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Theories of gravity with a preferred foliation usually display arbitrarily fast signal propagation, changing
the black hole definition. A new inescapable barrier, the universal horizon, has been defined and many static
and spherically symmetric examples have been studied in the literature. Here, we translate the usual definition
of the universal horizon in terms of an optical scalar built with the preferred flow defined by the preferred
spacetime foliation. The new expression has the advantages of being of quasilocal nature and independent of
specific spacetime symmetries in order to bewell defined. Therefore, we propose it as a definition for general
quasilocal universal horizons. Using the new formalism, we show that there is no universal analog of
cosmological horizons for Friedmann-Lemaître-Robertson-Walker models for any scale factor function, and
we also state that quasilocal universal horizons are restricted to trapped regions of the spacetime. Using the
evolution equation, we analyze the formation of universal horizons under a truncated Hořava-Lifshitz theory,
in spherical symmetry, showing the existence of regions in parameter space where the universal horizon
formation cannot be smooth from the center, under some physically reasonable assumptions. We conclude
with our view on the next steps for the understanding of black holes in nonrelativistic gravity theories.
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I. INTRODUCTION

Black holes were originally found and defined as a result
of local Lorentz invariance (LLI) in solutions of general
relativity (GR). LLI guarantees that the speed of light c is
the highest speed available for physical signals, which
implies (by itself) that the future of any event lies inside a
light cone. Black holes appear in solutions of GR that
contain a set of events whose future light cones do not reach
future infinity and their event horizon is defined as the
boundary of the set of events whose future light cones
contains future infinity. Therefore, it is surprising that when
we build nonrelativistic gravity theories by giving up LLI
and allowing for superluminal propagation of physical
signals, we can still define black holes and find solutions
containing such objects, as was first clearly stated in
Refs. [1,2]. The event horizon for black holes in non-
relativistic theories has been called the universal horizon
(UH), for it is a horizon for signals of arbitrarily large
speed, including instantaneous signals. This is possible
because even in the absence of a maximum speed, there still
is a notion of causality, as it was explained in Ref. [3].
On the other hand, gravity theories without LLI have

been a subject of interest for a variety of reasons, ranging
from pure phenomenology applications of Einstein-aether
theory [4,5], alternative models of gravity under different
fundamental symmetries from those of GR such as the
shape dynamics [6], and even as renormalizable quantum
gravity theory candidates such as the Hořava-Lifshitz (HL)
gravity [7–10].

Black hole physics is already a challenging subject with
deep theoretical consequences in standard GR, such as the
relation between black holes thermodynamics [11,12] and
Hawking radiation [13], and the current progress on holo-
graphic duality between gravity and gauge theory [14–16].
These important phenomena related to black holes were
originally obtained considering only static black hole
models, or the phase space of static solutions. In order
to study the actual physical evolution of black holes and
related physics, the quasilocal formalism based on the
optical scalars related to the flow of null curves was
developed in the last two decades [17–23].
Recent works have searched for black hole laws in

nonrelativistic gravity in analogy with the black hole laws
in GR, such as the emission of Hawking radiation from the
UH [24] (whose temperature is related to the surface gravity
in the standard way [25,26]) and the derivation of a Smarr
formula [27]. Static solutions containing a UH have been
studied inRefs. [28–31], while the examples of its dynamical
evolution have been analyzed by numerical methods in
Refs. [32,33]. While there has been steady progress in the
understanding of UHs, most of the work until now has
depended on definitions that are restricted to highly sym-
metrical setups, such as spherical symmetry, asymptotic
flatness, and (with the few exceptions cited above) no time
evolution.
Our aim in this paper is to provide a quasilocal formalism

that will allow us to study black holes in theories with a
preferred foliation, in order to be able towork in nonspherical
and time-dependent models, in analogy with the program of
quasilocal trapping horizons in relativistic gravity.
In Sec. II, we explain the main assumptions on the

spacetime structure that emerge in the class of gravity*alan.silva@ufabc.edu.br
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theories considered in this work. We also define the optical
scalars, which are the geometrical objects that we use in the
formalism we propose. In Sec. III we review the original
definition of a UH, restricted to static and spherically
symmetric solutions. In Sec. IV we review a generalization
used in Ref. [33] for a UH in spherically symmetric, but
dynamical spacetimes. Then, we express the earlier defi-
nitions in terms of optical scalars that are not dependent on
the symmetries of the solution, obtaining as the result our
proposal of a general definition of quasilocal UHs. In
Sec. V, we study some consequences of the quasilocal
definitions in cosmological and gravitational collapse
setups. Finally, we state our conclusions and discuss some
ideas of further progress in the understanding of black holes
in nonrelativistic theories in Sec. VI.
In this paper, we adopt the geometrized unit system with

G ¼ c ¼ 1, the abstract index notation as used in Wald’s
textbook [34], and the ð−þþþÞ signature.

