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We present the separation of the Teukolsky master equation for the test field of arbitrary spin on the
background of the rotating C-metric. We also summarize and simplify some known results about Debye
potentials of these fields on type D background. The equation for the Debye potential is also separated.
Solving for the Debye potential of the electromagnetic field we show that on the extremely rotating
C-metric no magnetic field can penetrate through the outer black hole horizon—we thus recover the

Meissner effect for the C-metric.
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I. INTRODUCTION

The pioneering work on the separability of the
Teukolsky master equation on the C-metric background
has been done in [1] and generalized to the rotating case in
[2]. In the preceding paper [3] we independently tackled the
same problem and provided a separation for the “extreme”
Newman-Penrose (NP) field components on the nonrotat-
ing C-metric background. To incorporate rotation in the
C-metric is a natural generalization as some of the
relativistic effects are present in rotating solutions only.
As compared with [1,2] we use a more convenient form of
the C-metric: (i) an explicit factorization of the structure
function, which has been provided only recently in [4],
(i1) asymptotically “nonrotating” form of the metric, as
discussed in [5], and (iii) the canonical coordinates; there-
fore we obtain simpler results.

For the Kerr solution the magnetic and electric field
becomes increasingly expelled from the horizon itself as
the Kerr black hole becomes more extremal—this is known
as the Meissner effect; see, e.g., [6] for recent review or
[7,8] for calculations on misaligned fields. This effect has
been studied not only in the test field approximation, but
through full exact solutions as well [9,10].

Although the Meissner effect has been known for a long
time, its origins have not been still explained satisfactorily.
Some suggestions, such as the infinite distance to the
horizon (in the extremal case) cannot cause the Meissner
effect. The infinite distance is universal property, mean-
while, only the axially symmetric field is subject to the
Meissner effect.

The rotating C-metric is a special case of the boost-
rotation symmetric solutions of Einstein(-Maxwell)
field equations. At the same time it iS a member of
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Plebanski-Demiansky class of solutions [11], therefore
of algebraic type D. The C-metric represents two
“uniformly accelerated charged and rotating black holes.”

In type D spacetimes, the equations for radiative (ingoing
and outgoing radiation) NP field components of (a) the
massless Klein-Gordon field (s = 0), (b) neutrino field
(s =1/2), (¢) test Maxwell field (s = 1), (d) Rarita-
Schwinger field (s = 3/2), and (e) linear gravitational
perturbations (s = 2) can be decoupled [12,13] and the
Debye potential, i.e., a single scalar field from which all
the field components can be generated, for them can be
found [14,15].

We present these equations in Geroch-Held-Penrose
(GHP) formalism [16,17] which is not only succinct but
provides a deeper geometrical insight than the NP formal-
ism. The background metric—the rotating C-metric—is
presented in Sec. II. For more details see, e.g., [4,18,19],
which encompass a comprehensive historical introduction.
The null tetrad and corresponding spin coefficients are
presented. In Sec. III the Teukolsky master equation and the
equation for the Debye potential are summarized together
with the separability ansatz. The equation for separated
radial and angular functions are exposed. The asymptotic
behavior of the radial function close the outer black hole
horizon is analyzed in Sec. IV. These general results are
then used to investigate the static axially symmetric
electromagnetic field in Sec. V. Utilizing the Debye
potential, the field is easy to find. Computing the electric
and magnetic flux through the horizon in the extremal case
we prove that the Meissner effect works even for accel-
erated black holes.

II. CHARGED ROTATING C-METRIC
IN CANONICAL FORM

Using the signature (—, 4, +, +) the canonical form of
the charged rotating C-metric is given by [4,5]
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_ B2 g(y) 1+ (any)2
TS {1 adny) [ (A7) K dz + ad(1 =) o] -5 dy?
aAxy)? x
%‘“2 T % x [(1+ (aAy)*)K,de — aA(1 - y2)K,df]2}, (1)

where the quartic structure function G(£) can be in
physically interesting cases factorized (see [4] for detail
on this factorization) as

G(&) = (1 =&)(1 + r,A8)(1 + r,,AL), (2)

where
r, =m-+\/m*—q*—a* (3)
—\/m?—q* —a’. (4)

The metric (1) is together with electromagnetic 4-
potential

Bqy
1 + (aAxy)?
+ aA(1 - x*)K ,dg],

A= [(1+ (aAx)*)K dz

(5)

a solution of the Einstein-Maxwell equations for 7 € R,
x€R, y€eR and ¢ € (0,2x) in general.

