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Motivated by recent experimental efforts, we study a black hole analog induced by the propagation of a
strong laser pulse in a nonlinear dielectric medium. Based on the Hopfield model (one pair of Sellmeier
coefficients), we perform an analytic and fully relativistic microscopic derivation of the analog of Hawking
radiation in this setup. The Hawking temperature is determined by the analog of the surface gravity (as
expected), but we also find a frequency-dependent gray-body factor (i.e., a nonthermal spectrum at infinity)
due to the breaking of conformal invariance in this setup.
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I. INTRODUCTION

Hawking’s prediction [1,2] that black holes evaporate due
to quantum effects has been one of the most striking
consequences of quantum field theory in curved space-
times and is also expected to have profound implications
for the theory of quantum gravity. Unfortunately, however,
our chances for observing this phenomenon are very feeble
since small enough black holes for their radiation to be
observable probably do not exist. Nevertheless, according to
the suggestion [3] by one of the authors, it might be possible
to recreate this fundamental quantum effect in the laboratory
via suitable analogs. The original proposal was based on the
propagation of sound in fluids which can generate sonic or
acoustic analogs of black holes (also known as dumb holes).
The microscopic derivation of the sonic analog of Hawking
radiation (including changes in the dispersion relation at
small wavelengths) has been studied bymany authors and is
now quitewell understood; see, e.g., Refs. [4–19]. Recently,
there has been remarkable experimental progress regarding
the efforts to observe signatures of the Hawking effect in
Bose-Einstein condensates [20–24]. For the sake of com-
pleteness, we would also like to mention other scenarios
(see, e.g., Refs. [25–34]) such as water waves [31], where
the classical analog of theHawking effect has been observed
recently [35,36].
However, apart from the sonic analogs, there is also

another very interesting option—optical or dielectric black
hole analogs or, more generally, electromagnetic setups
[37–48]. In these scenarios, the fluid flow is typically
replaced by the motion of an optical or electromagnetic
pulse through the material. Even though there have been
several interesting experimental efforts [49–54] along this

line, our theoretical understanding (e.g., regarding the
impact of dispersion) is far less advanced than in the case
of the sonic analogs [4–19]. Apart from numerical simu-
lations (see, e.g., Refs. [42,44]), only a very few analytical
results (in analogy to the sonic case) are available. For
example, Ref. [47] presents a derivation based on an
approximation where one output channel is neglected.
However, as we shall see below, this approximation is in
general not fully justified and gives incorrect results. As
another example, the horizon is replaced by a step-function
profile in Refs. [43,46]. For this simplified setup, the
spectrum can also be calculated analytically. However,
because the step function formally corresponds to an
infinite surface gravity, questions such as the thermality
of the spectrum and the relation between the analog
Hawking temperature and the surface gravity cannot be
addressed in this simplified setup. Here, we contribute to
filling this gap (see also Refs. [43,45–47,55]) and provide a
microscopic derivation of the analog of Hawking radiation
based on a minimal set of assumptions/approximations.

II. THE MODEL

In order to describe Hawking radiation induced by a
strong, classical light pulse in a homogeneous and
transparent dielectric medium, we employ the following
microscopic model, suggested in Ref. [37] and further
developed in Refs. [43,45–47]. This model is closely
inspired by the Hopfield model [56,57]. For simplicity,
we assume spatial symmetry of the medium and of the
pulse along the y and z axes (plane symmetry). We also
restrict ourselves to one fixed polarization of the pulse
Epulse ∝ ey [(1þ 1)-dimensional model]. Additional low-
intensity light “on top” of the pulse (e.g., Hawking
radiation and other quantum perturbations) with the same
polarization can thus be described by the vector potential
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Aðt; xÞ ¼ Aðt; xÞey via Eweak ¼ ∂tA in temporal gauge.
This weak electromagnetic field will interact with the
strong pulse via the medium’s polarizable charges, which
are already excited beyond the linear range due to the
(local) intensity of the strong pulse. The weak field will
cause additional deformations of the excited states; how-
ever, we assume that these deformations are within the
linear regime around the polarized states influenced by the
pulse alone. Hence, each polarizable charge is assumed to
interact like a scalar (one polarization) harmonic oscillator
with the weak field. We restrict the weak field to large
wavelengths compared to the molecular scale of the
dielectric (e.g., Hawking radiation with a low temperature),
so we can consider the dielectric in the continuum limit and
not worry about the dispersion changes created due to the
finite distances between the polarizable molecules of the
medium.
This model is as follows: there is one harmonic oscillator

at each point in space, the electric dipole displacement
being described by the scalar field ψðt; xÞ. The eigenfre-
quency Ω > 0 of a specific oscillator depends on the local
classical pulse intensity, so Ω ¼ Ωðt; xÞ. This change in the
local frequency of the dipoles is assumed to be the only
effect of the strong pulse in our model. In terms of the
atoms/molecules constituting the nonlinear medium, this
local frequency models the level spacing and hence its
change can be understood in terms of the quadratic Stark
shift Ωðt; xÞ ≈Ω0 − αStarkE2

strongðt; xÞ. Note that the strong
pulse could in principle also modify the dipole matrix
elements which determine the coupling between the atoms
and the weak field—but we shall largely omit this effect in
our model.
Neglecting any backreaction of the weak fields A and ψ

on the strong pulse or the frequency changes in Ω or
coupling g that the strong pulse induces, the dynamics of A
and ψ are thus described by the Lagrangian density
(c0 ¼ ε0 ¼ μ0 ¼ ℏ ¼ kB ¼ 1)

Llab ¼
1

2
ðj∂tAj2 − j∂xAj2Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{weak EM field

þ 1

2
ðj∂tψ j2 − Ω2jψ j2Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{medium ðoscillatorsÞ

þ gReðψ∂tA�Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
interaction

ð1Þ

in the laboratory frame (rest frame of the dielectric medium).
The Lagrangian density consists of the contributions from
the free weak electromagnetic field ðE2

weak − B2
weakÞ=2, the

harmonic oscillators, and the interaction between the polari-
zation perturbation ψ and the electric field Eweak ¼ ∂tAey.
The nonlinear optical influence of the strong pulse on the
dielectric is encoded in the space-time–dependent eigen-
frequency Ωðt; xÞ and potentially the coupling constant
gðt; xÞ > 0, which we assume in the following are both
prescribed fields. It is advantageous for the following

analysis to generalize A and ψ to complex scalar fields,
so Llab has been defined accordingly.

