,J i1 = I (qp) i1 (qp")-

For the purpose of computing t.e.v.s, it is advantageous
to write M; (4.16) as

1
2M; =1 ® (M)

+<0 —1>®MX
1 0 i

1
Mdown) +— 0.3 ® (MUP +Md0wn)

(4.20)
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where [, is the 2 x 2 identity matrix and the Pauli matrix o5
can be found in Eq. (2.5). Thus, the following form is
obtained for M;:

u 1 1 0
Mj |:2E|]2+20'3:| ® |:<O l)oMj:|

+21E<(1) —01>® K’; _‘Ik>oMj}. (4.21)

Having computed above the explicit form of M ; appearing
in Eq. (4.13), t.e.v.s can now be calculated, as described in
the following sections.

1. Fermion condensate

The te.v. of the FC (:yny:)) is computed from the
difference between the thermal and vacuum Hadamard
functions (4.13) using (4.11a). Looking at Eq. (4.21), it is
clear that only the first term (the one involving [, on the left
of the direct product sign ®) contributes, giving

CP2
o) => |8"2| (w; —W;)EiJi(qp),
T j

(4.22)

where the notation J;,(z) is the same as in Ref. [1]:

Ta(2) £ 75,,4(2).
2 (@)1 (2)-

T (2)
Jn(2)

(4.23)

It is convenient to express the sum over j as a sum over
positive energies,

S [ pdk w(E) +w(E) |
—ZZA ERR 1 (qR) Jn(ap),

m+1

(4.24)

where we have used (3.22) for the normalization constants
C? and the thermal weight factor w(x) is

2

_ 4.25
S (4.25)

w(x) =

while its arguments E and E are defined as

~ 1 _ 1
E=E—Q<m+5>, E:E+Q<m+§>. (4.26)

Thus, in the spectral model, the t.e.v. of the FC vanishes
for massless fermions with 4 = 0. In Fig. 3, we have
therefore plotted p~!(:yy: ) P to facilitate comparisons
between the t.e.v.s for dlfferent values of the mass u. It
can be seen from Fig. 3 that the t.e.v. of the FC is positive
everywhere, including on the boundary, where its value is
finite. This is true for all R provided that the boundary of the
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cylinder is either inside or on the SOL. In Figs. 3(a) and 3(b),
we have fixed the inverse temperature f# and the fermion
mass ¢ = 0 and show the t.e.v.s of u~' (:ypy ;) for various
values of the angular speed Q. The t.e.v. of the FC increases
for each fixed value of p as QR increases. This is particularly
marked in the higher-temperature plot (b). When QR = 1
and the boundary is on the SOL, the FC increases rapidly as
we move away from the axis of rotation, with a large peak
just inside the boundary. However, even in this case, the FC
is finite on the boundary. In Fig. 3(c), we have fixed the
angular speed €2 and again consider massless fermions
u =0, varying the inverse temperature . As expected,
the t.e.v.s decrease as f increases and the temperature
decreases. Finally, in Fig. 3(d), we fix the inverse temper-
ature f and angular speed Q and vary the fermion mass u. We
see that u~! 1y by P decreases as u increases.

For comparison, in Fig. 3(d), we also plot the t.e.v. of the
FC corresponding to the massless unbounded case [1],

1
6p%e’

where & = 1 — p>Q?. The subscript / indicates that the
above t.e.v. is given with respect to the rotating (Iyer)
vacuum [1,4]. In the interior of the cylinder, we see that the
rigidly-rotating t.e.v. of the FC with spectral boundary
conditions and a massless fermion is almost identical to that
for a massless fermion on unbounded Minkowski space-
time. They differ significantly only near the boundary. The
t.e.v. on unbounded Minkowski space-time continues to
increase as the boundary is approached, while that for
spectral boundary conditions decreases near the boundary.

LGl = -

(4.27)
H ’ #=0

2. Neutrino charge current
Next, we consider the t.e.v. of the charge current operator
(:J%:)7, defined in (4.11b). It is straightforward to see that
the t.e.v.s of all the components of (:J%:) vanish. This is
because the expression for (:J% :> analogous to (4.22)
contains a summand which is odd under either m —» —m —
1 (fora € {t,p, p}) ork —» —k (for @ = 7). To illustrate this

point, let us consider the time component,

<:J?:>;p = —Z(W w])

J

| gP‘Z

STh(ap),  (4.28)

where the various quantities are defined in (3.22), (4.10),
(4.23). After restricting the energy to positive values,
Eq. (4.28) reduces to

oo /
mf—oof 1

dk WE w(
27°R? 12 1(gR

(:J7)p

f) In(ap),

(4.29)
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FIG. 3. Thermal expectation values of the FC (:yny )
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B/R=0.5, uR=0
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(4.24) for spectral boundary conditions divided by the fermion mass 4, as a

function of the scaled radial coordinate p/R, so that the boundary of the cylinder is at p/R = 1. (a) Massless fermions y = 0, fixed
inverse temperature # = 2R and various values of the angular speed Q. (b) Massless fermions p = 0, fixed inverse temperature f = 0.5R
and various values of the angular speed Q. (c) Massless fermions ¢ = 0, fixed angular speed Q = 0.5/R and various values of the
inverse temperature /3. (d) Fixed inverse temperature # = 0.05R, fixed angular speed Q = 0.5/R and various values of the fermion mass
u. The solid curve in (d) shows the t.e.v. of the FC for massless fermions in the unbounded case, given in Eq. (4.27), for comparison.

where the thermal weight factors and their arguments are
given in (4.25), (4.26). Since the summand in (4.29) is odd
with respect to m - —m — 1, we can conclude that
<:Ji:>;IJ = 0. Similar arguments apply to the other com-
ponents of (:J%:)7

We therefore consider the CC, the t.e.v. of which is given
by (4.11d). While the 7, p and ¢ components of the CC
vanish, the z component is nonzero (in accordance with
Ref. [7]):

—
[
AN T

© &© ro dk w(E)—w(E) _
_,,,ZO;A 2R 7 (qR)
(4.30a)

where J;,(gp) is defined in (4.23).

In Fig. 4, we plot the t.e.v. (4.30a) for a range of values of
the fermion mass u, inverse temperature f and angular
speed Q. For all values of the parameters we studied, it can
be seen in Fig. 4 that the t.e.v. of the CC changes sign from
negative on the axis of rotation p = 0 to positive on the
boundary p = R. This can be explicitly checked by con-
sidering the value of (:JZ: ) on the rotation axis p = 0,

R 2, [ dk
. 1Z2.\SP — E R
<'J”'>ﬂ Jﬂ:() fl‘/o 2ﬂ2R2J%(qR)

« [w (E—%) —W(E—f—%)] <0, (430b)

and on the boundary p = R [recall that E and E are given in
(4.26)]:

0000

A 2ﬂ2R2 (E) = w(E)] > 0.
m=| Of 1

Sy A
(4.30¢)

As the angular speed Q or temperature ! increases, the
tev. (:Jf:)) decreases on the axis of rotation and
increases on the boundary. It remains finite everywhere
inside and on the boundary. In Fig. 4(a), we see that
(:J;:)) vanishes when the angular speed Q = 0. This is
also the case on unbounded Minkowski space-time [1]. As
the fermion mass p increases, (:J; )} also decreases close
to the boundary. Figure 4(c) also shows the t.e.v. of the CC
for the massless unbounded case, which is given by [1]
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FIG. 4. Thermal expectation values of the CC (:J¥:)} (4.30a)
for spectral boundary conditions, as a function of the scaled radial
coordinate p/R, so that the boundary of the cylinder is at
p/R = 1. (a) Massless fermions y = 0, fixed inverse temperature
J = 2R and various values of the angular speed Q. (b) Massless
fermions pu = 0, fixed angular speed Q =0.5/R and various
values of the inverse temperature /5. (c) Zoom of the region close
to the boundary at fixed inverse temperature f = 0.05R, fixed
angular speed Q = 0.5/R and various values of the fermion mass
u. The solid curve in (c) shows the t.e.v. of the CC for massless
fermions in the unbounded case, given in Eq. (4.31), for
comparison.

Q

unb _ __
(S = - (4.31)

Close to the boundary, (:JZ: )Zp changes sign and increases to
values which are an order of magnitude higher than

the absolute value of (:J%: );“}’, which is negative

PHYSICAL REVIEW D 93, 104014 (2016)

everywhere. In Fig. 4(c), note that (:J*:)§" is not constant,
as it might appear. It changes only by a small amount in the
region shown, whereas (:J; 1) changes very rapidly in this
region.

3. Stress-energy tensor

The t.e.v. of the SET (:T,,: )} with respect to the tetrad
(2.2) can be calculated using the formula (4.11c), with the
difference between the thermal and vacuum Hadamard
functions given by (4.13). By construction, the action of

iD; on e~"Ei'M; [with the matrix M given in (4.14)] gives
the energy E;,

iD;e_iEfth = Eje_iEthjv (432)

while for the derivatives with respect to p and ¢, the inner
structure (4.19) of the M; matrix must be taken into
account. Using the quantities defined in (4.23), (4.25),
(4.26), together with the relation

= (D) mi1(2) = T5(2)

m+1 y
Thyi1 (@M n(2) ~=2T3().

(4.33)

we find the following expressions for the components of
the te.v. (:T4;5:); relative to the tetrad (2.2):

SN [ Edk w(E) + w(E
—ZZ/ R J> <))J$(qp),

m=0 =1 m+1(
(4.34a)
(T _>Sp_ - / de w —I—W(E)
o m= Of 1 Ex’R? Jzn+1(‘1R)
m+1
< atan) =" 20| @
gR
(T Sp B °° / gdk w(E) +w(E)
a m= Ofl pEx’R? J31+l( R)
x ( 2) Ti(ap). (4340)

. X &, [ kKdk w w .
<:T22:>p:ZZA E’R? (Jz)Jr(q (f)Jm(qp)’

m=0 =1 m+1
(4.34d)
<.TM.>sp_ii/°° dk W(E)—W(E)
Tipi)s =
vip m=07—=1+0 pr 2R2 J%n—}—l(qR)
1 1
X [(m+2)m(qp)—21;(qp)+qpm(qp) -
(4.34¢)
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FIG. 5. Thermal expectation values of the SET component (:T;;:)} (4.34a) for spectral boundary conditions, as a function of the
scaled radial coordinate p/R, so that the boundary of the cylinder is at p/R = 1. (a) Massless fermions p = 0, fixed inverse temperature
/ = 2R and various values of the angular speed Q. (b) Massless fermions ¢ = 0, fixed inverse temperature § = 0.5R and various values
of the angular speed Q. (c) Massless fermions y = 0, fixed angular speed = 0.5/R and various values of the inverse temperature /3.
(d) Fixed inverse temperature = 0.05R, fixed angular speed Q = 0.5/R and various values of the fermion mass u. The solid curve in
(d) shows (:T;: >}}“Ib for massless fermions in the unbounded case, given in Eq. (4.36a), for comparison.