We are interested in spacetime which can be interpreted
as a uniformly accelerated black hole with acceleration
A > 0. This can be achieved by defining the ranges of
values r, and r,,, which are roots of the structure function
G(&) rescaled by A by

(6)
Also, the admissible values of coordinates are restricted to
e (-1,1), (7)

where y = —1/Ar,, is the inner black hole horizon, y =
—1/Ar, is the outer black hole horizon, y = —1 is accel-

eration horizon, and x —y = 0 is asymptotic infinity. In
|

-0 < —1/Ar,, < -1/Ar, < —1.

€ (—1/Ar,, 1), —-y>0,

|

these coordinates the axis is divided in two parts by the
black hole: x = 1 corresponds to the part of axis connecting
the black hole horizon with the acceleration horizon and the
part of axis where x = —1 connects black hole horizon with
infinity.

The coordinate singularity at the acceleration horizon in
(1) can be avoided in the global boost-rotation symmetric
coordinates [19]. Only in these global coordinates the
second black hole appears after we proceed with the
analytic continuation across the acceleration horizon.

The basic set of parameters, which enters the metric, is
the acceleration A, the rotation @, and the position of
outer r,, respectively, inner r,, horizon. But the mass
and the charge parameters are encoded in the metric via
relations m = (r, +r,,)/2 and 9> = rp as fol-
lows from (2). Only three of these parameters are
independent.

From the newly introduced dimensionless constants K,
K., and B only the K, explicitly demonstrates coordinate
freedom. The other ones, K, and B, change the physical
properties of the solution. The constant B serves as a
conformal factor which cannot be transformed out by a
coordinate transformation and K, defines the conical
singularities along the axis. We keep, however, even the
K., because it is useful in demonstrating the “visual
symmetry” of some equations.

For the sake of simplicity of our relations, let us also define
function H (&), conformal factor Q, and constant I" as

F — a2,

__ 9©
MO ST (aanp
Qo_ﬁ, Vit a2 ()

Moreover, we have to introduce a null tetrad (I, n, m,m)
such that /“n, = —1 and m“m, = 1 as follows:

Q
[ — \/2[ (1 + a2A%2)\/—eH(y Kdr—mdy—kaA (1 =x)\/—eH(y)K dq)} 9)
32[ (1 + a?A%x?)\/—eH(y)K d7 + \/_%Tjdy—l—aA (1 =x2)\/—eH(y)K, d(p] (10)
L} P T— x+i(1 + a*A%y?
_ﬁ[ A(l =) VHK.d md Fi(l + A H Kdga} (11)
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and m is given as a complex conjugate of m. This null tetrad
definition is valid in the region between outer black hole
horizon and acceleration horizon, where G(y) <0 for
e =1. In the regions where G(y) > 0 the parameter &
has to be set to —1. Note that this does not affect the
separability of the equation at all.

In this tetrad ! and m are parallel to principal null
directions, but the vector field itself is not tangent to
affinely parametrized null congruences.

There exist two Killing vector fields

o

or’ 5(ﬂ_l\lfﬂaw’ (12)
although the normalization of axial Killing vector field §,, is
quite obvious, this is not true for boost Killing vector field
.. Therefore, we leave both these constants in subsequent
equations.

According to [20], there are also nontrivial conformal
Killing-Yano tensors which we readapted to our metric and
coordinates:

k = QylaAxyl A n —im A, (13)

*xk = —Qq[l A n+ iaAxym A m). (14)

This directly leads to a conformal Killing tensor Qab =
kack =3 [(aAxy)’l ® n + m @ m).

The NP spin coefficients corresponding to the tetrad
(9)—(11) are

o 1 A(1 +iaAxy)(1 = iaAy*)\/G(x) (15)
- V2B (1+ (aAxy)?)*/? ’
_ 1L A(1+iaAxy)(1 - iaAx?)\/—€eG(y) (16)
SY: (1+ (aAxy)?)" ’
. 1 A (1-iaAxy)*(x—y)’
4V2B /1 + (aAxy)?\/=€G(y)
9 —¢G(y)
5 (Tt "
f—— 1 A(1l- iaAxy)*(x —y)?
WIB /T (ahn)’ /G
o g(x)
s (i) %)
and then
T = -1, 0 = &u, €= ¢y, p=-a, (19)
k=0, c=0, v=0, A=0 (20)
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Finally, the only nonzero Weyl NP scalar is

1 A% (x—y)? (1 —iaAxy)?
TR (1 + (aAxy)?)

|

(21)

III. MASTER EQUATION

Teukolsky [12] provided decoupled equations for NP
components of gravitational perturbation ¥, and Wy, of test
electromagnetic field ®, and ®,, and neutrino field y, and
1 in general type D spacetime. For the Rarita-Schwinger
field this was done in [13]. In [3] we summarized these
equations using GHP formalism. However, we realized that
it is not sufficient, in general, to denote the NP field
components by its spin weight s only, but it is necessary to
take the spin S of the field into account as well. Here we,
therefore, rewrite the equations, using a little bit different
notation. Namely, every field component is denoted as

@f;‘;% where p and g are GHP weights, s is the spin weight,'

and S is spin of the field, see Table I.