II. MAIN ASSUMPTIONS AND DEFINITIONS

The interest in theories of gravity with a preferred
foliation has been considerable and various theories with
this property have been proposed. Here we will not focus
on any specific Lagrangian, but on properties shared by this
class of theories. Specifically, we assume that the three
following assumptions hold:
(1) The spacetime has a preferred codimension-one

spacelike foliation Σ as a fundamental structure.
(2) The foliation Σ is totally ordered, such that we can

define a real monotonic time function τ that is
constant in each single leaf Στ.

(3) Each hypersurface Στ can be further foliated in
compact spacelike 2-surfaces S.

For more precise details on the meaning and conse-
quences of assumptions 1 and 2 above, we refer the reader
to Ref. [3] for precise definitions. Assumption 3 is
necessary because we will relate the current UH definitions
with geometrical objects built on the 2-surfaces of S.
A useful (and physically meaningful) way of describing

a codimension-one spacelike foliation is by using a hyper-
surface-orthogonal normalized timelike 1-form field ua,
which is built in terms of the time function as

ua ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∇aτ∇aτ
p ∇aτ ⇒ u½a∇buc� ¼ 0: ð1Þ

We will call the vector field ua the preferred flow
associated with Σ.
For the sake of clarity, we can assume that our theory is

given by an Einstein-scalar action Stotal of the form

Stotal ¼ SEH þ Sϕ þ Smatter; ð2Þ

where SEH is the standard Einstein-Hilbert action of GR, Sϕ
is the non-Lorentz-invariant term given by a scalar ϕ field

and its coupling with the spacetime metric gab, and Smatter
corresponds to the material sources and their couplings
to the gravity fields, gab and ϕ. If we use a Lagrange
multiplier to impose that ∇aϕ is timelike everywhere, this
theory will have a preferred spacelike foliation (or a special
foliation, albeit not preferred, if we follow the definitions in
Ref. [35]) with surfaces orthogonal to ∇aϕ. Theories that
fall into this mold include Hořava-Lifshitz gravity (see
Ref. [2]), Einstein-aether theory restricted to hypersurface-
orthogonal flow [36], k-essence cosmological models [37],
and cuscuton theory [38].
For instance, in Hořava-Lifshitz gravity, the preferred

foliation structure is given by a scalar field ϕðxaÞwhich has
been called the khronon [2,39]. The leaves of the foliation
are given by the level 3-surfaces of the khronon field.
The foliation S on the Στ surfaces induces a codimension-

two foliation on the full spacetime, which divides the tangent
space at each event into two subspaces: the one tangent to S
[which we call TðSÞ] and the one orthogonal to S [which we
call NðSÞ]. The subspace NðSÞ contains ua and since it is
timelike, we can always chose a spacelike unit vector ea in
NðSÞ in order to build a zweibein, satisfying

uaea ¼ 0; uaua ¼ −1; eaea ¼ 1: ð3Þ
With the spacetime metric gab we can build the induced
metric on the S-surfaces as

nab ¼ gab þ uaub − eaeb; ð4Þ
which allow us to define the 2-expansionΘðvÞ, 2-shear σðvÞab,
and 2-vorticity ωðvÞab of any orthogonal vector va, respec-
tively, as the trace, symmetric traceless, and antisymmetric
components of its derivative on S:

nacnbd∇cvd ¼
1

2
nabΘðvÞ þ σðvÞab þ ωðvÞab; ð5Þ

where

ΘðvÞ ¼ nab∇avb ¼
1

2
nabLvnab; ð6Þ

σðvÞab ¼ nacnbd∇ðcvdÞ −
ΘðvÞ
2

nab; ð7Þ

ωðvÞab ¼ nacnbd∇½cvd�: ð8Þ

Virtually all examples of UHs in 3þ 1 dimensions1

studied in the literature are located in spherically symmetric
spacetimes, where the foliation S can be built with round

1There are examples of UHs in rotating black holes in the
literature, albeit in 2þ 1 dimensions, as in Refs. [40,41]. In 2þ 1
dimensions, rotating solutions preserve circular symmetry, and
hence all formalism for spherically symmetric spacetimes still
applies, with the due adaptation for the lower dimensionality.
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spheres S2. In this case, the 2-shear and 2-vorticity vanish
and the 2-expansion related to any vector va ∈ NðSÞ can be
given in terms of the areal radius r as