Equations (4.34) can be used to check the identity e T (401 Q /8 16 1,
VT = ot \373°) Tape (379 T )
(:T%:)5 = —pu(ipw:), (4.35) (4.36a)

T yub _ _ 0 1 202 /3 1
In Fig. 5. we have plotted the te.v. (:T7:)F 434a)  CToitlir == PR\ ez +55a1375¢) |
for a range of values of the inverse temperature pf,

angular speed Q and fermion mass y. Other components (4.36b)
of (4.34) are discussed in Sec. IV D. As was observed ) 5

earlier for the FC and CC, if the angular speed Q or (:T,,:)ub = Tz + Q <f_l£> (4.36¢)
temperature f~! increases with the other parameters P 180p%e 245 \3 3 )’

fixed, then the te.v. (:T3;:)y also increases. It is finite

everywhere inside and on the boundary, including in the (1T, 07 )umd = 7z’ (4—3¢) + o (8 — 8¢ + &)
case where QR =1 and the boundary is on the SOL. PR 18044 2474 ’

When QR =1, in Figs. 5(a) and 5(b), we see a large (4.36d)
peak in (:T3;:); close to the boundary. Figure 5(d)

shows that (:T;;:);p decreases as the fermion mass  and

increases with the other parameters fixed. Also in

Fig. 5(d), we have plotted for comparison the t.e.v. (:Taz: g = (:Tp5 0 )57 (4.36¢)
of this component of the SET for the unbounded

Minkowski space-time. The components of the t.e.v.  Figure 5(d) shows that, for massless fermions at least (in
of the SET in this case are [I] this high-temperature case), the t.e.v. <:T;;:>;p with
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spectral boundary conditions is very close to that on the
unbounded space-time except in a region close to the
boundary.

C. MIT bag model

The method employed for the spectral model in the
previous section can be applied also for the MIT bag model.
An expression for the difference between the thermal and
vacuum Hadamard functions, equivalent to Eq. (4.13), can
be written for the MIT case,

cMITZ ~
AS/(;)(X, X) = _Z :1,,2 e—iE_/-AtJriijz(Wj
J

- w;)M;,

(4.37)

where E ; s the corotating energy, At =t —t', Az =z~
and the normalization constant CY'" is given in (3.64). The
sum over j in this case is defined in Eq. (3.69). The thermal
factors w; and w; are given by (4.10) with the indices j and
J in Egs. (3.41) and (3.67), respectively. The matrix M
now takes the form

M;=b%uf @ itj +b;(uf @ 7 +uj @ i}) + uj ® ii;.
(4.38)

The superscripts £ indicate the sign of the helicity,
and the quantity b is given in (3.38). As in Sec. IVA, it
is understood that the spinors on the left and right
of the direct product symbol ® depend on x and X/,
respectively.

qu — E_%r (bp+ + p—)2
72 \(bp, +p-)(bp-—p,)

pdown _ EZ (bp —p-)?
! 2 \ (bp, —p_)(bp_+p;)

(b*p2

5 E -p?)
Miis = 57 =5
|E| (bp, £p_)(bp- £p,)
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To find M, we start with the following results,

uf@ﬁf_l( EZ :F%E—E+>
PR 2\ +HEE, -E?
® [pF @ ¢;7,
uf@ﬁf_l( E2 i%E—E+>
P2\ +EEE, E2
® [p7 ® o7, (4.39)

where E_ are given in (2.29). The spinors qﬁf can be found
in (2.23), and the g[;ji have the argument x, while their
Hermitian conjugates have the argument x'. Using
Eq. (2.23), the direct products of the ¢ji two-spinors can
be written as

1/ pPL  +£pp
+ ++ + +
B . = — OM ‘B
778 2<ip_p+ p% > '
1/pp-  Fpi
T
b ¢ = 3 < 2 _p+p_>o/\/l i (4.40)

where p. can be found in (2.24) and Eq. (4.19) gives the
matrix M ;. Next, M; (4.38) can be written in a manner
similar to Eq. (4.16),

1 M;p -M_
Mj = E (MX M(iown), (441)
o T
where
bp., +p_)(bp_ —
(bp, +p_)(bp 2 P o,
(bp_ —py)
bp, —p_)(bp_ +
(bpy —p-)(bp : Py) oM,
(bp_ +p,)
b _)(bp_
(bpy F p-)(bp- F py) oM, (4.42)
(b%p2 —p?) '

In the above, the Hadamard product o is taken with the matrix M defined in Eq. (4.19). Using the result (3.38) for b, the

following identities can be established,

b_2gE J

S eree TS

_ 2(7 + 1) b? —
pij? +p2’

2% -1

e A S 4.43
PP +p2 44

where ¢ = £1 and j = j,,, is in Eq. (3.36). Thus, the matrices introduced in (4.42) can be put in the form
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e B (FrIEE-naEE MEoe)
. . . . © J
boopi et -ME-1+EE) Pl hRE-1) -2
B2 [ PAHI-E(E 1) -2 —%(12—1—%')
J :p2j2+p2 _k_q ) 2g_E . OM]',
- SE-1=2E) P le bR -1+ EE
. 1 7 R+ F 2
e oz | e , 2% oM,;. (4.44)
P +p= | £( +1) £2¢ —3kj
We can alternatively write M; in terms of the Pauli matrices oy, 65, 03 (2.5),
oo e u@+ 1)+ %W+ ) E
TP e |26 E pPFH)-E@ 4+ )
o )] gee () )] mame [(5 )]
oM;| =5~ M;| - oM | Y (445
+63®K0 jz) ’] 2E62®Kq<12+1) iy dn® I\ )M (445)

where [, is the 2 x 2 identity matrix.

1. Fermion condensate

As in the case of spectral boundary conditions, the first
t.e.v. we consider for MIT bag boundary conditions is the
FC <:1/71//:)241T, evaluated from (4.37) via (4.11a). Only
the term containing [, on the right-hand side of
Eq. (4.45) contributes to the t.e.v. of the FC (4.11a),

giving

MIT °° © _dk
(tpy) / 2DMIT +W(E)]
X [%(j2+1)J;(qp)+qgj(q +u*)mlap) |,

(4.46)

where J* are defined in (4.23), the thermal factors can be
found in (4.25), their arguments can be found in (4.26)
and the quantity j can be found in (3.36). In Eq. (4.46),
the term DM in the denominator is given by

. : 2m+ 1.
DY = n*R*J2,,,(4R) {(JZ +1) (12 - 1)

gR
i o
~ Lol 4.47
Te-) (447
In Fig. 6, we plot the t.e.v. of the FC (:yy:)}"" for

various values of the parameters f, x4 and Q and

both ¢ = +1. For a massless fermion field, as discussed
in Sec. IIIC2, the energy spectra for ¢ = +£1 are
identical, and therefore changing the sign of ¢
changes only the sign of (:yy:))!"", without changing

its magnitude.

The plots in Fig. 6 (a—c) are for u = 0. They show
many qualitative features similar to those in Fig. 3 for
spectral boundary conditions. In particular, the t.e.v.s
increase with increasing angular speed Q for fixed
inverse temperature f3, there is a sharp peak near the
boundary for QR =1 but the t.e.v.s remain finite
everywhere inside and on the boundary, and the
te.v.s also increase as the temperature ' increases
for fixed Q.

In Fig. 6(d), we show the effect of varying the fermion
mass u and ¢ (3.30). Note that in Fig. 6 we have plotted

¢y )T rather than (g :))'T. Tt can be seen that
increasing the fermion mass ¢ when ¢ = —1 also increases

¢(:y )™ on the rotation axis. When ¢ = 1, the FC
decreases on the rotation axis to negative values as p is
increased.

There are also some differences between the results in
Fig. 6 for MIT bag boundary conditions and those in Fig. 3
for spectral boundary conditions. In particular, the massless
limit of the FC in the MIT model is finite and nonzero,
whereas for spectral boundary conditions, the FC vanishes
when the fermions are massless (see Sec. IVB1).
Furthermore, from (4.46), the t.e.v. of the FC vanishes
on the boundary,
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FIG. 6. Thermal expectation values of the FC (:ypy : )}}m (4.46) for MIT bag boundary conditions, as a function of the scaled radial
coordinate p/R, so that the boundary of the cylinder is at p/R = 1. (a) Massless fermions u = 0, fixed inverse temperature = 2R and
various values of the angular speed Q. (b) Massless fermions y = 0, fixed inverse temperature § = 0.5R and various values of the
angular speed Q. (c) Massless fermions u = 0, fixed angular speed © = 0.5/R and various values of the inverse temperature /3. (d) Fixed
inverse temperature # = 0.5R, fixed angular speed Q = 0.5/R and various values of the fermion mass x. Note that (b) has a logarithmic
vertical scale but a linear horizontal scale. In (d), we have considered ¢ = 41 for each value of the mass, while in the massless case, the

quantity ¢(:gpy:))""" does not depend on .

o, = Y3 [ s (E) + wiE)

ey

=0, (4.48)

where the last equality follows from using Eq. (3.35) to
eliminate the j* term. Again, this feature is not present for
spectral boundary conditions, when the t.e.v. of the FC is
finite (but in general nonzero) on the boundary.

2. Neutrino charge current

As in the spectral case, the t.e.v.s of all the components
of the charge current (4.11b) vanish. For the ¢, p and ¢
components, the summands are odd with respect to
m — —m — 1; for the z component, the summand is odd
under the transformation k — —k. The rules for checking
the required transformation properties under m — —m — 1
are, using (3.47), (4.23), (4.25), (4.26),

JE = +JE

— +[w(E) + w(E)).
(4.49)
The only nonvanishing component of the CC (4.11d) is,

as in the spectral model case, the z component [see

Egs. (3.36), (4.23) and (4.47) for the definitions of various
quantities]:

(JE)Mm — io: N /)oo ;l\ljﬂT W(E) — w(E)]
[(2 1J(ap) = (7 = 1) 735 (ap))-

In Fig. 7, we illustrate the behavior of (:J;:))"'". We find
that (:J3:))}"" is negative everywhere, and hence in Fig. 7,
we plot —(:J7:)}"T, in contrast with the spectral case
where (:J%: ) is positive near the boundary. We also see

from Fig. 7 that (:J;:))"" vanishes on the boundary, and
this can be verified analytically:

(4.50)
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Thermal expectation values of the CC (:JZ >M1T (4.50) for MIT bag boundary conditions, as a function of the scaled radial

coordinate p/ R, so that the boundary of the cylinder is at p/R = 1. This expectation value is always negative, so we show —(:JZ: )MIT
all plots. (a) Massless fermions u = 0, fixed inverse temperature f = 2R and various values of the angular speed Q. (b) Massless
fermions u = 0, fixed angular speed Q = 0.5/R and various values of the inverse temperature f. (c—d) Fixed inverse temperature
p = 0.5R, fixed angular speed Q = 0.5/R and various values of the fermion mass y for ¢ =1 (¢) and ¢ = —1 (d).

<:J£:>}}AITJP:R =0. (4.51)

Again this is not the same behavior as found in the case of
spectral boundary conditions, when (:J3: > was found to
be positive on the boundary.

