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We study a quantum fermion field inside a cylinder in Minkowski space-time. On the surface of the
cylinder, the fermion field satisfies either spectral or MIT bag boundary conditions. We define rigidly-
rotating quantum states in both cases, assuming that the radius of the cylinder is sufficiently small that the
speed-of-light surface is excluded from the space-time. With this assumption, we calculate rigidly-rotating
thermal expectation values of the fermion condensate, neutrino charge current and stress-energy tensor
relative to the bounded vacuum state. These rigidly-rotating thermal expectation values are finite
everywhere inside and on the surface of the cylinder, and their detailed properties depend on the choice
of boundary conditions. We also compute the Casimir divergence of the expectation values of these
quantities in the bounded vacuum state relative to the unbounded Minkowski vacuum. We find that the rate
of divergence of the Casimir expectation values depends on the conditions imposed on the boundary.
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I. INTRODUCTION

The definition of quantum states is of central importance
in quantum field theory (QFT) on both flat and curved
space-times. Of the possible quantum states on a given
space-time, defining a (not necessarily unique) vacuum
state is essential, as states containing particles can be built
up from a vacuum state using particle creation operators.
Even in flat space-time, the definition of a vacuum state is
nontrivial when the space-time contains boundaries or one
is interested in the definition of particles as seen by a
noninertial observer.
To define a vacuum state in the canonical quantization

approach to QFT, one starts with an expansion of the
quantum field in terms of a basis of orthonormal field
modes. These modes are split into “positive” and “neg-
ative” frequency modes. For a quantum scalar field, this
split is not completely arbitrary; it must be the case that
positive frequency modes have positive Klein-Gordon
norm and negative frequency modes have negative
Klein-Gordon norm. For a quantum fermion field, all
modes have positive Dirac norm, and the split between
positive and negative frequency modes is much less
constrained.
This difference between quantum scalar and fermion

fields was explored in Ref. [1] for rigidly-rotating fields on
unbounded Minkowski space-time. For a quantum scalar
field, the norm of a field mode is proportional to the
Minkowski energy E of that mode. As a consequence,

positive frequency modes must have positive Minkowski
energy, and the only possible vacuum state is the (non-
rotating) Minkowski vacuum [2]. For a quantum fermion
field, two possible vacua have been considered in the
literature: the nonrotating (Vilenkin) vacuum [3] and the
rotating (Iyer) vacuum [4]. To construct the nonrotating
vacuum, positive frequency fermion modes have positive
Minkowski energy E as in the scalar field case. For the
rotating vacuum, positive frequency fermion modes have
positive corotating energy eE (the energy of the mode as
seen by an observer rigidly rotating about the z-axis in
Minkowski space-time with angular speed Ω). In general,
E ≠ eE for a particular field mode. On unbounded
Minkowski space-time, there exist fermion field modes
with EeE < 0, which means that the nonrotating and
rotating vacua are not equivalent [1].
Rigidly-rotating thermal states on unbounded

Minkowski space-time can be defined from the above
vacuum states. The rigidly-rotating nature of these states
means that the thermal factor in the thermal Green’s
functions and corresponding expectation values involves
the corotating energy eE. For a quantum scalar field, rigidly-
rotating thermal states are divergent everywhere in the
unbounded space-time [3,5]. The density of states factor
in the thermal expectation values (t.e.v.s) for a bosonic

field is ½eβeE − 1�−1, where β is the inverse temperature. This
thermal factor diverges when the corotating energy eE
vanishes, even though such modes are nonzero in general
[5]. Modes with vanishing corotating energy therefore
make an infinite contribution to rigidly-rotating t.e.v.s,
leading to divergences.
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Oneway to resolve this difficulty is to enclose the system
in an infinitely long cylinder of radius R, with the axis of
the cylinder along the z-axis and ΩR < c, where c is the
speed of light. For this range of values of R, the boundary
of the cylinder is inside the speed-of-light surface (SOL)
(the surface on which an observer rigidly rotating about the
z-axis with angular speed Ω must travel at the speed of
light). With the SOL removed from the space-time, it can be
shown that EeE > 0 for all scalar field modes, so that the
modes which lead to divergences in t.e.v.s on unbounded
Minkowski space-time are absent [6]. The resulting rotating
t.e.v.s for a quantum scalar field on the space-time inside
the cylinder are regular everywhere inside and on the
boundary of the cylinder [5].
Rigidly-rotating thermal states for a quantum fermion

field on unbounded Minkowski space-time were studied in
Ref. [1] and exhibit different behavior from those for a
quantum scalar field. Rigidly-rotating t.e.v.s are regular
inside the SOL and diverge as the SOL is approached. If the
nonrotating (Vilenkin) vacuum is used, then t.e.v.s contain
spurious temperature-independent terms [1,7] which are
unphysical since t.e.v.s with respect to the vacuum state
should vanish in the limit of zero temperature. These
temperature-independent terms vanish if the rotating
(Iyer) vacuum is used instead [1].
In this paper, we study the fermionic analogs of the

rotating thermal states inside a cylinder, studied for the
scalar case in Ref. [5]. We construct rigidly-rotating quan-
tum states for Dirac fermions enclosed inside an infinitely
long cylinder in Minkowski space-time. The axis of the
cylinder is along the axis of rotation, the z-axis. On the
boundary of the cylinder, the fermions satisfy either spectral
boundary conditions [8] or one of two versions of the MIT
bag boundary conditions, the standard [9] and chiral [10]
MIT bag models. In each case, we find that the rotating and
nonrotating vacua coincide when the boundary of the
cylinder lies within the SOL. We compute rigidly-rotating
t.e.v.s of the fermion condensate, neutrino charge current
and stress-energy tensor for each set of boundary conditions,
comparing the results with those in Ref. [1] for the
unbounded space-time.1 We also study Casimir expectation
values, namely the expectation values for the bounded
vacuum state relative to the (nonrotating) vacuum state on
unbounded Minkowski space-time. Our Casimir expect-
ation values for a fermion field are compared with those in
Refs. [5] and [12] for a quantum scalar field and for fermions
obeying MIT bag boundary conditions, respectively.
The outline of this paper is as follows. In Sec. II, we

review the construction of mode solutions of the Dirac
equation in unbounded Minkowski space-time, the second
quantization procedure and the definition of the rotating
and nonrotating vacuum states. For the remainder of the

paper, we consider the bounded space-time. For the spectral
and MIT bag boundary conditions, in Sec. III, we study
mode solutions of the Dirac equation satisfying the
boundary conditions, their energy spectra and the con-
struction of the vacuum state. Rigidly-rotating thermal
expectation values are computed in Sec. IV, and the
Casimir effect is analyzed in Sec. V. Finally, Sec. VI
contains some further discussion.

II. UNBOUNDED SPACE-TIME

In this section, we review the construction of mode
solutions and vacuum states in a rigidly-rotating,
unbounded, Minkowski space-time [1]. The Dirac equation
is introduced in Sec. II A, while the construction of its
solutions is presented in Sec. II B. The section closes with a
discussion of the choice of vacuum state on the unbounded
space-time in Sec. II C.

A. Dirac equation in rotating Minkowski space-time

The world line of an observer rotating with a constant
angular velocity Ω about the z-axis can be parametrized in
cylindrical coordinates as xμ ¼ ðt; ρ;Ωt; zÞ for fixed ρ and
z. The coordinate frame with respect to which the observer
is at rest can be obtained from the usual Minkowski
coordinates xμM by setting φ ¼ φM −Ωt. The Minkowski
metric then takes the form

ds2 ¼ −ð1− ρ2Ω2Þdt2 þ 2ρ2Ωdtdφþ dρ2 þ ρ2dφ2 þ dz2:

ð2:1Þ

Throughout this paper, we use units in which c ¼ ℏ ¼
kB ¼ 1. The Killing vector ∂t, defining the corotating
Hamiltonian H ¼ i∂t, becomes null on the SOL, which
is defined as the surface where ρ ¼ Ω−1.
To construct the Dirac equation, we introduce the

following tetrad in the Cartesian gauge [13],

et̂ ¼ ∂t −Ω∂φ; eî ¼ ∂i;

ωt̂ ¼ dt; ωî ¼ dxi þ ðΩ × xÞidt; ð2:2Þ

with respect to which the Dirac equation for fermions of
mass μ reads

ðiγα̂Dα̂ − μÞψðxÞ ¼ 0: ð2:3Þ

The gamma matrices are in the Dirac representation [14],

γ t̂ ¼
�
1 0

0 −1

�
; γ î ¼

�
0 σi

−σi 0

�
; ð2:4Þ

where the Pauli matrices σi are given by
1A free Dirac field in thermal equilibrium within a rotating

cylinder is also considered in Ref. [11].
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σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
: ð2:5Þ

The gamma matrices obey the following canonical anti-
commutation rules,

fγα̂; γβ̂g ¼ −2ηα̂ β̂; ð2:6Þ

where ηα̂ β̂ is the inverse of the Minkowski metric
ηα̂ β̂ ¼ diagð−1; 1; 1; 1Þ. We use the convention that hatted
indices denote tensor components with respect to the
orthonormal tetrad introduced in Eq. (2.2) and are raised
and lowered using the Minkowski metric ηα̂ β̂.
The covariant derivatives Dα̂ in Eq. (2.3) are given by

iDt̂ ¼ H þ ΩMz; −iDĵ ¼ Pj: ð2:7Þ

In the above, H ¼ i∂t is the corotating Hamiltonian, Pj ¼
−i∂j are the momentum operators and

Mz ¼ −i∂φ þ
1

2

�
σ3 0

0 σ3

�
ð2:8Þ

is the z-component of the angular momentum operator.

B. Mode solutions

The rotating system under consideration is just
Minkowski space-time written in terms of corotating
coordinates. Therefore, mode solutions of Eq. (2.3) can
be obtained from any complete set of mode solutions found
on Minkowski space by applying a suitable coordinate
transformation. Mode solutions of the Dirac equation on
Minkowski space with respect to cylindrical coordinates
have been reported in Refs. [1,3,4,12,15–20].
In this paper, we follow Ref. [1] and construct the

solutions of the Dirac equation (2.3) as simultaneous
eigenvectors of the complete set of commuting operators
fH;Pz;Mz;W0g, where the helicity operator W0 ¼ P ·
M=p is the time component of the Pauli-Lubanski vector,
with P the momentum operator and M the angular
momentum operator. The helicity operator W0 has the
following form,

W0 ¼
�
h 0

0 h

�
; h ¼ σ · P

2p
; ð2:9Þ

where p is the magnitude of the momentum.
To solve the eigenvalue equations corresponding to the

above operators, the eigenspinors Uj can be put in the form

Ujðt; ρ;φ; zÞ ¼
1

2π
e−ieEjtþikjzujðρ;φÞ; ð2:10Þ

where

j ¼ ðeEj; kj; mj; λjÞ ð2:11Þ

collects the eigenvalues of the set of operators
ðH;Pz;Mz;W0Þ. In this paper, sometimes we will explic-
itly keep the index j (2.11) on various quantities; however,
at other times, we shall suppress the index j to keep
expressions manageable. Further, in some expressions, it
will be necessary to explicitly show individual eigenvalues
in j (2.11). When this is the case, we will use the notation
Uλ

Ekm for spinors.
In (2.10), the corotating energy eEj is linked to the

Minkowski energy Ej through

eEj ¼ Ej − Ω
�
mj þ

1

2

�
; ð2:12Þ

where Ej ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
j þ μ2

q
can be written in terms of the

modulus pj of the momentum of the mode. The four-
spinors uj introduced in Eq. (2.10) are eigenvectors of W0

and Mz, corresponding to the eigenvalues λj ¼ � 1
2
and

mj þ 1
2
, respectively, where mj ¼ 0;�1;�2;….

Due to the diagonal form ofW0 andMz, the four-spinors
uj can be written as

ujðρ;φÞ ¼
� Cupj ϕjðρ;φÞ
Cdownj ϕjðρ;φÞ

�
; ð2:13Þ

where Cupj and Cdownj are constants. The angular momentum
equation,�−i∂φ þ 1

2
0

0 −i∂φ − 1
2

�
ϕjðρ;φÞ ¼

�
mj þ

1

2

�
ϕjðρ;φÞ;

ð2:14Þ

can be solved by setting

ϕjðρ;φÞ ¼ eiðmjþ1
2
Þφ
� e−

i
2
φϕ−

j ðρÞ
e

i
2
φϕþ

j ðρÞ

�
; ð2:15Þ

where ϕ�
j are scalar functions of ρ. The two-spinors ϕj also

obey the helicity eigenvalue equation

1

2pj

�
kj P−

Pþ −kj

�
ϕjðρ;φÞ ¼ λjϕjðρ;φÞ; ð2:16Þ

where P� ¼ Px � iPy are differential operators given by

P� ¼ −ie�iφð∂ρ � iρ−1∂φÞ: ð2:17Þ

The helicity eigenvalue equation (2.16) can be used to show
that the scalar functions ϕ�

j satisfy Bessel-type equations,
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½z2j∂2
zj þ zj∂zj þ z2j − ðmj þ 1Þ2�ϕþ

j ¼ 0; ð2:18aÞ

½z2j∂2
zj þ zj∂zj þ z2j −m2

j �ϕ−
j ¼ 0; ð2:18bÞ

where zj ¼ qjρ is written in terms of the transverse
momentum

qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
j − k2j

q
: ð2:19Þ

The solutions of Eqs. (2.18) which are regular at the origin
have the form

ϕþ
j ðρÞ ¼ N þ

j Jmþ1ðqρÞ;
ϕ−
j ðρÞ ¼ N −

j JmðqρÞ; ð2:20Þ

where m is understood to refer to mj and q to qj. The
constants N �

j can be determined as follows.
The operators P� (2.17) act like shift operators for the

angular momentum quantum number m, i.e.,

P�eimφJmðqρÞ ¼ �iqeiðm�1ÞφJm�1ðqρÞ: ð2:21Þ

Hence, the helicity equation (2.16) implies that

N þ
j ¼ iqj

kj þ 2λjpj
N −

j ; ð2:22Þ

enabling ϕj (2.15) to be written as

ϕjðρ;φÞ ¼
1ffiffiffi
2

p
 

pλeimφJmðqρÞ
2iλp−λeiðmþ1ÞφJmþ1ðqρÞ

!
; ð2:23Þ

where

p� ≡ p�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� k

p

s
: ð2:24Þ

For brevity, the index j was dropped from the right-hand
side of Eq. (2.23). The overall 1=

ffiffiffi
2

p
factor in Eq. (2.23)

comes from the generalized orthogonality relation [15],

X∞
m¼−∞

ϕλ†
Ekmðρ;φÞϕλ0

Ekmðρ;φÞ ¼ δλλ0 ; ð2:25Þ

where † denotes the Hermitian conjugate of the two-spinor.
Returning to the four-spinors (2.13), the Dirac

equation (2.3) can be used to constrain the constants Cupj
and Cdownj :

�
E − μ −2pλ
2pλ −E − μ

�� Cupj

Cdownj

�
¼ 0: ð2:26Þ

Imposing the generalized completeness relation [15]

X∞
m¼−∞

uλ†EkmðxÞuλ
0
EkmðxÞ ¼ δλλ0 ð2:27Þ

gives the following expression for the spinor uj introduced
into the mode Uj in Eq. (2.10),

ujðρ;φÞ ¼
1ffiffiffi
2

p
 

Eþϕj

2λE
jEj E−ϕj

!
; ð2:28Þ

where

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� μ

E

r
: ð2:29Þ

The normalization of uj means that the mode Uj (2.10) has
unit norm with respect to the Dirac inner product, which for
the metric (2.1) takes the form [1]

hψ ; χi ¼
Z

∞

−∞
dz
Z

2π

0

dφ
Z

R

0

dρ ρψ†ðxÞχðxÞ: ð2:30Þ

Antiparticle modes Vj are obtained from the particle
modes (2.10) through charge conjugation, i.e.,

VjðxÞ ¼ iγ2̂U�
jðxÞ; ð2:31Þ

and have the following expression,

Vjðt; ρ;φ; zÞ ¼
1

2π
eieEjt−ikjzvjðρ;φÞ; ð2:32aÞ

where vjðρ;φÞ≡ vλEkmðρ;φÞ is given by

vλEkmðρ;φÞ ¼
ð−1Þmffiffiffi

2
p iE

jEj

 
E−ϕ

λ
E;−k;−m−1

− 2λE
jEj Eþϕλ

E;−k;−m−1

!
: ð2:32bÞ

The Vj modes can be written in terms of the Uj modes, as
follows,

Vj ¼ ð−1Þmj
iEj

jEjj
U|; ð2:33Þ

where

|̄ ¼ ð−Ej;−kj;−mj − 1; λjÞ: ð2:34Þ

C. Second quantization

As discussed in Refs. [1,4], the vacuum state for the
Dirac field on a rigidly-rotating space-time is not uniquely
defined. This nonuniqueness arises from the freedom to
choose how fermion field modes are split into “particle”
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and “antiparticle” modes. This freedom is constrained for a
quantum scalar field by the requirement that particle modes
must have positive Klein-Gordon norm (and antiparticle
modes must have negative Klein-Gordon norm) in order for
the particle creation and annihilation operators to obey
canonical commutation relations. For a quantum fermion
field, all field modes have positive norm, and so this split is
unconstrained, leading to freedom in how particle creation
and annihilation operators are defined and, correspond-
ingly, freedom in the definition of the vacuum state [1].
Two possible choices for the vacuum state on unbounded

rotating Minkowski space-time are the (nonrotating)
Minkowski vacuum, considered by Vilenkin [3], and the
rotating vacuum, introduced by Iyer [4]. For the non-
rotating Minkowski vacuum, particle modes have positive
Minkowski energy E > 0; for the rotating vacuum, particle
modes have positive corotating energy eE > 0, with these
two energies linked by (2.12).
Rigidly-rotating t.e.v.s constructed with respect to the

nonrotating Minkowski vacuum state contain spurious
temperature-independent terms, due to the inclusion of
modes satisfying eE < 0 in the set of particle modes [1]. The
temperature-independent terms disappear when the rotating
vacuum is considered, where modes with eE > 0 (including
modes with negative E) are interpreted as particle modes
[1]. Rigidly-rotating t.e.v.s of the fermion condensate,
neutrino charge current and stress-energy tensor are com-
puted for both the Iyer and Vilenkin quantizations in
Ref. [1]. It is found that, using the Iyer quantization, these
t.e.v.s are regular everywhere inside the SOL but diverge as
the SOL is approached.
The difference between the Iyer and Vilenkin quantiza-

tion methods rests in the interpretation of the modes for
which EeE < 0, namely whether such modes are considered
to be particle or antiparticle modes. For a quantum scalar
field, enclosing the system inside a boundary of radius not
greater than that of the SOL eliminates energies satisfying
EeE < 0 from the particle spectrum [6]. Vilenkin [3] argues
that the same holds for fermions. In Sec. III, we show that
this is indeed the case for spectral and MIT bag boundary
conditions (defined in Secs. III B and III C, respectively),
for a cylindrical boundary placed inside or on the SOL. In
this case, the nonrotating (Vilenkin [3]) and rotating (Iyer
[4]) vacua are therefore equivalent.
Assuming that there are no modes with EeE < 0 in the

particle spectrum, the second quantization can be per-
formed as in unbounded nonrotating Minkowski space, by
expanding the field operator ψðxÞ as

ψðxÞ ¼
X
j

θðEjÞ½UjðxÞbj þ VjðxÞd†j �; ð2:35Þ

where the step function θðEjÞ ensures that the Minkowski
energy Ej is positive and

X
j

≡ X
λj¼�1

2

X∞
mj¼−∞

Z
jEjj>μ

dEj

Z
pj

−pj

dkj; ð2:36Þ

where pj is the modulus of the momentum of a particle of
Minkowski energy Ej. The negative Ej values, excluded by
the step function θðEjÞ in Eq. (2.35), are included in the
domain of integration in Eq. (2.36) for later convenience.
The one-particle operators bj and d†j in Eq. (2.35) obey
canonical anticommutation relations,

fbj; b†j0g ¼ δðj; j0Þ; fdj; d†j0 g ¼ δðj; j0Þ; ð2:37Þ

where

δðj; j0Þ ¼ δðEj − Ej0 Þ
jEjj

δðkj − kj0 Þδmj;mj0 δλj;λj0 : ð2:38Þ

The vacuum state j0i is defined as that state which is
annihilated by the annihilation operators bj and dj:

bjj0i ¼ 0 ¼ djj0i: ð2:39Þ

In the next section, we shall investigate the properties of
rigidly-rotating t.e.v.s for thermal states constructed from
this vacuum state, for a fermion field satisfying either
spectral or MIT bag boundary conditions.

III. BOUNDARY CONDITIONS

Our focus in this paper is a quantum fermion field on
rotating Minkowski space-time, inside a cylinder centered
on the z-axis (the axis of rotation) and having radius R. We
exclude the space-time exterior to the cylinder from our
considerations. For RΩ < 1 (where Ω is the angular speed
about the z-axis), the cylinder lies completely inside the
SOL, which is therefore removed from our space-time.
For RΩ ¼ 1, the boundary of the cylinder is the SOL.
For RΩ > 1, the SOL lies within the cylinder—we do not
consider this possibility.
We consider two models for the implementation of

boundary conditions for a quantum fermion field on the
surface of the cylinder: the spectral [8] and MIT bag [9]
models. In Sec. III A, the self-adjointness of theHamiltonian
is used to derive a constraint on the behavior of the fermion
field on the boundary. Sections III B and III C introduce the
spectral and MIT bag models, respectively. For each model,
the energy spectrum and corresponding vacuum states are
discussed, confirming that if the SOL is not inside the
boundary, the rotating and Minkowski vacua coincide.