ΘðvÞ ¼
2

r
va∇ar: ð9Þ

III. UNIVERSAL HORIZONS IN STATIC
SPACETIMES

The static UHs have been defined in static and spheri-
cally symmetric solutions and in this section we restrict
ourselves to such spacetimes. Therefore, the vector ua is
orthogonal to the spheres of symmetry, which correspond
to the leaves of S. In order to build a spacetime basis, we
can choose the spatial vector as

ea ≡ Eab⊥ ub; ð10Þ
where Eab⊥ is the Levi-Civita tensor on NðSÞ.2
The vector ea satisfies

uaea ¼ 0; eaea ¼ 1; ð11Þ

and, in the particular case of flat spacetime where
ua ¼ ð1; 0; 0; 0Þ, we have ea ¼ ð0; 1; 0; 0Þ by our
construction.
Since we consider the possibility of arbitrarily fast signal

propagation, causality in this context is modified from its
relativistic form. The light cones are deformed locally into
planes and the distinction between timelike and spacelike
vectors disappears.
What remains is the distinction between past- and future-

directed signals: only signals propagating to the future (that
is, towards increasing time hypersurfaces) according to the
local observer given by the preferred flow ua are physical.
Covariantly, this causality notion means that for a future-

directed signal (or particle) with 4-momentum pa we have

paua < 0: ð12Þ

The condition (12) is the usual condition used in general
relativity to define future-directed signals according to
some local observer ua chosen to define the future
direction. What is not usual here is that this condition also
applies to a spacelike pa. We refer the reader to Ref. [3] for
more details on this notion of causality.
In static spacetimes, there exists a Killing field χa in the

exterior region that is timelike outside the Killing horizon
and spacelike in the interior region. The UH has been
defined in static spacetimes as the tube foliated by surfaces
where

χaua ¼ 0: ð13Þ

This ensures that all future-directed signals propagate
towards smaller radii, since χa∂ar ¼ 0 which implies that
ua ¼ W∂ar at the UH. Equation (12) implies pa∂ar < 0
for W > 0, which is the case when the future is directed
inwards. This defines an interior region where even
arbitrarily fast signals are imprisoned, defining a black
hole in nonrelativistic theories. The case where the future is
directed outwards (W < 0) does not correspond to a black
hole type object and will be treated in Sec. V.

IV. DYNAMICAL CASES AND GENERAL
DEFINITION

The definition (13) is restricted to stationary spacetimes
as it depends on the existence of a timelike Killing field.
Since we expect that black holes are the end products of
gravitational collapse, it is necessary to find a definition
that does not depend on staticity.
This has been attempted in Ref. [3], where a definition of

UHs independent of staticity of symmetries was given and
its properties studied. On the other side, their definition has
the shortcoming of being a global one, depending on the
structure of the full solution and not on its local physics.
The global definition cannot be used, for example, to build
an initial condition with a horizon before we solve the
evolution. Also, it cannot provide observable physical
properties of the UHs, since the global UH does not meet
any local conditions there. However, the global UH can be a
useful definition in order to analyze global properties of the
spacetime, in the same manner that the event horizon
definition has been proven to be useful in GR.
In order to numerically study a case of gravitational

collapse, a quasilocal definition of UHs has been given in
Ref. [33], albeit restricted to the case of spherically
symmetric spacetimes. That definition consists of replacing
the Killing vector field by the Kodama vector field in
Eq. (13):

Kaua ¼ 0; ð14Þ

where Ka is the Kodama vector [42,43], which can be
defined as

Ka ¼ Eab⊥ ∇br; ð15Þ

and r is the areal radius. The definition (15) is meaningful
only in spherically symmetric spacetimes, because the
Kodama vector is only defined in such spacetimes.
Our aim is to give a quasilocal definition of UHs that

does not depend on staticity or spherical symmetry. In order
to accomplish this, we will translate the definitions we have
for symmetric spacetimes in terms of optical scalars
associated with a codimension-two foliation S, which

2The Levi-Civita tensor on NðSÞ is given by
Eab⊥ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g⊥ab

p ϵab, where g⊥ab is the induced metric tensor

on NðSÞ.
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are well defined irrespective of the symmetries of the
spacetime, provided the assumptions given in Sec. II hold.
We start by inserting Eq. (15) into Eq. (14), obtaining

0 ¼ Kaua ¼ ðEab⊥ ∇brÞua ¼ ð−Eba⊥ uaÞ∇br ¼ −eb∇br ¼ 0:

ð16Þ

The quantity eb∇br can be geometrically interpreted. We
remark that in spherical symmetry it is proportional to an
optical scalar, the 2-expansion ΘðeÞ:

ΘðeÞ ¼
2

r
ea∇ar: ð17Þ

Therefore, we conclude our program stating the general
quasilocal definition for UHs as