A. Speed of light in static medium

Let us begin by deriving the well-known Sellmeier
dispersion relation from the model (1) in a static medium.
This will show us how to describe a dispersive dielectric—
which then includes the possibility of inducing analog
black hole event horizons for light via the strong light pulse
(see also Refs. [43,46,47]). By means of Hamilton’s
principle, Llab yields the equations of motion

ð∂2
t − ∂2

xÞA ¼ −∂tðgψÞ; ð2aÞ

ð∂2
t þ Ω2Þψ ¼ g∂tA: ð2bÞ

In order to gain a rough insight into the physics of the
model, we assume a static medium ∂tΩ ¼ ∂tg ¼ 0 for the
moment. Then, there are stationary solutions, each with a
unique frequency ωlab. For these solutions, we can sub-
stitute ∂2

tψ → −ω2
labψ and ∂2

t A → −ω2
labA in the above

equations. Then, solving Eq. (2b) for ψ and inserting the
result back into Eq. (2a) leads to�

−
ω2
lab

c2lab
− ∂2

x

�
A ¼

�
1

c2lab
∂2
t − ∂2

x

�
A ¼ 0 ð3Þ

with the frequency-dependent (phase) velocity of light

clabðωlabÞ ¼
�
1þ g2

Ω2 − ω2
lab

�−1=2
: ð4Þ

Note that we obtain the dispersion relation with only
one pole at ωlab ¼ Ω and one Sellmeier coefficient g
because we considered just one polarization field, ψ .
Multiple medium resonances were considered in
Refs. [43,45–47]. This was motivated by the experiments
[49,50] in fused silica. Here, we assume that the material
(e.g., diamond, cf. Refs. [43,44,58]) is well approximated
by one Sellmeier pole.
The model exhibits subluminal dispersion since clab

decreases for increasing ωlab. At ωlab ¼ Ω (resonance
frequency of the medium), the speed of light formally
drops to zero, which marks the breakdown of the model.
We will consequently restrict ourselves to lower frequen-
cies jωlabj < Ω (e.g., sufficiently low Hawking temper-
atures) in the remainder of this paper. For very low
frequencies, the velocity of light becomes

clow ¼ clabðωlab ¼ 0Þ ¼
�
1þ g2

Ω2

�−1=2
: ð5Þ

For slowly space-time–dependent Ω and g, the result (4)
can still be approximately valid provided that A and ψ
oscillate very fast compared to the scales on which Ω
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and g vary [Jeffreys-Wentzel-Kramers-Brillouin (JWKB)
approximation]. Within this approximation, the strong
pulse can give rise to a space-time–dependent speed of
light profile clowðt; xÞ in the dielectric medium. However,
we cannot use this JWKB approximation throughout
because Hawking radiation (or, more generally, particle
creation) is precisely associated with a breakdown of this
JWKB approximation—at least in terms of the usual
coordinates t and x; see also Ref. [59]. Therefore, we
have to solve the exact wave equation including the
full dispersion relation (without neglecting any ω
contributions).

B. Black holes induced by uniformly moving pulses

We focus on strong pulses which travel through the
dielectric in the positive x direction with a constant velocity
v ∈ ð0; 1Þ and maintain their shapes during the propaga-
tion. The external fields Ω and g thus only depend on the
quantity x − vt. In this setting, the rest frame of the pulse
(pulse frame) is a second preferred frame of reference. Its
coordinates τ and χ are connected to the laboratory frame
coordinates via the Lorentz boost

�
τ

χ

�
¼ γ

�
1 −v
−v 1

��
t

x

�
; ð6Þ

with the Lorentz factor γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. By assumption, Ω

and g are independent of τ in the pulse frame,
i.e., ∂τΩ ¼ ∂τg ¼ 0.

A uniformly moving pulse can give rise to an analog of
a black hole event horizon in the dielectric; see, e.g.,
Refs. [38–40,43,45–47]. Considered from the laboratory
point of view (moving horizon), this will happen if the
pulse has such a large intensity at its center that the weak
light field propagates slower than the pulse there
(clow < v), while clow exceeds v outside the inner pulse
region (see Fig. 1 for an example pulse profile). Since the
dispersion is subluminal—that is, light waves with low
frequencies travel at the fastest speed—the event horizon is
located at the position where the speed of light for ωlab → 0
equals the pulse speed,

clow ¼ v ⇔ Ω ¼ vγg: ð7Þ

A realistic pulse profile may include multiple horizons
fulfilling the condition (7), which could be white as well
as black hole horizons. In this paper, however, we will
concentrate on a single black hole analog event horizon and
aim to calculate the corresponding Hawking spectrum.

III. ANALYSIS IN THE PULSE FRAME

The pulse frame is the most advantageous frame of
reference for the derivation of the Hawking effect since the
pulse and all associated event horizons are stationary with
respect to that frame. The Lagrangian densityLlab in Eq. (1)
transformed to the pulse frame reads

Lpls ¼
1

2
ðj∂τAj2 − j∂χAj2Þ

þ 1

2
½γ2jð∂τ − v∂χÞψ j2 −Ω2jψ j2�

þ γgRe½ψð∂τ − v∂χÞA��: ð8Þ

In this section, we will combine the two equations of
motion for A and ψ into a single equality and derive two
important and well-known conservation laws from the
symmetries of Lpls.

A. Stationary modes

The time invariance of Lpls due to ∂τΩ ¼ ∂τg ¼ 0
implies the conservation of the frequency (energy) of
any solution ðA;ψÞ of the equations of motion. Hence,
we may concentrate on solutions of the form

Aðτ; χÞ ¼ AωðχÞe−iωτ; ψðτ; χÞ ¼ ψωðχÞe−iωτ; ð9Þ

with a unique, conserved pulse frame frequency ω
(stationary modes). Inserting this form into the equations
of motion (2a) and (2b) transformed to the pulse frame
(with ∂τ → −iω) leads to the mode equations

−ðω2 þ ∂2
χÞAω ¼ γðiωþ v∂χÞgψω; ð10aÞ

FIG. 1. Plot of a spatial example profile of the speed of light clab
from Eq. (4) in the dielectric, which involves a black hole event
horizon analog. In this example, the pulse velocity is v ¼ 2=3, the
coupling constant gðt; xÞ ¼ g0 is fixed, and the medium eigen-
frequency Ωðt; xÞ rises from 4g0=5 on the left (smaller values of
x) to 2g0 on the right with a tanh profile. The plot shows the
resulting spatial clab curves for two different light frequencies.
The fastest light waves occur in the low-frequency limit (solid
line), so the event horizon is located at the position xhor where
these waves propagate at the same speed as the pulse. Light
waves with higher frequencies propagate slower (subluminal
dispersion) as indicated by the dashed line.
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½γ2ðiωþ v∂χÞ2 þΩ2�ψω ¼ −γgðiωþ v∂χÞAω; ð10bÞ

which are satisfied by the mode functions Aω and ψω.
The mode equations (10a) and (10b) can be combined

into one single ordinary differential equation. To this end,
we apply the operator γðiωþ v∂χÞ, which commutes with
ω2 þ ∂2

χ , to the upper equation (10a) and then insert
Eq. (10b) divided by g. This results in the decoupled
fourth-order mode equation