For fixed inverse temperature f, we see in Fig. 7(a)
that —(:J3:)}""" increases as the angular speed Q
increases. As seen in previous figures, when the boun-
dary is on the SOL, there is a large peak in —(:J;:))!'T
close to the boundary, but the t.e.v. remains finite
everywhere inside and on the cylinder. For fixed
angular speed Q, Fig. 7(b) confirms our expectations
that the absolute value of the te.v. (:Jj:)}'" increases
as the temperature B~ increases. Varying the mass of
the fermion field with fixed inverse temperature f and
angular speed Q does not alter the t.e.v. of the CC very
much, as can be seen in Figs. 7(c) and 7(d). When
¢=1, as the mass p increases, the magnitude of
(:Ji: >MIT decreases everywhere inside the boundary.
For ¢ = —1, the magnitude of (:J;:)}'"" decreases as

increases apart from close to the boundary, where the
magnitude of (:J5:)M'" appears to be increasing.

3. Stress-energy tensor

We now turn to the t.e.v.s of the SET for MIT bag
boundary conditions. The nonvanishing t.e.v.s of the
components of the SET with respect to the tetrad (2.2),
calculated using (4.11c), (4.37), are

Edk ~
.T;; MIT MIT w(E
CTapp= 3 [l w(E)
x[(iP+ D)5 (gp) = (P = 1)Jn(gp)],  (4.52a)

?.»

b

MIT ZZA 2EDMIT[ (E)—f—w(E)]

m=0 /=1
m+ %
x { {Jz (ap) — 5 2an(qp)} }
(4.52b)

<:Tw:>%”=ii/o°°2;’pdﬁn{ (B) + w(E)(P +1)
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FIG. 8. Thermal expectation values of the SET component (:75;: )}}m (4.52a) for MIT bag boundary conditions, as a function of the
scaled radial coordinate p/R, so that the boundary of the cylinder is at p/R = 1. (a) Massless fermions y = 0, fixed inverse temperature
£ = 2R and various values of the angular speed Q. (b) Massless fermions y = 0, fixed inverse temperature # = 0.5R and various values
of the angular speed Q. (c) Massless fermions p = 0, fixed angular speed Q = 0.5/R and various values of the inverse temperature /3.
(d) Fixed inverse temperature # = 0.5R, fixed angular speed Q = 0.5/R and various values of the fermion mass y. In (a) and (b), we use
a logarithmic vertical scale. In (d), we have considered both ¢ = +1 (for a massless field the t.e.v.s are independent of the value of ¢).

(1750 )MIT — ii/)oo 22;{;? W(E) + w(E)]

=0 /=1
X [+ 1)J5(gp) = (i = 1)Im(qp)],
(4.52d)

- <m+;)1;1<qp>]}’ (4.52)
where we refer the reader to Eqs. (3.36), (4.23), (4.25),
(4.26) and (4.47) for the definitions of the quantities
appearing in (4.52). As in the spectral case, the relation
(4.35) between the trace of the SET and the FC can be
directly verified.

Figure 8 illustrates how the energy density (:T;;: )3T

changes with Q, f and u. Other components of (4. 52) are
discussed in Sec. TV D. As expected, (: T3;: )" increases as

either the temperature ! or angular speed Q increases with
the other parameters fixed. The energy density is finite and
positive everywhere inside and on the boundary of the
cylinder, including the case when QR = 1 and the boundary
is on the SOL. For some values of the parameters,
(:T3:))" increases monotonically as p increases from
zero (the axis of rotation) to R (the boundary); in other cases,
there is a peak in the energy density close to the boundary.
Figure 8(d) illustrates the effect of changing the mass on the
profile of (:7;;:))}""". When ¢ = 1 (original MIT case),
(:T3:))"" behaves as expected, its value decreasing every-
where in the domain as y is increased. A notable feature of
the chiral case (when ¢ = —1) is that the value on the

boundary of (:7;;:))""" increases as u increases.

D. Comparison between the spectral and MIT models

In this section, we have computed rigidly-rotating t.e.v.s
(thermal expectation values) of the FC (:yy:), and the
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FIG. 9. Thermal expectation values of the SET (:74;:); components and the CC (:J;:); for MIT bag (blue, dashed lines) and
spectral (red, dot-dashed lines) boundary conditions. Our results are compared to those for unbounded Minkowski space-time (thin
lines) [1]. The plots show t.e.v.s as functions of the scaled radial coordinate p/R, so that the boundary of the cylinder is at p/R = 1. The
angular speed is taken to be Q = 0.5R~!, the inverse temperature is # = 0.05R, and the fermion field is massless. The profiles obtained
in the three setups (spectral, MIT and unbounded) agree very well, except in the vicinity of the boundary, where the results obtained with
the spectral model present visible deviations. The MIT model yields results for the SET which closely follow the unbounded case,

differing from the latter only slightly on the boundary.

nonzero components of the CC (:J3:) pand SET (:T;;:),  everywhere inside and on the boundary. This is true even
for a massive fermion field satisfying either spectral (3.12) ~ When the boundary is on the SOL. The t.e.v.s with these
or MIT bag (3.28) boundary conditions. All components  two boundary conditions share many features. Typically,
are computed with respect to the tetrad (2.2). We have their absolute values increase as either the temperature !
considered only the case where the boundary is inside oron  or angular speed € increases, with other parameters held
the SOL. All expectation values computed are finite  fixed. In the spectral case, increasing the fermion mass uR
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appears to decrease the magnitude of the t.e.v.s throughout
the domain. A similar effect can be observed for the
original MIT boundary conditions (when ¢ = 1). In the
chiral case (¢ = —1), the values of the t.e.v.s appear to be
decreasing close to the rotation axis as y increases, while
close to the boundary, the t.e.v.s appear to increase with p.

In Fig. 9, we compare our results for the nonzero
components of the SET (:T;;:); and CC (:J:), for
the spectral and MIT bag boundary conditions with those
for rotating states on unbounded Minkowski space-time
[1]. In Fig. 9, the temperature is very high f~' = 20R~!,
and the boundary is far inside the SOL (QR = 0.5). For
these values of the parameters, there is very little difference
between the t.e.v.s in the unbounded, spectral and MIT bag
cases. The only noticeable variation between these three
t.e.v.s is close to the boundary. The MIT bag t.e.v.s are still
very similar to those in the unbounded case, but those for
spectral boundary conditions show a marked difference
from the unbounded case.

Combining our results in Fig. 9 with those earlier in this
section, we find the following qualitative differences
between the spectral and MIT models:

(i) The t.e.v. of the fermion condensate vanishes every-
where for massless fermions in the spectral case,
while in the MIT case, it is finite and depends on the
value of ¢. For massless fermions, (:gy )} has
the sign of ¢ everywhere, while in the case of
massive fermions, (:gy :))"" can start with oppo-
site sign on the rotation axis.

(i1) The t.e.v. of the neutrino charge current is negative
on the rotation axis and becomes positive on the
boundary in the spectral case, while in the MIT case,
it stays negative throughout the space-time, except
on the boundary, where it vanishes.

(i) (:T;4:)y vanishes on the boundary, while
(:T;4:))"" remains nonzero on the boundary.

We examine further the differences between the spectral

and MIT bag boundary conditions in the next section, by
considering Casimir expectation values.

V. CASIMIR EXPECTATION VALUES

So far, we have considered t.e.v.s of rotating fermions
enclosed in a cylindrical boundary with respect to the
vacuum state of the bounded system. In this section, we
investigate the expectation values of the FC, CC and SET in
the bounded rotating vacuum relative to the unbounded
vacuum state. We refer to these expectation values as
“Casimir expectation values” as they describe the effect of
the boundary on the vacuum state. As in the previous
section, we consider both spectral and MIT bag boundary
conditions. Furthermore, the boundary will always be
inside or on the SOL. As shown in Sec. III, the resulting
quantization of the transverse momentum guarantees that
the Minkowski energy E and corotating energy E satisfy

PHYSICAL REVIEW D 93, 104014 (2016)

EE > 0 for all modes. This means that the (bounded)
rotating (Iyer [4]) and nonrotating (Vilenkin [3]) vacua are
identical and will be referred to henceforth as the “bounded
vacuum.” The bounded vacua for spectral and MIT bag
boundary conditions are however not the same, and hence
the Casimir expectation values will depend on the boundary
conditions employed.

A. Euclidean Green’s function on unbounded
Minkowski space-time

The main difficulty in extracting Casimir expectation
values using the construction of two-point functions by
employing mode sums comes from the quantization of the
transverse momentum induced by the boundary (see
Secs. IIIB1 and IIIC1 for details). On unbounded
Minkowski space-time, the fermion field (and, similarly,
the two-point function) is written as a sum over field
modes, which involves an integral over the Minkowski
energy E (or, equivalently, the transverse momentum q)
(2.36). The presence of the boundary changes the integral
over the permissible values of the transverse momentum ¢
into a sum (over an index Z which labels the values of the
transverse momentum). This makes it technically challeng-
ing (although not impossible [12,16]) to subtract two-point
functions corresponding to the unbounded and bounded
manifolds. Following the approach in Ref. [5], it is
convenient to extract Casimir expectation values from
the Green’s function of the corresponding Euclideanized
manifold. To this end, we start in this section by calculating
the Euclidean Green’s function for the unbounded
space-time, after which the boundary terms will be pre-
sented separately for the spectral and MIT bag models in
Secs. VB and V C, respectively.

To simplify the calculations, it is convenient to switch to
the inertial nonrotating (Minkowski) coordinates, where the
metric is diagonal, i.e. there are no off-diagonal compo-
nents mixing space and time. The formulation of quantum
field theory on the Euclidean equivalent of the Minkowski
manifold is obtained by introducing the following notation,

W=r=it, xfé:xh, yéz—iyj, (5.1)
where ¢ and x{;,, are Minkowski (inertial) coordinates and
° =7y, ¥/ =y, where y', y/ are given in (2.4). The
resulting Euclidean Minkowski metric gf,, has the follow-
ing nonvanishing components:

95 =Ghp = g% = 1, gE, = p*. (5.2)

The Euclidean Green’s function S = Sg(x, x") must satisfy
the inhomogeneous Dirac equation,
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£ .
(=r£0F = 1)Se = Se(yrk — )
1
=——58(c-7)(x-x)ly, (53)
VIE

where [ is the 4 x4 identity matrix and gg is the
determinant of the Euclidean metric with nonvanishing
components (5.2).