A. Self-adjointness of the Hamiltonian

The Hamiltonian is, by definition, a self-adjoint operator
with respect to the Dirac inner product,
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hψ ; Hχi ¼ hHψ ; χi; ð3:1Þ

for any combination of solutions ðψ ; χÞ of the Dirac
equation (2.3). On a general background, the Dirac inner
product is given by

hψ ; χi ¼
Z
V
d3x

ffiffiffiffiffiffi
−g

p
ψγtðxÞχ; ð3:2Þ

where ψ ¼ ψ†γ t̂ and γμ ¼ eμα̂γ
α̂ are the covariant versions

of the gamma matrices introduced in Eq. (2.4), satisfying

fγμ; γνg ¼ −2gμν: ð3:3Þ

For H ¼ i∂t, Eq. (3.1) is equivalent to

∂thψ ; χi ¼ 0: ð3:4Þ

This time derivative can be obtained from the Dirac
equation (2.3), which reads for a general space-time as
follows,

iγλ∂λψ þ iγλΓλψ ¼ μψ ; ð3:5Þ

where Γλ is the spin connection [21], defined to preserve
the general covariance of the gamma matrices:

½Dμ; γν� ¼ ∂μγ
ν þ Γν

λμγ
λ þ ½Γμ; γν� ¼ 0: ð3:6Þ

Taking into account the following properties,

γt∂tχ ¼ − γi∂iχ − γλΓλχ − iμχ;

∂tψγ
t ¼ − ∂iψγ

i þ ψΓλγ
λ þ iμψ ;

∂tð
ffiffiffiffiffiffi
−g

p
γtÞ ¼ − ∂iðγi

ffiffiffiffiffiffi
−g

p Þ − ffiffiffiffiffiffi
−g

p ½Γλ; γλ�; ð3:7Þ

an integration by parts in Eq. (3.4) shows that

∂thψ ; χi ¼ −
Z
∂V

dΣi
ffiffiffiffiffiffi
−g

p
ψγiχ; ð3:8Þ

where ∂V is the 2-boundary of the integration 3-surface V.
In our case, the integration domain is the volume contained
inside an infinite cylinder of radius R, and its boundary is
the enclosing cylinder. Thus, the Hamiltonian is self-adjoint
only if

R
Z

∞

−∞
dz
Z

2π

0

dφψγρ̂χ⌋ρ¼R ¼ 0: ð3:9Þ

Equation (3.9) provides necessary and sufficient conditions
for a set of boundary conditions to yield a consistent
quantization. In the following two sections, two types of
boundary conditions satisfying (3.9) are presented.

B. Spectral boundary conditions

To implement spectral boundary conditions, the integral
over φ in Eq. (3.9) is performed by considering the Fourier
transform of the solutions ψ of the Dirac equation with
respect to the polar angle φ:

ψðxÞ ¼
X∞

m¼−∞
eiφðmþ1

2
Þ

×
�
e−

i
2
φψ1

mþ1
2

e
i
2
φψ2

mþ1
2

e−
i
2
φψ3

mþ1
2

e
i
2
φψ4

mþ1
2

�
T
:

ð3:10Þ

The inner product of any two solutions ψ and χ is time
invariant if

R
Z

∞

−∞
dz
X∞

m¼−∞
ðψ4�

mþ1
2

χ1
mþ1

2

þ ψ3�
mþ1

2

χ2
mþ1

2

þ ψ2�
mþ1

2

χ3
mþ1

2

þ ψ1�
mþ1

2

χ4
mþ1

2

Þ ¼ 0: ð3:11aÞ

The inner product of the charge conjugate ψc ¼ iγ2̂ψ� of ψ
and an arbitrary solution χ must also be time invariant. This
is the case if

R
Z

∞

−∞
dz
X∞

m¼−∞
ðψ1

−m−1
2

χ1
mþ1

2

− ψ2
−m−1

2

χ2
mþ1

2

− ψ3
−m−1

2

χ3
mþ1

2

þ ψ4
−m−1

2

χ4
mþ1

2

Þ ¼ 0: ð3:11bÞ

To satisfy both equations (3.11), the solution employed in
the spectral model is to set equal to zero either the top and
third or the second and fourth components of ψ , depending
on their spectral index m, as follows [15]:

ψ1
mþ1

2

⌋ρ¼R ¼ ψ3
mþ1

2

⌋ρ¼R ¼ 0; for mþ 1

2
> 0;

ψ2
mþ1

2

⌋ρ¼R ¼ ψ4
mþ1

2

⌋ρ¼R ¼ 0; for mþ 1

2
< 0: ð3:12Þ

We note that it is also possible to satisfy Eqs. (3.11) by
letting the second and fourth components of ψ vanish for
positive mþ 1

2
, with the first and third components vanish-

ing when mþ 1
2
< 0. For brevity, we only consider the first

implementation in this paper. We would expect the second
implementation to give physically similar results for
expectation values.

1. Discretization of the transverse momentum

Applying the prescription (3.12) to the mode solutions
(2.10) requires that the transverse momentum q must be
discretized according to
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qm;lR ¼
�
ξm;l mþ 1

2
> 0;

ξ−m−1;l mþ 1
2
< 0;

ð3:13Þ

where ξm;l is the lth nonzero root of the Bessel function
Jm. Hence, the mode solutions of the Dirac equation which
satisfy spectral boundary conditions can be written as

Usp
j ðxÞ ¼ Cspj UjðxÞ; ð3:14Þ

with j defined by analogy to Eq. (2.11), now including the
new index l,

j ¼ ðEj; kj; mj; λj;ljÞ; ð3:15Þ

where Ej ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2j þ k2j þ μ2

q
is the Minkowski energy.

The constants Cspj in Eq. (3.14) are calculated in Sec. III B 3
to ensure that the modes have unit norm.

2. Energy spectrum

As discussed in Sec. II C, if modes with EeE < 0 are not
present in the particle spectrum, then the rotating and
nonrotating Minkowski vacua are equivalent. To show that
this is the case for the spectral boundary conditions, we
start with the following inequality for the first zero of the
Bessel function Jm [22]:

ξm;1 > mþ 1

2
: ð3:16Þ

Hence, for E > 0, we have

ER ≥ qR > mþ 1

2
; ð3:17Þ

and therefore, using (2.12),

eER > ð1 −ΩRÞ
�
mþ 1

2

�
; ð3:18Þ

showing that EeE > 0 for all values of μ, k,m and l, as long
as the boundary is inside or on the SOL (ΩR ≤ 1). Thus,
the rotating and nonrotating Minkowski vacua are equiv-
alent. This will enable us, in Sec. III B 4, to perform the
second quantization for a fermion field satisfying spectral
boundary conditions along the lines discussed in Sec. II C.

3. Normalization

Before we can proceed with the second quantization, the
modes (3.14) must be normalized with respect to the Dirac
inner product (3.2), which in the case under consideration
takes the form (2.30). For the case of two particle modes
(3.14), Eq. (2.30) reads

hUsp
j ; U

sp
j0 i ¼

1

4
ðCspj Þ�Cspj0 δðk − k0Þδmm0eiΔeEt

×

�
EþE0þ þ 4λλ0

EE0

jEE0jE−E0−
�

×

�
pλp0λ0

Z
R

0

JmðqρÞJmðq0ρÞρdρþ 4λλ0p−λp0−λ0

×
Z

R

0

Jmþ1ðqρÞJmþ1ðq0ρÞρdρ
	
; ð3:19Þ

where the labelsm and l are implicit on q and any quantities
derived from it (e.g. E). The labels j and j0 have also been
dropped. Furthermore, the quantities p and E are defined in
(2.24) and (2.29), respectively, and ΔeE ¼ eEj − eEj0 .
The modes (3.14) are normalized if the constants Cspj are

chosen such that the right-hand side of Eq. (3.19) equals

δðj; j0Þ≡ δðk − k0Þδmm0δll0δλλ0θðEE0Þ; ð3:20Þ
where the step function θðEE0Þ ensures that the Minkowski
energies Ej and E0 ¼ Ej0 have the same relative sign.
Since the boundary conditions (3.12) preserve the self-
adjointness of the Hamiltonian, the time independence of
the inner product requires that modes of differing energies
(i.e. ΔeE ¼ eE − eE0 ≠ 0) are orthogonal. For the evaluation
of the integrals of the Bessel functions in Eq. (3.19) when
q ¼ q0, it is convenient to use the following results [23]:

Iþ
mþ1

2

¼
Z

R

0

dρ ρ
1

2
½J2mðqρÞ þ J2mþ1ðqρÞ�

¼ R2

2

�
J2mþ1ðqRÞ −

2mþ 1

qR
JmðqRÞJmþ1ðqRÞ

þ J2mðqRÞ
	
;

I−
mþ1

2

¼
Z

R

0

dρ ρ
1

2
½J2mðqρÞ − J2mþ1ðqρÞ�

¼ R
2q

JmðqRÞJmþ1ðqRÞ: ð3:21Þ

The spectral boundary conditions (3.13) ensure that the
product JmðqRÞJmþ1ðqRÞ vanishes for all m. For positive
mþ 1

2
, the normalization constants Cspj (3.14) take the

following values:

Cλ;spEkml ¼ Cλ;spE;k;−m−1;l ¼
ffiffiffi
2

p

RjJmþ1ðξm;lÞj
: ð3:22Þ

Using Eq. (2.33), it can be seen that antiparticle and
particle modes obeying spectral boundary conditions are
linked through

Vsp
j ðxÞ ¼ ð−1Þm iEj

jEjj
Usp

|̄ ðxÞ; ð3:23Þ
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where

|̄ ¼ ð−Ej;−kj;−mj − 1; λj;ljÞ: ð3:24Þ

Since the modes Usp
|̄ are normalized (the above calculation

is valid for Ej < 0, as well as for Ej > 0), so too are the
antiparticle modes (3.23).

4. Second quantization

As shown in Sec. III B 2, the condition EeE > 0 is
satisfied by all modes obeying spectral boundary condi-
tions if the boundary is placed on or inside the SOL. We do
not consider the case when RΩ > 1 and the boundary is
outside the SOL. Thus, the rotating and Minkowski vacua
are identical, and the second quantization can be performed
as outlined in Sec. II C. First, we expand the quantum
fermion field in terms of the normalized modes (3.14),
(3.23),

ψ sp ¼
X
j

θðEjÞ½Usp
j b

sp
j þ Vsp

j d
sp†
j �; ð3:25Þ

where j is defined in Eq. (3.15) for the spectral case and

X
j

≡ X
λj¼�1=2

X∞
mj¼−∞

X∞
lj¼1

Z
∞

−∞
dkj

X
Ej¼�jEjj

: ð3:26Þ

The vacuum for the spectral case, j0spi, is then defined as
that state annihilated by the operators bspj and dspj :

bspj j0spi ¼ 0 ¼ dspj j0spi: ð3:27Þ

In Sec. IV B, we will calculate expectation values for
thermal states constructed from j0spi.

C. MIT bag boundary conditions

First introduced in Ref. [9], the MIT boundary con-
ditions are defined in a purely local manner, by ensuring
that the integrand in Eq. (3.8) vanishes at any point xb on
the boundary ∂V. This is achieved by setting

inψðxbÞ ¼ ςψðxbÞ; ð3:28Þ

where nμ represents the normal to the boundary and
n ¼ γμnμ. The coefficient ς can take the general form [10],

ς ¼ expð−iγ5ΘÞ ¼ cosΘ − iγ5 sinΘ; ð3:29Þ

where Θ is referred to as the chiral angle. In this paper,
only the cases Θ ¼ 0 (MIT) [9] and Θ ¼ π (chiral) [10]
are considered, in which case the parameter ς takes the
following values:

ς ¼
�
1 ðMITÞ;
−1 ðchiralÞ: ð3:30Þ

1. Discretization of the transverse momentum

In the present case, n ¼ −dρ, and thus the boundary
conditions (3.28) are

iγρ̂ψðxbÞ ¼ −ςψðxbÞ: ð3:31Þ
It can be checked that if ψðxÞ obeys the above boundary
conditions, so does its charge conjugate iγ2̂ψ�ðxÞ.
Mode solutions that satisfy MIT boundary conditions

can be constructed starting from the complete set of modes
described in Sec. II B. The desired solutions of the Dirac
equation can be simultaneous eigenvectors of the corotating
Hamiltonian H, z-component of momentum Pz and z-
component of angular momentum Mz (2.8), since these
operators commute with iγρ̂. However, the helicity operator
W0 (2.9) does not commute with iγρ̂. Hence, ψðxÞmust be a
linear combination of solutions corresponding to λ ¼ � 1

2
,

UMIT
EkmlðxÞ ¼ bþEkmlU

þ
EkmðxÞ þ b−EkmlU

−
EkmðxÞ; ð3:32Þ

where b�Ekml are constants, E is the Minkowski energy and
the index l has been introduced anticipating the quantiza-
tion of the transverse momentum q. For a given value of m,
the allowed values of the transverse momentum are labeled
by l in increasing order, such that qm;l < qm;lþ1. To avoid
cumbersome notation, the indicesm;l are omitted from the
corresponding momentum pm;l or Minkowski energy Em;l
where there is no risk of confusion.
Thus, Eq. (3.31) becomes

ςEþðbþEkmlϕ
þ
Ekml þ b−Ekmlϕ

−
EkmlÞ

¼ −
iE
jEjE−ðbþEkmlσ

ρϕþ
Ekml − b−Ekmlσ

ρϕ−
EkmlÞ; ð3:33Þ

where E� is defined in Eq. (2.29) and ϕ� are given in
Eq. (2.23). Equation (3.33) can be written as a set of linear
equations in b�,0@ ςEþpþJm− E

jEjE−p−Jmþ1 ςEþp−Jm− E
jEjE−pþJmþ1

ςE−pþJmþ E
jEjEþp−Jmþ1 −ςE−p−Jm− E

jEjEþpþJmþ1

1A
×
�
bþEkml

b−Ekml

�
¼ 0; ð3:34Þ

where the argument of the Bessel functions is qm;lR and p�
are defined in (2.24). The system (3.34) has nontrivial
solutions if

j2ml þ
2ςμ

qm;l
jml − 1 ¼ 0; ð3:35Þ
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where

jml ¼ Jmðqm;lRÞ
Jmþ1ðqm;lRÞ

: ð3:36Þ

Equation (3.35) can be solved numerically to yield an
infinite number of roots. Equation (3.35) is invariant under
E → −E, and hence qm;l does not depend on the sign of E.
Moreover, the relation J−mðzÞ ¼ ð−1ÞmJmðzÞ (valid for all
integer values of m) ensures that

q−m−1;l ¼ qm;l: ð3:37Þ

Equation (3.34) fixes b≡ bEkml ¼ bþEkml=b
−
Ekml to be

b ¼ −
ςE
jEjEþp−jml − E−pþ
ςE
jEjEþpþjml − E−p−

¼
ςE
jEjE−p−jml þ Eþpþ
ςE
jEjE−pþjml þ Eþp−

;

ð3:38Þ
where we have used the definitions (2.24), (2.29),
(3.36). The result (3.38) is invariant under ðE; k;mÞ →
ð−E;−k;−m − 1Þ.
For consistency of notation, we now write the modes

(3.32) in a form analogous to that for the modes (3.14)
satisfying the spectral boundary conditions,

UMIT
j ¼ CMIT

j ½bUþ
Ekm þ U−

Ekm�; ð3:39Þ

where b is given by (3.38),

CMIT
j ¼ b−Ekml ð3:40Þ

and the index j on the modes is

j ¼ ðEj; kj; mj;ljÞ: ð3:41Þ

Note that the index j (3.41) does not contain any explicit
dependence on the helicity λ. This is because the MIT
modes (3.39) are a linear combination of positive and
negative helicity spinors. The normalization constants CMIT

j

will be found in Sec. III C 3 below.

2. Energy spectrum

We now examine whether modes with EeE < 0 are
excluded from the particle spectrum when we use MIT
bag boundary conditions.
We begin with massless particles, μ ¼ 0. In this case, the

equation satisfied by jml (3.35) does not depend on ς.
Therefore, the energy spectrum is also independent of ς. The
solutions of Eq. (3.35) when μ ¼ 0 are simply jml ¼ �1, i.e.
the points where the graph of Jm intersects either Jmþ1 or
−Jmþ1. According to Theorem 3.1 of Ref. [24], the values of
qm;lR such that jml ¼ �1 [or, equivalently, JmðqmlRÞ¼
�Jmþ1ðqmlRÞ using (3.36)] satisfy

ξ0m;l < qm;2l−1R < ξm;l < qm;2lR < ξ0m;lþ1; ð3:42Þ

where ξm;l and ξ0m;l are the lth zeroes of JmðzÞ and J0mðzÞ,
respectively. The roots qm;lR are also staggered such that

Jmðqm;lRÞ ¼ ð−1Þlþ1Jmþ1ðqm;lRÞ: ð3:43Þ

Using the property [22]

ξ0m;1 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 2Þ

p
; ð3:44Þ

the following lower bound can be established for the energy
of the modes obeying MIT bag boundary conditions:

jEm;ljR ≥ qm;lR > mþ 1

2
: ð3:45Þ

The argument of Sec. III B 2 then shows that, if the boundary
is inside or on the SOL,

EeE > 0; ð3:46Þ

where eE is given by (2.12).
When the mass μ is nonzero, solving (3.35) enables us to

write jml in terms of the (as yet unknown) transverse
momenta qm;l as follows:

jml ¼ −
ςμ

qm;l
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

q2m;l

s
: ð3:47Þ

When ς ¼ 1 (the original MIT case), it can be seen that

0 < −
ςμ

qm;l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

q2m;l

s
< 1: ð3:48Þ

Now, consider the lowest value of the transverse momen-
tum, qm;1. We have Jmðqm;1RÞ ¼ jm1Jmþ1ðqm;1RÞ; in other
words, when q ¼ qm;1, the graphs of the functions JmðqRÞ
and jm1Jmþ1ðqRÞ intersect. The inequality (3.48) tells that
jm1 < 1, so Jmðqm;1RÞ < Jmþ1ðqm;1RÞ. Therefore, the
value of qm;1R is in the interval where Jm decreases toward
its first zero, after the first zero of Jm0. Figure 1(a) illustrates
this behavior. Hence, in this case, we can use the
same argument as that given above in the massless case
to show that the lowest allowed positive energy obeyseER > ð1 −ΩRÞðmþ 1

2
Þ. Therefore, when ς ¼ 1, we again

have EeE > 0 for all R ≤ Ω−1.
In the chiral case (ς ¼ −1), from (3.47), jml increases as

the mass increases, and qm;1R approaches the origin, as
illustrated in Fig. 1(b). Rearranging Eq. (3.47) as

q
JmðqRÞ
Jmþ1ðqRÞ

¼ μþ EðμÞ; ð3:49Þ
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where EðμÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þq2

p
is the smallest positive Minkowski

energy for a particle of mass μ and transverse momentum q
(i.e. corresponding to k ¼ 0), it can be seen that qR ¼ 0 is a
solution of (3.35) when μR ¼ mþ 1, by using

lim
z→0

z
JmðzÞ
Jmþ1ðzÞ

¼ 2ðmþ 1Þ: ð3:50Þ

If the mass μ increases further, the first root no longer
corresponds to jml > 0 (i.e. the root satisfying qm;lR <
ξm;1 disappears). In this case, with μR > 1þm, we have
ER > mþ 1

2
just from the mass contribution to EðμÞ.

Knowing that, by virtue of Eq. (3.45), the same condition
is satisfied when μ ¼ 0, it remains to investigate the
behavior of the smallest allowed energy Em;1ðμÞ for qm;1

between μR ¼ 0 and μR ¼ mþ 1.
To this end, let us consider the derivative of Em;1ðμÞ with

respect to μ,

E0
m;1ðμÞ ¼

1

Em;1ðμÞ
½μþ qm;1ðμÞq0m;1ðμÞ�; ð3:51Þ

where the prime denotes differentiation with respect to the
argument μ. Since qm;1ðμÞ decreases as the mass increases,
q0m;1ðμÞ < 0 for this range of μR and E0

m;1ðμ ¼ 0Þ < 0. The
energy reaches a minimum when

qm;1ðμ0Þq0m;1ðμ0Þ ¼ −μ0: ð3:52Þ

A second expression for E0
m;1ðμÞ can be obtained by taking

the derivative of Eq. (3.49) with respect to μ:

q0
JmðqRÞ
Jmþ1ðqRÞ

�
1þ R

J0mðqRÞ
JmðqRÞ

− R
J0mþ1ðqRÞ
Jmþ1ðqRÞ

	
¼ 1þ E0:

ð3:53Þ

Using Eq. (3.51) to eliminate q0m;1 in favor of Em;1, together
with the following properties of the Bessel functions,

J0mðzÞ ¼ −Jmþ1ðzÞ þ
m
z
JmðzÞ;

J0mþ1ðzÞ ¼ JmðzÞ −
mþ 1

z
Jmþ1ðzÞ; ð3:54Þ

Eq. (3.53) can be solved to yield

E0ðμÞ ¼ μð2mþ 1Þ − 2μERþ E
Eð2mþ 1Þ − 2E2Rþ μ

: ð3:55Þ

Since E0ðμÞ < 0 at μ ¼ 0, either Em;1 reaches its minimum
when μR ¼ mþ 1 [in which case qm;1 ¼ 0 and
Em;1 ¼ μ ¼ R−1ðmþ 1Þ] or there must be at least one
value μ ¼ μ0 between 0 and R−1ðmþ 1Þ where
E0ðμ0Þ ¼ 0. At such a point, Eq. (3.55) predicts that the
value of the energy would be

Eðμ0ÞR ¼ 2μ0R
2μ0R − 1

�
mþ 1

2

�
: ð3:56Þ

Since E was assumed to be positive, Eq. (3.56) implies that
E cannot be minimized with respect to the mass for
μ0R ≤ 1

2
. If a stationary point occurs for any μ0R > 1

2
, the

corresponding value of the energy will be greater than
R−1ðmþ 1

2
Þ. Since the energy is above R−1ðmþ 1

2
Þ at the

end points μ ¼ 0 and μ ¼ mþ 1 (where the corresponding
value of q would be zero) and since at its stationary points
we also have E > R−1ðmþ 1

2
Þ, we can conclude that the

energy will always satisfy

Em;lR > mþ 1

2
; ð3:57Þ

and therefore, using (2.12),

5 10 15 20
qR

0.2

0.1

0.1

0.2

0.3

1

j10 0

j10 0

J10 qR

5 10 15 20
qR

0.2

0.1

0.1

0.2

0.3

1

j10 0

j10 0

J10 qR

FIG. 1. Graphs for finding the first value of the transverse
momentum qm;1 allowed by the MIT bag boundary conditions for
m ¼ 10. The roots of Eq. (3.35) are located at the intersection
between the solid line [representing JmðqRÞ] and the dashed lines
[representing JmðqRÞ multiplied by the right-hand side of
Eq. (3.47)]. The dashed lines correspond to masses μR ¼ 0, 2,
4, 6, 8 and 10, while ς ¼ 1 in (a) and ς ¼ −1 in (b). The two sets
of dashed lines correspond to the sign of jml; i.e. the dash-dot
lines (red curves, positive for small qR) correspond to jml > 0,
while the dashed lines (green curves, negative for small qR)
represent the case jml < 0.
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eEm;lR > ð1 − ΩRÞ
�
mþ 1

2

�
: ð3:58Þ

Our numerical experiments confirm Eq. (3.57).
Furthermore, the energy seems to decrease monotonically
toward its minimum value of ðmþ 1Þ=R as μR increases
from 0 to mþ 1, as shown in Fig. 2.
Hence, the MIT bag boundary conditions with ς ¼ �1

restrict the energy spectrum such that EeE > 0 for all values
of μ, k, m and l, as long as the boundary of the cylinder is
inside or on the SOL.