�
ðω2 þ ∂2

χÞ
1

g
½γ2ðiωþ v∂χÞ2 þΩ2� − γ2ðiωþ v∂χÞ2g

�
ψω

¼ 0 ð11Þ

for the mode function ψω. It is important to note that a
difference between this equation and the usual equations
used in much of the analog model literature is that this is
not a second-order equation in time. In order to calculate
the corresponding function Aω, which is uniquely deter-
mined by a given solution ψω of Eq. (11), we apply the
operator ðiω − v∂χÞ on Eq. (10b) and use this result to
eliminate the term ∂2

χAω in Eq. (10a), which gives

Aω ¼ γ2

ω2

�
ðiω − v∂χÞ

1

γg
½γ2ðiωþ v∂χÞ2 þΩ2�

þ v2γðiωþ v∂χÞg
�
ψω: ð12Þ

Note that one should be careful with the order in the
equations above as we are considering nonhomogeneous,
i.e., χ-dependent profiles, such that ðiω − v∂χÞ does not
commute with Ω, for example.

B. Conserved generalized inner product and norm

Since we have generalized our physical model to com-
plex fields A and ψ , the Lagrangian density Lpls is invariant
under any transformation of the global phase of the
dynamic fields (A → eiφA and ψ → eiφψ). By means of
Noether’s theorem, this continuous symmetry of Lpls is
related to a conserved current ∂τρþ ∂χj ¼ 0 with the
(Noether) charge density (see also Refs. [43,47])

ρ ¼ iðA�ΠA� þ ψ�Πψ� − ΠAA − ΠψψÞ
¼ −Im½A�ð∂τAþ γgψÞ þ γ2ψ�ð∂τ − v∂χÞψ � ð13Þ

and the current density

j ¼ Im½A�ð∂χAþ vγgψÞ þ vγ2ψ�ð∂τ − v∂χÞψ �: ð14Þ

The canonical momentum densities appearing in ρ are
given by

ΠA ¼ ∂Lpls

∂ð∂τAÞ
¼ 1

2
ð∂τA� þ γgψ�Þ ¼ ðΠA� Þ�; ð15Þ

Πψ ¼ ∂Lpls

∂ð∂τψÞ
¼ γ2

2
ð∂τ − v∂χÞψ� ¼ ðΠψ� Þ�: ð16Þ

For stationary modes of the form (9), all time dependencies
in ρ and j cancel each other out (∂τ → −iω); that is, these
quantities are time independent. The continuity equation
consequently simplifies to ∂χj ¼ 0, so the current density is
a space-time–independent quantity for stationary modes.
The conservation of the total (integrated) Noether charge

can be used to derive the conserved, generalized inner
product

��
A1

ψ1

�
;

�
A2

ψ2

�	
¼ i

Z
∞

−∞
ðA�

1ΠA�
2
þ ψ�

1Πψ�
2

−ΠA1
A2 − Πψ1

ψ2Þ dχ; ð17Þ

which is also known as the Klein-Gordon inner product
[60], between two arbitrary solutions, ðA1;ψ1Þ and
ðA2;ψ2Þ, of the equations of motion in the pulse frame.
It has the same properties as usual inner products except for
positive definiteness since the product of a field solution
ðA;ψÞ with itself coincides with its total Noether charge,

��
A

ψ

�
;
�
A

ψ

�	
¼

Z
∞

−∞
ρ dχ; ð18Þ

which is not necessarily positive but can be any real
number. In fact, taking the complex conjugate of
Eq. (17) shows that the inner product of A� and ψ� with
itself has a sign opposite to that of A and ψ . We call this
quantity (18) the (pseudo-)norm of the field solution
ðA;ψÞ.

IV. JWKB ANALYSIS

As a first approach to understanding the structure of the
solutions of the decoupled mode equation (11) in the pulse
frame well outside and inside a black hole, we apply the
JWKB approximation. That is, we treat the external fields
Ω and g as constant (∂χΩ ¼ ∂χg ¼ 0), so the mode
functions ψω are (superpositions of) plane waves, and thus
we may set ∂χ → ik in Eq. (11). The following analysis
is thus equivalent to the one in Refs. [43,46], where a
piecewise homogeneous setup is considered. The resulting
dispersion relation,

ðω2 − k2Þ½Ω2 − γ2ðωþ vkÞ2� þ γ2g2ðωþ vkÞ2 ¼ 0; ð19Þ

which is just the relation (4) transformed to the pulse frame,
can be rearranged into the form
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γðωþ vkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ωlab

¼ �FðkÞ; ð20Þ

with the (phase velocity) function

FðkÞ ¼ Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

ω2 − k2 − g2

s
: ð21Þ

Each solution k⋆ of Eqs. (19) and (20) is an allowed wave
vector at the frequency ω. To create a black hole analog as
in Fig. 1, however, Ω and/or g must be inhomogeneous.
Nevertheless, the (now χ-dependent) wave vector solutions
of the (local) dispersion relation will still approximate the
physics of the fields well as long as the length scales on
which Ω and g vary are much greater than the inverse wave
vectors 1=k⋆.
The dispersion relation (19) has up to four different and

possibly complex solutions k⋆ for given values of v, Ω, g,
and ω. We are particularly interested in the real solutions,
which describe propagating waves. The dispersion relation
(as a fourth-order polynomial) can be solved analytically,
but the resulting expressions are quite lengthy in general,
such that it is hard to grasp their physical properties.
Therefore, we will use the form in Eq. (20) to find the
solutions graphically instead by plotting both sides of this
equation over k. The left-hand side yields a straight line.
Note that, according to the Lorentz boost in Eq. (6), γðωþ
vkÞ is the laboratory frame frequency ωlab of a wave which
has the frequency ω and the wave vector k in the pulse
frame. For a small jωj < g, the function FðkÞ ≥ 0 appear-
ing on the right-hand side of Eq. (20) is only real for jkj ≥
jωj and approaches the asymptotic valueΩ for k → �∞. At
high pulse frame frequencies jωj > g, on the other hand, F
is also real for jkj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − g2

p
. Solutions k⋆ in this k range

(intersection points with the straight line ωlab), however,
correspond to waves with large laboratory frame frequen-
cies jωlabj > Ω beyond the range of validity of the physical
model. Hence, we restrict the analysis to small pulse frame
frequencies with jωj < g (or even jωj ≪ g).
Examples for the graphical solution of the dispersion

relation (including the effects of varying parameters ω and
Ω) are depicted in Fig. 2.