ΘðeÞ ¼ 0: ð18Þ

The definition (18) reduces to the definitions (13)
and (14) when the symmetries assumed for those defini-
tions are verified. However, ΘðeÞ is well defined even when
the leaves of the codimension-two foliation are not spheres,
by Eq. (6), and gives us a view of the UH in terms of the
behavior of optical scalars related to the preferred flow ua

across the leaves of S. Therefore, it is a candidate for the
definition of quasilocal UHs for general spacetimes.
Evidently, different definitions based on optical scalars

that also reduce to Eq. (18) in spherically symmetric cases
are still possible, if we add terms built with the 2-shear or
2-vorticity in the ua or ea direction, since they vanish in
spherical symmetry. However, Eq. (18) already conveys the
idea that the future is restricted to 2-surfaces S of
decreasing area and has the advantage of being the simplest
general definition based on optical scalars of S that is
equivalent to the current definitions in the particular cases
where they apply. We also remark that Eq. (18) is similar in
form to the definition of trapping horizons in standard
GR [17].
In general spacetimes, there is no equivalent to the areal

radius coordinate r, and thus we define Θe using Eq. (6)
which depends only on the foliation S through the induced
metric nab. In those cases, there are no natural codimen-
sion-two foliations, such as the S2 spheres in symmetrical
cases. Hence, we expect that the generalized universal
horizons may depend on the choice of the codimension-two
foliation, since ea depends on this choice. This foliation
dependence also happens for trapping horizons in general
spacetimes and even when using nonspherical foliations in
spherically symmetrical spacetimes (see Ref. [22]).
Once we have a definition for quasilocal UHs in

asymmetric spacetimes, we can ask ourselves what is the
surface gravity expression on the horizon. Even in static
and spherical cases, the surface gravity definition has

proved to be a subtle subject, as there are two different
prescriptions,

κinaffinity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
∇aχb∇aχb

r ����
UH

; ð19Þ

κpeeling ¼
1

2
ua∇aðχbubÞ

����
UH

; ð20Þ

whose physical meaning is distinct, as was thoroughly
discussed in Ref. [25]. In Ref. [26], it was argued that the
surface gravity notion that can be thermodynamically
meaningful for modified gravity theories with a UH is
κpeeling, since it is the quantity that also appears as related to
the temperature of the black hole radiation computed
in Ref. [24].
We can write Eq. (20) in terms of 2-expansions as

κpeeling¼−
r
8
ðua∇aΘðeÞ þΘuΘðeÞÞ

����
UH

¼−
r
8
ua∇aΘðeÞ

����
UH

:

ð21Þ

We can rewrite it in terms of the horizon area instead of
the areal radius AUH ¼ 4πr2UH ¼ R

UH μ to obatin an expres-
sion in terms of quantities that are well defined beyond
spherical symmetry:

κpeeling ¼ −
ffiffiffiffiffiffiffiffiffi
AUH

64π

r
ua∇aΘðeÞ

����
UH

; ð22Þ

which shows a remarkable similarity with the effective
surface gravity defined in Ref. [23] for outer trapping
horizons in standard GR,

κeffective ¼ −
ffiffiffiffiffiffiffiffiffi
AAH

16π

r
la∇aΘðkÞ

����
TH
: ð23Þ

The use of optical scalars associated with S and the flow
ua (through ea) allowed us to write the definitions of the
UH and its surface gravity in the form given in Eqs. (18)
and (22), which can be extended for more general space-
times. Therefore, we propose Eqs. (18) and (22) as the
general definitions of quasilocal UHs and surface gravity,
respectively.
It would be interesting to use this surface gravity to find a

first-law-of-thermodynamics type of relation,

κLzμjUH ¼ LzEjUH þ…; ð24Þ

where μ is the area form, za is the evolution vector tangent
to the UH, and E is the quasilocal energy enclosed by the
UH. In GR, the Hawking-Hayward energy [44] arises as the
best candidate. However, the Hawking-Hayward energy is
a quantity that depends only on the spacetime metric gab
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and seems to be inadequate for theories where the space-
time is also provided with a preferred family of observers
given by ua. This is analogous to replacing the trapping
horizon notion—which depends only on gab—with the
universal horizon, taking into account the role of ua besides
the properties of gab. The definition of a notion of
quasilocal energy adapted for nonrelativistic gravity is
very interesting in itself; it naturally appears as a result
of the application of our formalism to the problem and is a
matter for further work.

V. DISCUSSION

In this section, we are going to study some immediate
consequences of using Eq. (18) as the quasilocal UH, and
analyze some simple examples.