3. Normalization

We now turn to the normalization of the MIT modes
(3.39). We require these modes to have unit norm with
respect to the Dirac inner product (2.30),

hUMIT
j ; UMIT

j0 i ¼ δðj; j0Þ; ð3:59Þ

where δðj; j0Þ is defined in analogy to Eq. (3.20),

δðj; j0Þ ¼ δðkj − kj0 Þδmj;mj0 δlj;lj0θðEjEj0 Þ; ð3:60Þ

where, as in the spectral case, θðEjEj0 Þ ensures that Ej and
Ej0 have the same sign. There is no helicity dependence in
(3.60) because the MIT modes (3.39) are linear combina-
tions of positive and negative helicity spinors.
The time invariance of the Dirac inner product (3.1),

guaranteed to hold in the MIT bag model by Eq. (3.28),
ensures that the result of the inner product of modes with
different corotating energies (i.e. nonzero ΔeE ¼ eEj − eEj0 )
vanishes. Thus, the following result is obtained,

hUMIT
j ; UMIT

j0 i ¼ 1

4
δðk − k0Þδmm0δll0θðEE0ÞjCMIT

Ekmlj2

× ½ðSþ
þ þ S−þÞIþ

mþ1
2

þ ðSþ
− þ S−

−ÞI−
mþ1

2

�;
ð3:61Þ

where the integrals I�
mþ1

2

were introduced in Eq. (3.21) and

their coefficients are given by

Sþ
� ¼ E2þðbEkmlpþ þ p−Þ2 � E2

−ðbEkmlp− þ pþÞ2;
ð3:62aÞ

S−
� ¼ E2

−ðbEkmlpþ − p−Þ2 � E2þðbEkmlp− − pþÞ2;
ð3:62bÞ

where p� are defined in (2.24),E� are defined in (2.29) and
b is given in (3.38). The combinations of Sþ

� and S−
�

occurring in Eq. (3.61) can be evaluated using the following
identities,

Sþ
� ¼ 4k2

E2

1� j2ml

ðςEjEjEþpþjml − E−p−Þ2
; ð3:63aÞ

S−
� ¼ 4k2

E2

1� j2ml

ðςEjEjE−pþjml þ Eþp−Þ2
; ð3:63bÞ

where jml is given by (3.36). Then, we have

Sþ
� þ S−

� ¼ 8ð1� j2mlÞ
p2þj2ml þ p2−

: ð3:63cÞ

Hence, the modes (3.39) are normalized according to
Eq. (3.59) if

CMIT
j ¼ 1

RjJmþ1ðqm;lRÞj

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2− þ p2þj2ml

ðj2ml þ 1Þðj2ml þ 1 − 2mþ1
qm;lR

jmlÞ − ðj2ml − 1Þ jml
qm;lR

vuut :

ð3:64Þ
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FIG. 2. The dependence of the smallest allowed transverse
momentum (a) and energy (b) in the MIT bag model correspond-
ing to ς ¼ −1 for μR between 0 and mþ 1 and m ¼ 0, 5, 15, 30.
The x axis represents the ratio μR=ðmþ 1Þ, normalizing the mass
such that for any value of m the range of the x axis is from 0 to 1.
The transverse momentum qm;1 and energy Em;1 are divided by

R−1ðmþ 1Þ. Plot (b) shows the difference Em;1R
mþ1

− 1 in terms of
μR=ðmþ 1Þ. The energy Em;1 is monotonically decreasing and
has no stationary points for this range of values of μR.
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In the massless limit, CMIT
j (3.64) simplifies to

CMIT
j ⌋μ¼0 ¼

1

R
ffiffiffi
2

p jJmþ1ðqm;lRÞj

�
1 −

jmlðmþ 1
2
Þ

qm;lR

	−1
2

:

ð3:65Þ

The normalization constant CMIT
j (3.64) is invariant under

ðE; k;mÞ → ð−E;−k;−m − 1Þ. The quantity bj, defined in
Eq. (3.38), is also invariant under the same transformation.
Therefore, using the property (2.33), the relationship
between particle and antiparticle spinors satisfying the
MIT bag boundary conditions is

VMIT
j ¼ ð−1Þmj

iEj

jEjj
UMIT

|̄ ; ð3:66Þ

where

|̄ ¼ ð−Ej;−kj;−mj − 1;ljÞ: ð3:67Þ

Since the particle modes UMIT
|̄ are normalized, so too are

the antiparticle modes (3.66).

4. Second quantization

For the remainder of this paper, we shall assume that
RΩ ≤ 1 and the boundary is located inside or on the SOL.
In this case, we have shown in Sec. III C 2 that EeE > 0 for
all fermion field modes satisfying MIT bag boundary
conditions. As discussed in Sec. II C, this means that the
rotating and nonrotating Minkowski vacua are the same
and the second quantization of the field is straightforward.
The quantum fermion field is expanded in terms of the
normalized modes (3.39), (3.66),

ψ ¼
X
j

θðEjÞ½UMIT
j bMIT

j þ VMIT
j dMIT†

j �; ð3:68Þ

where j is defined in Eq. (3.41) and the sum over j is
defined as

X
j

≡ X∞
mj¼−∞

X∞
lj¼1

Z
∞

−∞
dkj

X
Ej¼�jEjj

: ð3:69Þ

There is no sum over helicity because the modes (3.39)
are linear combinations of positive and negative helicity
spinors.
The vacuum for the MIT case, j0MITi, is then defined

as that state which is annihilated by the operators bMIT
j

and dMIT
j :

bMIT
j j0MITi ¼ 0 ¼ dMIT

j j0MITi: ð3:70Þ

In Sec. IV C, we will calculate expectation values for
thermal states constructed from j0MITi.

D. Summary

In this section, we have considered a quantum fermion
field on rotating Minkowski space-time inside a cylinder of
radius R with the axis of the cylinder along the z-axis. We
have examined two boundary conditions for the fermion
field on the surface of the cylinder: spectral [8] and MIT
bag [9,10]. In each case, we have studied the quantization
condition for the transverse momentum, the resulting
energy spectrum and the corresponding normalized mode
solutions. An important conclusion pertaining to the energy
spectrum, summarized in Secs. III B 2 and III C 2 for the
spectral and MIT cases, respectively, was that modes with
Ej
eEj < 0 are excluded from the energy spectrum if the

boundary is placed inside the SOL, that is, RΩ ≤ 1whereΩ
is the angular speed about the z-axis. In this case, the
rotating and nonrotating Minkowski vacua are identical,
and the second quantization of the fermion field is
straightforward.

IV. THERMAL EXPECTATION VALUES

In this section, we calculate rigidly-rotating t.e.v.s of the
fermion condensate ψψ (FC), parity-violating neutrino
charge current Jzν (CC) and stress-energy tensor Tμν

(SET) for a quantum fermion field inside a cylinder of
radius R, where RΩ ≤ 1 and the boundary is inside or on
the SOL. We use the thermal Hadamard function and the
point-splitting method, as outlined in Ref. [21]. The
spectral and MIT bag boundary conditions are considered
separately. We compare our results with those for rotating
fermions on unbounded Minkowski space-time, as dis-
cussed in Refs. [1,3,7].
For completeness, the main steps for the construction of

the thermal Hadamard function, presented in Ref. [21],
are summarized below. We start with the Pauli-Jordan
(Schwinger) function,

Sðx; x0Þ ¼ h0jfψðxÞ;ψðx0gj0i; ð4:1Þ

the Fourier transform of which can be written as

Sðx; x0Þ ¼
Z

∞

−∞
dω e−iωΔtcðω; x; x0Þ; ð4:2Þ

where x is the spatial part of the space-time point x. We
note that, since fψðxÞ;ψðx0Þg is proportional to the identity
operator, the Schwinger function Sðx; x0Þ (4.1) is state
independent (i.e. is evaluated to the same number regard-
less of the state j0i under consideration). The Fourier
coefficients cðω; x; x0Þ can be used to compute the thermal
Hadamard function at inverse temperature β:
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Sð1Þβ ðx; x0Þ ¼
Z

∞

−∞
dω e−iωΔtcðω; x; x0Þ tanh βω

2
: ð4:3Þ

The thermal Hadamard function Sð1Þβ ðx; x0Þ (4.3) is inde-
pendent of the initial choice of vacuum j0i in (4.1).
Since we consider only the case where the boundary

is inside the SOL, as discussed in Secs. II C, III B 4
and III C 4, the rotating and nonrotating Minkowski vacua
inside the cylinder are identical for each set of boundary
conditions. However, the two vacua for the different
boundary conditions, namely j0spi (spectral) and j0MITi
(MIT) are not the same. In this section, we compute rigidly-
rotating t.e.v.s with respect to the j0spi and j0MITi vacuum
states, using the differenceΔSð1Þβ ðx; x0Þ between the thermal

Hadamard function Sð1Þβ ðx; x0Þ (4.3) and its vacuum
counterpart, defined as

Sð1Þðx; x0Þ ¼ h0�j½ψðxÞ;ψðx0Þ�j0�i; ð4:4Þ

where j0�i is either j0spi or j0MITi. We first derive a general
expression for the thermal Hadamard function (4.3) in
terms of fermion field modes, before considering separately
the situations where the field satisfies spectral or MIT bag
boundary conditions.

A. Thermal Hadamard function

Using the notation in Eq. (2.10), the fermion field
operator can be written as

ψðxÞ ¼ 1

2π

X
j

θðEjÞ½e−ieEjtþikjzCjujðxÞbj

þ eieEjt−ikjzC�jvjðxÞd†j �; ð4:5Þ

where the sum over j, the normalization constants Cj,
the four-spinors uj and their charge conjugates vj depend
on the boundary conditions employed and are described
in detail in Sec. III. The corotating energy eEj and the
Minkowski energy Ej are related by Eq. (2.12). The
Schwinger function (4.1) takes the form

Sðx; x0Þ ¼
X
j

θðEjÞ½UjðxÞ ⊗ Ūjðx0Þ þ VjðxÞ ⊗ V̄jðx0Þ�;

ð4:6Þ

where ⊗ denotes an outer product, the Uj are particle
modes and the Vj are antiparticle modes. The expression
(4.6) is valid irrespective of the state in which it is evaluated
[21]. Thus, the Fourier coefficients of the Schwinger
function take the form

cðω; x; x0Þ ¼
X
j

jCjj2θðEjÞ
4π2

½δðω − eEjÞeikjΔzujðxÞ ⊗ ūjðx0Þ

þ δðωþ eEjÞe−ikjΔzvjðxÞ ⊗ v̄jðx0Þ�; ð4:7Þ

where Δz ¼ z − z0. From these Fourier coefficients, the
thermal Hadamard function (4.3) can be derived:

Sð1Þβ ðx; x0Þ ¼
X
j

θðEjÞ tanh
βeEj

2

× ½UjðxÞ ⊗ Ūjðx0Þ − VjðxÞ ⊗ V̄jðx0Þ�: ð4:8Þ

Subtracting the vacuum Hadamard function (4.4) from the
above thermal Hadamard function gives

ΔSð1Þβ ðx; x0Þ ¼ −
X
j

wj½UjðxÞ ⊗ Ūjðx0Þ − VjðxÞ ⊗ V̄jðx0Þ�;

ð4:9Þ
where the thermal factor wj takes the form

wj ¼
2θðEjÞ
eβeEj þ 1

: ð4:10Þ

In (4.10), the step function θðEjÞ ensures that the sum over
j in Eq. (4.9) runs only over positive Minkowski energies
(i.e. Ej > 0).
In this section, we calculate the (rigidly-rotating) t.e.v.s

for the FC h∶ψ̄ψ∶i�β, charge current h∶Jα̂∶i�β and SET
h∶T α̂ σ̂∶i�β, where all components are with respect to the
tetrad (2.2). The notation h∶O∶i�β, for an operator O,
indicates that we are considering t.e.v.s relative to the
vacuum state (either j0spi or j0MITi as applicable). The
superscript � will be either sp or MIT depending on which
boundary conditions we are considering. For the rest of this
section, all expectation values will be for rotating thermal
states, relative to the appropriate (bounded) vacuum state.
Wewill consider expectation values in the bounded vacuum
state relative to the unbounded Minkowski vacuum state
in Sec. V.
The t.e.v.s are calculated from the difference (4.9)

between the thermal Hadamard function and the vacuum
Hadamard function, as follows:

h∶ψ̄ψ∶i�β ¼ −
1

2
lim
x0→x

tr½ΔSð1Þβ ðx; x0Þ�; ð4:11aÞ

h∶Jα̂∶i�β ¼ −
1

2
lim
x0→x

tr½γα̂ΔSð1Þβ ðx; x0Þ�; ð4:11bÞ

h∶T α̂ σ̂∶i�β ¼
i
4
lim
x0→x

tr½γðα̂Dσ̂ÞΔS
ð1Þ
β ðx; x0Þ

− ΔSð1Þβ ðx; x0Þ ⃖D̄ðσ̂γα̂Þ�: ð4:11cÞ
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It will turn out, in Secs. IV B 2 and IV C 2, that the
expectation value (4.11b) for the charge current vanishes
identically for both spectral and MIT bag boundary con-
ditions. We will therefore also consider the charge current
for fermions of negative chirality only. It has been remarked
by Vilenkin [7] that the restriction of the particle spectrum
to fermions of negative chirality induces a nonvanishing
charge current antiparallel to the rotation vector Ω. Since
these particles are traditionally called (in the massless case)
neutrinos, we will use the term neutrino charge current (and
abbreviate this to CC) for this quantity. The t.e.v.s of the CC
Jα̂ν of particles of negative chirality can be calculated using

h∶Jα̂ν∶i�β ¼ −
1

2
lim
x0→x

tr
�
γα̂

1 − γ5

2
ΔSð1Þβ ðx; x0Þ

	
: ð4:11dÞ

Here, ð1 − γ5Þ=2 projects onto the space of modes of
negative chirality with the help of the matrix
γ5 ¼ iγ0̂γ1̂γ2̂γ3̂, which in the Dirac representation has the
form [14]

γ5 ¼
�
0 1

1 0

�
: ð4:12Þ

We now turn to the computation of the t.e.v.s (4.11),
considering the spectral and MIT bag boundary conditions
separately. In each case, we first construct the thermal
Hadamard function before computing the t.e.v.s and exam-
ining their properties.

B. Spectral boundary conditions

Using the relation (3.23) to write the antiparticle modes
in terms of the particle modes, the difference between the
thermal and vacuum Hadamard functions (4.9) can be
written as

ΔSð1Þβ ðx; x0Þ ¼ −
X
j

jCspj j2
4π2

e−ieEjΔtþikjΔzðwj − w|̄ÞMλ
j;

ð4:13Þ
where eEj is the corotating energy, Δt ¼ t − t0, Δz ¼ z − z0

and the normalization constant Cspj ≡ C
λj;sp
Ejkjmjlj

is given in

Eq. (3.22). The sum over j can be found in (3.26). The
thermal factors wj and w|̄ are given by (4.10) with
the indices j and |̄ in Eqs. (3.15) and (3.24), respectively.

The matrix Mλ
j ≡Mλ

jðx; x0Þ ¼ u
λj
Ejkjmjlj

ðxÞ ⊗ ū
λj
Ejkjmjlj

ðx0Þ
is given explicitly by

Mλ
j ¼

1

2

0@ E2þ − 2λE
jEj EþE−

2λE
jEj EþE− −E2

−

1A ⊗ ½ϕjðxÞ ⊗ ϕ†
jðx0Þ�;

ð4:14Þ

where E� are given in (2.29) and the spinors ϕj in (2.23).
In (4.14), the first occurrence of ⊗ has the meaning of a
Kronecker product of two 2 × 2 matrices, i.e.�

a11 a12
a21 a22

�
⊗ B ¼

�
a11B a12B

a21B a22B

�
: ð4:15Þ

In other words, the outer product ϕjðxÞ ⊗ ϕ†
jðx0Þ is to be

copied into each of the four matrix elements to the left of
the Kronecker ⊗ sign, thus producing a 4 × 4 matrix.
Introducing the notation

Mj ≡
X

λj¼�1=2

Mλ
j ¼

1

2

 
Mup

j −M×
j

M×
j −Mdown

j

!
; ð4:16Þ

the following expressions can be found for the 2 × 2
matrices introduced on the right-hand side of (4.16), by
using the explicit form (2.23) of the ϕj spinors:

Mup
j ¼ E2þ

�
1 0

0 1

�
∘Mj;

Mdown
j ¼ E2

−

�
1 0

0 1

�
∘Mj;

M×
j ¼ 1

E

�
k q

q −k

�
∘Mj: ð4:17Þ

In (4.17), the Hadamard (Schur) product symbol ∘ has been
used for the element-wise product of two matrices of the
same size, defined for two 2 × 2 matrices A, B as

A∘B ¼
�
a11b11 a12b12
a21b21 a22b22

�
: ð4:18Þ

The matrix Mj on the right of the Hadamard product
symbol ∘ in (4.17) is defined as

Mj ¼
�

JmJmeimΔφ −iJmJmþ1eiðmþ1ÞΔφ−iφ

iJmþ1JmeimΔφþiφ Jmþ1Jmþ1eiðmþ1ÞΔφ

�
;

ð4:19Þ

where Δφ ¼ φ − φ0 and the arguments of the first and
second Bessel functions in the products above are qρ and
qρ0, respectively, e.g. JmJmþ1 ≡ JmðqρÞJmþ1ðqρ0Þ.
For the purpose of computing t.e.v.s, it is advantageous

to write Mj (4.16) as

2Mj ¼
1

2
I2 ⊗ ðMup

j −Mdown
j Þ þ 1

2
σ3 ⊗ ðMup

j þMdown
j Þ

þ
�
0 −1
1 0

�
⊗ M×

j ; ð4:20Þ
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where I2 is the 2 × 2 identity matrix and the Pauli matrix σ3
can be found in Eq. (2.5). Thus, the following form is
obtained for Mj:

Mj ¼
�
μ

2E
I2 þ

1

2
σ3

	
⊗
��

1 0

0 1

�
∘Mj

	
þ 1

2E

�
0 −1
1 0

�
⊗
��

k q

q −k

�
∘Mj

	
: ð4:21Þ

Having computed above the explicit form of Mj appearing
in Eq. (4.13), t.e.v.s can now be calculated, as described in
the following sections.

1. Fermion condensate

The t.e.v. of the FC h∶ψ̄ψ∶ispβ is computed from the
difference between the thermal and vacuum Hadamard
functions (4.13) using (4.11a). Looking at Eq. (4.21), it is
clear that only the first term (the one involving I2 on the left
of the direct product sign ⊗) contributes, giving

h∶ψ̄ψ∶ispβ ¼
X
j

jCspj j2
8π2

ðwj − w|̄Þ
μ

Ej
JþmðqρÞ; ð4:22Þ

where the notation JþmðzÞ is the same as in Ref. [1]:

J�mðzÞ ¼ J2mðzÞ � J2mþ1ðzÞ;
J×mðzÞ ¼ 2JmðzÞJmþ1ðzÞ: ð4:23Þ

It is convenient to express the sum over j as a sum over
positive energies,

h∶ψ̄ψ∶ispβ ¼
X∞
m¼0

X∞
l¼1

Z
∞

0

μdk
Eπ2R2

wðeEÞ þ wðĒÞ
J2mþ1ðqRÞ

JþmðqρÞ;

ð4:24Þ
where we have used (3.22) for the normalization constants
Cspj and the thermal weight factor wðxÞ is

wðxÞ ¼ 2

eβx þ 1
; ð4:25Þ

while its arguments eE and Ē are defined as

eE¼E−Ω
�
mþ1

2

�
; Ē¼EþΩ

�
mþ1

2

�
: ð4:26Þ

Thus, in the spectral model, the t.e.v. of the FC vanishes
for massless fermions with μ ¼ 0. In Fig. 3, we have
therefore plotted μ−1h∶ψ̄ψ∶ispβ to facilitate comparisons
between the t.e.v.s for different values of the mass μ. It
can be seen from Fig. 3 that the t.e.v. of the FC is positive
everywhere, including on the boundary, where its value is
finite. This is true for allR provided that the boundary of the

cylinder is either inside or on the SOL. In Figs. 3(a) and 3(b),
we have fixed the inverse temperature β and the fermion
mass μ ¼ 0 and show the t.e.v.s of μ−1h∶ψ̄ψ∶ispβ for various
values of the angular speedΩ. The t.e.v. of the FC increases
for each fixed value of ρ asΩR increases. This is particularly
marked in the higher-temperature plot (b). When ΩR ¼ 1
and the boundary is on the SOL, the FC increases rapidly as
we move away from the axis of rotation, with a large peak
just inside the boundary. However, even in this case, the FC
is finite on the boundary. In Fig. 3(c), we have fixed the
angular speed Ω and again consider massless fermions
μ ¼ 0, varying the inverse temperature β. As expected,
the t.e.v.s decrease as β increases and the temperature
decreases. Finally, in Fig. 3(d), we fix the inverse temper-
ature β and angular speedΩ and vary the fermionmassμ.We
see that μ−1h∶ψ̄ψ∶ispβ decreases as μ increases.
For comparison, in Fig. 3(d), we also plot the t.e.v. of the

FC corresponding to the massless unbounded case [1],

1

μ
h∶½ψ̄ψ �∶iunbβ;I ⌋

μ¼0

¼ −
1

6β2ε
; ð4:27Þ

where ε ¼ 1 − ρ2Ω2. The subscript I indicates that the
above t.e.v. is given with respect to the rotating (Iyer)
vacuum [1,4]. In the interior of the cylinder, we see that the
rigidly-rotating t.e.v. of the FC with spectral boundary
conditions and a massless fermion is almost identical to that
for a massless fermion on unbounded Minkowski space-
time. They differ significantly only near the boundary. The
t.e.v. on unbounded Minkowski space-time continues to
increase as the boundary is approached, while that for
spectral boundary conditions decreases near the boundary.