Following the construction of the mode solutions of the
Dirac equation in Sec. IIB, the (nonrotating) vacuum
Euclidean Green’s function SY™(x, x;) for the unbounded
space-time can be Fourier transformed as

o dm o ® . .
S%nb(xE“x%) :/ @/ dk Z elwA1+zkAz)(unb’

m=—0oo

(5.4)

where At =7 — 7, Az = 7z — 7’ and the 4 x 4 matrix y""
can be written in terms of four 2 x 2 matrices y"I°:

)(unb Zunb
;{unb — ( 11 12 . (55)

unb unb

X1 X

Performing an equivalent Fourier transformation of the
delta functions on the right of Eq. (5.3), the inhomogeneous
Dirac equation implies

<u+iw 2ph )(}(ﬁ‘?b x&'%b>
—2ph p—iw )\
Clp=p) (1 O) _ (e 0
o p 0 1 ® 0 ei(n1+1)A(/1 ’
(Z‘l"fb )(T%b) (/Hriw 2ph”">
TP AN A A
Slp=p' 1 0 eimAqa 0
:M ® ) , (5'6)
p 0 1 0 et(n1+1)A(/1

where p is the momentum, Agp = ¢ — ¢’ and h is the 2 x 2
component of the helicity operator Wy, defined in Eq. (2.9).
In (5.6), we have used the Kronecker product of matrices,
defined in (4.15). For the equation in x’, the operator 4" has

the form
/
h/T:L k —P- ,
2p \-P, -k

where the primes indicate that the derivatives in the
operators P’_ act from the right on p’ and ¢’. The operators
P, can be found in (2.17).

The off-diagonal components of Egs. (5.6) give the
following equations,

(5.7)
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unb __ zph )(unb — unbzp—h/T
21 /zl_lw 11 22M+i(l)’
2ph 2ph't
== T = T (58)

while the diagonal components can be written as modified
Bessel equations,

unb
A1l
[pzag +p0, + 85, - p*a?] /4—— .
eimA(p 0
= —/)5(,0—,0/)( 0 ei(er])A(p)? (593)
L0202 _|_/)8 +82 _pzaz] )(lzlgb
14 14 4 U+ io
eimA(p 0
_ )
- p5<p p)( 0 ei(m+1)A¢)’ (59b)

where

aF = &? + kK + . (5.10)
It can be shown that the inhomogeneous Dirac equation in
x' also reduces to Egs. (5.9) (with p and ¢ replaced by p’
and ¢', respectively). Hence, ¥4 and y35° can be written as
linear combinations of modified Bessel functions. The
Euclidean Green’s function for the Minkowski space-time
must be regular at the origin and at infinity, and thus the
only nontrivial solution of Eqgs. (5.9) satisfying these
boundary conditions is

)(llullb Iggb I;KZeimA(ﬂ 0
Uu—io p+iow 0 1;+1Kr>n+lei(m+l)A¢ ’
(5.11)

where /,, and K,, are modified Bessel functions of the first
and second kinds, respectively. The arguments of the
Bessel functions with the < or > superscripts are the
smaller or larger of ap and ap’, respectively. Therefore, if
p > p', we will write I;,K;, = K,,I,,, where the arguments
of K,, and I,, are ap and ap’, as per the conventions
introduced in Eq. (4.19). The combinations in Eq. (5.11)
can be written using these conventions in terms of step
functions as

g =0(p=p)af + 00" -p)fyg. (5.12)
The off-diagonal matrices »¥5° and 45 can be obtained
from Egs. (5.8), using the following properties [the
operators P, are given in (2.17)]:
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P.1,(ap)e™ = —iael" Vo1, (ap).

P 1,n+1(ap o = —jge™ 1, (ap),

Jeil
K,u(ap)e™ = iae' " VPK, ., (ap).
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Similar equations hold for P’_, which can be applied
bearing in mind that /_,,(z) = I,,(z) and K_,,(z) = K,,,(2).

Thus, the Euclidean propagator on unbounded
Minkowski space-time takes the form (5.4) with the matrix

7" given by

P_ KmH(ap)e‘ (m+De = jgei™ K, (ap). (5.13)
|
" [ & <1,;K,;eimmﬂ 0 )+k<o —1) ® (1,;1(,;@!""” 0 )
X iwo 4 .
o 0 IIRY ARl 10 0 L K e A
0 -1 0 F(m,m+ 1)>
+a ® ; 5.14a
<1 0) <f(m+1,m) 0 (5.14a)

where the notation F(m,n) is a shorthand for

F(m,n) = ie™="[0(p = p K, = 0(p' = p)1,uK,].

(5.14b)

As before, the first and second Bessel functions in (5.14)
depend on ap and ap’, respectively. The Pauli matrix o5 is
given in (2.5).

Before ending this section, we stress that the solution
(5.4), (5.14) of the inhomogeneous Dirac equation (5.3)
is fixed by the boundary conditions requiring regularity at
the origin (p =0 or p’ =0) and spacelike infinity. To
satisfy boundary conditions of a different type, suitable
solutions of the homogeneous Dirac equation can be
added to Eq. (5.4). We follow this approach in Secs. V B
and V C for spectral and MIT bag boundary conditions,
respectively.

B. Spectral boundary conditions

In this section, we first construct the Euclidean
Green’s function for a fermion field satisfying spectral
boundary conditions on the cylinder, then compute
the Casimir expectation values. Using an asymptotic
analysis, we are able to derive the rate of divergence
of these expectation values as the boundary is
approached.

TABLE 1. The behavior of the 2 x 2 constituent blocks (4.19)
of the Green’s function obeying spectral boundary conditions on
a cylinder of radius R. Depending on the sign of m +% and on
which point is on the boundary, certain entries in these 2 x 2
matrices will vanish, as indicated in the table. Entries marked x
do not necessarily vanish.

m—|—%>0 m—|—%<0
p=R G2 G o)
/ X X
pP=R (© %) G o)

1. Euclidean Green’s function for spectral
boundary conditions

To construct a Euclidean Green’s function which imple-
ments spectral boundary conditions, we consider the
behavior of the corresponding vacuum Hadamard
Green’s function on the boundary. Since the dependence
on the radial coordinates p and p’ is always that in the 2 x 2
matrix given in Eq. (4.19), it is sufficient to analyze its
behavior on the boundary, as shown in Table 1. To imple-
ment these boundary conditions, a solution AS} (xz, x};) of
the homogeneous Dirac equation must be added to the
Euclidean propagator (5.4), (5.14), as follows,

ST (ko) = Sy (rpoxt) + ASP(xpdy). (5.15)
where ASY (xg, ;) can be Fourier transformed in analogy
with Eq. (5.4):

ASGp xE’xE / / dk Z ezwAerlkAzA)(sp

m—=—0oo

(5.16)

The 4 x 4 matrix Ay®P can be written in terms of four 2 x 2
matrices Ay, in a similar way to Eq. (5.5):

Al Axh
Ay :( ! >

‘ . (5.17)
A){ﬁ A)(zg

The Euclidean propagator Sy (xz,x}) of the bounded
system must obey spectral boundary conditions; in other
words, those entries which vanish in Table I must be equal to
zero. Furthermore, S7¥ (x, x7;) must stay regular at the origin
(i.e. when either p = 0 or p’ = 0). We therefore find the
following expressions for Ay} and Ay3,

S (10
m ]

. - (5.18a)
H—io p+io 0 -1
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where o denotes the Hadamard product of matrices (4.18).
In (5.18a), c,, is a constant ensuring that the relevant entries
in Table I vanish, having the value

K, (aR
m\&
- (5.18b)
Km+l(aR> 1
S m+ <0,
Im+1(aR)

and the matrix &; on the right of the Hadamard product in
(5.18) is given by

g.:

( L,1,e™mA
J

_iImIerlei(erl)A{p_ilp
i1m+11meimA(p+i(p ’

Im+11m+lei(m+l)mp

(5.18¢)

where the first and second modified Bessel functions above
have arguments ap and ap’, respectively, and « is given in
Eq. (5.10). Only modified Bessel functions of the first kind
(i.e. I,,) have been considered in Egs. (5.18c), since their
linearly independent partners, K,,, do not satisfy the
requirement of regularity at the origin. The off-diagonal
matrices Ay} and Ay} can be determined using analogs of
Eqgs. (5.8) for the spectral case:

k —a
Og j*
—a k
Thus, the Fourier coefficients Ay*P of the boundary term
(5.16) can be written as

A = =AMy = (5.18d)

1 0
ol By = (ul, — iwo3) ® K >°5J}

0 -1
o)l W)l e
olil, .
1 0 —a k)’
where the Pauli matrix o3 is given in (2.5) and [, is the
2 x 2 identity matrix.

2. Casimir expectation values

We are interested in the Casimir expectation values of
the FC (fy)e. charge current (J*)& ., CC (J&)&  and
SET (T;5)c The following formulas can be used to
calculate these expectation values using the difference
ASP(xg,xl) (5.16) between the vacuum Euclidean
Green’s functions for the bounded system and for
unbounded Minkowski space:

()& = lim tr[ASE (xg, X)), (5.20a)
Xp—XE
<Ja>Ca§ = 1[11’1’1 tl'[ ASE (xvaE)] (520]3)
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<J?>?as = ?(xE’ XIE) , (5200)

lim tr v
xg'—=xp

! 1
<T&6>Epas =5

2 xg'—xg

lim tr[y(, (D

&)~ D5)>AS1S;(XE, xg')].

(5.20d)

For the FC (5.20a), the following expression is obtained,

y)d = / dw / dk Z culn(aR), (5.21)

m=—0o0

where the constant ¢, is defined in Eq. (5.18b) and
the notation [;,(z) is analogous to that defined in
Eqgs. (4.23):

L(z) = I5,(2) £ I, (2),

I;<n (Z) = 2Im (Z>Im+1 (Z)

(5.22)

It is convenient to switch to the polar coordinates (a, 9)
where a is given by (5.10) and

@ = \/a* — p? cos 9, k=1/a®>—pu*sind, (5.23)

in terms of which the Casimir FC (5.21) can be put in the
following form, after the integration over J has been
performed:

w)e, = Z / daac,I,,(aR). (5.24)
We now change variables to
x =aR (5.25)
and introduce the notation
z—sp * ISP * o 1
o =Len )=
) 00 1\n
X dx x’ <m +—) ol (%p). 5.26
> 3) enlin). (526

The functions I},(z) are defined in Egs. (5.22) for x €
{+,-,x} and

P
R
In terms of this new notation, the FC (5.24) can be
written as

p= (5.27)

<‘/_/W>Eas - ”RZISP . (528)

The Casimir expectation values of all components of the
charge current (5.20b) and neutrino charge current (5.20c)
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vanish. The nonvanishing components of the Casimir
expectation value of the SET (5.20d) can be written as

S| 1 Sp.— 1 Sp.—
<TT >Cpas = 51-3% + E,qule% s (5.29&)
(T75)da = T30~ =PI, (5.29b)
(T%,)8 =PI (5.29¢)

and (T%:)8. = (T%) &, In (5.29), we have written the
components of the SET relative to the Euclidean version of
the tetrad (2.2).

3. Casimir divergence near the boundary

By construction, the Casimir expectation values (5.20)
diverge on the boundary, due to the properties of the
difference ASY (xg, x) between the vacuum Euclidean
Green’s functions for the bounded and unbounded
Minkowski space-times, given by (5.15):

ASP (xpxy) = SP(xp.xp) =S¥ (xpoxy).  (5.30)
To see this, consider one of the entries in S} (xz, x};) which
vanishes when xy is on the boundary from Table I. This
entry in ASY (xg, x) (with p = R) is then equal to the
corresponding entry in SYP(xg, xi) with p=R. As
x}i — Xxg, because the coincidence limit of the unbounded
Minkowski space Green’s function is divergent, so too is
this entry in lim, —x,ASP (xg. xj;) when xg is on the
boundary. Therefore, the Casimir expectation values
(5.20) diverge on the boundary.