A. Modes outside the black hole

We start to discuss the solutions of the dispersion relation
far outside an analog black hole horizon for a low-
frequency mode 0 < ω ≪ Ω. The graphical solution is
depicted in Fig. 3. There are four different real solutions:
two small wave vectors kH⋆ ≳ ω and kcp⋆ ≲ −ω as well as
two large solutions kþ⋆ ≫ ω and k−⋆ ≪ −ω. All four
possible wave vectors outside the black hole are thus real
(propagating modes). The long-wavelength modes kH⋆ and
kcp⋆ with wave numbers of the order OðωÞ are hardly
affected by dispersion, whereas the rapidly oscillating

modes k�⋆ are a consequence of dispersion (they vanish
if dispersion is neglected). Let us derive some properties of
the modes.
By differentiating the dispersion relation (19) with

respect to k (treating ω as a function of k for the moment),
we find the expression

vk⋆gr ¼ dωðkÞ
dk






k¼k⋆

¼ ∂k½�FðkÞ�jk¼k⋆ − vγ

γ þ ∂k½�FðkÞ�jk¼k⋆ω=k⋆
ð22Þ

for the pulse frame group velocity of the mode k⋆. The �
sign before F depends on whether k⋆ is a plus or minus
solution of Eq. (20), i.e., on the sign of the laboratory frame
frequency of the mode (vertical coordinate of the corre-
sponding intersection point in Fig. 3). This formula allows
us to determine the group velocity signs for all four modes
outside the black hole just based on the graphical solution
of the dispersion relation in Fig. 3. We find that the group
velocities of the modes kþ⋆ , k−⋆ , and kcp⋆ are negative, so
these modes propagate towards the (stationary) black hole
event horizon. The mode kcp⋆ , which is a low-energy mode

FIG. 2. Graphical solution scheme of the dispersion relation
(20) for v ¼ 1=2 and constant gðχÞ ¼ g0. In both plots, the
straight lines are the graphs of the laboratory frame frequency
γðωþ vkÞ, and the curves are the graphs of �FðkÞ. (a) Solution
for the fixed mode frequency ω ¼ g0=2 and decreasing Ω
(solid → dashed → dotted�F curves). (b) Solution for a con-
stant Ω and increasing ω (solid → dashed → dottedωlab lines
and �F curves).
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(i.e., almost unaffected by dispersion), corresponds to light
propagating in the opposite direction as the pulse when
viewed from the laboratory frame—that is, this is the
counterpropagating mode. (In the sonic black hole analogs
based on flowing fluids, this would be the downstream
mode.) In the pulse frame, this mode moves towards the
black hole and can cross the horizon without being
distorted drastically. However, it can also be scattered into
an copropagating mode (see Sec. VIII below), but this
process is purely classical scattering and does not lead to
particle creation. We thus do not expect this mode to be the
origin of Hawking radiation. Consequently, we expect k�⋆
to be the relevant in-modes for creating the outgoing
Hawking radiation as usual in systems with subluminal
dispersion (cf., e.g., Refs. [7,12]). The mode kH⋆ is the only
mode with a positive group velocity, so these waves escape
the black hole (e.g., Hawking radiation).
As a next step, we consider the Noether charge densities

ρ [see Eq. (13)] of the modes. The mode function Aω

corresponding to a JWKB solution of the (approximate)
form ψωðχÞ¼ expðik⋆χ− iωτÞ is calculated using Eq. (12),
with ∂τ → −iω (stationary modes) and ∂χ → ik⋆ (JWKB
approximation). The resulting charge density of the mode
reads

ρk⋆ω ¼ γ2ðωþ vk⋆Þ
�
1þ g2k⋆ðvωþ k⋆Þ

ðk2⋆ − ω2Þ2
�
: ð23Þ

The sign of this charge density depends only on the
laboratory frame frequency of the mode,

sgn ρk⋆ω ¼ sgnðωþ vk⋆Þ: ð24Þ

Hence, it follows from Fig. 3 that k−⋆ is the only modewhich
propagates a negative Noether charge, so the contribution
from this in-mode is the essential ingredient of pair pro-
duction (cf., e.g., Refs. [5,7,9,11,12,15,17,18,43,47]).

B. Modes inside the black hole

As one goes into the black hole in Fig. 1, Ω decreases, so
the graphs of �FðkÞ in the graphical solution in Fig. 3
“narrow” because FðkÞ ∝ Ω; cf. Fig. 2(a). The solutions kH⋆
and kþ⋆ will thus approach each other and merge at a certain
point on the way towards the horizon, at which point
the straight line γðωþ vkÞ is tangent to FðkÞ—see the
dashed �FðkÞ curves in Fig. 2(a). Beyond this point, these
two real solutions become two complex solutions, ~kþ⋆ and
~k−⋆ ¼ ð~kþ⋆ Þ�, with Im ~kþ⋆ > 0, so the Hawking mode escap-
ing the black hole disappears beyond this “point of no
return,” which behaves like a frequency-specific event
horizon. The allowed wave vectors vary rapidly around
this point, so the JWKB approximation breaks down there.
Note that, in the limit ω → 0, the point of no return
coincides with the (“absolute”) event horizon since low-
frequency waves travel at the fastest speed (subluminal
dispersion). Deep inside the black hole in Fig. 1, the JWKB
approximation is valid again. See Fig. 4 for the graphical
solution of the local dispersion relation. Both real solutions,
~kcp⋆ and ~kp⋆ , describe modes with negative group velocities
according to Eq. (22), so they propagate deeper into the
black hole (as expected inside the event horizon). The mode
~kcp⋆ has a positive Noether charge density while ~kp⋆ carries
negative charge. We conclude that ~kcp⋆ ≈ kcp⋆ is the counter-
propagating mode, which crossed the horizon and is now
inside the black hole. The second mode, ~kp⋆ , with a negative
laboratory frame frequency (negative energy) is the
infalling partner mode of the outgoing Hawking mode

FIG. 3. Graphical solution of the dispersion relation (20) far
outside the black hole in Fig. 1, where v ¼ 2=3, gðχÞ ¼ g0 is
constant, and the local value of Ω is 2g0. We consider the mode
frequency ω ¼ g0=5. The straight line is the laboratory frame
frequency γðωþ vkÞ. The dashed lines are the graphs of �FðkÞ.
Here, we get four real solutions (labeled intersection points): the
Hawking mode kH⋆ , the counterpropagating mode kcp⋆ , and the two
short-wavelength modes k�⋆ . The vertical value of an intersection
point coincides with the frequency of the corresponding wave as
measured in the laboratory frame.