2. Neutrino charge current

Next, we consider the t.e.v. of the charge current operator
h∶Jα̂∶ispβ , defined in (4.11b). It is straightforward to see that
the t.e.v.s of all the components of h∶Jα̂∶ispβ vanish. This is
because the expression for h∶Jα̂∶ispβ analogous to (4.22)
contains a summand which is odd under either m → −m −
1 (for α ∈ ft; ρ;φg) or k → −k (for α ¼ z). To illustrate this
point, let us consider the time component,

h∶Jt̂∶ispβ ¼ −
X
j

ðwj − w|̄Þ
jCspj j2
8π2

JþmðqρÞ; ð4:28Þ

where the various quantities are defined in (3.22), (4.10),
(4.23). After restricting the energy to positive values,
Eq. (4.28) reduces to

h∶Jt̂∶ispβ ¼
X∞

m¼−∞

X∞
l¼1

Z
∞

−∞

dk
2π2R2

wðeEÞ − wðĒÞ
J2mþ1ðqRÞ

JþmðqρÞ;

ð4:29Þ
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where the thermal weight factors and their arguments are
given in (4.25), (4.26). Since the summand in (4.29) is odd
with respect to m → −m − 1, we can conclude that
h∶Jt̂∶ispβ ¼ 0. Similar arguments apply to the other com-
ponents of h∶Jα̂∶ispβ .
We therefore consider the CC, the t.e.v. of which is given

by (4.11d). While the t, ρ and φ components of the CC
vanish, the z component is nonzero (in accordance with
Ref. [7]):

h∶Jẑν∶ispβ ¼ −
X∞
m¼0

X∞
l¼1

Z
∞

0

dk
2π2R2

wðeEÞ − wðĒÞ
J2mþ1ðqRÞ

J−mðqρÞ;

ð4:30aÞ

where J−mðqρÞ is defined in (4.23).
In Fig. 4, we plot the t.e.v. (4.30a) for a range of values of

the fermion mass μ, inverse temperature β and angular
speed Ω. For all values of the parameters we studied, it can
be seen in Fig. 4 that the t.e.v. of the CC changes sign from
negative on the axis of rotation ρ ¼ 0 to positive on the
boundary ρ ¼ R. This can be explicitly checked by con-
sidering the value of h∶Jẑν∶ispβ on the rotation axis ρ ¼ 0,

h∶Jẑν∶ispβ ⌋ρ¼0
¼−

X∞
l¼1

Z
∞

0

dk
2π2R2J21ðqRÞ

×

�
w

�
E−

Ω
2

�
−w

�
EþΩ

2

�	
<0; ð4:30bÞ

and on the boundary ρ ¼ R [recall that eE and Ē are given in
(4.26)]:

h∶Jẑν∶ispβ ⌋ρ¼R
¼
X∞
m¼0

X∞
l¼1

Z
∞

0

dk
2π2R2

½wðeEÞ − wðĒÞ� > 0:

ð4:30cÞ

As the angular speed Ω or temperature β−1 increases, the
t.e.v. h∶Jẑν∶ispβ decreases on the axis of rotation and
increases on the boundary. It remains finite everywhere
inside and on the boundary. In Fig. 4(a), we see that
h∶Jẑν∶ispβ vanishes when the angular speed Ω ¼ 0. This is
also the case on unbounded Minkowski space-time [1]. As
the fermion mass μ increases, h∶Jẑν∶ispβ also decreases close
to the boundary. Figure 4(c) also shows the t.e.v. of the CC
for the massless unbounded case, which is given by [1]
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FIG. 3. Thermal expectation values of the FC h∶ψ̄ψ∶ispβ (4.24) for spectral boundary conditions divided by the fermion mass μ, as a
function of the scaled radial coordinate ρ=R, so that the boundary of the cylinder is at ρ=R ¼ 1. (a) Massless fermions μ ¼ 0, fixed
inverse temperature β ¼ 2R and various values of the angular speedΩ. (b) Massless fermions μ ¼ 0, fixed inverse temperature β ¼ 0.5R
and various values of the angular speed Ω. (c) Massless fermions μ ¼ 0, fixed angular speed Ω ¼ 0.5=R and various values of the
inverse temperature β. (d) Fixed inverse temperature β ¼ 0.05R, fixed angular speed Ω ¼ 0.5=R and various values of the fermion mass
μ. The solid curve in (d) shows the t.e.v. of the FC for massless fermions in the unbounded case, given in Eq. (4.27), for comparison.
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h∶Jẑ∶iunbβ;I ¼ −
Ω

12β2ε2
: ð4:31Þ

Close to the boundary, h∶Jẑν∶ispβ changes sign and increases to
values which are an order of magnitude higher than
the absolute value of h∶Jẑ∶iunbβ;I , which is negative

everywhere. In Fig. 4(c), note that h∶Jẑ∶iunbβ;I is not constant,
as it might appear. It changes only by a small amount in the
region shown, whereas h∶Jẑν∶ispβ changes very rapidly in this
region.

3. Stress-energy tensor

The t.e.v. of the SET h∶T α̂ σ̂∶ispβ with respect to the tetrad
(2.2) can be calculated using the formula (4.11c), with the
difference between the thermal and vacuum Hadamard
functions given by (4.13). By construction, the action of

iDt̂ on e−ieEjtMj [with the matrix Mj given in (4.14)] gives
the energy Ej,

iDt̂e−i
eEjtMj ¼ Eje−i

eEjtMj; ð4:32Þ
while for the derivatives with respect to ρ and φ, the inner
structure (4.19) of the Mj matrix must be taken into
account. Using the quantities defined in (4.23), (4.25),
(4.26), together with the relation

J0mþ1ðzÞJmðzÞ − J0mðzÞJmþ1ðzÞ ¼ JþmðzÞ −
mþ 1

2

z
J×mðzÞ;
ð4:33Þ

we find the following expressions for the components of
the t.e.v. h∶T α̂ σ̂∶ispβ relative to the tetrad (2.2):

h∶Tt̂ t̂∶ispβ ¼
X∞
m¼0

X∞
l¼1

Z
∞

0

Edk
π2R2

wðeEÞ þ wðĒÞ
J2mþ1ðqRÞ

JþmðqρÞ;

ð4:34aÞ

h∶T ρ̂ ρ̂∶ispβ ¼
X∞
m¼0

X∞
l¼1

Z
∞

0

q2dk
Eπ2R2

wðeEÞ þ wðĒÞ
J2mþ1ðqRÞ

×

�
JþmðqρÞ −

mþ 1
2

qR
J×mðqρÞ

	
; ð4:34bÞ

h∶T φ̂ φ̂∶ispβ ¼
X∞
m¼0

X∞
l¼1

Z
∞

0

qdk
ρEπ2R2

wðeEÞ þ wðĒÞ
J2mþ1ðqRÞ

×

�
mþ 1

2

�
J×mðqρÞ; ð4:34cÞ

h∶Tẑ ẑ∶ispβ ¼
X∞
m¼0

X∞
l¼1

Z
∞

0

k2dk
Eπ2R2

wðeEÞ þ wðĒÞ
J2mþ1ðqRÞ

JþmðqρÞ;

ð4:34dÞ

h∶Tt̂ φ̂∶ispβ ¼−
X∞
m¼0

X∞
l¼1

Z
∞

0

dk
ρπ2R2

wðeEÞ−wðĒÞ
J2mþ1ðqRÞ

×

��
mþ1

2

�
JþmðqρÞ−

1

2
J−mðqρÞþqρJ×mðqρÞ

	
:

ð4:34eÞ
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FIG. 4. Thermal expectation values of the CC h∶Jα̂ν∶ispβ (4.30a)
for spectral boundary conditions, as a function of the scaled radial
coordinate ρ=R, so that the boundary of the cylinder is at
ρ=R ¼ 1. (a) Massless fermions μ ¼ 0, fixed inverse temperature
β ¼ 2R and various values of the angular speed Ω. (b) Massless
fermions μ ¼ 0, fixed angular speed Ω ¼ 0.5=R and various
values of the inverse temperature β. (c) Zoom of the region close
to the boundary at fixed inverse temperature β ¼ 0.05R, fixed
angular speed Ω ¼ 0.5=R and various values of the fermion mass
μ. The solid curve in (c) shows the t.e.v. of the CC for massless
fermions in the unbounded case, given in Eq. (4.31), for
comparison.
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Equations (4.34) can be used to check the identity

h∶T α̂
α̂∶iβ ¼ −μh∶ψ̄ψ∶iβ: ð4:35Þ

In Fig. 5. we have plotted the t.e.v. h∶Tt̂ t̂∶ispβ (4.34a)
for a range of values of the inverse temperature β,
angular speed Ω and fermion mass μ. Other components
of (4.34) are discussed in Sec. IV D. As was observed
earlier for the FC and CC, if the angular speed Ω or
temperature β−1 increases with the other parameters
fixed, then the t.e.v. h∶Tt̂ t̂∶ispβ also increases. It is finite
everywhere inside and on the boundary, including in the
case where ΩR ¼ 1 and the boundary is on the SOL.
When ΩR ¼ 1, in Figs. 5(a) and 5(b), we see a large
peak in h∶Tt̂ t̂∶ispβ close to the boundary. Figure 5(d)
shows that h∶Tt̂ t̂∶ispβ decreases as the fermion mass
increases with the other parameters fixed. Also in
Fig. 5(d), we have plotted for comparison the t.e.v.
of this component of the SET for the unbounded
Minkowski space-time. The components of the t.e.v.
of the SET in this case are [1]

h∶Tt̂ t̂∶iunbβ;I ¼ 7π2

60β4ε3

�
4

3
−
1

3
ε

�
þ Ω2

8β2ε4

�
8

3
−
16

9
εþ1

9
ε2
�
;

ð4:36aÞ

h∶T φ̂ t̂∶iunbβ;I ¼ − ρΩ
�

7π2

45β4ε3
þ 2Ω2

9β2ε4

�
3

2
−
1

2
ε

�	
;

ð4:36bÞ

h∶T ρ̂ ρ̂∶iunbβ;I ¼ 7π2

180β4ε2
þ Ω2

24β2ε3

�
4

3
−
1

3
ε

�
; ð4:36cÞ

h∶T φ̂ φ̂∶iunbβ;I ¼ 7π2

180β4ε3
ð4 − 3εÞ þ Ω2

24β2ε4
ð8 − 8εþ ε2Þ;

ð4:36dÞ

and

h∶Tẑ ẑ∶iunbβ;I ¼ h∶T ρ̂ ρ̂∶iunbβ;I : ð4:36eÞ

Figure 5(d) shows that, for massless fermions at least (in
this high-temperature case), the t.e.v. h∶Tt̂ t̂∶ispβ with
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FIG. 5. Thermal expectation values of the SET component h∶Tt̂ t̂∶ispβ (4.34a) for spectral boundary conditions, as a function of the
scaled radial coordinate ρ=R, so that the boundary of the cylinder is at ρ=R ¼ 1. (a) Massless fermions μ ¼ 0, fixed inverse temperature
β ¼ 2R and various values of the angular speed Ω. (b) Massless fermions μ ¼ 0, fixed inverse temperature β ¼ 0.5R and various values
of the angular speed Ω. (c) Massless fermions μ ¼ 0, fixed angular speed Ω ¼ 0.5=R and various values of the inverse temperature β.
(d) Fixed inverse temperature β ¼ 0.05R, fixed angular speed Ω ¼ 0.5=R and various values of the fermion mass μ. The solid curve in
(d) shows h∶Tt̂ t̂∶iunbβ;I for massless fermions in the unbounded case, given in Eq. (4.36a), for comparison.
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spectral boundary conditions is very close to that on the
unbounded space-time except in a region close to the
boundary.

C. MIT bag model

The method employed for the spectral model in the
previous section can be applied also for the MIT bag model.
An expression for the difference between the thermal and
vacuum Hadamard functions, equivalent to Eq. (4.13), can
be written for the MIT case,

ΔSð1Þβ ðx; x0Þ ¼ −
X
j

jCMIT
j j2
4π2

e−ieEjΔtþikjΔzðwj − w|̄ÞMj;

ð4:37Þ

where eEj is the corotating energy, Δt ¼ t − t0, Δz ¼ z − z0

and the normalization constant CMIT
j is given in (3.64). The

sum over j in this case is defined in Eq. (3.69). The thermal
factors wj and w|̄ are given by (4.10) with the indices j and
|̄ in Eqs. (3.41) and (3.67), respectively. The matrix Mj

now takes the form

Mj ¼ b2ju
þ
j ⊗ ūþj þ bjðuþj ⊗ ū−j þ u−j ⊗ ūþj Þ þ u−j ⊗ ū−j :

ð4:38Þ

The superscripts � indicate the sign of the helicity,
and the quantity b is given in (3.38). As in Sec. IVA, it
is understood that the spinors on the left and right
of the direct product symbol ⊗ depend on x and x0,
respectively.

To find Mj, we start with the following results,

u�j ⊗ ū�j
jCMIT

j j2 ¼ 1

2

 
E2þ ∓ E

jEjE−Eþ

� E
jEjE−Eþ −E2

−

!
⊗ ½ϕ�

j ⊗ ϕ�†
j �;

u�j ⊗ ū∓j
jCMIT

j j2 ¼ 1

2

 
E2þ � E

jEjE−Eþ

� E
jEjE−Eþ E2

−

!
⊗ ½ϕ�

j ⊗ ϕ∓†
j �; ð4:39Þ

where E� are given in (2.29). The spinors ϕ�
j can be found

in (2.23), and the ϕ�
j have the argument x, while their

Hermitian conjugates have the argument x0. Using
Eq. (2.23), the direct products of the ϕ�

j two-spinors can
be written as

ϕ�
j ⊗ ϕ�†

j ¼ 1

2

�
p2� �p−pþ

�p−pþ p2∓

�
∘Mj;

ϕ�
j ⊗ ϕ∓†

j ¼ 1

2

�
pþp− ∓ p2�
�p2∓ −pþp−

�
∘Mj; ð4:40Þ

where p� can be found in (2.24) and Eq. (4.19) gives the
matrix Mj. Next, Mj (4.38) can be written in a manner
similar to Eq. (4.16),

Mj ¼
1

2

� Mup
j −M×

j;−

M×
j;þ −Mdown

j

�
; ð4:41Þ

where

Mup
j ¼ E2þ

2

 
ðbpþ þ p−Þ2 ðbpþ þ p−Þðbp− − pþÞ

ðbpþ þ p−Þðbp− − pþÞ ðbp− − pþÞ2

!
∘Mj;

Mdown
j ¼ E2

−

2

 
ðbpþ − p−Þ2 ðbpþ − p−Þðbp− þ pþÞ

ðbpþ − p−Þðbp− þ pþÞ ðbp− þ pþÞ2

!
∘Mj;

M×
j;� ¼ E

2jEjEþE−

 
ðb2p2þ − p2−Þ ðbpþ ∓ p−Þðbp− ∓ pþÞ

ðbpþ � p−Þðbp− � pþÞ ðb2p2− − p2þÞ

!
∘Mj: ð4:42Þ

In the above, the Hadamard product ∘ is taken with the matrix Mj defined in Eq. (4.19). Using the result (3.38) for b, the
following identities can be established,

b ¼ 2ςE
p

j
p2þj2 þ p2−

; b2 þ 1 ¼ 2ðj2 þ 1Þ
p2þj2 þ p2−

; b2 − 1 ¼ −
2k
p

j2 − 1

p2þj2 þ p2−
; ð4:43Þ

where ς ¼ �1 and j ¼ jml is in Eq. (3.36). Thus, the matrices introduced in (4.42) can be put in the form
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Mup
j ¼ E2þ

p2þj2 þ p2−

0B@ j2 þ 1 − k2

p2 ðj2 − 1Þ þ 2ςqE
p2 j − kq

p2 ðj2 − 1þ 2ςE
q jÞ

− kq
p2 ðj2 − 1þ 2ςE

q jÞ j2 þ 1þ k2

p2 ðj2 − 1Þ − 2ςqE
p2 j

1CA∘Mj;

Mdown
j ¼ E2

−

p2þj2 þ p2−

0B@ j2 þ 1 − k2

p2 ðj2 − 1Þ − 2ςqE
p2 j − kq

p2 ðj2 − 1 − 2ςE
q jÞ

− kq
p2 ðj2 − 1 − 2ςE

q jÞ j2 þ 1þ k2

p2 ðj2 − 1Þ þ 2ςqE
p2 j

1CA∘Mj;

M×
j;� ¼ 1

p2þj2 þ p2−

0B@ 2k
E

q
E ðj2 þ 1Þ ∓ 2ςj

q
E ðj2 þ 1Þ � 2ςj − 2k

E j2

1CA∘Mj: ð4:44Þ

We can alternatively write Mj in terms of the Pauli matrices σ1, σ2, σ3 (2.5),

Mj ¼
1

p2þj2 þ p2−

8<: 1

2E
I2 ⊗

264
0B@ μðj2 þ 1Þ þ 2ς

q ðμ2 þ q2Þj E

E μðj2 þ 1Þ − 2ς
q ðμ2 þ q2Þj

1CA∘Mj

375
þ σ3 ⊗

��
1 0

0 j2

�
∘Mj

	
−

i
2E

σ2 ⊗
��

2k qðj2 þ 1Þ
qðj2 þ 1Þ −2k

�
∘Mj

	
− ςjσ1 ⊗

��
0 1

−1 0

�
∘Mj

	9=;; ð4:45Þ

where I2 is the 2 × 2 identity matrix.

1. Fermion condensate

As in the case of spectral boundary conditions, the first
t.e.v. we consider for MIT bag boundary conditions is the
FC h∶ψ̄ψ∶iMIT

β , evaluated from (4.37) via (4.11a). Only
the term containing I2 on the right-hand side of
Eq. (4.45) contributes to the t.e.v. of the FC (4.11a),
giving

h∶ψ̄ψ∶iMIT
β ¼

X∞
m¼0

X∞
l¼1

Z
∞

0

dk
2DMIT

ml
½wðeEÞþwðĒÞ�

×

�
μ

E
ðj2þ1ÞJþmðqρÞþ

2ςj
qE

ðq2þμ2ÞJ−mðqρÞ
	
;

ð4:46Þ

where J� are defined in (4.23), the thermal factors can be
found in (4.25), their arguments can be found in (4.26)
and the quantity j can be found in (3.36). In Eq. (4.46),
the term DMIT

ml in the denominator is given by

DMIT
ml ¼ π2R2J2mþ1ðqRÞ

�
ðj2 þ 1Þ

�
j2 þ 1 −

2mþ 1

qR
j
�

−
j
qR

ðj2 − 1Þ
	
: ð4:47Þ

In Fig. 6, we plot the t.e.v. of the FC h∶ψ̄ψ∶iMIT
β for

various values of the parameters β, μ and Ω and

both ς ¼ �1. For a massless fermion field, as discussed
in Sec. III C 2, the energy spectra for ς ¼ �1 are
identical, and therefore changing the sign of ς
changes only the sign of h∶ψ̄ψ∶iMIT

β , without changing
its magnitude.
The plots in Fig. 6 (a–c) are for μ ¼ 0. They show

many qualitative features similar to those in Fig. 3 for
spectral boundary conditions. In particular, the t.e.v.s
increase with increasing angular speed Ω for fixed
inverse temperature β, there is a sharp peak near the
boundary for ΩR ¼ 1 but the t.e.v.s remain finite
everywhere inside and on the boundary, and the
t.e.v.s also increase as the temperature β−1 increases
for fixed Ω.
In Fig. 6(d), we show the effect of varying the fermion

mass μ and ς (3.30). Note that in Fig. 6 we have plotted
ςh∶ψ̄ψ∶iMIT

β rather than h∶ψ̄ψ∶iMIT
β . It can be seen that

increasing the fermion mass μ when ς ¼ −1 also increases
ςh∶ψ̄ψ∶iMIT

β on the rotation axis. When ς ¼ 1, the FC
decreases on the rotation axis to negative values as μ is
increased.
There are also some differences between the results in

Fig. 6 for MIT bag boundary conditions and those in Fig. 3
for spectral boundary conditions. In particular, the massless
limit of the FC in the MIT model is finite and nonzero,
whereas for spectral boundary conditions, the FC vanishes
when the fermions are massless (see Sec. IV B 1).
Furthermore, from (4.46), the t.e.v. of the FC vanishes
on the boundary,
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h∶ψ̄ψ∶iMIT
β ⌋

ρ¼R
¼
X∞
m¼0

X∞
l¼1

Z
∞

0

μdk
2EDMIT

ml
½wðeEÞ þ wðĒÞ�

×

�
ðj2 þ 1Þ2 − 4j2

�
1þ μ2

q2

�	
¼ 0; ð4:48Þ

where the last equality follows from using Eq. (3.35) to
eliminate the j4 term. Again, this feature is not present for
spectral boundary conditions, when the t.e.v. of the FC is
finite (but in general nonzero) on the boundary.

2. Neutrino charge current

As in the spectral case, the t.e.v.s of all the components
of the charge current (4.11b) vanish. For the t, ρ and φ
components, the summands are odd with respect to
m → −m − 1; for the z component, the summand is odd
under the transformation k → −k. The rules for checking
the required transformation properties under m → −m − 1
are, using (3.47), (4.23), (4.25), (4.26),

j → −
1

j
; mþ 1

2
→ −m −

1

2
; J�m → �J�m;

J×m → − J×m; wðeEÞ � wðĒÞ → �½wðeEÞ � wðĒÞ�:
ð4:49Þ

The only nonvanishing component of the CC (4.11d) is,
as in the spectral model case, the z component [see
Eqs. (3.36), (4.23) and (4.47) for the definitions of various
quantities]:

h∶Jẑν∶iMIT
β ¼ −

X∞
m¼0

X∞
l¼1

Z
∞

0

dk
4DMIT

ml
½wðeEÞ − wðĒÞ�

× ½ðj2 þ 1ÞJ−mðqρÞ − ðj2 − 1ÞJþmðqρÞ�: ð4:50Þ

In Fig. 7, we illustrate the behavior of h∶Jẑν∶iMIT
β . We find

that h∶Jẑν∶iMIT
β is negative everywhere, and hence in Fig. 7,

we plot −h∶Jẑν∶iMIT
β , in contrast with the spectral case

where h∶Jẑν∶ispβ is positive near the boundary. We also see
from Fig. 7 that h∶Jẑν∶iMIT

β vanishes on the boundary, and
this can be verified analytically:

0.2 0.4 0.6 0.8 1.0 R

0.1

0.2

0.3

0.4

R 2, R 0

R 0
R 0.9
R 0.975
R 0.985
R 0.995
R 1.

0.2 0.4 0.6 0.8 1.0 R

2

2

4

6
Log

R 0.5, R 0

R 0.
R 0.5
R 0.65
R 0.8
R 0.9
R 1.

0.2 0.4 0.6 0.8 1.0 R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R 0.5, R 0

R 1.4
R 1.
R 0.75
R 0.65

0.2 0.4 0.6 0.8 1.0 R

1.0

0.5

0.5

1.0

1.5

2.0

R 0.5, R 0.5

R 2.
R 1.
R 0.5
R 0.
R 0.5
R 1.
R 2.