A. Quasilocal UH and trapped regions

We can rewrite the definition (18) in terms of
the 2-expansion related to the null directions built with
ua and ea:

ka ¼ ua þ ea; la ¼ ua − ea; ð25Þ

following the construction made in Ref. [45]. In terms of
ΘðkÞ and ΘðlÞ, Eq. (18) takes the form

ΘðkÞ − ΘðlÞ ¼ 0; ð26Þ

which implies ΘðkÞΘðlÞ > 0. This means the quasilocal UH
can only appear in the so-called trapped or antitrapped
regions of spacetime, defined as regions where light rays on
the two independent orthogonal directions are either both
convergent or both divergent, respectively.
In terms of the known solutions, this only confirms what

has been observed in each example: the UH is always
contained in the region inside the Killing horizon (or
trapping horizon, in the case studied in Ref. [33]). While
trapped regions characterize black holes, antitrapped
regions usually appear in expanding spacetimes and white
holes. Therefore, we should consider the possibility of a
UH of the cosmological type, located in antitrapped
regions.
In order to study this possibility, we consider a spatially

homogeneous spacetime described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) line element

ds2 ¼ −dt2 þ aðtÞ2ðdR2 þ fðRÞ2dΩ2Þ; ð27Þ

where

fðRÞ ¼

8>><
>>:

R − open flat universe;

sinhR − open hyperbolic universe;

sinR − closed universe:

ð28Þ

The areal radius is given by rðt; RÞ ¼ aðtÞfðRÞ, and its
differential is

dr ¼ _afðRÞdtþ af0dR; ð29Þ

where we use a dot to denote t derivatives and a prime to
denote R derivatives.
Irrespective of the full theory, isotropy and spatial

homogeneity implies ua ¼ ∂t everywhere, since any com-
ponent in the ∂R direction would produce a preferred center
of symmetry. For similar reasons, in spherically symmet-
rical spacetimes, ua cannot have nonzero angular compo-
nents. Thus, we have

ea ¼ 1

a
∂R: ð30Þ

Therefore, computing ΘðeÞ, we obtain

ΘðeÞ ¼
2f0

af
; ð31Þ

which only vanishes when

f0 ¼ 0: ð32Þ

This implies that there are no cosmological UHs in open
universes, irrespective of the form of the scale factor. The
closed case is more subtle, since Eq. (32) is satisfied at the
equator (R ¼ π

2
). However, as the closed FLRW spacetime

is symmetric about the equator, the region behind it has the
same properties as the region in front of it, which means
that the equator should not be understood as a quasilocal
UH. This happens because this is a surface of extreme
radius in each spatial leaf, such that even if the propagation
of signals is restricted towards smaller radii, this is not a
trapping condition because the radius decreases in both
directions, such that physical signals can propagate
each way.3

B. Evolution vector and area

In order to study the properties of a general UH, it is
convenient to define its evolution vector, that is, the vector
za tangent to the UH and restricted to the ðua; eaÞ subspace.
Thus, let za ¼ −γua þ βea be the evolution vector. Here,
we need to adopt a criterion in order to choose a direction to
za and not be ambiguous in what is meant by “evolution,”
as there is an overall sign choice. In the direction tangent to
the UH there is no time evolution, as by the definition of the
UH the preferred flow is orthogonal to the UH, and thus we

3Something similar happens with the Killing “horizon” in the
static Einstein universe, which corresponds to our closed example
with aðtÞ ¼ 1, and should not be understood as a trapping
horizon at all.
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cannot use the prescription usually made for trapping
horizons (see Ref. [17]) which consists of imposing that
the evolution vector za is future directed.
If we assume spherical symmetry, besides the preferred

flow, we have another natural choice which is using the
Kodama vector field Ka. The Kodama field has the
advantage of being proportional to the khronon flow and
future directed in the normal region outside the trapping
horizon, but it changes continuously when we move
inwards until it is orthogonal to the preferred flow at the
UH. The Kodama vector gives us the future direction
related to an observer outside the trapping horizon. This is
the notion of future that we are going to use. Thus, we
require that the evolution vector za satisfies

Kaza > 0; ð33Þ

which implies β > 0.
In general, we can use the Hodge dual [restricted to

NðSÞ] of the mean curvature vector on the leaves of S
instead of the Kodama vector in order to define a vector
fieldHa which is reduced to the Kodama vector in spherical
symmetry (see this construction in Ref. [23]) and can be
used in order to choose a future direction, in the same way
as done in Eq. (33).
We have then zaza ¼ −γ2 þ β2, and

LzΘðeÞjUH ¼ 0 ⇒ −γLuΘðeÞjUH þ βLeΘðeÞjUH ¼ 0;

⇒
γ

β
¼ LeΘðeÞ

LuΘðeÞ

����
UH

: ð34Þ

The evolution vector also determines the behavior of the
UH area. Consider the area form μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det nab
p