(8.5)

In general, the equation for ® ] field component reads

25,0
[(b—2—2So)(p —¢) — (0 -7 —28¢) (0 - 7')
5.8
— (25— 1)(S = D]l = 0. (22)
with the separable ansatz”
5SS —iwT ,im
(I)Ezs,(;] =TT (x —y)!*

x (1= iaAxy) S X @Y (). (23)

S)

For field component @E—_zs:v,o] the equation is

(b -2 —28¢")(b—0) — (0 -7 —-25¢)(8 - 7)
— (28 = 1)(S = Dyl @[55 =0, (24)
and the separable ansatz reads

$=5:5)

__ —iwt ,im 1+S
as0 — € € ?(x—y)

x (1= iaAxy) X 0V (). (25)

Observe that Eq. (24) is just a primed version of Eq. (22).

'Of course, s = 1/2(p — q).

The function X should bear also indices [, m, w as follows
from the necessity to label the basis of the solutions of the Sturm-
Liouville problem. And so does ). We omit these indices—the
reader is kindly asked to imagine them anywhere X and ) is
present.
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TABLE I. Notation: Spin a GHP weight of field components.
Uy T&S PIM X1
(-2.2) (=3/2.3/2) (-11) (=1/2.1/2)
el oy Pao Pl

DKG o PEM SRS v,
(0,0) (1/2,1/2) (1,1) (3/2.3/2) (2,2)
oo Py po Ppy Lo

In [14] and [15] Cohen and Kegeles provided Debye
potentials for the field of arbitrary spin (the discussion of
S =3/2 is done in [21]). In a slightly modified notation
(s — —S and complex conjugation), and rewritten in GHP
formalism, this equation reads

[(b" = )b+ (25 = 1)e) = (0 -7)(d' + (25 - 1)7)

1/7[0,—25] — e—iarreim(,/)(x _ y)—S+1

. s s
x (1+ zany)Sygsg (y)XES; (x). (27
The operator [lg defined in Eq. (26) is invariant under the
composition of * and ’ operation, i.e., Oy = O = 7.
From this follows o a5 = £ )05 = £(F") 0 —2s)-
The Eqgs. (22), (24), and (26) with ansatz (23), (25), and

— (285 = 1)(S — D)yia|yrig—os = Lgtrig —og = 0, 26
( ) J2lo-2s S¥I-28] (26) (27) lead to separated equations for xW ) and y where
which admits a separable ansatz s = &S and the indices /, m, and @ are again omltted
|
9., 2+ 1+ @A) = 5G, + aA(l - x2)@)?
O S ¥ag ozl (T CA) 50, AL DD kA —a)se—0,  (28)
X0 3 (m) G
(8)
(s
GY ] 241 i(1+ a2A2y2)o +5G . — iaA(1 — y2)i)?
¥ 2g,, + Afy) - X CAY) 25’}' CAUZYIN | giaanir + sy =0, (29)
Yis)
|
where or, in general,
m 0]
= ’ o = J (30) 5.5)
K,I? K.I? Py = (D=2 (b + 25— )ohips  (32)
and the symbol G represents either G(x) or G(y); which one
is clear from the context. -S.8 _\05_
15 clear trom fhe Lontex B gy = (0 =P + (25— DD (33)

The equation for the Debye potential for scalar field
(S =0) is in fact just a massless Klein-Gordon equation

(complex conjugated). All the field components %) with

25,0]
s=-5,-S+1,...,5 — 1, § are generated from the Debye

potential 25, see [14,15] for neutrino field, Maxwell
field and gravitational perturbations, for the Rarita-
Schwinger field see [13,21] (following equations can be
proven to be equivalent with their results), and leads to

Uy = 4()] = (b—2)*(b+ 30)W -4
255:@{3/0?3/2 = (b— (b +22)¥10-3.
20] = (b-0)(b+ 22
e

Xo = [1,0]
0.0 N
Py = (I)E() ()]) = ¥0,0»

Py =

x =0 = 3oy,
o, = <I>E 20 = =0 -7)(0 + ?)I/A/[O,_z],
P = (I)E ;{)ﬁ Y = (@ - 20 + 27)r 0.3
U, = <I>E jg]) (0 —7)30 + 3?)1/7[0,—4]7 (31)

These equations can be beautifully simplified by applying
the following easy-to-prove identities:

(b—2)(b+we) = (b+ (w—1)2)b, (34)
@ =B +we) = (@ + (=13, (35)

to the form
Bhon = P Wo2s, @ ag = ipg.  (36)

Note that operators d and 3’ incorporate the derivatives
with respect to = (multiplication by i®), ¢ (multiplication
by im), and (the only nontrivial derivative) with respect to
x, according to (11).