FIG. 6. Thermal expectation values of the FC h∶ψ̄ψ∶iMIT
β (4.46) for MIT bag boundary conditions, as a function of the scaled radial

coordinate ρ=R, so that the boundary of the cylinder is at ρ=R ¼ 1. (a) Massless fermions μ ¼ 0, fixed inverse temperature β ¼ 2R and
various values of the angular speed Ω. (b) Massless fermions μ ¼ 0, fixed inverse temperature β ¼ 0.5R and various values of the
angular speedΩ. (c) Massless fermions μ ¼ 0, fixed angular speedΩ ¼ 0.5=R and various values of the inverse temperature β. (d) Fixed
inverse temperature β ¼ 0.5R, fixed angular speed Ω ¼ 0.5=R and various values of the fermion mass μ. Note that (b) has a logarithmic
vertical scale but a linear horizontal scale. In (d), we have considered ς ¼ �1 for each value of the mass, while in the massless case, the
quantity ςh∶ψ̄ψ∶iMIT

β does not depend on ς.
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h∶Jẑν∶iMIT
β ⌋

ρ¼R
¼ 0: ð4:51Þ

Again this is not the same behavior as found in the case of
spectral boundary conditions, when h∶Jẑν∶ispβ was found to
be positive on the boundary.
For fixed inverse temperature β, we see in Fig. 7(a)

that −h∶Jẑν∶iMIT
β increases as the angular speed Ω

increases. As seen in previous figures, when the boun-
dary is on the SOL, there is a large peak in −h∶Jẑν∶iMIT

β

close to the boundary, but the t.e.v. remains finite
everywhere inside and on the cylinder. For fixed
angular speed Ω, Fig. 7(b) confirms our expectations
that the absolute value of the t.e.v. h∶Jẑν∶iMIT

β increases
as the temperature β−1 increases. Varying the mass of
the fermion field with fixed inverse temperature β and
angular speed Ω does not alter the t.e.v. of the CC very
much, as can be seen in Figs. 7(c) and 7(d). When
ς ¼ 1, as the mass μ increases, the magnitude of
h∶Jẑν∶iMIT

β decreases everywhere inside the boundary.
For ς ¼ −1, the magnitude of h∶Jẑν∶iMIT

β decreases as μ

increases apart from close to the boundary, where the
magnitude of h∶Jẑν∶iMIT

β appears to be increasing.

3. Stress-energy tensor

We now turn to the t.e.v.s of the SET for MIT bag
boundary conditions. The nonvanishing t.e.v.s of the
components of the SET with respect to the tetrad (2.2),
calculated using (4.11c), (4.37), are

h∶Tt̂t̂∶iMIT
β ¼

X∞
m¼0

X∞
l¼1

Z
∞

0

Edk
2DMIT

ml
½wðeEÞþwðĒÞ�

× ½ðj2þ1ÞJþmðqρÞ−ðj2−1ÞJ−mðqρÞ�; ð4:52aÞ

h∶T ρ̂ ρ̂∶iMIT
β ¼

X∞
m¼0

X∞
l¼1

Z
∞

0

q2dk
2EDMIT

ml
½wðeEÞ þ wðĒÞ�

×

�
ðj2 þ 1Þ

�
JþmðqρÞ −

mþ 1
2

qρ
J×mðqρÞ

	

;

ð4:52bÞ

h∶T φ̂ φ̂∶iMIT
β ¼

X∞
m¼0

X∞
l¼1

Z
∞

0

q2dk
2EDMIT

ml
½wðeEÞ þwðĒÞ�ðj2 þ 1Þ

×
mþ 1

2

qρ
J×mðqρÞ; ð4:52cÞ
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FIG. 7. Thermal expectation values of the CC h∶Jẑν∶iMIT
β (4.50) for MIT bag boundary conditions, as a function of the scaled radial

coordinate ρ=R, so that the boundary of the cylinder is at ρ=R ¼ 1. This expectation value is always negative, so we show −h∶Jẑν∶iMIT
β in

all plots. (a) Massless fermions μ ¼ 0, fixed inverse temperature β ¼ 2R and various values of the angular speed Ω. (b) Massless
fermions μ ¼ 0, fixed angular speed Ω ¼ 0.5=R and various values of the inverse temperature β. (c–d) Fixed inverse temperature
β ¼ 0.5R, fixed angular speed Ω ¼ 0.5=R and various values of the fermion mass μ for ς ¼ 1 (c) and ς ¼ −1 (d).
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h∶Tẑ ẑ∶iMIT
β ¼

X∞
m¼0

X∞
l¼1

Z
∞

0

k2dk
2EDMIT

ml
½wðeEÞ þ wðĒÞ�

× ½ðj2 þ 1ÞJþmðqρÞ − ðj2 − 1ÞJ−mðqρÞ�;
ð4:52dÞ

h∶Tt̂ φ̂∶iMIT
β ¼ −

X∞
m¼0

X∞
l¼1

Z
∞

0

dk
4ρDMIT

ml
½wðeEÞ − wðĒÞ�

×

�
ðj2 þ 1Þ

��
mþ 1

2

�
JþmðqρÞ −

1

2
J−mðqρÞ

þ qρJ×mðqρÞ
	
þ ðj2 − 1Þ

�
1

2
JþmðqρÞ

−
�
mþ 1

2

�
J−mðqρÞ�



; ð4:52eÞ

where we refer the reader to Eqs. (3.36), (4.23), (4.25),
(4.26) and (4.47) for the definitions of the quantities
appearing in (4.52). As in the spectral case, the relation
(4.35) between the trace of the SET and the FC can be
directly verified.

Figure 8 illustrates how the energy density h∶Tt̂ t̂∶iMIT
β

changes with Ω, β and μ. Other components of (4.52) are
discussed in Sec. IV D.As expected, h∶Tt̂ t̂∶iMIT

β increases as
either the temperature β−1 or angular speedΩ increases with
the other parameters fixed. The energy density is finite and
positive everywhere inside and on the boundary of the
cylinder, including the casewhenΩR ¼ 1 and the boundary
is on the SOL. For some values of the parameters,
h∶Tt̂ t̂∶iMIT

β increases monotonically as ρ increases from
zero (the axis of rotation) toR (the boundary); in other cases,
there is a peak in the energy density close to the boundary.
Figure 8(d) illustrates the effect of changing the mass on the
profile of h∶Tt̂ t̂∶iMIT

β . When ς ¼ 1 (original MIT case),
h∶Tt̂ t̂∶iMIT

β behaves as expected, its value decreasing every-
where in the domain as μ is increased. A notable feature of
the chiral case (when ς ¼ −1) is that the value on the
boundary of h∶Tt̂ t̂∶iMIT

β increases as μ increases.

D. Comparison between the spectral and MIT models

In this section, we have computed rigidly-rotating t.e.v.s
(thermal expectation values) of the FC h∶ψψ∶iβ and the
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FIG. 8. Thermal expectation values of the SET component h∶Tt̂ t̂∶iMIT
β (4.52a) for MIT bag boundary conditions, as a function of the

scaled radial coordinate ρ=R, so that the boundary of the cylinder is at ρ=R ¼ 1. (a) Massless fermions μ ¼ 0, fixed inverse temperature
β ¼ 2R and various values of the angular speed Ω. (b) Massless fermions μ ¼ 0, fixed inverse temperature β ¼ 0.5R and various values
of the angular speed Ω. (c) Massless fermions μ ¼ 0, fixed angular speed Ω ¼ 0.5=R and various values of the inverse temperature β.
(d) Fixed inverse temperature β ¼ 0.5R, fixed angular speedΩ ¼ 0.5=R and various values of the fermion mass μ. In (a) and (b), we use
a logarithmic vertical scale. In (d), we have considered both ς ¼ �1 (for a massless field the t.e.v.s are independent of the value of ς).
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nonzero components of the CC h∶Jẑν∶iβ and SET h∶T α̂ σ̂∶iβ
for a massive fermion field satisfying either spectral (3.12)
or MIT bag (3.28) boundary conditions. All components
are computed with respect to the tetrad (2.2). We have
considered only the case where the boundary is inside or on
the SOL. All expectation values computed are finite

everywhere inside and on the boundary. This is true even
when the boundary is on the SOL. The t.e.v.s with these
two boundary conditions share many features. Typically,
their absolute values increase as either the temperature β−1

or angular speed Ω increases, with other parameters held
fixed. In the spectral case, increasing the fermion mass μR
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FIG. 9. Thermal expectation values of the SET h∶T α̂ σ̂∶iβ components and the CC h∶Jẑν∶iβ for MIT bag (blue, dashed lines) and
spectral (red, dot-dashed lines) boundary conditions. Our results are compared to those for unbounded Minkowski space-time (thin
lines) [1]. The plots show t.e.v.s as functions of the scaled radial coordinate ρ=R, so that the boundary of the cylinder is at ρ=R ¼ 1. The
angular speed is taken to be Ω ¼ 0.5R−1, the inverse temperature is β ¼ 0.05R, and the fermion field is massless. The profiles obtained
in the three setups (spectral, MITand unbounded) agree very well, except in the vicinity of the boundary, where the results obtained with
the spectral model present visible deviations. The MIT model yields results for the SET which closely follow the unbounded case,
differing from the latter only slightly on the boundary.
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appears to decrease the magnitude of the t.e.v.s throughout
the domain. A similar effect can be observed for the
original MIT boundary conditions (when ς ¼ 1). In the
chiral case (ς ¼ −1), the values of the t.e.v.s appear to be
decreasing close to the rotation axis as μ increases, while
close to the boundary, the t.e.v.s appear to increase with μ.
In Fig. 9, we compare our results for the nonzero

components of the SET h∶T α̂ σ̂∶iβ and CC h∶Jẑν∶iβ for
the spectral and MIT bag boundary conditions with those
for rotating states on unbounded Minkowski space-time
[1]. In Fig. 9, the temperature is very high β−1 ¼ 20R−1,
and the boundary is far inside the SOL (ΩR ¼ 0.5). For
these values of the parameters, there is very little difference
between the t.e.v.s in the unbounded, spectral and MIT bag
cases. The only noticeable variation between these three
t.e.v.s is close to the boundary. The MIT bag t.e.v.s are still
very similar to those in the unbounded case, but those for
spectral boundary conditions show a marked difference
from the unbounded case.
Combining our results in Fig. 9 with those earlier in this

section, we find the following qualitative differences
between the spectral and MIT models:

(i) The t.e.v. of the fermion condensate vanishes every-
where for massless fermions in the spectral case,
while in the MIT case, it is finite and depends on the
value of ς. For massless fermions, h∶ψ̄ψ∶iMIT

β has
the sign of ς everywhere, while in the case of
massive fermions, h∶ψ̄ψ∶iMIT

β can start with oppo-
site sign on the rotation axis.

(ii) The t.e.v. of the neutrino charge current is negative
on the rotation axis and becomes positive on the
boundary in the spectral case, while in the MIT case,
it stays negative throughout the space-time, except
on the boundary, where it vanishes.

(iii) h∶T φ̂ φ̂∶ispβ vanishes on the boundary, while
h∶T φ̂ φ̂∶iMIT

β remains nonzero on the boundary.
We examine further the differences between the spectral

and MIT bag boundary conditions in the next section, by
considering Casimir expectation values.

V. CASIMIR EXPECTATION VALUES

So far, we have considered t.e.v.s of rotating fermions
enclosed in a cylindrical boundary with respect to the
vacuum state of the bounded system. In this section, we
investigate the expectation values of the FC, CC and SET in
the bounded rotating vacuum relative to the unbounded
vacuum state. We refer to these expectation values as
“Casimir expectation values” as they describe the effect of
the boundary on the vacuum state. As in the previous
section, we consider both spectral and MIT bag boundary
conditions. Furthermore, the boundary will always be
inside or on the SOL. As shown in Sec. III, the resulting
quantization of the transverse momentum guarantees that
the Minkowski energy E and corotating energy eE satisfy

EeE > 0 for all modes. This means that the (bounded)
rotating (Iyer [4]) and nonrotating (Vilenkin [3]) vacua are
identical and will be referred to henceforth as the “bounded
vacuum.” The bounded vacua for spectral and MIT bag
boundary conditions are however not the same, and hence
the Casimir expectation values will depend on the boundary
conditions employed.

A. Euclidean Green’s function on unbounded
Minkowski space-time

The main difficulty in extracting Casimir expectation
values using the construction of two-point functions by
employing mode sums comes from the quantization of the
transverse momentum induced by the boundary (see
Secs. III B 1 and III C 1 for details). On unbounded
Minkowski space-time, the fermion field (and, similarly,
the two-point function) is written as a sum over field
modes, which involves an integral over the Minkowski
energy E (or, equivalently, the transverse momentum q)
(2.36). The presence of the boundary changes the integral
over the permissible values of the transverse momentum q
into a sum (over an index l which labels the values of the
transverse momentum). This makes it technically challeng-
ing (although not impossible [12,16]) to subtract two-point
functions corresponding to the unbounded and bounded
manifolds. Following the approach in Ref. [5], it is
convenient to extract Casimir expectation values from
the Green’s function of the corresponding Euclideanized
manifold. To this end, we start in this section by calculating
the Euclidean Green’s function for the unbounded
space-time, after which the boundary terms will be pre-
sented separately for the spectral and MIT bag models in
Secs. V B and V C, respectively.
To simplify the calculations, it is convenient to switch to

the inertial nonrotating (Minkowski) coordinates, where the
metric is diagonal, i.e. there are no off-diagonal compo-
nents mixing space and time. The formulation of quantum
field theory on the Euclidean equivalent of the Minkowski
manifold is obtained by introducing the following notation,

x0E≡ τ¼ it; xjE¼ xjM; γ0E¼ γ0; γjE ¼−iγj; ð5:1Þ

where t and xjM are Minkowski (inertial) coordinates and
γ0 ¼ γ t̂, γj ¼ γĵ, where γ t̂, γĵ are given in (2.4). The
resulting Euclidean Minkowski metric gEμν has the follow-
ing nonvanishing components:

gEττ ¼ gEρρ ¼ gEzz ¼ 1; gEφφ ¼ ρ2: ð5:2Þ

The Euclidean Green’s function SE ≡ SEðx; x0Þmust satisfy
the inhomogeneous Dirac equation,
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ð−γλE∂E
λ − μÞSE ¼ SEð∂⃖E

λ0γ
λ0
E − μÞ

¼ −
1ffiffiffiffiffi
gE

p δðτ − τ0Þδ3ðx − x0ÞI4; ð5:3Þ

where I4 is the 4 × 4 identity matrix and gE is the
determinant of the Euclidean metric with nonvanishing
components (5.2).
Following the construction of the mode solutions of the

Dirac equation in Sec. II B, the (nonrotating) vacuum
Euclidean Green’s function SunbE ðxE; x0EÞ for the unbounded
space-time can be Fourier transformed as

SunbE ðxE; x0EÞ ¼
Z

∞

−∞

dω
8π3

Z
∞

−∞
dk

X∞
m¼−∞

eiωΔτþikΔzχunb;

ð5:4Þ

where Δτ ¼ τ − τ0, Δz ¼ z − z0 and the 4 × 4 matrix χunb

can be written in terms of four 2 × 2 matrices χunbab :

χunb ¼
�
χunb11 χunb12

χunb21 χunb22

�
: ð5:5Þ

Performing an equivalent Fourier transformation of the
delta functions on the right of Eq. (5.3), the inhomogeneous
Dirac equation implies

�
μþ iω 2ph

−2ph μ − iω

��
χunb11 χunb12

χunb21 χunb22

�
¼ δðρ − ρ0Þ

ρ

�
1 0

0 1

�
⊗
�
eimΔφ 0

0 eiðmþ1ÞΔφ

�
;�

χunb11 χunb12

χunb21 χunb22

��
μþ iω 2ph0†

−2ph0† μ − iω

�
¼ δðρ − ρ0Þ

ρ0

�
1 0

0 1

�
⊗
�
eimΔφ 0

0 eiðmþ1ÞΔφ

�
; ð5:6Þ

where p is the momentum, Δφ ¼ φ − φ0 and h is the 2 × 2
component of the helicity operatorW0, defined in Eq. (2.9).
In (5.6), we have used the Kronecker product of matrices,
defined in (4.15). For the equation in x0, the operator h0† has
the form

h0† ¼ 1

2p

�
k −P0−

−P0þ −k

�
; ð5:7Þ

where the primes indicate that the derivatives in the
operators P0

� act from the right on ρ0 and φ0. The operators
P� can be found in (2.17).
The off-diagonal components of Eqs. (5.6) give the

following equations,

χunb21 ¼ 2ph
μ − iω

χunb11 ¼ χunb22

2ph0†

μþ iω
;

χunb12 ¼ −
2ph

μþ iω
χunb22 ¼ −χunb11

2ph0†

μ − iω
; ð5:8Þ

while the diagonal components can be written as modified
Bessel equations,

½ρ2∂2
ρ þ ρ∂ρ þ ∂2

φ − ρ2α2� χunb11

μ − iω

¼ −ρδðρ − ρ0Þ
�
eimΔφ 0

0 eiðmþ1ÞΔφ

�
; ð5:9aÞ

½ρ2∂2
ρ þ ρ∂ρ þ ∂2

φ − ρ2α2� χunb22

μþ iω

¼ −ρδðρ − ρ0Þ
�
eimΔφ 0

0 eiðmþ1ÞΔφ

�
; ð5:9bÞ

where

α2 ¼ ω2 þ k2 þ μ2: ð5:10Þ

It can be shown that the inhomogeneous Dirac equation in
x0 also reduces to Eqs. (5.9) (with ρ and φ replaced by ρ0

and φ0, respectively). Hence, χunb11 and χunb22 can be written as
linear combinations of modified Bessel functions. The
Euclidean Green’s function for the Minkowski space-time
must be regular at the origin and at infinity, and thus the
only nontrivial solution of Eqs. (5.9) satisfying these
boundary conditions is

χunb11

μ − iω
¼ χunb22

μþ iω
¼
 
I<mK>

meimΔφ 0

0 I<mþ1K
>
mþ1e

iðmþ1ÞΔφ

!
;

ð5:11Þ

where Im and Km are modified Bessel functions of the first
and second kinds, respectively. The arguments of the
Bessel functions with the < or > superscripts are the
smaller or larger of αρ and αρ0, respectively. Therefore, if
ρ > ρ0, we will write I<mK>

m ¼ KmIm, where the arguments
of Km and Im are αρ and αρ0, as per the conventions
introduced in Eq. (4.19). The combinations in Eq. (5.11)
can be written using these conventions in terms of step
functions as

f<g> ¼ θðρ − ρ0Þgf þ θðρ0 − ρÞfg: ð5:12Þ

The off-diagonal matrices χunb12 and χunb21 can be obtained
from Eqs. (5.8), using the following properties [the
operators P� are given in (2.17)]:
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PþImðαρÞeimφ ¼ −iαeiðmþ1ÞφImþ1ðαρÞ;
P−Imþ1ðαρÞeiðmþ1Þφ ¼ −iαeimφImðαρÞ;

PþKmðαρÞeimφ ¼ iαeiðmþ1ÞφKmþ1ðαρÞ;
P−Kmþ1ðαρÞeiðmþ1Þφ ¼ iαeimφKmðαρÞ: ð5:13Þ

Similar equations hold for P0
�, which can be applied

bearing in mind that I−mðzÞ ¼ ImðzÞ and K−mðzÞ ¼ KmðzÞ.
Thus, the Euclidean propagator on unbounded

Minkowski space-time takes the form (5.4) with the matrix
χunb given by

χunb ¼ ½μI2 − iωσ3� ⊗
�
I<mK>

meimΔφ 0

0 I<mþ1K
>
mþ1e

iðmþ1ÞΔφ

�
þ k

�
0 −1
1 0

�
⊗
�
I<mK>

meimΔφ 0

0 −I<mþ1K
>
mþ1e

iðmþ1ÞΔφ

�
þ α

�
0 −1
1 0

�
⊗
�

0 F ðm;mþ 1Þ
F ðmþ 1; mÞ 0

�
; ð5:14aÞ

where the notation F ðm; nÞ is a shorthand for

F ðm; nÞ ¼ ieimφ−inφ0 ½θðρ − ρ0ÞKmIn − θðρ0 − ρÞImKn�:
ð5:14bÞ

As before, the first and second Bessel functions in (5.14)
depend on αρ and αρ0, respectively. The Pauli matrix σ3 is
given in (2.5).
Before ending this section, we stress that the solution

(5.4), (5.14) of the inhomogeneous Dirac equation (5.3)
is fixed by the boundary conditions requiring regularity at
the origin (ρ ¼ 0 or ρ0 ¼ 0) and spacelike infinity. To
satisfy boundary conditions of a different type, suitable
solutions of the homogeneous Dirac equation can be
added to Eq. (5.4). We follow this approach in Secs. V B
and V C for spectral and MIT bag boundary conditions,
respectively.

B. Spectral boundary conditions

In this section, we first construct the Euclidean
Green’s function for a fermion field satisfying spectral
boundary conditions on the cylinder, then compute
the Casimir expectation values. Using an asymptotic
analysis, we are able to derive the rate of divergence
of these expectation values as the boundary is
approached.