ϵSab, where
ϵSab is the Levi-Civita symbol on TðSÞ. Thus, the evolution
of the area measure along the UH is given by

LzμjUH ¼ μΘz ¼ μð−γΘðuÞ þ βΘðeÞÞjUH ¼ −μγΘðuÞ: ð35Þ

Since (according to Sec. VA) the UH lies inside a trapped
region, ΘðuÞ < 0. Therefore, the behavior of the area of the
horizon depends solely on the sign of γ:8>><

>>:
γ < 0 ⇒ Lzμ < 0;

γ ¼ 0 ⇒ Lzμ ¼ 0;

γ > 0 ⇒ Lzμ > 0.

ð36Þ

We can then relate the direction of za with the (effective)
matter sources by means of the evolution equations. Here,
for the sake of simplicity, we restrict ourselves to the
analysis of the evolution equations in spherically symmet-
ric spacetimes, where only the 2-expansions are nonzero4:

LuΘðuÞ ¼ −
3

4
Θ2

ðuÞ þ
1

4
Θ2

ðeÞ þ AΘðeÞ −
1

r2
− 8πTabeaeb;

ð37aÞ

LeΘðeÞ ¼ −
3

4
Θ2

ðeÞ þ
1

4
Θ2

ðuÞ þ BΘðuÞ þ
1

r2
− 8πTabuaub;

ð37bÞ

1

2
ðLuΘðeÞ þ LeΘðuÞÞ ¼ −

ΘðuÞΘðeÞ
2

þ A
2
ΘðuÞ

þ B
2
ΘðeÞ − 8πTabuaeb; ð37cÞ

with

A ¼ uaeb∇aub; ð38aÞ

B ¼ eaeb∇aub; ð38bÞ

where the physical meanings of A and B are, respectively,
the magnitude of the acceleration of ua, ua∇aub ¼ Aeb,
and B ¼ Kabeaeb, where Kab is the extrinsic curvature of
the leaves of constant time.5 We also define the effective
energy-momentum tensor Tab as

Tab ¼ Tmatter
ab þ Tϕ

ab; ð39Þ

with Tϕ
ab and Tmatter

ab representing the energy-momentum
tensor related to Sϕ and Smatter.
Since we can write LeΘðuÞ ¼ LuΘðeÞ − Θð½u;e� and

Θ½u;e� ¼ AΘðuÞ − BΘðeÞ, we can rewrite Eq. (37c) more
conveniently as

LuΘðeÞ ¼ −
ΘðuÞΘðeÞ

2
þ AΘðuÞ − 8πTabuaeb: ð40Þ

C. UH formation in truncated HL theory

We analyze the equations of evolution in order to verify
conditions in which the UH may be formed at the center
r ¼ 0 as a result of gravitational collapse in a modified
gravity theory. This can be a first step towards an area law
analogous to the nondecreasing theorem for trapping
horizons (see Ref. [17]), such that we have included a
version of our reasoning for trapping horizons in the
Appendix, which is remarkably simpler.

4Those equations can be readily obtained from the evolution
equations shown in Ref. [45].

5In previous articles, such as Ref. [27], A and B are denoted as
ða · sÞ and K0, respectively.
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We consider a truncated nonprojectable HL action in the
absence of matter fields (see Ref. [39]):

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ ðλ − 1Þð∇auaÞ2 þ αAaAa�; ð41Þ

with Aa ¼ ub∇bua, where we set GHL ¼ 1 in order to
simplify our notation.
The energy-momentum tensor of the khronon field is

given by

8πTϕ
ab ¼ 4ð1 − λÞð∇cucÞ∇ðaubÞ − 2αAaAb

þ gab½ðλ − 1Þð∇cucÞ2 þ αAcAc�: ð42Þ

Specializing for spherical symmetry and projecting in
our ðua; eaÞ basis, we obtain

8πTϕ
abu

aub ¼ ð1 − λÞðBþ ΘðuÞÞ2 − αA2; ð43aÞ

8πTϕ
abe

aeb ¼ ð1 − λÞð3B2 þ 2BΘðuÞ − Θ2
ðuÞÞ − αA2;

ð43bÞ

8πTϕ
abu

aeb ¼ 2ð1 − λÞAðBþ ΘðuÞÞ: ð43cÞ

This leads us to the evolution equations at the UH:

LeΘðeÞjUH ¼ 1

4
Θ2

ðuÞ þ BΘðuÞ þ
1

r2UH

− ð1 − λÞðBþ ΘðuÞÞ2 þ αA2

����
UH

; ð44aÞ

LuΘðeÞjUH ¼ AΘðuÞ − 2ð1 − λÞAðBþ ΘðuÞÞjUH: ð44bÞ

We will analyze the general behavior determined by
Eqs. (44a) and (44b) under some assumptions on the value
of quantities at the UH that are compatible with a spherical
collapse. First, we consider that BUH > 0, which is equiv-
alent to saying that ua turns inwards as we move towards
the center, which happens in all known solutions containing
a UH.
At the UH, we have ua ¼ W∇ar, with W > 0, and thus

ΘðuÞ ¼ 2
rUH

ua∇arjUH ¼ − 2W−1

rUH
. This implies that, if we

assume that the spacetime (metric and khronon) is regular
until the UH is formed, with AUH and BUH finite when the
UH appears at r ¼ 0, Eq. (44a) is dominated by Θ2

ðuÞ and
curvature terms, both behaving as Oð1=r2UHÞ.
Hence, we have for rUH ∼ 0

γ

β
¼ LeΘðeÞ

LuΘðeÞ
∼
½1 −W−2ð3 − 4λÞ�ð1=r2UHÞ

AΘðuÞð2λ − 1Þ : ð45Þ

In addition, we consider AUH > 0, which happens in the
analytic solutions found in Ref. [27] and means that the
fluid flow does not turn inwards as fast as the geo-
desic flow.
Hence, we have that the denominator is negative for

λ > 1=2. In order to analyze the sign of the numerator we
remark that at the UH we have −1 ¼ uaua ¼
W2∇ar∇ar ⇒ W−2 ∼ 2MMSðr¼0Þ

rUH
− 1, where MMS denotes

the Misner-Sharp energy. If limr→0MMS > 0, this term
dominates the numerator, and we have that the numerator
is negative for λ < 3=4. Therefore, under the assumptions
above, we only have γ > 0 for 1=2 < λ < 3=4. In this case,
a UH formed can have an increasing area. Otherwise, at
r ¼ 0, the derivative of the area of a UH formed at the
center would be negative (γ < 0) which implies that the UH
would instantly vanish.
Recapitulating, under the assumptions that
(i) gravity is described by the truncated HL Lagrangian

in Eq. (41),
(ii) for r → 0, A > 0 and B > 0, but finite, and
(iii) for r → 0, the Misner-Sharp energyMMSðr→0Þ>0,

the smooth formation of a UH increasing from the center
(r ¼ 0) is only allowed for 1=2 < λ < 3=4.
If we consider AUH < 0 instead, keeping the other

assumptions, we obtain the increasing UH area for
λ < 1=2 or λ > 3=4.
For other values of λ, under our assumptions, our

reasoning does not exclude the possibility of UH formation,
but it implies that the UH can only appear at finite radius,
resulting in the sudden formation of a black hole with a
finite area. This can be interesting from the point of view of
the thermodynamical interpretation of the laws of black
holes dynamics in nonrelativistic gravity theories, since the
thermodynamical variables related to the black hole hori-
zon area should display a discontinuous behavior in
those cases.
Reference [33] showed a numerical simulation of a

spherical gravitational collapse in Einstein-aether theory,
but the beginning of UH formation was not plotted and in
all continuous evolutions the area of the UH decreases, as
can be readily checked in their Fig. 2. An extension of this
kind of work in order to analyze the event where the UH is
formed would be welcome in order to better understand our
results above.

VI. CONCLUSION

In this paper we reviewed the universal horizon defi-
nitions in the literature—which are well defined only under
strong symmetry assumptions—and translated it into the
language of optical scalars, namely, 2-expansions of the
flows related to the preferred foliation of the spacetime. We
also have translated the surface gravity definition associ-
ated with the peeling behavior of trajectories near the
universal horizon. With these translated definitions we
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eliminated the dependence on specific spacetime sym-
metries and obtained a robust definition under much
weaker spacetime assumptions—as explained in Sec. II
—while keeping the quasilocal aspect needed in order to
deal with dynamical situations.
Using our new formalism, we have shown that quasilocal

universal horizons are always restricted to trapped or
antitrapped regions of the spacetime. Then, we dealt with
the possibility of the existence cosmological universal
horizons—corresponding to a horizon in an antitrapped
region—and proved they do not exist in FLRW models,
irrespective of the scale function aðtÞ. This result supports
the notion that the universal horizons only appear in
black holes.
Finally, we analyzed the properties of the evolution

equations of the quasilocal universal horizons in the
spherically symmetric case. By making simplifying
assumptions, we were able to show that in the case of
the collapse governed by a truncated Hořava-Lifshitz
theory there are cases in the parameter space in which
the universal horizons cannot be formed starting smoothly
from the center, contrary to what intuitively seems more
natural. This can have interesting implications for the
corresponding black hole thermodynamics, since a
discontinuous formation should have a thermodynamical
counterpart.
There is another general definition of universal horizons