This divergent behavior can also be seen in the algebraic
expressions (5.28), (5.29) for the Casimir expectation
values. For example, consider the behavior of the integrand
in Z3y~ (5.26) when p = 1, for large values of m = v — 4
and x. First, we define polar coordinates (r, @) as follows,

(v, %) =

then, using Egs. (A4), we find

(rcos@, rsinf) (5.31)

K, (%)

() cosd
r _=
I, ()

14cosé

{1 +%+ O(r‘z)], (5.32)

where the r on the left-hand side is the Jacobian of the
transformation (5.31). The above expression does not
vanish at large r, so the integral in Zg~ (5.26) is not
convergent when p = 1. As will be seen in the analysis
below, it is convergent for p < 1.

In this section, we analyze the divergence of the Casimir
expectation values (5.28), (5.29) as a function of the
distance € to the boundary, defined as
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e=1-p, (5.33)
where p is given by (5.27). We will find it useful to consider
the following integrals:

;p;* — 2R4/ dy/ dx x‘ V" €yl : I(X,D). (5.34)

To understand the connection between Z7* and Z", the
sum over m in Eq. (5.26) can be replaced by the integral
over v by using the generalized Abel-Plana formula,
presented next.

Generalized  Abel-Plana  formula.—According  to
Ref. [25], residue theory can be used to prove the
following result,

f(=i)

= 1y [« e flit) = f(=i
;)f<m+2> —A dl/f(l/)—l/) dliezm_i_l ,
(5.35)

valid for an analytic function f.

In the present case, f(m +3) in Eq. (5.35) will be
replaced by the analytic functions f}"(m + 1), defined
according to

P )_L/md ¢ nwl* (xp), (5.36)
rn W)= . x x‘ v TG0 b xp), (5.

2
where [}, is defined in (5 22). From the definitions (5.18b),
(5.26), the integrals Z}"" can be written in terms of /" (v)
(5.36) as follows:

R ()]

The behavior of Z37* near the boundary can be investigated
by considering the following function:

(5.37)

Sp* [+ spok s
Sp.* Sp.* sp* . ® ¢ (lt) —Jz (—lt)
5fn ( ) Ifn _I - IA dr== e27rt + il :

(5.38)

The factor (2" + 1)~! ensures the convergence of the ¢
integral.

The x integral in Eq. (5.36) can be analyzed by
considering the asymptotic expansion of the integrand
for large x (but fixed v). Starting from the asymptotic
expansions for large argument given in Egs. (Al), the
following approximations can be obtained:

_ ve* 202 -1
oy =g (125 ),

2x

(5.39a)
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2x 2 4
t )= (1P
I () =— (1 ~toat ) (5.39b)
5 e voou(P-1)
K, 1(x) viv=1) Pr-1)>
2 _ -2x 1 N .39d
e me { t——t T } (5.39d)

K, 1(x) ve e w—1 22-1

2 I (xp) = 1- - o(x2)], 5.40
IV_%(X) ”—%(Xp) x%p? [ 2x 2% €+ 0(x )} ( 2)
K, 1(x) e ¢ v 1

1 b () = 1= Y e b o(x )], 5.40b
T4G ) |15 Serou) (5:400)

where ¢ is given by (5.33). The divergence of the functions 67" (p) (5.38) for the cases relevant to the computation of the

Casimir expectation values in Egs. (5.28) and (5.29) can be found using

S 2 © tdt odx . 3
5 0) == s | [ e o6

P 62”’—|—1 R X
SD.— /— 2 oo tdt ) e 1 t2+l ~
55 () :_an“ﬁzA ez’”—i—l/ﬂR dxe™ [X‘FE‘F 5 26+ O(x 1)]
Spox 2 o rdt o o 2 ~
5517 (p) :_ﬂzR“ﬁA e2’”+1/,,R dx e e[x+56+0(x ')} (5.41)

When p — 1 (or, equivalently, ¢ — 0), the integrals (5.41) diverge due to the large x behavior of the integrand.
To investigate this divergence, the lower limit of the x integral can be set to 0, giving

s _In(2e)™' =y + 0(e) s 1 +4e+ O(e?) SPF 1+e+0(e)
10 247°R* ’ 0 967°R*e* 2! 967°R*e*

where y is Euler’s constant. It turns out that the results (5.42) diverge as ¢ — 0 at a subleading order compared to the
corresponding functions Z3>* (5.34), as will be shown below.

(5.42)

Asymptotic analysis of Casimir divergence.—We now examine the behavior of the integrals 7 ;P;i* (5.34) as € — 0. This
behavior, combined with the results (5.42) for 6;‘31’* and (5.38), will enable us to deduce the relevant properties of the
integrals Z>" (5.26) required for the Casimir expectation values (5.28), (5.29).

Using the polar coordinates (r, ) introduced in Eq. (5.31) and the expansions in Egs. (A4), the following asymptotic
expansions can be made,

B eQr(]—e)Jrlentang 1—|—5$i1’129 )
I;_%(Xp) S —— { o+ (1 + sin?0) — re?cos?6 + - - ] . (5.43a)
le(l—e)-‘erln tand cos26
1:_%(Xp) = p— {1 + o, T€~ re’cos’d + - - } . (5.43Db)
2r(1—¢)+2v In tand 5 29
I (xp) =& T =220 esin?0 — récos?d + - |, (5.43¢)
v r 12r

where terms of order 772, r~'e and €* were ignored. Combining Eq. (A4d) with Egs. (5.43) gives
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K y—%(X) —oye  COSO

r(1+-cos0)

TG ) =e

1
x[1 +E+€(l +sin%0) — re*cos?0 + -],

sin@
r(1+cos0)

];(_L(Xﬁ) =7
2

x [1 +esin’0—re*cos?0+---].  (5.44)

Hence, the following results are obtained:

- 1 4
1 43
:m[l+_€+0(€2):|’

30
= L 1 —|—i€+ 0(e?)|.
21 1672 R4 10

S]]

%"
(5.45)

The divergences of the Z}>" terms calculated above are two
inverse powers of ¢ larger than the corresponding error
terms 5" calculated in Egs. (5.42). Hence, from (5.38), the
leading-order and next-to-leading-order divergence of the
functions Z3** (5.26) coincide with the expressions (5.45)
for the leading-order and next-to-leading-order divergences
of the functions Z37" (5.34).

Substituting Egs. (5.45) into Egs. (5.28) and (5.29) gives
the following asymptotic behaviors for the Casimir expect-
ation values as ¢ — 0 and the boundary is approached,

) H 4
<‘//l//>cpas:_m[l —In2+ <§—ln2>€+~~],

(5.46a)
. 1 43
T iy T _ oo
<T T>Cas 32 RY A |:1 + 306 + :| s (546[))
5 \8 1 53
(T75) s = 1822 R4 {1 +2—0€ +-- ] ; (5.46¢)
oy — L Mo (5.46d)
PICas T o2 RACH 10 ’

where (T%;)¢, = (T%:)¢,,. We obtained (77;)¢ from
(T?,)& using the conservation law V,T*, = 0, which
can be written in (nonrotating) cylindrical coordinates on
Minkowski space-time as follows:

The divergence of the SET (5.46) for massive fermions
when spectral boundary conditions are considered is one

inverse power of e larger compared to the scalar field case
[5]. We will discuss this point further in Sec. V D.
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Numerical results.—In Fig. 10, we compare the asymptotic
results in Eqgs. (5.46) with numerical evaluations of the
Casimir expectation values (5.28), (5.29) for uR = 0 and
uR = 2. For all expectation values, we plot the logarithm
of the magnitude of the relevant quantity, in the left-hand
column as a function of p/R on a linear scale and in the
right-hand column as a function of the logarithm of
e! (5.33).

From (5.28), the Casimir expectation value of the FC
vanishes if the field is massless ¢ = 0, as was the case for
the thermal expectation values with spectral boundary
conditions in Sec. IV B 1. Furthermore, we find that the
expectation value (y)d is negative for all p [near the
boundary, this is expected from (5.46a)]. We therefore plot
the logarithm of —u~!(py) . For the SET components,
we find that (T7,) & and (T?,) & are positive everywhere,
while (T%;) is negative everywhere (therefore, we plot
the logarithm of —(7%;)& ).

All the Casimir expectation values are regular inside the
cylinder but not on the boundary. All quantities shown in
Fig. 10 have smaller magnitudes for a massive fermion field
compared with the massless case. The absolute values of all
the Casimir expectation values plotted in Fig. 10 have their
minimum on the axis of the cylinder at p = 0 and increase
monotonically as the radial coordinate p increases. All
diverge as p — R and the boundary is approached. The
agreement between the asymptotic and numerical results as
the boundary is approached is excellent, confirming the
predicted order of divergence in Egs. (5.46).

C. MIT bag boundary conditions

The leading-order Casimir divergence for fermions
inside a cylinder in four-dimensional Minkowski space-
time has already been reported in Ref. [12], but only for the
original MIT case (i.e. ¢ = 1).

In this section, we apply the approach of Sec. V B to the
case with MIT bag boundary conditions, for both ¢ = £1.
Our approach is different from that in Ref. [12]. We recover
the leading-order, ¢ = 1, results of Ref. [12] in Sec. V C 3,
“Asymptotic analysis of Casimir divergence,” except for the
FC, for which we obtain the opposite sign. This difference
is due to a difference in how the FC is defined: we define
the FC by analogy with the classical theory, such that
Eq. (4.35) holds.

1. Euclidean Green’s function for MIT bag
boundary conditions

To form the Euclidean Green’s function SY!T(x, x’) for
the bounded system with MIT bag boundary conditions, a
solution ASYT(x, x’) of the homogeneous equation corre-
sponding to (5.3) (i.e. with the right-hand side set to zero)
must be added to the Euclidean Green’s function (5.4),
(5.14) for the unbounded space-time:
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Logly/1]
Asymptotic Log[;%p/,u] Asymptotic
30 35 Lesll-p/R]
—Log[1-p/R]
—Log[1-p/R]
Log[Ts»
1%[, 2 Asymptotic
R
g ~Log[1-p/R]
_4fn=====

FIG. 10. Casimir expectation values for spectral boundary conditions. The left column presents the logarithm of the absolute
value of the FC divided by the field mass = (yy), (first line) and of the nonzero components of the SET (T;5) e (lines 2-4)
as functions of the scaled radial coordinate p/R, so that the boundary of the cylinder is at p/R = 1. The right column shows
the same quantities, but as functions of the logarithm of the inverse distance e~! (5.33) to the boundary. The plots compare the results for

massless [blue (upper) dashed curves] and massive [purple (lower) dot-dashed curves] fermions to the asymptotic results (dark thin
curves) in Egs. (5.46).
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ST (xp, x) = SE°(xp, x) + ASYET (xp, xf). (5.48)

ASYIT(xp, x7;) can be Fourier transformed in a similar way
to Egs. (5.4) and (5.16),

ASMIT x x / / dk Z ezwAr+tkAzA)(MIT

m=—0oo

(5.49)

where At =7—17 and Az=z-7. The 4 x4 matrix
AyMIT can be written in terms of four 2 x 2 matrices
AyMIT, in a similar way to Eqgs. (5.5) and (5.17):

(5.50)

MIT MIT
AIMIT:<A% Axiy )

A )(MIT A }(MIT

The 2 x 2 matrices Ay, in turn, can be written as

A)(MIT:(CIH b”)o& AMIT — <a|2 b]2>05»
J* J’

u—iw cip dy ¢y dp
AyMIT a b a b
Ay ( 2 22>ogj, AT — < 21 21)051_’
M+ iw cn dn co1 dy '
(5.51)

where a;y, by, ¢;x and d;; are constants, the matrix £; on the
right of the Hadamard (Schur) product is defined in
Eq. (5.18c), and j is a generic label for the parameters
m=m;, ®=w; and k = k;.