FIG. 4. Graphical solution of the dispersion relation far inside
the black hole in Fig. 1. We consider the same configuration as in
Fig. 3 except for the value of Ω, which has decreased to 4g0=5.
The dashed graphs of �FðkÞ have “narrowed” correspondingly,
so there are only two real solutions ~kcp⋆ (counterpropagating
mode) and ~kp⋆ (infalling partner) inside the black hole. The two
remaining wave vector solutions ~k�⋆ are complex (evanescent
modes).
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kH⋆ ; see, e.g., Refs. [2,5]. The mode structure inside
the black hole is thus as expected according to
Refs. [5,7,9,11,12,15,17,18,43,47] again.
One of the standard ways to derive the Hawking effect is

to trace a late-time outgoing Hawking wave packet back in
time in order to find the early-time ingoing wave packets
the Hawking packet is composed of initially (see, e.g.,
Ref. [7]). Since there are no solutions inside the black hole
which can approach the horizon (subluminal dispersion),
the relevant boundary condition for that derivation of
Hawking radiation is that the mode function vanishes deep
inside the black hole (i.e., the mode is evanescent). In the
limit of wave packets which are sharply peaked around a
unique frequency ω, the wave packets become very
extended in space and time—that is, we consider single
stationary modes. We have to make sure that the mode
function ψω satisfies the boundary condition; however, a
function ψω which is nonzero outside the black hole cannot
vanish identically everywhere inside the horizon [7]. We
therefore demand ψω to decay rapidly (exponentially)
inside the black hole. In terms of the JWKB solutions
explained above, that means that only the complex wave
vector ~k−⋆ may contribute to ψω beyond the horizon since
j expði~k−⋆χ − iωτÞj ¼ expð−χ Im ~k−⋆Þ and Im ~k−⋆ < 0, so this
function decays rapidly along the way deeper into the black
hole (decreasing χ). However, we cannot continue this
mode function across the event horizon using the JWKB
technique because this approximation breaks down in the
vicinity of the horizon (at least in the coordinates we use
here; see also Ref. [59]).

V. CONNECTION OF JWKB SOLUTIONS ACROSS
THE EVENT HORIZON

In order to continue a mode function ψω, which decays
exponentially inside the event horizon (according to the
boundary condition mentioned above), into the exterior
region of the black hole, we have to take the full decoupled
mode equation (11) into account. The complexity of this
equation depends on the concrete pulse shape given by
ΩðχÞ and gðχÞ. As already mentioned in Sec. II, we assume
that gðχÞ ¼ g0 is constant (see also Fig. 1). We thus need to
specify ΩðχÞ.
We want to model the Schwarzschild metric with

g00 ¼ 1 −
2GNM

r
: ð25Þ

This metric has a horizon at r ¼ 2GNM (the Schwarzschild
radius), a singularity at r ¼ 0, and becomes asymptotically
flat for r → ∞. For the dielectric black hole analog, the g00
component behaves as

geff00 ∝ 1 −
v2

c2lowðχÞ
¼ 1 − v2

�
1þ g20

Ω2ðχÞ
�
; ð26Þ

see also Eq. (62) below. Note that c2lowðχÞ refers to the low-
energy limit in Eq. (5) where the analogy to gravity applies.
In order to model the Schwarzschild metric, we assume the
following profile (with some constant ξ > 0):

ΩðχÞ ¼ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξχ

p
; gðχÞ ¼ g0: ð27Þ

For simplicity, we choose χ such that the horizon is located
at χ ¼ 0, so the black hole exterior region is χ > 0 and the
interior region is χ < 0. At the horizon χ ¼ 0, we have
geff00 ¼ 0, which translates to the condition (7), leading to
the relation

Ω0 ¼ vγg0: ð28Þ

The slope dclowðχÞ=dχ at the horizon determines the
surface gravity (remember that v is constant), which in
turn sets the Hawking temperature; see Eqs. (55) and (63)
below. Similarly to the Schwarzschild metric, where the
strength of the gravitational field vanishes at r → ∞, the
polarizability of the medium goes to zero as χ → ∞.
Furthermore, the refractive index diverges (formally) for
χ ¼ −1=ð2ξÞ, which is similar to the singularity at r ¼ 0.
Of course, such a profile (27) is not a realistic model for a
real laser pulse, but—as we shall see below—it allows us to
derive an exact solution of the mode equation in analogy to
Ref. [14]. Furthermore, because only the vicinity of the
horizon is relevant for the creation of low-energy Hawking
radiation, we can interpret this profile (27) as an approxi-
mation of a realistic pulse profile in the region near the
horizon ξjχj ≪ 1. In terms of a Taylor expansion
Ω2ðχÞ ¼ Ω2

0 þ 2Ω2
0ξχ þOðχ2Þ, we neglect the higher-

order terms Oðχ2Þ since Ω2ðχÞ is supposed to be slowly
varying. For example, since the modes we are interested in
decay rapidly inside the black hole, they do not see the
singularity at χ ¼ −1=ð2ξÞ, so that this approximation
should be reasonable. Since the Hawking temperature is
supposed to be sufficiently low, the JWKB approximation
will be valid at both edges (inside and outside the black
hole) of the linearized region. This way, we can continue a
JWKB solution inside the black hole across the horizon
using the linearized mode equation.
Inserting the pulse profile (27) into the general

decoupled mode equation (11) yields the equation

fðω2 þ ∂2
χÞ½ðiωþ v∂χÞ2 þ v2g20ð1þ 2ξχÞ�

− g20ðiωþ v∂χÞ2gψω ¼ 0: ð29Þ

In this section, we will study the solutions of this mode
equation in the positive frequency range 0 < ω≲ ξ, which
covers the essential part of the Hawking spectrum.
The corresponding negative-frequency solutions can be
derived by complex conjugation. The solution scheme via
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transformation to momentum space and contour integration
is analogous to Refs. [9–12,17,47], for example.

A. Solution of the mode equation

Equation (29) can be solved in reciprocal (momentum)
space. To this end, we Fourier-Laplace transform the
equation by inserting

ψωðχÞ ¼
Z
C
~ψωðkÞeikχ dk ð30Þ

with the (yet unspecified) complex integration contour C.
By means of this transform, the fourth-order differential
equation (29) in χ becomes the first-order differential
equation in k (∂χ → ik and χ → i∂k),

∂k ~ψωðkÞ ¼
1

2iv2g20ξ

��
1þ g20

k2 − ω2

�
ðωþ vkÞ2 − v2g20

�
× ~ψωðkÞ; ð31Þ

which is easy to solve for ~ψωðkÞ. After transforming back to
position space via Eq. (30), the solution reads

ψωðχÞ ¼
Z
C
fðkÞeχhðkÞ dk; ð32Þ

with the two auxiliary functions

fðkÞ ¼
�
i
�
k
ω
− 1

��
−ið1þvÞ2ω=ð4v2ξÞ

×

�
i

�
k
ω
þ 1

��
ið1−vÞ2ω=ð4v2ξÞ

ð33Þ

and

hðkÞ ¼ ik

�
1 −

v2k2=3þ vωkþ ω2

2v2g20ξχ

�
: ð34Þ

The constant of integration, which is irrelevant for the
Hawking spectrum, is related to the contour C and has been
omitted for simplicity. Note that the exponent in Eq. (32)
can be cast into the form

χhðkÞ ¼ ikχ − i
ðkþ ω=vÞ3

6g20ξ
þ i

ω3

6v3g20ξ
; ð35Þ

where the last term can be absorbed by the integration
constant mentioned above.
Equation (32) is a contour integral representation of the

mode function ψω. In order to define complex powers as in
fðkÞ, we have to specify the two branch cuts of the complex
natural logarithm starting at the two singularities k ¼ �ω.
Here, we choose these branch cuts to run upwards in
the complex plane (parallel with respect to the positive

imaginary axis). This corresponds to the principal value
Ln z of the complex natural logarithm (i.e., −π <
Im½Ln z� ≤ π). As we shall see below, this choice is most
convenient for deriving mode functions which satisfy the
required boundary condition, that is, are evanescent inside
the black hole. With other choices, we can derive other
solutions of the wave equation (e.g., with a contribution
from the partner mode inside).