1. Euclidean Green’s function for spectral
boundary conditions

To construct a Euclidean Green’s function which imple-
ments spectral boundary conditions, we consider the
behavior of the corresponding vacuum Hadamard
Green’s function on the boundary. Since the dependence
on the radial coordinates ρ and ρ0 is always that in the 2 × 2
matrix given in Eq. (4.19), it is sufficient to analyze its
behavior on the boundary, as shown in Table I. To imple-
ment these boundary conditions, a solution ΔSspE ðxE; x0EÞ of
the homogeneous Dirac equation must be added to the
Euclidean propagator (5.4), (5.14), as follows,

SspE ðxE; x0EÞ ¼ SunbE ðxE; x0EÞ þ ΔSspE ðxE; x0EÞ; ð5:15Þ

where ΔSspE ðxE; x0EÞ can be Fourier transformed in analogy
with Eq. (5.4):

ΔSspE ðxE; x0EÞ ¼
Z

∞

−∞

dω
8π3

Z
∞

−∞
dk

X∞
m¼−∞

eiωΔτþikΔzΔχsp:

ð5:16Þ

The 4 × 4 matrix Δχsp can be written in terms of four 2 × 2

matrices Δχspab, in a similar way to Eq. (5.5):

Δχsp ¼
�Δχsp11 Δχsp12
Δχsp21 Δχsp22

�
: ð5:17Þ

The Euclidean propagator SspE ðxE; x0EÞ of the bounded
system must obey spectral boundary conditions; in other
words, those entries which vanish in Table I must be equal to
zero. Furthermore,SspE ðxE; x0EÞmust stay regular at the origin
(i.e. when either ρ ¼ 0 or ρ0 ¼ 0). We therefore find the
following expressions for Δχsp11 and Δχsp22,

Δχsp11
μ − iω

¼ Δχsp22
μþ iω

¼ cm

�
1 0

0 −1

�
∘Ej; ð5:18aÞ

TABLE I. The behavior of the 2 × 2 constituent blocks (4.19)
of the Green’s function obeying spectral boundary conditions on
a cylinder of radius R. Depending on the sign of mþ 1

2
and on

which point is on the boundary, certain entries in these 2 × 2
matrices will vanish, as indicated in the table. Entries marked ×
do not necessarily vanish.

mþ 1
2
> 0 mþ 1

2
< 0

ρ ¼ R ð0× 0
×Þ ð×

0
×
0
Þ

ρ0 ¼ R ð0
0

×
×Þ ð×× 0

0
Þ
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where ∘ denotes the Hadamard product of matrices (4.18).
In (5.18a), cm is a constant ensuring that the relevant entries
in Table I vanish, having the value

cm ¼

8>>><>>>:
−
KmðαRÞ
ImðαRÞ

; mþ 1
2
> 0;

Kmþ1ðαRÞ
Imþ1ðαRÞ

; mþ 1
2
< 0;

ð5:18bÞ

and the matrix Ej on the right of the Hadamard product in
(5.18) is given by

Ej ¼
�

ImImeimΔφ −iImImþ1eiðmþ1ÞΔφ−iφ

iImþ1ImeimΔφþiφ Imþ1Imþ1eiðmþ1ÞΔφ

�
;

ð5:18cÞ

where the first and second modified Bessel functions above
have arguments αρ and αρ0, respectively, and α is given in
Eq. (5.10). Only modified Bessel functions of the first kind
(i.e. Im) have been considered in Eqs. (5.18c), since their
linearly independent partners, Km, do not satisfy the
requirement of regularity at the origin. The off-diagonal
matricesΔχsp12 andΔχ

sp
21 can be determined using analogs of

Eqs. (5.8) for the spectral case:

Δχsp21 ¼ −Δχsp12 ¼ cm

�
k −α
−α k

�
∘Ej: ð5:18dÞ

Thus, the Fourier coefficients Δχsp of the boundary term
(5.16) can be written as

c−1m Δχsp ¼ ðμI2 − iωσ3Þ ⊗
��

1 0

0 −1

�
∘Ej

	
þ
�
0 −1
1 0

�
⊗
��

k −α
−α k

�
∘Ej

	
; ð5:19Þ

where the Pauli matrix σ3 is given in (2.5) and I2 is the
2 × 2 identity matrix.

2. Casimir expectation values

We are interested in the Casimir expectation values of
the FC hψ̄ψispCas, charge current hJα̂ispCas, CC hJα̂νispCas and
SET hT α̂ σ̂ispCas. The following formulas can be used to
calculate these expectation values using the difference
ΔSspE ðxE; x0EÞ (5.16) between the vacuum Euclidean
Green’s functions for the bounded system and for
unbounded Minkowski space:

hψ̄ψispCas ¼ lim
x0E→xE

tr½ΔSspE ðxE; x0EÞ�; ð5:20aÞ

hJα̂ispCas ¼ lim
xE 0→xE

tr½γα̂EΔSspE ðxE; x0EÞ�; ð5:20bÞ

hJα̂νispCas ¼ lim
xE 0→xE

tr

�
γα̂E

1þ γ5

2
ΔSspE ðxE; x0EÞ

	
; ð5:20cÞ

hT α̂ σ̂ispCas ¼
1

2
lim

xE 0→xE
tr½γEðα̂ðDE

σ̂Þ −DE
σ̂0ÞÞΔSspE ðxE; xE0Þ�:

ð5:20dÞ

For the FC (5.20a), the following expression is obtained,

hψ̄ψispCas¼
μ

4π3

Z
∞

−∞
dω
Z

∞

−∞
dk
X∞

m¼−∞
cmI−mðαRÞ; ð5:21Þ

where the constant cm is defined in Eq. (5.18b) and
the notation I−mðzÞ is analogous to that defined in
Eqs. (4.23):

I�mðzÞ ¼ I2mðzÞ � I2mþ1ðzÞ; I×mðzÞ ¼ 2ImðzÞImþ1ðzÞ:
ð5:22Þ

It is convenient to switch to the polar coordinates (α, ϑ)
where α is given by (5.10) and

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − μ2

q
cos ϑ; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − μ2

q
sin ϑ; ð5:23Þ

in terms of which the Casimir FC (5.21) can be put in the
following form, after the integration over ϑ has been
performed:

hψ̄ψispCas ¼
μ

2π2
X∞

m¼−∞

Z
∞

μ
dα αcmI−mðαRÞ: ð5:24Þ

We now change variables to

x ¼ αR ð5:25Þ

and introduce the notation

I sp;�
ln ≡ I sp;�

ln ðρÞ ¼ −
1

2π2R4

×
X∞

m¼−∞

Z
∞

μR
dxxl

�
mþ 1

2

�
n
cmI�mðxρ̄Þ: ð5:26Þ

The functions I�mðzÞ are defined in Eqs. (5.22) for � ∈
fþ;−;×g and

ρ̄ ¼ ρ

R
: ð5:27Þ

In terms of this new notation, the FC (5.24) can be
written as

hψ̄ψispCas ¼ −μR2I sp;−
10 : ð5:28Þ

The Casimir expectation values of all components of the
charge current (5.20b) and neutrino charge current (5.20c)

VICTOR E. AMBRUŞ and ELIZABETH WINSTANLEY PHYSICAL REVIEW D 93, 104014 (2016)

104014-28



vanish. The nonvanishing components of the Casimir
expectation value of the SET (5.20d) can be written as

hT τ̂
τ̂ispCas ¼ −

1

2
I sp;−
30 þ 1

2
μ2R2I sp;−

10 ; ð5:29aÞ

hT ρ̂
ρ̂ispCas ¼ I sp;−

30 − ρ̄−1I sp;×
21 ; ð5:29bÞ

hT φ̂
φispCas ¼ ρ̄−1I sp;×

21 ð5:29cÞ

and hTẑ
ẑispCas ¼ hT τ̂

τ̂ispCas. In (5.29), we have written the
components of the SET relative to the Euclidean version of
the tetrad (2.2).

3. Casimir divergence near the boundary

By construction, the Casimir expectation values (5.20)
diverge on the boundary, due to the properties of the
difference ΔSspE ðxE; x0EÞ between the vacuum Euclidean
Green’s functions for the bounded and unbounded
Minkowski space-times, given by (5.15):

ΔSspE ðxE; x0EÞ ¼ SspE ðxE; x0EÞ − SunbE ðxE; x0EÞ: ð5:30Þ

To see this, consider one of the entries in SspE ðxE; x0EÞ which
vanishes when xE is on the boundary from Table I. This
entry in ΔSspE ðxE; x0EÞ (with ρ ¼ R) is then equal to the
corresponding entry in SunbE ðxE; x0EÞ with ρ ¼ R. As
x0E → xE, because the coincidence limit of the unbounded
Minkowski space Green’s function is divergent, so too is
this entry in limx0E→xEΔS

sp
E ðxE; x0EÞ when xE is on the

boundary. Therefore, the Casimir expectation values
(5.20) diverge on the boundary.
This divergent behavior can also be seen in the algebraic

expressions (5.28), (5.29) for the Casimir expectation
values. For example, consider the behavior of the integrand
in I sp;−

00 (5.26) when ρ̄ ¼ 1, for large values of m ¼ ν − 1
2

and x. First, we define polar coordinates ðr; θÞ as follows,

ðν;xÞ ¼ ðr cos θ; r sin θÞ ð5:31Þ

then, using Eqs. (A4), we find

r
Kν−1

2
ðxÞ

Iν−1
2
ðxÞ I

−
ν−1

2

ðxÞ¼ cosθ
1þ cosθ

�
1þ 1

2r
þOðr−2Þ

	
; ð5:32Þ

where the r on the left-hand side is the Jacobian of the
transformation (5.31). The above expression does not
vanish at large r, so the integral in I sp;−

00 (5.26) is not
convergent when ρ̄ ¼ 1. As will be seen in the analysis
below, it is convergent for ρ̄ < 1.
In this section, we analyze the divergence of the Casimir

expectation values (5.28), (5.29) as a function of the
distance ϵ to the boundary, defined as

ϵ ¼ 1 − ρ̄; ð5:33Þ
where ρ̄ is given by (5.27). Wewill find it useful to consider
the following integrals:

Ī sp;�
ln ¼ −

1

π2R4

Z
∞

0

dν
Z

∞

μR
dxxlνncν−1

2
I�
ν−1

2

ðxρ̄Þ: ð5:34Þ

To understand the connection between Ī sp;�
ln and I sp;�

ln , the
sum over m in Eq. (5.26) can be replaced by the integral
over ν by using the generalized Abel-Plana formula,
presented next.

Generalized Abel-Plana formula.—According to
Ref. [25], residue theory can be used to prove the
following result,

X∞
m¼0

f

�
mþ 1

2

�
¼
Z

∞

0

dνfðνÞ − i
Z

∞

0

dt
fðitÞ − fð−itÞ

e2πt þ 1
;

ð5:35Þ
valid for an analytic function f.
In the present case, fðmþ 1

2
Þ in Eq. (5.35) will be

replaced by the analytic functions fsp;�ln ðmþ 1
2
Þ, defined

according to

fsp;�ln ðνÞ ¼ 1

π2R4

Z
∞

μR
dxxlνn

Kν−1
2
ðxÞ

Iν−1
2
ðxÞ I

�
ν−1

2

ðxρ̄Þ; ð5:36Þ

where I�m is defined in (5.22). From the definitions (5.18b),
(5.26), the integrals I sp;�

ln can be written in terms of fsp;�ln ðνÞ
(5.36) as follows:

I sp;�
ln ¼

X∞
m¼0

fsp;�ln

�
mþ 1

2

�
: ð5:37Þ

The behavior of I sp;�
ln near the boundary can be investigated

by considering the following function:

δsp;�ln ðρ̄Þ≡ Ī sp;�
ln − I sp;�

ln ¼ i
Z

∞

0

dt
fsp;�ln ðitÞ − fsp;�ln ð−itÞ

e2πt þ 1
:

ð5:38Þ

The factor ðe2πt þ 1Þ−1 ensures the convergence of the t
integral.
The x integral in Eq. (5.36) can be analyzed by

considering the asymptotic expansion of the integrand
for large x (but fixed ν). Starting from the asymptotic
expansions for large argument given in Eqs. (A1), the
following approximations can be obtained:

I−
ν−1

2

ðxÞ ¼ νe2x

πx2

�
1 −

2ν2 − 1

2x
þ � � �

�
; ð5:39aÞ
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Iþ
ν−1

2

ðxÞ ¼ e2x

πx

�
1 −

ν2

x
þ ν4

2x2
þ � � �

�
; ð5:39bÞ

I×
ν−1

2

ðxÞ ¼ e2x

πx

�
1 −

ν2

x
þ νðν2 − 1Þ

2x2
þ � � �

	
; ð5:39cÞ

Kν−1
2
ðxÞ

Iν−1
2
ðxÞ ¼ πe−2x

�
1þ νðν − 1Þ

x
þ ν2ðν − 1Þ2

2x2
þ � � �

	
: ð5:39dÞ

From (5.39), we find the following asymptotic behavior of the desired functions,

Kν−1
2
ðxÞ

Iν−1
2
ðxÞ I

−
ν−1

2

ðxρ̄Þ ¼ νe−2xϵ

x2ρ̄2

�
1 −

2ν − 1

2x
−
2ν2 − 1

2x
ϵþOðx−2Þ

	
; ð5:40aÞ

Kν−1
2
ðxÞ

Iν−1
2
ðxÞ I

×
ν−1

2

ðxρ̄Þ ¼ e−2xϵ

xρ̄2

�
1 −

ν

x
−
ν2

x
ϵþOðx−2Þ

	
; ð5:40bÞ

where ϵ is given by (5.33). The divergence of the functions δsp;�ln ðρ̄Þ (5.38) for the cases relevant to the computation of the
Casimir expectation values in Eqs. (5.28) and (5.29) can be found using

δsp;−10 ðρ̄Þ ¼ −
2

π2R4ρ̄2

Z
∞

0

t dt
e2πt þ 1

Z
∞

μR

dx
x

e−2xϵ½1þOðx−1Þ�;

δsp;−30 ðρ̄Þ ¼ −
2

π2R4ρ̄2

Z
∞

0

t dt
e2πt þ 1

Z
∞

μR
dx e−2xϵ

�
xþ 1

2
þ t2 þ 1

2

ρ̄
ϵþOðx−1Þ

	
;

δsp;×21 ðρ̄Þ ¼ −
2

π2R4ρ̄

Z
∞

0

t dt
e2πt þ 1

Z
∞

μR
dx e−2xϵ

�
xþ t2

ρ̄
ϵþOðx−1Þ

	
: ð5:41Þ

When ρ̄ → 1 (or, equivalently, ϵ → 0), the integrals (5.41) diverge due to the large x behavior of the integrand.
To investigate this divergence, the lower limit of the x integral can be set to 0, giving

δsp;−10 ≃ −
lnð2ϵÞ−1 − γ þOðϵÞ

24π2R4
; δsp;−30 ≃ −

1þ 4ϵþOðϵ2Þ
96π2R4ϵ2

; δsp;×21 ≃ −
1þ ϵþOðϵ2Þ
96π2R4ϵ2

; ð5:42Þ

where γ is Euler’s constant. It turns out that the results (5.42) diverge as ϵ → 0 at a subleading order compared to the
corresponding functions Ī sp;�

ln (5.34), as will be shown below.

Asymptotic analysis of Casimir divergence.—We now examine the behavior of the integrals Ī sp;�
ln (5.34) as ϵ → 0. This

behavior, combined with the results (5.42) for δsp;�ln and (5.38), will enable us to deduce the relevant properties of the
integrals I sp;�

ln (5.26) required for the Casimir expectation values (5.28), (5.29).
Using the polar coordinates ðr; θÞ introduced in Eq. (5.31) and the expansions in Eqs. (A4), the following asymptotic

expansions can be made,

I−
ν−1

2

ðxρ̄Þ ¼ e2rð1−ϵÞþ2ν ln tanθ
2

πr tan θ

�
1þ 1þ 5sin2θ

12r
þ ϵð1þ sin2θÞ − rϵ2cos2θ þ � � �

	
; ð5:43aÞ

Iþ
ν−1

2

ðxρ̄Þ ¼ e2rð1−ϵÞþ2ν ln tanθ
2

πx

�
1þ cos2θ

12r
þ ϵ − rϵ2cos2θ þ � � �

	
; ð5:43bÞ

I×
ν−1

2

ðxρ̄Þ ¼ e2rð1−ϵÞþ2ν ln tanθ
2

πr

�
1 −

5cos2θ
12r

þ ϵsin2θ − rϵ2cos2θ þ � � �
	
; ð5:43cÞ

where terms of order r−2, r−1ϵ and ϵ2 were ignored. Combining Eq. (A4d) with Eqs. (5.43) gives
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Kν−1
2
ðxÞ

Iν−1
2
ðxÞ I

−
ν−1

2

ðxρ̄Þ¼e−2rϵ
cosθ

rð1þcosθÞ

× ½1þ 1

2r
þϵð1þsin2θÞ−rϵ2cos2θþ����;

Kν−1
2
ðxÞ

Iν−1
2
ðxÞ I

×
ν−1

2

ðxρ̄Þ¼e−2rϵ
sinθ

rð1þcosθÞ
× ½1þϵsin2θ−rϵ2cos2θþ����: ð5:44Þ

Hence, the following results are obtained:

Ī sp;−
10 ¼ 1

4π2R4ϵ2

�
1 − ln 2þ ϵ

�
4

3
− ln 2

�
þOðϵ2Þ

	
;

Ī sp;−
30 ¼ 1

16π2R4ϵ4

�
1þ 43

30
ϵþOðϵ2Þ

	
;

Ī sp;×
21 ¼ 1

16π2R4ϵ4

�
1þ 1

10
ϵþOðϵ2Þ

	
: ð5:45Þ

The divergences of the Ī sp;�
ln terms calculated above are two

inverse powers of ϵ larger than the corresponding error
terms δsp;�ln calculated in Eqs. (5.42). Hence, from (5.38), the
leading-order and next-to-leading-order divergence of the
functions I sp;�

ln (5.26) coincide with the expressions (5.45)
for the leading-order and next-to-leading-order divergences
of the functions Ī sp;�

ln (5.34).
Substituting Eqs. (5.45) into Eqs. (5.28) and (5.29) gives

the following asymptotic behaviors for the Casimir expect-
ation values as ϵ → 0 and the boundary is approached,

hψ̄ψispCas ¼ −
μ

4π2R2ϵ2

�
1 − ln 2þ

�
4

3
− ln 2

�
ϵþ � � �

	
;

ð5:46aÞ

hT τ̂
τ̂ispCas ¼ −

1

32π2R4ϵ4

�
1þ 43

30
ϵþ � � �

	
; ð5:46bÞ

hT ρ̂
ρ̂ispCas ¼

1

48π2R4ϵ3

�
1þ 53

20
ϵþ � � �

	
; ð5:46cÞ

hTφ̂
φ̂ispCas ¼

1

16π2R4ϵ4

�
1þ 11

10
ϵþ � � �

	
; ð5:46dÞ

where hTẑ
ẑispCas ¼ hT τ̂

τ̂ispCas. We obtained hT ρ̂
ρ̂ispCas from

hTφ̂
φ̂ispCas using the conservation law ∇μTμ

ν ¼ 0, which
can be written in (nonrotating) cylindrical coordinates on
Minkowski space-time as follows:

∂ρðρT ρ̂
ρ̂Þ ¼ T φ̂

φ̂: ð5:47Þ

The divergence of the SET (5.46) for massive fermions
when spectral boundary conditions are considered is one
inverse power of ϵ larger compared to the scalar field case
[5]. We will discuss this point further in Sec. V D.

Numerical results.—In Fig. 10, we compare the asymptotic
results in Eqs. (5.46) with numerical evaluations of the
Casimir expectation values (5.28), (5.29) for μR ¼ 0 and
μR ¼ 2. For all expectation values, we plot the logarithm
of the magnitude of the relevant quantity, in the left-hand
column as a function of ρ=R on a linear scale and in the
right-hand column as a function of the logarithm of
ϵ−1 (5.33).
From (5.28), the Casimir expectation value of the FC

vanishes if the field is massless μ ¼ 0, as was the case for
the thermal expectation values with spectral boundary
conditions in Sec. IV B 1. Furthermore, we find that the
expectation value hψψispCas is negative for all ρ [near the
boundary, this is expected from (5.46a)]. We therefore plot
the logarithm of −μ−1hψ̄ψispCas. For the SET components,
we find that hT ρ̂

ρ̂ispCas and hT φ̂
φ̂ispCas are positive everywhere,

while hT τ̂
τ̂ispCas is negative everywhere (therefore, we plot

the logarithm of −hT τ̂
τ̂ispCas).

All the Casimir expectation values are regular inside the
cylinder but not on the boundary. All quantities shown in
Fig. 10 have smaller magnitudes for a massive fermion field
compared with the massless case. The absolute values of all
the Casimir expectation values plotted in Fig. 10 have their
minimum on the axis of the cylinder at ρ ¼ 0 and increase
monotonically as the radial coordinate ρ increases. All
diverge as ρ → R and the boundary is approached. The
agreement between the asymptotic and numerical results as
the boundary is approached is excellent, confirming the
predicted order of divergence in Eqs. (5.46).

C. MIT bag boundary conditions

The leading-order Casimir divergence for fermions
inside a cylinder in four-dimensional Minkowski space-
time has already been reported in Ref. [12], but only for the
original MIT case (i.e. ς ¼ 1).
In this section, we apply the approach of Sec. V B to the

case with MIT bag boundary conditions, for both ς ¼ �1.
Our approach is different from that in Ref. [12]. We recover
the leading-order, ς ¼ 1, results of Ref. [12] in Sec. V C 3,
“Asymptotic analysis of Casimir divergence,” except for the
FC, for which we obtain the opposite sign. This difference
is due to a difference in how the FC is defined: we define
the FC by analogy with the classical theory, such that
Eq. (4.35) holds.