in the literature (given by Bhattacharyya et al.) that also has
the advantage of not relying on spacetime symmetries, but
it is a global definition that depends on the full causal
structure of spacetimes with a preferred foliation, whose
theory has been described with great precision in Ref. [3].
The relationship between our quasilocal definition and the
global definition of universal horizons should be inves-
tigated. Is it analogous to the relation between trapping
horizons and event horizons? It would be interesting to
study the formation and behavior of the two kinds of
horizons in a numerical simulation of a gravitational
collapse, for example.
Another interesting issue is the analysis of the evolution

equations (37a), (37b), and (37c)—and their generalization
beyond spherical symmetry—in order to obtain formulas
analogous to the laws of black dynamics given for standard
GR black holes in Ref. [17]. Such laws (if they exist), due
to their thermodynamical flavor, are steps toward a con-
sistency test for the underlying modified gravity theories
through thermodynamics.
Given the similarities between the expressions found in

this work for quasilocal universal horizons in our formal-
ism and the analogous expressions related to trapping
horizons, this approach not only opens the way to the
study of the general gravitational collapse in nonrelativistic
gravity; it also suggests that we should repeat the trapping
horizon program that has been fruitful in giving a better
understanding of extreme regimes in relativistic gravity and

may also give us a new way to look at theories of gravity
with a preferred foliation.
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APPENDIX: TRAPPING HORIZON
FORMATION IN GR

Here, we show that trapping horizons (THs) that appear
at the center are nondecreasing. Actually, this is just a
particular case of the more general nondecreasing area
theorem by Hayward [17], which we are using to illustrate
the reasoning that lead us to the results of Sec. V C.
We assume that
(i) Tab respects the null energy condition, TabKaKb ≥

0 for any null Ka, and
(ii) Tab is regular at the center until the formation of

the TH.
Therefore, using a null basis built with our ðu; eÞ basis as

ka ¼ ua þ ea; ðA1Þ

la ¼ ua − ea; ðA2Þ

a black hole TH is defined as the hypertube foliated by
surfaces where

ΘðkÞ ¼ 0; ΘðlÞ < 0 ðA3Þ

in the black hole case. The analogy between the pairs ka=ea

and la=ua is clear. The evolution vector za ¼ −γla þ βka,
with β > 0, satisfies

0 ¼ LzΘðkÞjTH ¼ −γLlΘðkÞ þ βLkΘðkÞ ⇒
LkΘðkÞ
LlΘðkÞ

¼ γ

β
:

ðA4Þ

We use the evolution vector to compute the area
evolution:

LzμjTH ¼ μΘðzÞjTH ¼ −μγΘðlÞ: ðA5Þ

Thus, γ > 0 implies that the TH area is increasing.
Let us study the behavior of a TH at the center r → 0,

using the evolution equations:

LkΘðkÞ ¼ −
Θ2

ðkÞ
2

þ νkΘðkÞ − 8πTabkakb; ðA6Þ
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LlΘðkÞ ¼
1

2
Θð½l;k�Þ − ΘðkÞΘðlÞ −

2

r2
þ 8πTablakb: ðA7Þ

At the TH, ΘðkÞ vanishes and we have

LkΘðkÞjTH ¼ −8πTabkakb ≤ 0; ðA8Þ

LlΘðkÞjTH ¼ 1

2
Θð½l;k�Þ −

2

r2
þ 8πTablakb

∼ −
2

r2
þOðr−1Þ < 0; ðA9Þ

where the first inequality comes from the null energy
condition and the second comes from the regularity of Tab
at the center. Hence, for a TH with r → 0, we have, under
the above conditions,

LkΘðkÞ
LlΘðkÞ

≥ 0 ⇒ γ ≥ 0; ðA10Þ

which implies that any trapping horizon forming at the
center has a nondecreasing area, which is the expected
behavior.

[1] E. Barausse, T. Jacobson, and T. P. Sotiriou, Phys. Rev. D
83, 124043 (2011).

[2] D. Blas and S. Sibiryakov, Phys. Rev. D 84, 124043 (2011).
[3] J. Bhattacharyya, M. Colombo, and T. P. Sotiriou,

arXiv:1509.01558.
[4] T. Jacobson and D. Mattingly, Phys. Rev. D 64, 024028

(2001).
[5] T. Jacobson, Proc. Sci., QG-PH2007 (2007) 020

[arXiv:0801.1547].
[6] H. Gomes, S. Gryb, and T. Koslowski, Classical Quantum

Gravity 28, 045005 (2011).
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