B. Mode function inside the black hole (χ < 0):
Boundary condition

Let us first consider the mode function ψω in Eq. (32)
inside the black hole, where we have imposed the boundary
condition for the derivation of the Hawking effect accord-
ing to Sec. IV B. This boundary condition is fulfilled by
selecting the (end points of the) integration contour C
appropriately. The contour can “safely” run to infinity into
any direction of the complex plane where the exponential
part of the integrand, exp½χhðkÞ�, decays to zero; that is,
Re½χhðkÞ� → −∞, while the function fðkÞ is unproble-
matic. These “valleys” of the integrand are located at

(i) π=3 < Arg k < 2π=3 (top),
(ii) −π < Arg k < −2π=3 (bottom left), and
(iii) −π=3 < Arg k < 0 (bottom right).

For other directions (i.e., between these valleys),
j exp½χhðkÞ�j diverges for jkj → ∞.
Here, we choose to integrate just below the real axis from

−∞ to ∞, that is, from the bottom-left valley into the
bottom-right one and below the singularities at k ¼ �ω, so
we have fixed the contour C appearing in Eqs. (30) and
(32). We can still, however, deform the integration contour
by means of Cauchy’s theorem in order to simplify the
integration without changing the value of the integral. The
exponent function hðkÞ in the integrand has two saddle
points, which satisfy h0ðksÞ ¼ 0. For χ < 0, these saddle
points are

~k�s ¼ �ig0
ffiffiffiffiffiffiffiffiffiffiffi
−2ξχ

p
−
ω

v
: ð36Þ

The saddle point ~k−s connects the two adjacent valleys in the
lower complex half plane (bottom left and right) with each
other. Hence, we may deform C smoothly (keeping the end
points fixed) without ever encountering any singularities or
branch cuts of the integrand so that the final contour Cin
runs through ~k−s along the “mountain pass route”; see
Fig. 5. The contribution from the saddle point ~k−s will
dominate the value of the integral since the rest of the
integration runs through the valleys.
The other saddle point ~kþs corresponds to a “mountain

pass” which connects the upper (top) valley with the two
lower (bottom) valleys with a bifurcation point near the
origin. The height of this pass increases exponentially for
increasing jχj, but our selected contour does not go through
this point.
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Applying the saddle point method (see, e.g., Ref. [61]),
the mode function ψωðχ < 0Þ ≈ ψ inside

ω ðχÞ inside the black
hole is thus approximately given by the saddle point
contribution from ~k−s . The leading-order term of the saddle
point expansion (which becomes asymptotically exact in
the formal limit χ → −∞) reads

ψ inside
ω ðχÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jχh00ð~k−s Þj

s
fð~k−s Þeχhð~k−s Þ: ð37Þ

The higher-order corrections of the saddle point expansion
are negligible if

jξχj3=2 ≫ γ

v
ξ

Ω0

¼ ξ

v2g0
: ð38Þ

In the derivation of this inequality, we used the fact that the
typical frequency of Hawking radiation ω≲OðξÞ is set by
the surface gravity. Since g0 andΩ0 are characteristic scales
of the medium and thus are supposed to be much larger
than ξ (and ω), the right-hand side of Eq. (38) is very small.
Sufficiently far inside the black hole as determined by the
condition (38), the mode function ψωðχ < 0Þ is therefore
approximated well by the leading-order term (37).
However, we want to stay away from the singularity, so
we assume ξjχj ≪ 1. Hence ξ has to be small enough so
that both assumptions can be satisfied simultaneously (low
Hawking temperature).
Let us check to see whether ψ inside

ω does indeed satisfy the
required boundary condition. We evaluate the absolute
value of Eq. (37) to find

jψ inside
ω ðχÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2g20ξ
jχj

4

s
jfð~k−s Þje−2g0jχj

ffiffiffiffiffiffiffi
2ξjχj

p
=3

∝
e−2g0jχj

ffiffiffiffiffiffiffi
2ξjχj

p
=3ffiffiffiffiffijχj4

p ; ð39Þ

so the mode function decays exponentially beyond the
horizon, and hence the integration contour is in accordance
with the boundary condition. For values of χ satisfying the
condition (38), we thus find that jψ inside

ω ðχÞj is suppressed
exponentially.
Note that the contribution from the other saddle point ~kþs

would instead grow exponentially when going further and
further inside the black hole—which explains why we
selected our contour in such a way that it does not go
through this saddle point.

C. Mode function outside the black hole (χ > 0):
Identification of the JWKB modes

Now that we know the correct integration contour, we
evaluate the contour integral (32) outside the black hole in
order to calculate the analytically continued mode function
ψωðχ > 0Þ. However, for χ > 0, the saddle points of hðkÞ
have moved to the positions

k�s ¼ �g0
ffiffiffiffiffiffiffi
2ξχ

p
−
ω

v
ð40Þ

on the real axis, so Cin is not the most advantageous
integration contour for χ > 0. The validity condition (38)
for the saddle point approximation (which wewant to apply
again) implies that χ must be large enough that jk�s j ≫ ω,
which means that the singularities of the integrand at k ¼
�ω are between k−s and kþs . The saddle point k−s connects
the bottom-left valley (where the integration contour
starts) with the top valley in the upper complex half plane.
The other saddle point kþs leads from this valley into the
bottom-right valley where the integration ends. Hence,
we deform Cin again, always avoiding going across any