1. Euclidean Green’s function for MIT bag
boundary conditions

To form the Euclidean Green’s function SMIT
E ðx; x0Þ for

the bounded system with MIT bag boundary conditions, a
solution ΔSMIT

E ðx; x0Þ of the homogeneous equation corre-
sponding to (5.3) (i.e. with the right-hand side set to zero)
must be added to the Euclidean Green’s function (5.4),
(5.14) for the unbounded space-time:
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FIG. 10. Casimir expectation values for spectral boundary conditions. The left column presents the logarithm of the absolute
value of the FC divided by the field mass μ−1hψ̄ψispCas (first line) and of the nonzero components of the SET hT α̂ σ̂ispCas (lines 2–4)
as functions of the scaled radial coordinate ρ=R, so that the boundary of the cylinder is at ρ=R ¼ 1. The right column shows
the same quantities, but as functions of the logarithm of the inverse distance ϵ−1 (5.33) to the boundary. The plots compare the results for
massless [blue (upper) dashed curves] and massive [purple (lower) dot-dashed curves] fermions to the asymptotic results (dark thin
curves) in Eqs. (5.46).
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SMIT
E ðxE; x0EÞ ¼ SunbE ðxE; x0EÞ þ ΔSMIT

E ðxE; x0EÞ: ð5:48Þ

ΔSMIT
E ðxE; x0EÞ can be Fourier transformed in a similar way

to Eqs. (5.4) and (5.16),

ΔSMIT
E ðx; x0Þ ¼

Z
∞

−∞

dω
8π3

Z
∞

−∞
dk

X∞
m¼−∞

eiωΔτþikΔzΔχMIT;

ð5:49Þ
where Δτ ¼ τ − τ0 and Δz ¼ z − z0. The 4 × 4 matrix
ΔχMIT can be written in terms of four 2 × 2 matrices
ΔχMIT

ab , in a similar way to Eqs. (5.5) and (5.17):

ΔχMIT ¼
�ΔχMIT

11 ΔχMIT
12

ΔχMIT
21 ΔχMIT

22

�
: ð5:50Þ

The 2 × 2 matrices ΔχMIT
ik , in turn, can be written as

ΔχMIT
11

μ − iω
¼
�
a11 b11
c11 d11

�
∘Ej; ΔχMIT

12 ¼
�
a12 b12
c12 d12

�
∘Ej;

ΔχMIT
22

μþ iω
¼
�
a22 b22
c22 d22

�
∘Ej; ΔχMIT

21 ¼
�
a21 b21
c21 d21

�
∘Ej;

ð5:51Þ

where aik, bik, cik and dik are constants, the matrix Ej on the
right of the Hadamard (Schur) product is defined in
Eq. (5.18c), and j is a generic label for the parameters
m≡mj, ω≡ ωj and k≡ kj.
The matrix elements of the off-diagonal blocks ΔχMIT

12

and ΔχMIT
21 can be found using analogs of Eqs. (5.8), as

follows,�
a12 b12
c12 d12

�
¼
�−ka22−αc22 −kb22−αd22

αa22þkc22 αb22þkd22

�
¼
�−ka11−αb11 αa11þkb11
−kc11−αd11 αc11þkd11

�
; ð5:52aÞ

�
a21 b21
c21 d21

�
¼
�

ka11þαc11 kb11þαd11
−αa11−kc11 −αb11−kd11

�
¼
�
ka22þαb22 −αa22−kb22
kc22þαd22 −αc22−kd22

�
; ð5:52bÞ

where α is given in (5.10). Equations (5.52) can be used
to express all matrix elements of ΔχMIT in terms of the
matrix elements of ΔχMIT

11 . The matrix elements of ΔχMIT
22

are given below, for completeness, with respect to those
of ΔχMIT

11 :

0BBB@
a22
b22
c22
d22

1CCCA ¼ 1

α2 − k2

0BBB@
−k2 −αk −αk −α2

αk k2 α2 αk

αk α2 k2 αk

−α2 −αk −αk −k2

1CCCA
0BBB@

a11
b11
c11
d11

1CCCA:

ð5:53Þ

Since the Euclidean Green’s function is formally equiv-
alent to the Lorentzian Feynman propagator, the MIT
boundary conditions (3.28) remain unchanged when the
Euclidean propagator is considered:

ðiγρ̂ þ ςÞSMIT
E ðx; x0Þ⌋ρ¼R ¼ 0;

SMIT
E ðx; x0Þð−iγρ̂0 þ ςÞ⌋ρ0¼R ¼ 0: ð5:54Þ

To begin the construction ofΔSMIT
E ðx; x0Þ (5.48), we require

the values on the boundary of the Fourier transform χunb

(5.14) of the Euclidean Green’s function SunbE ðx; x0Þ (5.4)
for the unbounded space-time. These values can be inferred
from Eqs. (5.14) and (5.18c),

χunb⌋ρ¼R ¼

0BBBBBBB@

ðμ − iωÞ Km
Im

0 −k Km
Im

α Km
Im

0 ðμ − iωÞ Kmþ1

Imþ1
−α Kmþ1

Imþ1
k Kmþ1

Imþ1

k Km
Im

−α Km
Im

ðμþ iωÞ Km
Im

0

α Kmþ1

Imþ1
−k Kmþ1

Imþ1
0 ðμþ iωÞ Kmþ1

Imþ1

1CCCCCCCA
∘
�
Ej Ej

Ej Ej

�
;

χunb⌋ρ0¼R ¼

0BBBBBBB@

ðμ − iωÞ Km
Im

0 −k Km
Im

−α Kmþ1

Imþ1

0 ðμ − iωÞ Kmþ1

Imþ1
α Km

Im
k Kmþ1

Imþ1

k Km
Im

α Kmþ1

Imþ1
ðμþ iωÞ Km

Im
0

−α Km
Im

−k Kmþ1

Imþ1
0 ðμþ iωÞ Kmþ1

Imþ1

1CCCCCCCA
∘
�
Ej Ej

Ej Ej

�
; ð5:55Þ
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where the modified Bessel functions explicitly displayed
in the ratios Km=Im and Kmþ1=Imþ1 have argument αR.
The dependence on the coordinates ρ, ρ0, φ and φ0 is fully
contained in the matrices Ej (5.18c).
The boundary conditions (5.54) give 32 equations for

the matrix elements of ΔχMIT (5.50). However, only a
comparatively small number of these equations is required
to fully determine ΔχMIT. The (1,1) components of
Eqs. (5.54) (i.e. the top left components of the equations
for both ρ ¼ R and ρ0 ¼ R),

ςðμ − iωÞðKm þ Ima11Þ − αKmþ1 − Imþ1c21 ¼ 0;

ςðμ − iωÞðKm þ Ima11Þ − αKmþ1 þ Imþ1b12 ¼ 0; ð5:56Þ
show that

c21 ¼ −b12: ð5:57Þ
A similar inspection of the (2,2) components of Eqs. (5.54)
shows that

ςðμ − iωÞðKmþ1 þ Imþ1d11Þ − αKm þ Imb21 ¼ 0;

ςðμ − iωÞðKmþ1 þ Imþ1d11Þ − αKm − Imc12 ¼ 0; ð5:58Þ
leading to

b21 ¼ −c12: ð5:59Þ
Comparing the expressions for b12 and c21 in Eqs. (5.52)
shows that

c11 ¼ b11; c22 ¼ b22; ð5:60Þ
which can be used together with the expressions for d12,
d21, a12 and a21 in Eqs. (5.52) to give

a21 ¼ −a12; d21 ¼ −d12: ð5:61Þ
Using d21 ¼ −αb11 − kd11 in the (1,2) component of
Eq. (5.54) for ρ ¼ R gives

b11 ¼
−kðImþ1d11 þ Kmþ1Þ
ςðμ − iωÞIm þ αImþ1

; ð5:62Þ

where the argument of the modified Bessel functions is, as
before,αR. Substituting (5.62) intob21 ¼ kb11 þ αd11 gives

b21 ¼
ςðμ − iωÞ½αIm þ ςðiωþ μÞImþ1�d11 − k2Kmþ1

ςðμ − iωÞIm þ αImþ1

:

ð5:63Þ
Substituting b21 into the first equation in (5.58) gives

d11 ¼ −
Kmþ1

Imþ1

þ 1

U
Im
Imþ1

þ 1

U
ςα

μ − iω
; ð5:64Þ

where the following property was used to eliminate
KmðαRÞ:

KmðzÞImþ1ðzÞ þ Kmþ1ðzÞImðzÞ ¼
1

z
: ð5:65Þ

The quantity U≡ UmðαRÞ introduced in Eq. (5.64) is
defined as [16]

U≡ UmðαRÞ ¼ αR½I2mðαRÞ þ I2mþ1ðαRÞ�
þ 2ςμRImðαRÞImþ1ðαRÞ: ð5:66Þ

Substituting d11 back into Eq. (5.62) gives

b11 ¼ −
ςk

Uðμ − iωÞ : ð5:67Þ

The constant a11 can be found by substituting a21 ¼
−ka11 − αc11 into the (2,1) component of Eq. (5.54) for
ρ ¼ R:

a11 ¼ −
Km

Im
þ 1

U
Imþ1

Im
þ 1

U
ςα

μ − iω
: ð5:68Þ

The results in Eqs. (5.64), (5.67) and (5.68) can be
summarized as follows. The difference between the
vacuum Euclidean Green’s functions for the bounded
and unbounded space-times is given by (5.49), with the
matrix ΔχMIT having the form (5.50).
The 2 × 2 matrix element ΔχMIT

11 is given by

ΔχMIT
11 ¼ ðμ − iωÞ

0@− Km
Im

þ 1
U
Imþ1

Im
þ 1

U
ςα

μ−iω − 1
U

ςk
μ−iω

− 1
U

ςk
μ−iω − Kmþ1

Imþ1
þ 1

U
Im
Imþ1

þ 1
U

ςα
μ−iω

1A∘Ej: ð5:69aÞ

The 2 × 2 matrix ΔχMIT
12 can be found from Eq. (5.52a):

ΔχMIT
12 ¼

0B@ k
�
Km
Im

− 1
U
Imþ1

Im

�
−α
�
Km
Im

− 1
U
Imþ1

Im

�
þ ςðμþiωÞ

U

α
�
Kmþ1

Imþ1
− 1

U
Im
Imþ1

�
− ςðμþiωÞ

U −k
�
Kmþ1

Imþ1
− 1

U
Im
Imþ1

�
1CA∘Ej: ð5:69bÞ

The matrix elements of ΔχMIT
21 can be found from Eq. (5.69b) using Eqs. (5.57), (5.59) and (5.61):
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ΔχMIT
21 ¼

0B@ −k
�
Km
Im

− 1
U
Imþ1

Im

�
−α
�
Kmþ1

Imþ1
− 1

U
Im
Imþ1

�
þ ςðμþiωÞ

U

α
�
Km
Im

− 1
U
Imþ1

Im

�
− ςðμþiωÞ

U k
�
Kmþ1

Imþ1
− 1

U
Im
Imþ1

�
1CA∘Ej: ð5:69cÞ

Finally, the components of ΔχMIT
22 can be found by inverting Eq. (5.52a):

ΔχMIT
22 ¼ ðμþ iωÞ

0B@− Km
Im

þ 1
U
Imþ1

Im
þ 1

U
ςα

μþiω − 1
U

ςk
μþiω

− 1
U

ςk
μþiω − Kmþ1

Imþ1
þ 1

U
Im
Imþ1

þ 1
U

ςα
μþiω

1CA∘Ej: ð5:69dÞ

In (5.69), the matrix Ej is given in (5.18c), α is defined in
(5.10), and U is given in Eq. (5.66). The modified Bessel
functions Im, Km written explicitly in (5.69) have argument
αR. The matrix Ej contains all the dependence on the
coordinates ρ, ρ0, φ, φ0.

2. Casimir expectation values

Wenowuse the EuclideanGreen’s functionwithMIT bag
boundary conditions to calculate the Casimir expectation

values of the FC hψ̄ψiMIT
Cas , charge current hJα̂iMIT

Cas , CC
hJα̂νiMIT

Cas and SET hT α̂ σ̂iMIT
Cas . These expectation values

can be computed from the formulas (5.49), replacing
ΔSspE ðxE; x0EÞ by the difference ΔSMIT

E ðxE; x0EÞ (5.49)
between the vacuum Euclidean Green’s functions for the
bounded system with MIT bag boundary conditions and
unbounded Minkowski space-time.
First, the Casimir expectation value of the FC takes

the form

hψ̄ψiMIT
Cas ¼ 1

8π3
X∞

m¼−∞

Z
∞

−∞
dω
Z

∞

−∞
dk

�
ας

U
IþmðαρÞ þ μ

��
−
Km

Im
þ 1

U
Imþ1

Im

�
I2mðαρÞ−

�
−
Kmþ1

Imþ1

þ 1

U
Im
Imþ1

�
I2mþ1ðαρÞ

	

;

ð5:70Þ
where the arguments of the modified Bessel functions are αR unless explicitly stated otherwise. The expression (5.70) can
be simplified by changing to the polar coordinates (5.23) and then performing the integral over ϑ. Afterward, the terms
involving I2mðαρÞ and I2mþ1ðαρÞ can be symmetrized to only contain the combinations IþmðαρÞ and I−mðαρÞ, defined in
Eqs. (5.22). This gives the following expression,

hψ̄ψiMIT
Cas ¼ −

X∞
m¼−∞

Z
∞

μR

dx
4π2R3

�
Iþmðxρ̄Þ

UmðxÞImðxÞImþ1ðxÞ
�
μ

x
UmðxÞ − μ½I2mðxÞ þ I2mþ1ðxÞ� − 2ςαImðxÞImþ1ðxÞ

	
−

μI−mðxρ̄Þ
UmðxÞImðxÞImþ1ðxÞ

f½I2mðxÞ − I2mþ1ðxÞ� þ UmðxÞ½KmðxÞImþ1ðxÞ − Kmþ1ðxÞImðxÞ�g


; ð5:71Þ

where x is defined in Eq. (5.25) and the Wronskian relation (5.65) was used in the coefficient of Iþmðxρ̄Þ. The coefficient of
I−mðxρ̄Þ in (5.71) can be simplified by inserting a factor of x½KmðxÞImþ1ðxÞ þ Kmþ1ðxÞImðxÞ� ¼ 1 next to
½I2mðxÞ − I2mþ1ðxÞ�, so that

UmðxÞ½KmðxÞImþ1ðxÞ − Kmþ1ðxÞImðxÞ� þ ½I2mðxÞ − I2mþ1ðxÞ� ¼ 2ImðxÞImþ1ðxÞWmðxÞ; ð5:72Þ

where WmðxÞ is defined as [16]

WmðxÞ ¼ x½KmðxÞImðxÞ − Kmþ1ðxÞImþ1ðxÞ� þ ςμR½KmðxÞImþ1ðxÞ − Kmþ1ðxÞImðxÞ�: ð5:73Þ

The final form for hψ̄ψiMIT
Cas can be obtained by using the explicit expression (5.66) for UmðxÞ in the coefficient of Iþmðxρ̄Þ in

Eq. (5.71):

hψ̄ψiMIT
Cas ¼ −

X∞
m¼−∞

Z
∞

μR

dx
2π2R3

1

UmðxÞ
½xμRWmðxÞI−mðxρ̄Þ − ςðx2 − μ2R2ÞIþmðxρ̄Þ�: ð5:74Þ
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As in the case with spectral boundary conditions, for
MIT bag boundary conditions, we find that the Casimir
expectation values of all components of the charge current
hJα̂iMIT

Cas and neutrino charge current hJα̂νiMIT
Cas vanish. The

Casimir expectation value of the components of the SET

can be calculated using (5.20d), with ΔSspE ðxE; x0EÞ replaced
by ΔSMIT

E ðxE; x0EÞ (5.49). Grouping terms as for the
FC, we obtain the following expressions for the compo-
nents of the SET relative to the Euclidean version of the
tetrad (2.2):

hT τ̂
τ̂iMIT

Cas ¼ −
X∞

m¼−∞

Z
∞

μR

dx
4π2R4

x2 − μ2R2

UmðxÞ
½ςμRIþmðxρ̄Þ þ xWmðxÞI−mðxρ̄Þ�; ð5:75aÞ

hT ρ̂
ρ̂iMIT

Cas ¼
X∞

m¼−∞

Z
∞

μR

x3dx
2π2R4

WmðxÞ
UmðxÞ

�
I−mðxρ̄Þ −

mþ 1
2

xρ̄
I×mðxρ̄Þ

	
; ð5:75bÞ

hT φ̂
φ̂iMIT

Cas ¼
X∞

m¼−∞

Z
∞

μR

x2dx
2π2R4

WmðxÞ
UmðxÞ

mþ 1
2

ρ̄
I×mðxρ̄Þ; ð5:75cÞ

and hTẑ
ẑiMIT

Cas ¼ hT τ̂
τ̂iMIT

Cas .
By analogy with Eqs. (5.26) for the spectral case, it is convenient to introduce the following integrals,

IMIT;þ
ln ¼ 1

2π2R4

X∞
m¼−∞

Z
∞

μR

dx
UmðxÞ

xl

�
mþ 1

2

�
n
Iþmðxρ̄Þ;

IMIT;−
ln ¼ 1

2π2R4

X∞
m¼−∞

Z
∞

μR

dx
UmðxÞ

xl

�
mþ 1

2

�
n
WmðxÞI−mðxρ̄Þ;

IMIT;×
ln ¼ 1

2π2R4

X∞
m¼−∞

Z
∞

μR

dx
UmðxÞ

xl

�
mþ 1

2

�
n
WmðxÞI×mðxρ̄Þ; ð5:76Þ

where the functions I�mðzÞ were introduced in Eqs. (5.22).
The Casimir expectation values of the FC and SET can

be written in terms of the integrals (5.76) as follows:

hψ̄ψiMIT
Cas ¼ − μR2IMIT;−

10 þ ςRðIMIT;þ
20 − μ2R2IMIT;þ

00 Þ;
ð5:77aÞ

hT τ̂
τ̂iMIT

Cas ¼ −
1

2
ςμRðIMIT;þ

20 − μ2R2IMIT;þ
00 Þ

−
1

2
ðIMIT;−

30 − μ2R2IMIT;−
10 Þ; ð5:77bÞ

hT ρ̂
ρ̂iMIT

Cas ¼ IMIT;−
30 − ρ̄−1IMIT;×

21 ; ð5:77cÞ

hTφ̂
φ̂iMIT

Cas ¼ ρ̄−1IMIT;×
21 ; ð5:77dÞ

and hTẑ
ẑiMIT

Cas ¼ hT τ̂
τ̂iMIT

Cas .

3. Casimir divergence near the boundary

As discussed in Sec. V B 3 for the case of spectral
boundary conditions, the Casimir expectation values (5.77)
diverge as the boundary is approached. To perform an

analysis of this divergence, we follow the approach of
Sec. V B 3.

Generalized Abel-Plana formula.—We begin by defining
the following quantities, which replace the sums over m in
(5.76) by integrals:

ĪMIT;þ
ln ¼ 1

π2R4

Z
∞

0

dν
Z

∞

μR

dx
Uν−1

2
ðxÞx

lνnIþ
ν−1

2

ðxρ̄Þ;

ĪMIT;−
ln ¼ 1

π2R4

Z
∞

0

dν
Z

∞

μR

dx
Uν−1

2
ðxÞx

lνnWν−1
2
ðxÞI−

ν−1
2

ðxρ̄Þ;

ĪMIT;×
ln ¼ 1

π2R4

Z
∞

0

dν
Z

∞

μR

dx
Uν−1

2
ðxÞx

lνnWν−1
2
ðxÞI×

ν−1
2

ðxρ̄Þ:

ð5:78Þ
We define the differences between the quantities IMIT;�

ln

(5.76) and ĪMIT;�
ln to be

δMIT;�
ln ðρ̄Þ ¼ ĪMIT;�

ln − IMIT;�
ln : ð5:79Þ

Following the spectral case, it is convenient to write IMIT;�
ln

(5.76) in terms of new functions fMIT;�
ln ðνÞ as follows

[cf. Eq. (5.36)]:
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IMIT;�
ln ¼

X∞
m¼0

fMIT;�
ln

�
mþ 1

2

�
: ð5:80Þ

The precise forms of fMIT;�
ln ðνÞ for � ∈ fþ;−;×g can be

deduced from comparing (5.76) with (5.80):

fMIT;þ
ln ðνÞ ¼ 1

π2R4

Z
∞

μR

dx
Uν−1

2
ðxÞx

lνnIþ
ν−1

2

ðxρ̄Þ;

fMIT;−
ln ðνÞ ¼ 1

π2R4

Z
∞

μR

dx
Uν−1

2
ðxÞx

lνnWν−1
2
ðxÞI−

ν−1
2

ðxρ̄Þ;

fMIT;×
ln ðνÞ ¼ 1

π2R4

Z
∞

μR

dx
Uν−1

2
ðxÞx

lνnWν−1
2
ðxÞI×

ν−1
2

ðxρ̄Þ:

ð5:81Þ

From the detailed forms of the functions fMIT;�
ln ðνÞ, it can

be seen that they are analytic. We can therefore apply the
generalized Abel-Plana formula (5.35). This gives the
differences δMIT;�

ln (5.79) to be

δMIT;�
ln ðρ̄Þ ¼ i

Z
∞

0

dt
fMIT;�
ln ðitÞ − fMIT;�

ln ð−itÞ
e2πt þ 1

: ð5:82Þ

To investigate the asymptotic behavior of δMIT;�
ln ðρ̄Þ as

ρ̄ → 1, the asymptotic behavior of the integrand in the
integrals with respect to x in Eq. (5.81) must be inves-
tigated. Since the ðe2πt þ 1Þ−1 factor in (5.82) ensures the
suppression of Im½fMIT;�

ln ðitÞ� at large t, the formulas (A1a),
(A1b) for the asymptotic expansions of the modified Bessel
functions for large arguments can be used.
We begin by examining δMIT;þ

ln ðρ̄Þ. The factor Uν−1
2
ðxÞ

(5.66) in the denominators offMIT;�
ln ðνÞ (5.81), and the quantity

½Uν−1
2
ðxÞ�−1, have the following asymptotic behaviors:

Uν−1
2
ðxÞ ¼ e2x

π

�
1 −

ν2 − ςμR
x

þ ν2ðν2 − 2ςμRÞ
2x2

þOðx−3Þ
	
;

ð5:83aÞ

1

Uν−1
2
ðxÞ ¼ πe−2x

�
1þ ν2 − ςμR

x
þ ν4 − 2ςμRν2 þ 2μ2R2

2x2

þOðx−3Þ
	
: ð5:83bÞ

Hence, the asymptotic expansion of the integrand in the
integral with respect to x in fMIT;þ

00 ðνÞ (5.81) is

Iþ
ν−1

2

ðxρ̄Þ
Uν−1

2
ðxÞ ¼ e−2xϵ

xρ̄

�
1 −

ν2ϵ

xρ̄
−
ςμR
x

þ ν4ϵ2

2ρ̄2x2

þ ν2ςμRϵ
ρ̄x2

þ μ2R2

x2
þOðx−3Þ

	
: ð5:84Þ

For the analysis of the Casimir divergence for the FC and
SET, the only fMIT;þ

ln ðνÞ quantities required are fMIT;þ
00 ðνÞ

and fMIT;þ
20 ðνÞ. It can be seen that the terms in the bracket in

(5.84) contain only even powers of ν, which stay real under
the transformation ν → it. Hence, the following asymptotic
behavior can be obtained:

Im

�
1

Uit−1
2
ðxÞx

lIþ
it−1

2

ðxρ̄Þ
	
¼ 1

ρ̄
e−2xϵOðxl−3Þ: ð5:85Þ

Since l is either 0 or 2, it can be seen that δMIT;þ
00 ðρ̄Þ and

δMIT;þ
20 ðρ̄Þ do not diverge as ρ̄ → 1.
To analyze δMIT;−

ln ðρ̄Þ and δMIT;×
ln ðρ̄Þ, the asymptotic

behavior of Wν−1
2
ðxÞ, defined in Eq. (5.73), is required.