The matrix elements of the off-diagonal blocks AyMT

and AyMT can be found using analogs of Egs. (5.8), as
follows,
<012 b12> . (—kazz—aczz —kb22—05d22)
¢y dyp aay +kcy  aby +kdy,
—kay—ab,; aa;;+kb
_( 11 11 1 11>’ (5.52a)
_kcll —ad“ acqq +kd11
|
KWI
(/‘ - lw) 1, 0
K’Vl
unb 0 (ﬂ - la)) I"’:ll
X J/):R - Ky K,
ko —ag,
Km 1 — Km 1
Im:l k m:l
; Km
(:“ - la)) I, 0
— i) K1
){uan — 0 ('u lw) ’mrl
PR K, K,
ko ag
KVﬂ KWI
—ag, —kT
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(aZI b21>
Cy dy

kay+acy; kb +ady
(_aall_kcll _abll_kdll)
kas, +abyy —aay, —kbsy

<k022+ad22 —aczz—kdn)

(5.52b)

where « is given in (5.10). Equations (5.52) can be used
to express all matrix elements of AyMT in terms of the
matrix elements of AyMT. The matrix elements of Ay}
are given below, for completeness with respect to those
of AyMIT:

ar -k —ak —ak —ad? ap

by 1 ak  k? a? ak by,

cn | -K| ak & KB ak c

dy - —ak —ak —k* dy
(5.53)

Since the Euclidean Green’s function is formally equiv-
alent to the Lorentzian Feynman propagator, the MIT
boundary conditions (3.28) remain unchanged when the
Euclidean propagator is considered:

(iy” 4+ ¢) S (x.x') | jug = O,

SET (. x) (=ir” + )] yr = 0. (5.54)

To begin the construction of ASY!T(x, x") (5.48), we require
the values on the boundary of the Fourier transform y'"°
(5.14) of the Euclidean Green’s function SY"°(x,x’) (5.4)

for the unbounded space-time. These values can be inferred
from Eqgs. (5.14) and (5.18c¢),
KI?I KWI
—k T T
Km 1 Km 1
a m:l m:l ° < g/ g/ >
(1 + iw) 7= 0 & &
O (ﬂ + lw) Il:ln:l]
K"‘l Km
kK g
K”l Kﬂl
@ H ]m:l] g] g/
© o , (5.55)
(u +iw) T 0 & &
O (ﬂ + lw) Il’nn:l]
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where the modified Bessel functions explicitly displayed
in the ratios K, /I, and K,, /1, have argument aR.
The dependence on the coordinates p, p/, ¢ and ¢’ is fully
contained in the matrices &; (5.18¢).

The boundary conditions (5.54) give 32 equations for
the matrix elements of AyMT (5.50). However, only a
comparatively small number of these equations is required
to fully determine AyM™. The (1,1) components of
Egs. (5.54) (i.e. the top left components of the equations
for both p = R and p’ = R),
c(u—iw)(Ky + Inan) —aK, = Lyiic =0,
s(u—io)(Ky + Iyay) — aKyy + Lybiy =0, (5.56)
show that

Cy = _b12' (557)

A similar inspection of the (2,2) components of Egs. (5.54)
shows that
s(u—iw)(Kysy + Lyadiy) — aky, + 1,0y =0,

s(u —iw)(Kypy + Ipsrdn) —ak,, = I,c10 =0, (5.58)

leading to

b21 = —Cq2. (559)
Comparing the expressions for b, and ¢,; in Egs. (5.52)
shows that

(5.60)

¢y = by, Cy = by,

which can be used together with the expressions for d,,
dy;, ajp and ay; in Egs. (5.52) to give

az = —daj, dy) = —d. (5.61)
Using dy; = —aby; — kd;; in the (1,2) component of
Eq. (5.54) for p = R gives
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where the argument of the modified Bessel functions is, as
before, aR. Substituting (5.62) into b,; = kb;; + ad;; gives

slu —iw)lal,, + ¢lio + p)l, 41 ldi; - szm—&-l

by —
. cp— i)y +
(5.63)
Substituting b, into the first equation in (5.58) gives
K 11 1
dy=——mtly - fm oy 2 €2 (5.64)
Im+1 UIm+l Up—iw

where the following property was used to eliminate
K, (aR):

Kn(@hia () + Kt @ln() = (569

The quantity U=TU,,(aR) introduced in Eq. (5.64) is
defined as [16]

U= U,(aR) = aR[I%(aR) + I2,, , (aR)]

+ 2¢uRl,,(aR)1,, . (aR). (5.66)
Substituting d;; back into Eq. (5.62) gives
ck
byy=—-——"—. 5.67
11 U(ﬂ _ l(l)) ( )

The constant a;; can be found by substituting a,; =
—ka;; —acy; into the (2,1) component of Eq. (5.54) for
p=R:

K 11 1
a, :__m+_L'H+_ sa

5.68
I, Ul, ( )

Uu—iow’

The results in Egs. (5.64), (5.67) and (5.68) can be
summarized as follows. The difference between the
vacuum Euclidean Green’s functions for the bounded
and unbounded space-times is given by (5.49), with the

by, = _k(lmf‘d” + K'”“), (5.62)  matrix AyM™ having the form (5.50).
s(u—io)l, +al,,, The 2 x 2 matrix element AyMT is given by
|
K, 1 Ly sa 1 ¢k
— L g Llnt 4 1 ca — 1 _ck
MIT __ . m u I, H—iw Upu—iw
At = (u-iw) L Ky 1Dy 1 e of;. (5.69a)
Upu—iw Ly Uly Up—iw
The 2 x 2 matrix AT can be found from Eq. (5.52a):
f(f-gt) (o) s
AT = of;. (5.69b)
o Kmer _ 1 Ly ) _ slutio) Y I o
Tpi1 Ul U Lyt Ulyp

The matrix elements of AyT can be found from Eq. (5.69b) using Egs. (5.57), (5.59) and (5.61):
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1m+l
k( IY( U IIY(
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Kpii 1 1y g(ﬂ+lw)
-
(Im+l UInHrl +

A MIT _ o&.. 5.69¢
XZI a(Km — l1m+1) — g(/’l+i{“> k(Km+l — li) / ( )
I, U I, U Loy Ul
Finally, the components of Ay)T can be found by inverting Eq. (5.52a):
Ky | 1 E L1 ca 1 ¢k
Koy Ll ~ Lk
MIT __ 1, U U p+io Uptio
Ay’ = (u+iw) o gk Ky 1l L1 of;. (5.69d)
U ptiow y Ul U ptiw

In (5.69), the matrix &; is given in (5.18¢), a is defined in
(5.10), and U is given in Eq. (5.66). The modified Bessel
functions /,,, K, written explicitly in (5.69) have argument
aR. The matrix £; contains all the dependence on the
coordinates p, p’, @, ¢'.

2. Casimir expectation values

‘We now use the Euclidean Green’s function with MIT bag
boundary conditions to calculate the Casimir expectation
|

< MIT

g o Lo [ (-

K, 11
TG

m U1

values of the FC (py)MIT, charge current (JH)MIT CC
(JNHMIT and SET (T,5)MIT. These expectation values
can be computed from the formulas (5.49), replacing
ASP(xg, x) by the difference ASYT(xg, x) (5.49)
between the vacuum Euclidean Green’s functions for the
bounded system with MIT bag boundary conditions and
unbounded Minkowski space-time.

First, the Casimir expectation value of the FC takes
the form

Kpor 11,
Form ) B tan)| |

Im+1
(5.70)

where the arguments of the modified Bessel functions are @R unless explicitly stated otherwise. The expression (5.70) can
be simplified by changing to the polar coordinates (5.23) and then performing the integral over J. Afterward, the terms
involving 12,(ap) and I%, (ap) can be symmetrized to only contain the combinations I}, (ap) and I,,(ap), defined in
Egs. (5.22). This gives the following expression,

wr ) o dx I,(xp) K
<WW>C¢5 m;oo /ﬂR 47;2R3{ (X)I ( ) in+1(x) ;

- #l o5p) m(x 2 X X X) — x X
) {30) = By 0]+ OO K1) = Ko (L)

where x is defined in Eq. (5.25) and the Wronskian relation (5.65) was used in the coefficient of I}, (xp). The coefficient of
I,,(xp) in (5.71) can be simplified by inserting a factor of x[K,, (%), 1(x)+ K, 1(x)],,(x)] =1 next to

U () = W2 (0) + 2,1 ()] = 260l () <x>]

(5.71)

[ (%) =I5, ()], so that

U () [K (3) 1 (3) = Koy (30) 1 ()] + [15,() = L5, ()] = 21, (3) L1 ()W, (%), (5.72)
where W,,(x) is defined as [16]

Wy, (%) = %K,y () 10 (%) = K1 () L1 (%)) + GUR[K (1) L1 (%) = Koy (5)1 (). (5.73)

The final form for (y)MIT can be obtained by using the explicit expression (5.66) for U,,(x) in the coefficient of I, (xp) in

Eq. (5.71):

[XMRWm(X)IZn (xp) = (x> = > R*) I (xp)]. (5.74)

o dx
MlT
c = / 2R3
© n;m 27°R°U
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As in the case with spectral boundary conditions, for
MIT bag boundary conditions, we find that the Casimir
expectation values of all components of the charge current
(JHYMIT and neutrino charge current (JX)MT vanish. The

Casimir expectation value of the components of the SET

- o dx x*—u*R
T‘r MIT __ /
< >Cas m;oo R 471’2R4 U, (X)

MIT Z o x3dx W, (x
Cd& 27[2R4U (%)

m=—0oo

T(p MIT _

w0 x2dx W,,(x) m +
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can be calculated using (5.20d), with AS?(x £, Xi) replaced
by ASMT(xz,x}) (5.49). Grouping terms as for the
FC, we obtain the following expressions for the compo-
nents of the SET relative to the Euclidean version of the
tetrad (2.2):

and (T%)¢ = (T%) ¢4 -

r 27°R*U,, (%)

By analogy with Eqs. (5.26) for the spectral case, it is convenient to introduce the following integrals,

o dx
MIT,+ __
Ifn 27[2R4 Z /
1 - /00 dx
‘n =
- 27°R* Z UR

IMIT -

m=—0oo

o dx
MIT.x _
Ifn 27[2R4 Z /”

m=—0oo

where the functions [}, (z) were introduced in Egs. (5.22).
The Casimir expectation values of the FC and SET can
be written in terms of the integrals (5.76) as follows:

<ll/l/]>lé/ldI5T //LRZIMIT + gR(I%IT'+ _ #ZRZI(I;/(I)IT,—&-)’
(5.77a)
<TT >g/[‘};[‘ - _ %gﬂR(Ig/(I)IT,Jr _ ﬂZRZI%IT,Jr)
- % (3T — PRI, (5.77b)
<Tp %g IMIT.— _ﬁ—ll-lz\/{IT.x’ (5'770)
(T?,)MIT = p=1 3T, (5.77d)

and (T%)¢ = (T%)& -

3. Casimir divergence near the boundary

As discussed in Sec. VB3 for the case of spectral
boundary conditions, the Casimir expectation values (5.77)
diverge as the boundary is approached. To perform an

R [GuR I (x7) + i, () (5)) (5.75)
m+ L
[1,;<xm— 21369)|. (5.75)
P %I,Xn(xp), (5.75¢)
(o4 3) i)
<m+%>"w () (%),
<m+%>"w ()% () (5.76)

analysis of this divergence, we follow the approach of
Sec. VB 3.