FIG. 5. Contour integration (32) inside the black hole (χ < 0).
(a) Integration contour Cin running through the saddle point ~k−s
(not drawn to scale). The squares mark the singularities of the
integrand due to the complex powers in fðkÞ, and the dashed lines
are the corresponding branch cuts. (b) Logarithmic landscape plot
of the absolute value of the integrand, i.e., z ¼ ln jfðkÞeχhðkÞj over
a complex k. The parameter values applied in this plot (v ¼ 1=2,
ξ ¼ ω ¼ g0=10, and χ ¼ −3=g0, so Ω ≈ 0.4g0) are not within the
validity range (38) of the saddle point approximation but have
been chosen for illustrative purposes. We see that the saddle point
~k−s connects the two valleys of the integrand in the lower complex
half plane.
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nonholomorphic regions of the integrand, so that the final
contour Cout follows the path of steepest descent through
the saddle points. The top valley, which Cout must traverse,
however, is divided by the branch cuts, so the contour must
circumvent these two discontinuous half lines in the
complex plane as depicted in Fig. 6. Note that, in contrast
to Ref. [47], we do not neglect any branch cuts. Putting all
dominant contributions to the integral together, the mode
function outside the black hole is thus composed of the
saddle point contributions ψ�

ω and the functions ψ cut�
ω ,

which are due to the circumvention of the branch cuts
originating from k ¼ �ω,

ψωðχ > 0Þ ≈ ψ−
ωðχÞ þ ψ cut−

ω ðχÞ þ ψ cutþ
ω ðχÞ þ ψþ

ωðχÞ:
ð41Þ

Let us now identify the four JWKBmodes which have been
explained in Sec. IVA in this mode function.

The leading-order saddle point contributions read

ψ�
ωðχÞ ¼ e∓iπ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2g20ξ

χ

4

s
eχhðk�s Þe�πω=ð2vξÞ

×





 k�sω − 1





−ið1þvÞ2ω=ð4v2ξÞ



 k�sω þ 1





ið1−vÞ
2ω=ð4v2ξÞ

:

ð42Þ

These functions oscillate rapidly due to the large saddle
point values jk�s j ∼ g0

ffiffiffiffiffiffiffi
2ξχ

p
≫ ω as implied by inequality

(38) and ξχ ≪ 1. For large χ, these expressions become
exact solutions of the decoupled mode equation (29), so
they are asymptotic independent modes and should there-
fore coincide with two JWKB modes in this limit. Solving
the local dispersion relation (19) for the current pulse
profile (27) and large wave vectors (neglecting ω) yields
two solutions k⋆ ≈�g0

ffiffiffiffiffiffiffi
2ξχ

p
, which are asymptotically

equal to the saddle points k�s . Hence, the modes ψ�
ω

correspond (asymptotically) to the JWKB modes k�⋆ .
Now we consider the branch cut contributions. The

contour Cout may run arbitrarily deep into the top valley
(where the integrand is exponentially suppressed), so we
integrate infinitesimally close on both sides along the cuts,
respectively, up to infinity. The small circles around the
singularities in Fig. 6(a) do not yield any contributions.
After some substitutions, the resulting (exact) integrals can
be written

ψ cut�
ω ðχÞ ¼�2i sinh

�
πð1�vÞ2ω

4v2ξ

�Z
∞

0

�
u
ω

�∓ið1�vÞ2ω
4v2ξ

×

�
−
u
ω
� 2i

��ið1∓vÞ2ω=ð4v2ξÞ
eχhðiu�ωÞ du: ð43Þ

As with the saddle point contributions, we can uniquely
identify ψ cut�

ω with JWKB modes, respectively, in the limit
χ → ∞. The integrand in Eq. (43) can be substantially
simplified for a large χ because then only small values
u ≪ ω are significant for the integration. We can express
the remaining integral by the gamma function Γ. The
resulting mode functions read

ψ cut�
ω ðχÞ∼ωð�2iÞ1�ið1∓vÞ2ω=ð4v2ξÞ sinh

�
πð1�vÞ2ω

4v2ξ

�

×Γ
�
1∓ ið1�vÞ2ω

4v2ξ

��
1

ωχ

�
1∓ið1�vÞ2ω=ð4v2ξÞ

e�iωχ :

ð44Þ

This is the leading-order asymptotic term of the exact
integral in Eq. (43), so it consequently solves the decoupled
mode equation (29) in the limit χ → ∞. These functions do
still solve the mode equation for χ → ∞ if dispersion is

FIG. 6. Contour integration (32) outside the black hole (χ > 0).
(a) Deformed integration contour Cout running through the saddle
points k�s and circumventing the branch cuts. This sketch is not
drawn to scale and the saddle points are drawn symmetrically
around zero (not −ω=v) for simplicity. (b) Landscape plot of the
integrand, i.e., z ¼ ln jfðkÞeχhðkÞj over k ∈ C, for the same system
as in Fig. 5(b) (v ¼ 1=2, ξ ¼ ω ¼ g0=10) but outside the horizon
at χ ¼ 5=g0, where Ω ≈ 0.8g0. Note that the discontinuity of the
branch cut at Re k ¼ þω is significantly larger than that at
Re k ¼ −ω, which makes the latter a bit hard to notice.
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neglected, that is, if we discard all terms containing third-
or higher-order derivatives acting on the ψ field (ωn∂m

χ ,
with nþm > 2 since ω originates from a time derivative
∂τ). The modes described by ψ cut�

ω are thus only slightly
affected by dispersion far outside the black hole and
correspond to the Hawking mode kH⋆ and the counter-
propagating mode kcp⋆ . The phase/group velocity of ψ cutþ

ω is
positive, so this mode propagates away from the black hole
and can therefore be identified with the Hawking mode.
The other branch cut contribution ψ cut−

ω has a negative
group velocity, so it corresponds to the counterpropagat-
ing mode.

D. Current densities

For the derivation of the Hawking spectrum, we need to
know the contribution from the positive- and negative-norm
in-modes (kþ⋆ and k−⋆ in the JWKB picture) to the outgoing
Hawking radiation. In the time-independent limit
(stationary modes), we therefore have to calculate the
Noether charge current densities j�ω of the modes ψ�

ω using
Eqs. (12) and (14), with ∂τ → −iω. The current density of a
stationary mode is exactly constant (see Sec. III B), so we
may calculate j�ω very far outside the black hole (χ → ∞)
where all χ-dependent terms in j�ω vanish. (These terms are
artifacts caused by the saddle point approximation any-
way.) The resulting current densities assume the simple
form

j�ω ¼ ∓2πΩ2
0ξe

�πω=ðvξÞ: ð45Þ

The current density jcutþω associated with the branch cut
contribution ψ cutþ

ω (Hawking mode), which we also need to
know for deriving the Hawking spectrum, is calculated in
the same way as j�ω above. The result reads

jcutþω ¼ 2πΩ2
0ξ½eπω=ðvξÞ − e−πð1þv2Þω=ð2v2ξÞ�: ð46Þ

Of course, the current density of the exponentially decaying
mode inside the black hole vanishes.