Using the intermediate expansions,

Kν−1
2
ðxÞIν−1

2
ðxÞ − Kνþ1

2
ðxÞIνþ1

2
ðxÞ

¼ ν

2x3

�
1þ ν2ðν2 − 1Þðν2 − 13Þ

24x2
þOðx−4Þ

	
;

Kν−1
2
ðxÞIνþ1

2
ðxÞ − Kνþ1

2
ðxÞIν−1

2
ðxÞ

¼ −
ν

x2

�
1 −

ν2 − 1

2x2
þOðx−4Þ

	
; ð5:86Þ

we find the following expression for Wν−1
2
ðxÞ:

Wν−1
2
ðxÞ ¼ ν

2x2

�
1 − 2ςμRþ ðν2 − 1Þðν4 − 13ν2 þ 24ςμRÞ

24x2

þOðx−4Þ
	
: ð5:87Þ

Hence, the ratio Wν−1
2
ðxÞ=Uν−1

2
ðxÞ has the expansion

Wν−1
2
ðxÞ

Uν−1
2
ðxÞ¼

πν

2x2
e−2x

�
1−2ςμRþðν2−ςμRÞð1−2ςμRÞ

x

þ 1

x2

�
ν2ðν4−2ν2þ13Þ

24
− ðν4þ1ÞςμR

þð2ν2þ1Þμ2R2−2ςμ3R3

	
þOðx−3Þ



: ð5:88Þ

It can be shown that the asymptotic expansions for I−
ν−1

2

ðxÞ
and I×

ν−1
2

ðxÞ contain only odd and even powers of ν,

respectively. Hence, the following asymptotic behaviors
can be established:

Im

�Wit−1
2
ðxÞ

Uit−1
2
ðxÞx

lI−
it−1

2

ðxÞ
	
¼ −

t2

2ρ̄2
e−2xϵOðxl−7Þ;

Im

�Wit−1
2
ðxÞ

Uit−1
2
ðxÞ itx

2I×
it−1

2

ðxÞ
	
¼ −

t2

2ρ̄
e−2xϵOðx−4Þ: ð5:89Þ
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Thus, the functions δMIT;�
ln ðρ̄Þ are regular as ρ̄ → 1 for all the combinations of l, n and � ∈ fþ;−;×g of interest. Therefore,

the asymptotic behavior of the functions ĪMIT;�
ln , defined in Eq. (5.78), coincides with that of IMIT;�

ln , defined in Eq. (5.76).

Asymptotic analysis of Casimir divergence.—We now study the asymptotic behavior of the functions ĪMIT;�
ln (5.78) by

considering the high ν and x expansion of the integrand in ĪMIT;�
ln .

Using the polar coordinates defined in (5.31) and Eqs. (A4b) and (A4c), we obtain the following asymptotic expansions
for Uν−1

2
ðxÞ (5.66) and 1=Uν−1

2
ðxÞ:

Uν−1
2
ðxÞ ¼ 1

π
e2rþ2ν ln tanθ

2

�
1þ cos2θ þ 12ςμR

12r
þ cos2θ

8r2

�
1 −

35

36
cos2θ −

10

3
ςμR

�
þOðr−3Þ

	
;

1

Uν−1
2
ðxÞ ¼ πe−2r−2ν ln tan

θ
2

�
1 −

cos2θ þ 12ςμR
12r

þ 1

r2

�
μ2R2 þ 7

12
ςμRcos2θ −

1

8
cos2θ

�
1 −

37

36
cos2θ

�	
þOðr−3Þ



: ð5:90Þ

Using the following asymptotic expansions,

Kν−1
2
ðxÞIν−1

2
ðxÞ − Kνþ1

2
ðxÞIνþ1

2
ðxÞ ¼ cos θ

2r2

�
1þ 12 − 45cos2θ þ 35cos4θ

8r2
þOðr−4Þ

	
;

Kνþ1
2
ðxÞIν−1

2
ðxÞ − Kν−1

2
ðxÞIνþ1

2
ðxÞ ¼ cot θ

r

�
1 −

sin2θð1 − 5sin2θÞ
8r2

þOðr−4Þ
	
; ð5:91Þ

the asymptotic expansion of Wν−1
2
ðxÞ (5.73) and of the ratio Wν−1

2
ðxÞ=Uν−1

2
ðxÞ can be found:

Wν−1
2
ðxÞ ¼ cot θ

2r

�
sin2θ − 2ςμRþ sin2θ

8r2
½12þ 2ςμRð1 − 5sin2θÞ − 45cos2θ þ 35cos4θ� þOðr−4Þ



;

Wν−1
2
ðxÞ

Uν−1
2
ðxÞ ¼

π cot θ
2r

e−2r−2ν ln tan
θ
2ðsin2θ − 2ςμRÞ

�
1 −

cos2θ þ 12ςμR
12r

þOðr−2Þ
	
: ð5:92Þ

Equations (5.43) can then be used to obtain the following expansions:

1

Uν−1
2
ðxÞ I

þ
ν−1

2

ðxρ̄Þ ¼ e−2rϵ

r sin θ

�
1 −

cos2θ þ 2ςμR
2r

þ ϵsin2θ − rϵ2cos2θ þ � � �
	
; ð5:93aÞ

Wν−1
2
ðxÞ

Uν−1
2
ðxÞ I

−
ν−1

2

ðxρ̄Þ ¼ cot2θ
2r2

e−2rϵðsin2θ − 2ςμRÞ
�
1þ sin2θ − 2ςμR

2r
þ ϵð1þ sin2θÞ − rϵ2cos2θ þ � � �

	
; ð5:93bÞ

Wν−1
2
ðxÞ

Uν−1
2
ðxÞ I

×
ν−1

2

ðxρ̄Þ ¼ cot θ
2r2

e−2rϵðsin2θ − 2ςμRÞ
�
1 −

cos2θ þ 2ςμR
2r

þ ϵsin2θ − rϵ2cos2θ þ � � �
	
: ð5:93cÞ

The presence of powers of sin θ in the denominators of
Eqs. (5.93) seems to imply that ĪMIT;þ

00 and ĪMIT;−
10 are

divergent at the lower limit of the integral with respect to θ
in (5.78) [after changing to the polar coordinates (5.31)].
However, this apparent divergence arises from the replace-
ment of the integrands in (5.78) with their expansions for
large arguments and orders and then integrating over the
whole of the upper half-plane. This apparent divergence is
not a property of the exact ĪMIT;þ

00 and ĪMIT;−
10 since the

region of integration in (5.78) is not in fact the whole of the

upper half-plane. Furthermore, examining the powers of r
in Eqs. (5.93) and performing the integral over r (after
changing to polar coordinates), both ĪMIT;þ

00 and ĪMIT;−
10

diverge as ϵ−1 for ϵ → 0. They therefore make only
subleading contributions to the asymptotic behavior of
the expectation values Eqs. (5.77).
The other relevant ĪMIT;�

ln [see Eq. (5.77)] are manifestly
finite for ϵ > 0 and can be analyzed using the same
techniques as in the paragraph “Asymptotic analysis of
Casimir divergence” in Sec. V B 3:
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ĪMIT;þ
20 ¼ 1

4π2R4ϵ3
½1 − ςμRϵþOðϵ2Þ�;

ĪMIT;−
30 ¼ 1

60π2R4ϵ3

�
1 − 5ςμRþ

�
17

14
−
9

2
ςμRþ 5μ2R2

�
ϵþOðϵ−2Þ

	
;

ĪMIT;×
21 ¼ 1

60π2R4ϵ3

�
1 − 5ςμR −

�
2

7
− 3ςμR − 5μ2R2

�
ϵþOðϵ−2Þ

	
: ð5:94Þ

The Casimir divergence can now be computed by substituting the above results in Eqs. (5.77),

hψ̄ψiMIT
Cas ¼ ς

4π2R3ϵ3
½1 − ςμRϵþ � � ��; ð5:95aÞ

hT τ̂
τ̂iMIT

Cas ¼ −
1

120π2R4ϵ3

�
1þ 10ςμRþ ϵ

�
17

14
−
9

2
ςμR − 10μ2R2

�
þ � � �

	
; ð5:95bÞ

hT ρ̂
ρ̂iMIT

Cas ¼ 1

120π2R4ϵ2

�
1 − 5ςμRþ ϵ

�
17

7
− 9ςμRþ 10μ2R2

�
þ � � �

	
; ð5:95cÞ

hT φ̂
φ̂iMIT

Cas ¼ 1

60π2R4ϵ3

�
1 − 5ςμRþ ϵ

�
5

7
− 2ςμRþ 5μ2R2

�
þ � � �

	
; ð5:95dÞ

and hTẑ
ẑiMIT

Cas ¼ hT τ̂
τ̂iMIT

Cas . The terms of order ϵ−1 coming
from ĪMIT;þ

00 and ĪMIT;−
10 make no contribution to the

expressions (5.95).
It can be checked that Eqs. (5.95) satisfy Eq. (4.35). The

expressions (5.95) are accurate to leading and next-to-
leading orders in terms of the distance to the boundary [i.e.
terms of order Oðϵ2Þ have been neglected in the brackets].
Our results reduce to those presented in Ref. [12] if next-to-
leading-order terms are ignored, ς is set to 1 and the sign of
hψψiMIT

Cas is inverted.
Themost significant feature of theasymptotic results (5.95)

is that the divergence as ϵ → 0 of the nonzero components of
the SET is one inverse power of ϵ smaller than the divergence
in the corresponding expectationvalues for spectral boundary
conditions, given in Eqs. (5.46). Furthermore, the rate of
divergence of the Casimir expectation values of the SET in
Eq. (5.95) is the sameas that for a quantumscalar field [5].We
will discuss these observations further in Sec. VD. On the
other hand, the divergence of the FC for a massive fermion
fieldwithMITbag boundary conditions (5.95a) is one inverse
power of ϵ larger than for a massive fermion field satisfying
spectral boundary conditions (5.46a).

Numerical results.—In Fig. 11, we compare the asymptotic
results in Eqs. (5.95) with numerical evaluations of the
Casimir expectation values Eqs. (5.77) for massless fer-
mions μR ¼ 0 and massive fermions with μR ¼ 2. As
discussed in Sec. III C, for a massless fermion field, the
energy spectrum of modes is independent of the choice of
ς ¼ �1. Therefore, in the massless case, ς only influences
the sign of the FC, and hence the plots do not show separate

curves for ς ¼ 1 and −1 in this case. However, there are
significant differences when massive fermions are consid-
ered between the cases corresponding to the two values of ς,
which are represented using separate curves in Fig. 11. From
(5.95), it is clear that the sign of the Casimir divergence has a
complicated dependence on both ς and the fermion mass μ.
For all expectation values, we therefore plot the logarithm of
the magnitude of the relevant quantity, as a function of ρ=R
on a linear scale in the left-hand column and as a function of
the logarithm of ϵ−1 in the right-hand column.
All the Casimir expectation values shown in Fig. 11 are

finite inside the cylinder. Their magnitudes are monoton-
ically increasing as ρ increases and diverge on the boundary
as ρ → R. Unlike the results for spectral boundary con-
ditions shown in Fig. 10, for MIT bag boundary conditions,
we find that the expectation values of the components of the
SET have larger magnitude close to the boundary for
massive fermions than for massless fermions. Furthermore,
these magnitudes near the boundary are larger for ς ¼ −1
than for ς ¼ 1.
In Fig. 11, we have also plotted the asymptotic results

(5.95) as thin solid curves. Some of the asymptotic
formulas (5.95) have zeros, resulting in breaks in the
curves. In all cases studied, we find excellent agreement
near the boundary between the numerical results of
computing the Casimir expectation values (5.77) and the
asymptotic forms (5.95).

D. Comparison between the spectral and MIT models

In this section, we have studied Casimir expectation
values for fermions contained within a cylinder of radius R.
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FIG. 11. Casimir expectation values for MIT bag boundary conditions. The left column presents the logarithm of the absolute value of
the FC hψ̄ψiMIT

Cas (first line) and of the nonzero components of the SET hT α̂ σ̂iMIT
Cas (lines 2–4) as functions of the scaled radial coordinate

ρ=R, so that the boundary of the cylinder is at ρ=R ¼ 1. The right column shows the same quantities, but as functions of the logarithm of
the inverse distance ϵ−1 (5.33) to the boundary. The plots compare the results for massless [blue dashed curves] and massive [purple and
red dot-dashed and dotted curves] fermions to the asymptotic results (dark thin curves) in Eqs. (5.95).
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The fermions satisfy either spectral or MIT bag boundary
conditions on the surface of the cylinder. We now focus on
the Casimir expectation value of the SET hT α̂ σ̂iCas and
compare our results with those for a quantum scalar field
inside a cylinder [5].
For a quantum fermion field satisfying spectral boundary

conditions, Eqs. (5.46) show that hT τ̂ τ̂ispCas ¼ hTẑ ẑispCas and
hTφ̂ φ̂ispCas diverge like ϵ−4 as ϵ → 0 and the boundary of the
cylinder is approached. The remaining nonzero component
of the SET, hT ρ̂ ρ̂ispCas, diverges like ϵ−3. For MIT bag
boundary conditions, from Eqs. (5.95), all nonzero compo-
nents of the SET diverge less rapidly, hT τ̂ τ̂iMIT

Cas ¼ hTẑ ẑiMIT
Cas

and hTφ̂ φ̂iMIT
Cas diverging as ϵ−3 and hT ρ̂ ρ̂iMIT

Cas as ϵ−2. For a
quantum scalar field, the rates of divergence of the nonzero
components of the SET are the same as those for a fermion
field satisfying MIT bag boundary conditions [5].
In order to understand these different behaviors, we

perform a separate asymptotic analysis following the
method of Ref. [26], applied to a cylindrical boundary.
The analysis of Ref. [27] gives the leading-order divergence
of the nonzero components of the SET with respect to an
inertial coordinate system to be

hTμ
νiCas ¼ A diagð−ϵ−3; ϵ−2; 2ϵ−3;−ϵ−3Þ; ð5:96Þ

where ϵ (5.33) is the distance to the boundary located at
ρ ¼ R and A is a constant. These results are obtained for a
four-dimensional space-time under the assumptions that the
SET is a fully local tensor with vanishing trace (i.e.
corresponding to a conformal field). The general results
(5.96) match those for a massless fermion field satisfying
MIT bag boundary conditions, given in Eq. (5.95) and
Ref. [12].
However, for spectral boundary conditions, the diver-

gence of the SET is one inverse power of ϵ larger than that
in (5.96). We attribute this discrepancy to the nonlocal
nature of the spectral boundary conditions. As discussed in
Sec. III B, the spectral boundary conditions arise from
considering the Fourier transform of the fermion field, and
taking the Fourier transform is a nonlocal operation. In
Ref. [26], it is assumed that the boundary conditions on the
field are local in nature, which means that the analysis
leading to (5.96) is not valid for spectral boundary con-
ditions. On the other hand, the MIT bag boundary con-
ditions (3.28) are entirely local, and so the analysis of
Ref. [27] is applicable.
If, instead of (5.96), we set the leading-order divergence

of the nonzero components of the SET to be ϵ−u, where u is
an arbitrary positive number, the results of Ref. [26] can be
generalized to

hTμ
νiCas ¼ A diag

�
−ϵ−uþ1;

2

u − 2
ϵ−uþ2; 2ϵ−uþ1;−ϵ−uþ1

�
:

ð5:97Þ

The case u ¼ 4 recovers Eq. (5.96), while the u ¼ 5 case is
in agreement with the results that we obtain using the
spectral model.

VI. CONCLUSIONS

In this paper, we have studied a quantum fermion field
enclosed inside a cylinder in Minkowski space-time. On the
boundary of the cylinder, we have considered spectral [8]
and MIT bag [9,10] boundary conditions on the fermion
field. Our main focus has been the construction of rigidly-
rotating vacuum and thermal states for the system inside the
cylinder. We have also studied the Casimir expectation
values (i.e. expectation values in the vacuum state of the
bounded system with respect to the vacuum state of the
unbounded system). When the boundary is placed on or
inside the SOL, the Minkowski and rotating vacua
coincide. Furthermore, rigidly-rotating thermal states are
also regular for both the spectral and the MIT bag models.
Our results show that the t.e.v.s of the FC, CC and SET

exhibit qualitative differences between the spectral and the
MIT models. Explicitly, the t.e.v. of the FC vanishes for
massless fermions obeying spectral boundary conditions,
while in the MIT case, it is nonzero, and its sign depends on
the parameter ς (ς ¼ 1 and −1 for the MIT [9] and chiral
[10] cases). Conversely, the t.e.v. of the FC vanishes on
the boundary in the MIT case, while it remains finite for the
spectral model. The t.e.v. of the CC is negative on the
rotation axis in both models, but its value on the boundary
is positive in the spectral case, while in the MIT case, the
t.e.v. of the CC vanishes only on the boundary. Finally, the
t.e.v. of T φ̂ φ̂ vanishes on the boundary in the spectral case,
while in the MIT case, it stays positive.
There are also qualitative differences in the Casimir

divergence on the boundary in the spectral and MIT
models. The Casimir divergence of the SET in the spectral
model is more rapid than in the MIT model, apparently
contradicting the general analysis in Ref. [27]. We attribute
this behavior to the nonlocal nature of the spectral
boundary conditions, which violate the assumptions fun-
damental to the analysis of Ref. [27]. In addition, the
coefficient of the leading order of the Casimir divergence is
independent of the mass in the spectral case, while in the
MIT case, it depends both on the mass and on the sign of
the parameter ς. As in the thermal case, the Casimir
expectation value of the FC is zero for vanishing mass
in the spectral case, while in the MIT case, it depends on the
sign of ς. Furthermore, the Casimir divergence of the FC is
more rapid in the MIT case than in the spectral case.
Our main conclusion is that, by enclosing the quantum

fermion field inside a timelike boundary in Minkowski
space-time, with the boundary placed such that there is no
SOL, regular rigidly-rotating thermal states can be con-
structed. Similar conclusions for a quantum scalar field
were reached in Ref. [5]. Inserting a timelike boundary in
Minkowski space-time is a little artificial, so one might
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instead consider a quantum field on anti-de Sitter (AdS)
space-time, where the boundary of the space-time itself is
timelike. Recently, it has been shown that, for a quantum
scalar field on AdS, if there is no SOL, then the rigidly-
rotating vacuum is identical to the nonrotating vacuum
[28], as happens for a quantum scalar field inside a cylinder
on Minkowski space-time [5]. This suggests that regular
rigidly-rotating thermal states should exist on AdS if the
angular speed is sufficiently small that there is no SOL.
Whether the same result is true for a quantum fermion field
remains an open question, to which we plan to return in a
future publication (we have recently studied the nonrotating
vacuum for a quantum fermion field on AdS [29]).
Rigidly-rotating thermal states onMinkowski space-time

can also be considered as toy models for the construction of
the Hartle-Hawking state [30] on rotating black hole space-
times. The Hartle-Hawking state describes a quantum field
in thermal equilibrium at the Hawking temperature of the
black hole. Many qualitative features of rigidly-rotating
thermal states on Minkowski space-time carry over to the
Hartle-Hawking state. For example, rigidly-rotating ther-
mal states for a quantum scalar field are irregular every-
where on the unbounded Minkowski space-time [5], while
the Hartle-Hawking state cannot be defined on the Kerr
space-time for a quantum scalar field [31–33]. For fermion
particles, there exist Hartle-Hawking-like states which
exhibit a divergent behavior as the SOL is approached
but are regular inside the SOL [34]. This behavior is also
recovered when rigidly-rotating thermal states on
unbounded Minkowski space-time are considered [1].
Removing the space-time beyond the SOL is sufficient to

ensure the regularity of rigidly-rotating thermal states on
unbounded Minkowski space or Hartle-Hawking states on
Kerr space-time. In Ref. [5], rigidly-rotating thermal states
for a quantum scalar field on Minkowski space-time are
constructed for a system enclosed inside a boundary
located on or inside the SOL. Similarly, a Hartle-
Hawking-like state for a quantum scalar field is constructed
in Ref. [35] for a Kerr black hole placed inside a spheroidal
boundary. The corresponding situation, on Kerr space-time,

of a quantum fermion field inside a spheroidal boundary is
currently under investigation [36]. It will be interesting to
compare the t.e.v.s computed in this paper with those for a
Hartle-Hawking-like state for a quantum fermion field on
the Kerr space-time with the boundary present.
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APPENDIX: ASYMPTOTIC EXPANSIONS OF
MODIFIED BESSEL FUNCTIONS

At fixed order ν, the asymptotic expansion of the
modified Bessel functions as their argument α goes to
infinity is [37,38]

IνðαÞ ¼
eαffiffiffiffiffiffiffiffi
2πα

p
�
1 −

η − 1

8α
þ ðη − 1Þðη − 9Þ

2!ð8αÞ2 þOðα−3Þ
	
;

ðA1aÞ

KνðαÞ ¼
e−αffiffiffiffiffiffiffiffiffiffiffi
2α=π

p �
1þ η − 1

8α
þ ðη − 1Þðη − 9Þ

2!ð8αÞ2 þOðα−3Þ
	
;

ðA1bÞ

where

η ¼ 4ν2: ðA2Þ

The uniform asymptotic expansions of the modified Bessel
functions as both the order ν and the argument x are
allowed to increase take the following form [26,38], where
we have introduced the polar coordinates r and θ, defined
in Eq. (5.31):

IνðxÞ ¼
erþr cos θ ln tanθ

2ffiffiffiffiffiffiffiffi
2πr

p
�
1þ 3 − 5cos2θ

24r
þ 81 − 462cos2θ þ 385cos4θ

1152r2
þOðr−3Þ

	
; ðA3aÞ

KνðxÞ ¼
e−r−r cos θ ln tan

θ
2ffiffiffiffiffiffiffiffiffiffi

2r=π
p �

1 −
3 − 5cos2θ

24r
þ 81 − 462cos2θ þ 385cos4θ

1152r2
þOðr−3Þ

	
: ðA3bÞ

For the analysis of the Casimir divergence in Sec. V, the asymptotic expansions of the following combinations are
required. These can be calculated using Eqs. (A3):

I−
ν−1

2

ðxÞ ¼ cot θ
πr

e2rþ2r cos θ ln sin θ
1þcos θ

�
1þ 1þ 5sin2θ

12r
þ 1

2r2

�
1 −

29

12
cos2θ þ 205

144
cos4θ

�
þOðr−3Þ

	
; ðA4aÞ
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Iþ
ν−1

2

ðxÞ ¼ 1

πr sin θ
e2rþ2r cos θ ln sin θ

1þcos θ

�
1þ cos2θ

12r
þ cos2θ

8r2

�
1 −

35

36
cos2θ

�
þOðr−3Þ

	
; ðA4bÞ

I×
ν−1

2

ðxÞ ¼ 1

πr
e2rþ2r cos θ ln sin θ

1þcos θ

�
1 −

5cos2θ
12r

−
cos2θ
2r2

�
1 −

205

144
cos2θ

�
þOðr−3Þ

	
; ðA4cÞ

Kν−1
2
ðxÞ

Iν−1
2
ðxÞ ¼ π sin θ

1þ cos θ
e−2r−2r cos θ ln

sin θ
1þcos θ

�
1þ 5cos2θ

12r
−
cos θ
2r2

�
1 −

5

4
cos2θ −

25

144
cos4θ

�
þOðr−3Þ

	
: ðA4dÞ
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