Furthermore, the following symmetry holds:

2S@E_2S )]

(37)

which expresses the results as a derivative of the Debye
potential (g _»5) and interchanges p <> 0 in (36).
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IV. RADIAL FUNCTION
The regular singular points of the equation (29) are

1 1
Ar,,’ Ar,’

-1, 1, 0. (38)

The behavior of the two linearly independent solutions
around the outer black hole horizon is governed by
characteristic exponents of the regular singular point
y=—1/Ar,:

S N, a
ep=2—i—2 <m— : 1), (39)
2 rp—ry N,K,Qy
S a N, &
ep=——+1i <ﬁ1— L —>, (40)
2 rp = Tm N,K,Qy

where the angular velocity of the outer horizon Qp is
defined with respect to the Killing vector field &y = €, +
Qpyé€, and reads

K.N, a*+r>
N AR 1A ()
eV L — AT

Then the solutions behave as
Vi~ (L+Aryy)i(co+ci(14+Ar,y) +...), (42)
Y~ (1 +Ar[,y)ez(d0+d1(1+Arpy)+...), (43)

if e; —ey¢N, otherwise logarithmic terms will appear
in yz.

. In the extremal case (r, = 7,,) the pgint y=—1/Ar, s,
in general, an irregular singular point, and, thus, the
asymptotic behavior is difficult to investigate. But, in the
case of static and axisymmetric configurations y = —1/Ar,,
becomes a regular singular point, and the exponents then
depend on the eigenvalues AEISS), which we found in [3]

to be
A (1 42,2 l @
([0)_(1 A rp) l(l+1)+3(1 S4),  (44)

and the calculations lead to the exponents3
elzl, 62:—1—1. (45)

In this extremal, static, and axisymmetric case Eq. (29) can
be solved exactly. One of the solutions is simply

*In [3] the exponents were (I —s,—[ — s — 1), but our current
definition of the radial function ) differs from the one used in [3]
by the factor G*/2(y).
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polynomial, the second one is polynomial containing
logarithms; see [3], where we also found the regular
solution of the angular equation.

V. ELECTROMAGNETIC FIELD:
THE MEISSNER EFFECT

By reconstructing the self conjugated electromagnetic
tensor F* = F + é *F from NP field components and in the
null tetrad (9)—(11) we obtain

Fiy = QK, |i(1 + a*A%?)®,
2

1—x

G(x)

a

Ve R S| RO
which represents the density of flux of the “magnetic+
i x electric” field.

The last NP component of electromagnetic field ®; was
given in [14] as

20, = (b +o-2)@ 19+ @ +7-Db+ a)] Po2

which can be again simplified. Thus, all the NP compo-
nents of the electromagnetic field in terms of the Debye
potential o _5) read

o = pbiirjp,—2) (47)
20, = [(b+ )0 + (9" + )bl (48)
(1)2 - 6’6’17/[0’_2}. (49)

The Meissner effect affects static axially symmetric field
configurations in the vicinity of a rapidly rotating outer
horizon. For the extremal case, the radial equation can be
solved explicitly as a rational function, see [3], but only the
series expansion above the horizon is necessary4:

Yioy ~ (1+Ar,y) (co+ i (14 Aryy)?...). (50)

Calculating the field components ®,, ®;, and ®, using
(47)—(49) and evaluating the density of the flux (46) in the
limit y — —1/Ar, with the solution (50) yields

li Fi, = 1
y—)—l}‘l/‘lArp e O, (5 )
independently of the exact knowledge of the angular

function X ?}3()) (x).

*Here we denote the solution by all of the separation constants:
(1)

I, m=0and spin S =1 as YWO).
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This means that there is no flux of static axially
symmetric magnetic or electric field through the outer
black hole horizon of an extremely rotating uniformly
accelerated black hole.

VI. CONCLUSIONS

We have separated the Teukolsky master equation on a
rotating C-metric background for a test field of arbitrary
spin S. We have separated also the equation for the Debye
potential of these fields.

Utilizing the Debye potential for electromagnetic field
we calculated the component F},, which represents the
density of flux through surfaces y = const and 7 = const,
of a electromagnetic field tensor and we have showed that
for an extremely rotating C-metric this flux is zero in the
case of axially symmetric field configurations.

PHYSICAL REVIEW D 93, 104012 (2016)

We have reformulated some results on the Debye
potential in GHP formalism by applying a unifying
notation and by using commutation relations simplifying
known results.
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