Generalized Abel-Plana formula.—We begin by defining
the following quantities, which replace the sums over m in
(5.76) by integrals:

MIT + _ o _
I R* / / Ij_%(xp),
B dX

(5.78)

We define the differences between the quantities IMIT*
(5.76) and 7} to be

6MIT*( ) IMIT* —IMIT*. (579)
Following the spectral case, it is convenient to write Z %}T’*

(5.76) in terms of new functions fY

[cf. Eq. (5.36)]:

(v) as follows
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(5.80)

Z—gle * Z fMIT * ( )

The precise forms of fX'*(v) for * € {+,—, x} can be

deduced from comparing (5.76) with (5.80):

1 o dx
MIT,+ 4
V) = x
‘n ( ) R4 /ﬂR §) 1(x)

vy

1 o dx
MIT,— _ £ — -
‘n (1/) - 7T2R4 /MR UD_%(X) X l/nWy_%(X)IV_%(Xp),

U"Ij_l(xp),
2

1 o dx
MIT, x ‘. n
= W
‘n (1‘/) 7[2R4 //1\R UU_%(X) XV I/——(X) ( )

(5.81)

From the detailed forms of the functions £} *(v), it can
be seen that they are analytic. We can therefore apply the
generalized Abel-Plana formula (5.35). This gives the

differences 8Y " (5.79) to be

MIT,* (lt) _

) =i [’

()

eZm + 1

(5.82)

To investigate the asymptotic behavior of s¥. *(p) as
p — 1, the asymptotic behavior of the integrand in the
integrals with respect to x in Eq. (5.81) must be inves-
tigated. Since the (€2 + 1)~! factor in (5.82) ensures the
suppression of Im[f¥ *(it)] at large ¢, the formulas (Ala),
(A1Db) for the asymptotlc expansions of the modified Bessel
functions for large arguments can be used.

We begin by examining &y ' (p). The factor Uy_,( )
(5.66) in the denominators of MW *(v) (5.81), and the quantity
[U,1()]” !, have the followmg asymptotic behaviors:

e v —cuR  V*(V* —2cuR
Uy_%(x) _ - |:1 _ gﬂ + ( zgﬂ ) I O(X—3) ,
b3 X 2x
(5.83a)
1 2—cuR V' —2¢cuR1? + 24 R?
— o2 1+v GH +v GH v2+ M
U,_1(x) x 2x

+ O(X-S)] . (5.83b)

Hence, the asymptotic expansion of the integrand in the
integral with respect to x in fy ' (v) (5.81) is
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For the analysis of the Casimir divergence for the FC and
SET, the only £ " (v) quantities required are fg " (1)
and f5 " (). It can be seen that the terms in the bracket in
(5.84) contain only even powers of v, which stay real under
the transformation v — it. Hence, the following asymptotic
behavior can be obtained:

1
Im xIT (xp —e 0 (x3).  (5.85
G 0] =50 (583)
Since # is either 0 or 2, it can be seen that &y ' (5) and

55" (p) do not diverge as p — 1.

To analyze 6%~ (p) and 5%”’(( ), the asymptotic
behavior of W 1( ), defined in Eq. (5.73), is required.

V=3

Using the mtermediate expansions,

Ku—% (X) +% (X)IW%(X)

v V(1? =1)(v* = 13)
- Y h
2x3 { + 242

Iu—%(x) - KI./

+ o0,

- {1 - ”22_21 +0(x -4)]

(5.86)

we find the following expression for WU_%(X)Z

(? = 1)(v* = 130% + 24¢uR)
242

V=3

14

+ O(x_4)] : (5.87)

Hence, the ratio W,_i(x)/U,_i(x) has the expansion

W,1(x)  aw

=——e2*{1-2¢cuR
U0 22 { uR+

_l_i (=207 +13)
x? 24

(v* —guR) (1 —2guR)

— (W +1)opR
+ (22 +1)u*R? - 2g,u3R3} + O(x_3)}. (5.88)

It can be shown that the asymptotic expansions for /”_,(x)
2
and I (x) contain only odd and even powers of v,
2

respectively. Hence, the following asymptotic behaviors
can be established:

I zt—%(x) <~ (X) _ ie—ero(Xf—7)
Uy() 2% |
I it G0 itx’r (%) = - ﬁ e 0(x71). (5.89)
iy(x) 2 |
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Thus, the functions 5%}1* (p) are regular as p — 1 for all the combinations of #, n and x € {+, —, x} of interest. Therefore,
the asymptotic behavior of the functions Z %}T’*, defined in Eq. (5.78), coincides with that of 7 %}T’*, defined in Eq. (5.76).

Asymptotic analysis of Casimir divergence—We now study the asymptotic behavior of the functions T%IT'* (5.78) by

considering the high v and x expansion of the integrand in f}/[n”’*.
Using the polar coordinates defined in (5.31) and Eqgs. (A4b) and (A4c), we obtain the following asymptotic expansions

for U,_y(x) (5.66) and 1/U,_i(x):

1 20 + 12¢uR
Uu—%(x) = ; 62r+2ylntan§ |:1 + COs l‘zr Gl >
1 — ge—2r-2vln tan%{l _ M + lz |:”2R2 N
U,-4(x) 12r p

Using the following asymptotic expansions,

2 1
M 0 (1 — = cos’f — ?Og,uR> + 0(r‘3)],

7 1 7
— cuRcos?0 — gcoszﬁ(l - 3—c0529>] + 0(r‘3)}. (5.90)

36

cos @ 12 — 45c0s%0 + 35co0s*0 B
Ky 0y () = Ko () = o Al o)
cot sin?@(1 — 5sin’0) _
K, ()], (%) = K, 1 (x)], (%) = [1 - 2 +0(r 4)} : (5.91)
the asymptotic expansion of W,_1 (x) (5.73) and of the ratio W,_1 (%) A (x) can be found:
to in%0
W, y(x) = 2 {sin29 —2cuR + S‘gnz [12 + 2¢uR(1 — 58in’0) — 45c0s20 + 35¢0s*0] + O(r~*) }
r r
W,_1(x)  mcotd 0 cos?@ + 12¢uR
2 — “2r=2vintany (¢in29 _ 2~uR) 11 — ———— 2 1 072 | 5.92
U,_1(x) T H(sin suR) { 12r +007) (5.92)
Equations (5.43) can then be used to obtain the following expansions:
| e~ cos?0 + 2¢uR ,
p) = 1 - 20 — re*cos?0 + - - |, 5.93
.0 i (xp) ey [ 5 + esin re~cos”6 + (5.93a)
W, 1(x 20 in0 — 2¢cuR
Uy_ixi I;_%(x‘) = 027 e~2r¢(sin’0 — 2guR) {1 + Sng'u + €(1 + sin?0) — re*cos?0 + - - } : (5.93b)
W,_1(x to 20 + 2¢cuR
i )IX (xp) = Co—ze‘zm(sinza —2cuR) |1 — COSOF 2GR | sin20 — re’cos?0 + - --| . (5.93¢)
U,i(x) ¥ 2r 2r

The presence of powers of siné in the denominators of
Egs. (5.93) seems to imply that Zpy ' and Z)§ "~ are
divergent at the lower limit of the integral with respect to 8
in (5.78) [after changing to the polar coordinates (5.31)].
However, this apparent divergence arises from the replace-
ment of the integrands in (5.78) with their expansions for
large arguments and orders and then integrating over the
whole of the upper half-plane. This apparent divergence is
not a property of the exact TOMOIT’+ and TIV(I)IT’_ since the

region of integration in (5.78) is not in fact the whole of the

|
upper half-plane. Furthermore, examining the powers of r
in Eqgs. (5.93) and performing the integral over r (after
changing to polar coordinates), both fg/gT'* and fllv(l)”"
diverge as e¢~! for € — 0. They therefore make only
subleading contributions to the asymptotic behavior of
the expectation values Egs. (5.77).

The other relevant T}/ET’* [see Eq. (5.77)] are manifestly
finite for ¢ > 0 and can be analyzed using the same
techniques as in the paragraph “Asymptotic analysis of
Casimir divergence” in Sec. V B 3:
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In "= PRS [1 = cuRe + O(e?)],
TIT= — 1 1 —5¢cuR + 7_ ggﬂR +51*R? Je + 0(e7?) |,
0 607> R*e? 14 2
_ 2
MIT,x __ -
The Casimir divergence can now be computed by substituting the above results in Eqs. (5.77),
()t = 12 L —euRe+ -, (5.95a)
R 17 9
TPOMT — — |1+ 10¢uR — —~cuR — 104>R? e 5.95b
Tlew =~ Toeria { - Delt 6(14 ST ) * ] (5.95b)
(TP,)MIT — - 5¢uR + € 7 9uR + 104°R? ) + -+, (5.95¢)
Pr&as 12072 R4e? 7
X 5
(T?,) 88 = 2R [1 — 5¢cuR + 6(? —2cuR + Sﬂsz) + - ] , (5.95d)

and (T%:)MIT = (T?)MIT The terms of order ¢! coming
from Z3o " and Z))"~ make no contribution to the
expressions (5.95).

It can be checked that Egs. (5.95) satisty Eq. (4.35). The
expressions (5.95) are accurate to leading and next-to-
leading orders in terms of the distance to the boundary [i.e.
terms of order O(e?) have been neglected in the brackets].
Our results reduce to those presented in Ref. [12] if next-to-
leading-order terms are ignored, ¢ is set to 1 and the sign of
(w)MIT is inverted.

The most significant feature of the asymptotic results (5.95)
is that the divergence as ¢ — 0 of the nonzero components of
the SET is one inverse power of € smaller than the divergence
in the corresponding expectation values for spectral boundary
conditions, given in Egs. (5.46). Furthermore, the rate of
divergence of the Casimir expectation values of the SET in
Eq. (5.95) is the same as that for a quantum scalar field [5]. We
will discuss these observations further in Sec. V D. On the
other hand, the divergence of the FC for a massive fermion
field with MIT bag boundary conditions (5.95a) is one inverse
power of e larger than for a massive fermion field satisfying
spectral boundary conditions (5.46a).

Numerical results.—In Fig. 11, we compare the asymptotic
results in Egs. (5.95) with numerical evaluations of the
Casimir expectation values Eqs. (5.77) for massless fer-
mions 4R = 0 and massive fermions with yuR = 2. As
discussed in Sec. III C, for a massless fermion field, the
energy spectrum of modes is independent of the choice of
¢ = *1. Therefore, in the massless case, ¢ only influences
the sign of the FC, and hence the plots do not show separate

|

curves for ¢ = 1 and —1 in this case. However, there are
significant differences when massive fermions are consid-
ered between the cases corresponding to the two values of ¢,
which are represented using separate curves in Fig. 11. From
(5.95), it is clear that the sign of the Casimir divergence has a
complicated dependence on both ¢ and the fermion mass .
For all expectation values, we therefore plot the logarithm of
the magnitude of the relevant quantity, as a function of p/R
on a linear scale in the left-hand column and as a function of
the logarithm of ¢! in the right-hand column.

All the Casimir expectation values shown in Fig. 11 are
finite inside the cylinder. Their magnitudes are monoton-
ically increasing as p increases and diverge on the boundary
as p — R. Unlike the results for spectral boundary con-
ditions shown in Fig. 10, for MIT bag boundary conditions,
we find that the expectation values of the components of the
SET have larger magnitude close to the boundary for
massive fermions than for massless fermions. Furthermore,
these magnitudes near the boundary are larger for ¢ = —1
than for ¢ = 1.

In Fig. 11, we have also plotted the asymptotic results
(5.95) as thin solid curves. Some of the asymptotic
formulas (5.95) have zeros, resulting in breaks in the
curves. In all cases studied, we find excellent agreement
near the boundary between the numerical results of
computing the Casimir expectation values (5.77) and the
asymptotic forms (5.95).

D. Comparison between the spectral and MIT models

In this section, we have studied Casimir expectation
values for fermions contained within a cylinder of radius R.
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FIG. 11. Casimir expectation values for MIT bag boundary conditions. The left column presents the logarithm of the absolute value of
the FC (py)MIT (first line) and of the nonzero components of the SET (7;;)MIT (lines 2—4) as functions of the scaled radial coordinate
p/R, so that the boundary of the cylinder is at p/R = 1. The right column shows the same quantities, but as functions of the logarithm of
the inverse distance ¢! (5.33) to the boundary. The plots compare the results for massless [blue dashed curves] and massive [purple and

red dot-dashed and dotted curves] fermions to the asymptotic results (dark thin curves) in Egs. (5.95).
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The fermions satisfy either spectral or MIT bag boundary
conditions on the surface of the cylinder. We now focus on
the Casimir expectation value of the SET (T,;)c, and
compare our results with those for a quantum scalar field
inside a cylinder [5].

For a quantum fermion field satisfying spectral boundary
conditions, Eqs. (5.46) show that (T;;)& = (Ts:)e and
(T4 4) s diverge like 7 as e — 0 and the boundary of the
cylinder is approached. The remaining nonzero component
of the SET, (T,,)&,. diverges like ¢=>. For MIT bag
boundary conditions, from Egs. (5.95), all nonzero compo-
nents of the SET diverge less rapidly, (T;;)MT = (T .)¥T
and (T,,,)MIT diverging as ¢ and (T, )T as e72. For a
quantum scalar field, the rates of divergence of the nonzero
components of the SET are the same as those for a fermion
field satisfying MIT bag boundary conditions [5].

In order to understand these different behaviors, we
perform a separate asymptotic analysis following the
method of Ref. [26], applied to a cylindrical boundary.
The analysis of Ref. [27] gives the leading-order divergence
of the nonzero components of the SET with respect to an
inertial coordinate system to be

(TH) s = Adiag(—e™3,e72,2¢73, —73), (5.96)
where € (5.33) is the distance to the boundary located at
p = R and A is a constant. These results are obtained for a
four-dimensional space-time under the assumptions that the
SET is a fully local tensor with vanishing trace (i.e.
corresponding to a conformal field). The general results
(5.96) match those for a massless fermion field satisfying
MIT bag boundary conditions, given in Eq. (5.95) and
Ref. [12].

However, for spectral boundary conditions, the diver-
gence of the SET is one inverse power of ¢ larger than that
in (5.96). We attribute this discrepancy to the nonlocal
nature of the spectral boundary conditions. As discussed in
Sec. III B, the spectral boundary conditions arise from
considering the Fourier transform of the fermion field, and
taking the Fourier transform is a nonlocal operation. In
Ref. [26], it is assumed that the boundary conditions on the
field are local in nature, which means that the analysis
leading to (5.96) is not valid for spectral boundary con-
ditions. On the other hand, the MIT bag boundary con-
ditions (3.28) are entirely local, and so the analysis of
Ref. [27] is applicable.

If, instead of (5.96), we set the leading-order divergence
of the nonzero components of the SET to be e, where u is
an arbitrary positive number, the results of Ref. [26] can be
generalized to

(TH ) cps = Adiag <—e‘”+1,e‘”+2, 2+ —e‘”“).

(5.97)
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The case u = 4 recovers Eq. (5.96), while the u = 5 case is
in agreement with the results that we obtain using the
spectral model.

VI. CONCLUSIONS

In this paper, we have studied a quantum fermion field
enclosed inside a cylinder in Minkowski space-time. On the
boundary of the cylinder, we have considered spectral [8]
and MIT bag [9,10] boundary conditions on the fermion
field. Our main focus has been the construction of rigidly-
rotating vacuum and thermal states for the system inside the
cylinder. We have also studied the Casimir expectation
values (i.e. expectation values in the vacuum state of the
bounded system with respect to the vacuum state of the
unbounded system). When the boundary is placed on or
inside the SOL, the Minkowski and rotating vacua
coincide. Furthermore, rigidly-rotating thermal states are
also regular for both the spectral and the MIT bag models.

Our results show that the t.e.v.s of the FC, CC and SET
exhibit qualitative differences between the spectral and the
MIT models. Explicitly, the t.e.v. of the FC vanishes for
massless fermions obeying spectral boundary conditions,
while in the MIT case, it is nonzero, and its sign depends on
the parameter ¢ (¢ = 1 and —1 for the MIT [9] and chiral
[10] cases). Conversely, the t.e.v. of the FC vanishes on
the boundary in the MIT case, while it remains finite for the
spectral model. The t.e.v. of the CC is negative on the
rotation axis in both models, but its value on the boundary
is positive in the spectral case, while in the MIT case, the
t.e.v. of the CC vanishes only on the boundary. Finally, the
t.e.v. of T, vanishes on the boundary in the spectral case,
while in the MIT case, it stays positive.

There are also qualitative differences in the Casimir
divergence on the boundary in the spectral and MIT
models. The Casimir divergence of the SET in the spectral
model is more rapid than in the MIT model, apparently
contradicting the general analysis in Ref. [27]. We attribute
this behavior to the nonlocal nature of the spectral
boundary conditions, which violate the assumptions fun-
damental to the analysis of Ref. [27]. In addition, the
coefficient of the leading order of the Casimir divergence is
independent of the mass in the spectral case, while in the
MIT case, it depends both on the mass and on the sign of
the parameter ¢. As in the thermal case, the Casimir
expectation value of the FC is zero for vanishing mass
in the spectral case, while in the MIT case, it depends on the
sign of ¢. Furthermore, the Casimir divergence of the FC is
more rapid in the MIT case than in the spectral case.

Our main conclusion is that, by enclosing the quantum
fermion field inside a timelike boundary in Minkowski
space-time, with the boundary placed such that there is no
SOL, regular rigidly-rotating thermal states can be con-
structed. Similar conclusions for a quantum scalar field
were reached in Ref. [5]. Inserting a timelike boundary in
Minkowski space-time is a little artificial, so one might
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instead consider a quantum field on anti-de Sitter (AdS)
space-time, where the boundary of the space-time itself is
timelike. Recently, it has been shown that, for a quantum
scalar field on AdS, if there is no SOL, then the rigidly-
rotating vacuum is identical to the nonrotating vacuum
[28], as happens for a quantum scalar field inside a cylinder
on Minkowski space-time [5]. This suggests that regular
rigidly-rotating thermal states should exist on AdS if the
angular speed is sufficiently small that there is no SOL.
Whether the same result is true for a quantum fermion field
remains an open question, to which we plan to return in a
future publication (we have recently studied the nonrotating
vacuum for a quantum fermion field on AdS [29]).
Rigidly-rotating thermal states on Minkowski space-time
can also be considered as toy models for the construction of
the Hartle-Hawking state [30] on rotating black hole space-
times. The Hartle-Hawking state describes a quantum field
in thermal equilibrium at the Hawking temperature of the
black hole. Many qualitative features of rigidly-rotating
thermal states on Minkowski space-time carry over to the
Hartle-Hawking state. For example, rigidly-rotating ther-
mal states for a quantum scalar field are irregular every-
where on the unbounded Minkowski space-time [5], while
the Hartle-Hawking state cannot be defined on the Kerr
space-time for a quantum scalar field [31-33]. For fermion
particles, there exist Hartle-Hawking-like states which
exhibit a divergent behavior as the SOL is approached
but are regular inside the SOL [34]. This behavior is also
recovered when rigidly-rotating thermal states on
unbounded Minkowski space-time are considered [1].
Removing the space-time beyond the SOL is sufficient to
ensure the regularity of rigidly-rotating thermal states on
unbounded Minkowski space or Hartle-Hawking states on
Kerr space-time. In Ref. [5], rigidly-rotating thermal states
for a quantum scalar field on Minkowski space-time are
constructed for a system enclosed inside a boundary
located on or inside the SOL. Similarly, a Hartle-
Hawking-like state for a quantum scalar field is constructed
in Ref. [35] for a Kerr black hole placed inside a spheroidal
boundary. The corresponding situation, on Kerr space-time,
|
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of a quantum fermion field inside a spheroidal boundary is
currently under investigation [36]. It will be interesting to
compare the t.e.v.s computed in this paper with those for a
Hartle-Hawking-like state for a quantum fermion field on
the Kerr space-time with the boundary present.
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APPENDIX: ASYMPTOTIC EXPANSIONS OF
MODIFIED BESSEL FUNCTIONS

At fixed order v, the asymptotic expansion of the
modified Bessel functions as their argument a goes to
infinity is [37,38]
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where
n= 412, (A2)

The uniform asymptotic expansions of the modified Bessel
functions as both the order v and the argument x are
allowed to increase take the following form [26,38], where
we have introduced the polar coordinates r and 6, defined
in Eq. (5.31):
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For the analysis of the Casimir divergence in Sec. V, the asymptotic expansions of the following combinations are

required. These can be calculated using Eqgs. (A3):
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