VI. HAWKING SPECTRUM

We are now in the position to calculate the Hawking
spectrum. Here, we only present a brief review of the
derivation of the Hawking effect. For a more detailed
explanation, we refer the reader to Ref. [7], for example.
The Hawking effect requires a quantum-field-theoretic

framework, so the classical fields A and ψ are substituted
by Hermitian field operators Â and Ψ̂, which obey the
bosonic equal-time commutation relations and solve the
same equations of motion as the classical fields. Hence,
the Klein-Gordon inner product (17) continues to be useful
in the context of the quantized fields. We find

���
A1

ψ1

�
;

�
Â

Ψ̂

�	
;

��
A2

ψ2

�
;

�
Â

Ψ̂

�	�

¼ −
��

A1

ψ1

�
;

�
A�
2

ψ�
2

�	
ð47Þ

(cf. Ref. [7]), where ½·; ·� denotes the commutator and
ðAn;ψnÞ are two arbitrary, classical field solutions of the
equations of motion. The inner product allows us to
“project” the field operators onto a set of classical field
solutions (mode expansion), and Eq. (47) facilitates the
derivation of the corresponding annihilation and creation
operators â and â†. As one may infer from the above
commutator, positive-norm modes correspond to annihila-
tion operators, while negative-norm modes correspond to
creation operators.
As explained in Sec. IV B, a late-time outgoing Hawking

wave (packet) originates from contributions from the three
in-modes k�⋆ and kcp⋆ at early times. For stationary modes
(time-independent picture) and expressed via creation and
annihilation operators, this statement reads

âHω ¼ αωâþω þ βωðâ−ωÞ† þ ηωâ
cp
ω ; ð48Þ

with the Bogoliubov coefficients αω, βω, and ηω. As
explained above, the rapidly oscillating, negative-norm
mode is represented by a creation operator ðâ−ωÞ† in this
relation. Since the above operators obey the usual com-
mutation relations for bosonic creation and annihilation
operators, we obtain the (unitarity) relation

jαωj2 − jβωj2 þ jηωj2 ¼ 1: ð49Þ

Note that this equality can also be derived from the
properties of the classical solutions of the wave equation.
In terms of the current densities, this relation corresponds to
charge conservation

jþω þ j−ω þ jcut−ω þ jcutþω ¼ 0: ð50Þ

Here the saddle point contribution jþω from kþs corresponds
to jαωj2, while the other one, j−ω from k−s , is associated with
jβωj2. Furthermore, the two branch cut contributions jcut−ω

and jcutþω correspond to the counterpropagating mode (i.e.,
jηωj2) and the Hawking mode, respectively. Note that ρ−ω is
negative, while the other three, ρþω , ρcut−ω , and ρcutþω , are
positive; see Eq. (24). However, since only the Hawking
mode ψ cutþ

ω has a positive group velocity (away from the
horizon) while the other three are negative (towards the
horizon), we find that jcutþω and j−ω are positive, while jcut−ω

and jþω are negative. Altogether, with the correct normali-
zation, we have the following identifications:

(i) jαωj2 → −jþω=jcutþω ,
(ii) jβωj2 → þj−ω=jcutþω , and
(iii) jηωj2 → −jcut−ω =jcutþω .

DERIVATION OF HAWKING RADIATION IN DISPERSIVE … PHYSICAL REVIEW D 93, 104010 (2016)

104010-11



We assume the in-vacuum state for the fields in the
dielectric medium. This quantum state is defined by

âþω j0ini ¼ â−ωj0ini ¼ âcpω j0ini ¼ 0; ð51Þ

so there are no particles initially. Using Eq. (48), the mean
number of Hawking particles emitted (per unit time) from
the in-vacuum state turns out to be

h0injðâHω Þ†âHω j0ini ¼ hn̂H
ω iin ¼ jβωj2; ð52Þ

which is the quantity we are interested in.
For stationary modes, Eq. (52) can be evaluated by

means of the current densities jω of the individual modes,
which describe the propagation of the conserved Noether
charge. The Hawking particle yield is given by the relative
amount of negative charge contribution j−ω from the
negative-norm in-mode to the outgoing Hawking flux
jcutþω . We already calculated these current densities; see
Eqs. (45) and (46). From Eq. (45) and the above identi-
fication, we may infer



 j−ωjþω





 ¼ jβωj2
jαωj2

¼ exp

�
−
2πω

vξ

�
: ð53Þ

Exploiting the unitarity relation (49), we find

jβωj2 ¼
1 − jηωj2

e2πω=ðvξÞ − 1
¼ Γω

eω=TH − 1
; ð54Þ

with the Hawking temperature

TH ¼ vξ
2π

ð55Þ

and the frequency-dependent gray-body factor

Γω ¼ 1 − jηωj2; ð56Þ

which can be determined by comparing j−ω=jcutþω (yielding
jβωj2) with the above expression:

Γω ¼ 2 sinh½πω=ðvξÞ�
eπω=ðvξÞ − e−πð1þv2Þω=ð2v2ξÞ : ð57Þ

As expected, this factor is bounded from above and below
via 0 < Γω < 1 and approaches unity for ω=ξ → ∞ and
also for v → 1. For ω=ξ → 0, it converges to a finite value
4v=ð1þ vÞ2 < 1. For a small ω, the spectrum thus behaves
as 1=ω—the same scaling that was found in Ref. [43] for a
step-function profile.

A. Transformation to the laboratory frame

As a final step, we derive the frequency spectrum of
Hawking radiation as measured in the laboratory. We thus

have to express the pulse frame quantities ω and ξ in terms
of laboratory frame quantities.
Let us start with the frequency ω. Asymptotically (large

χ), a Hawking wave with the frequency ω > 0 in the pulse
frame oscillates with the wave vector k ¼ þω; see for
example the functional form of ψ cutþ

ω in Eq. (44).
According to the Lorentz boost (6), this wave has the
frequency

ωlab ¼ γð1þ vÞω ð58Þ

in the laboratory frame. This equation allows us to express
ω in the Hawking spectrum in terms of ωlab.
The surface-gravity-like quantity ξ has been defined as

the value of ð∂χΩÞ=Ω at the horizon χ ¼ 0 in Sec. V.
Hence, the corresponding quantity ξlab in the laboratory
frame (according to which the horizon is located at x ¼ vt)
is Lorentz contracted, as proven by

ξlab ¼
∂xΩ
Ω






x−vt¼0

¼ γξ; ð59Þ

where we have inserted the pulse shape (27) in laboratory
frame coordinates.

VII. EFFECTIVE METRIC

Now let us discuss the analogy to gravity. If we assume
slowly varying fields and thus neglect higher-order time
derivatives, we may insert the approximate solution ψ ≈
g∂tA=Ω2 back into the original action (1) and obtain the
low-energy effective action for the macroscopic electro-
magnetic field (in the laboratory frame):

Leff ¼
1

2

��
1þ g2

Ω2

�
j∂tAj2 − j∂xAj2

�
: ð60Þ

As expected, the low-energy effective equation of motion
from this action reproduces the dispersion relation (5). This
action is analogous to that of a scalar field Aðt; xÞ in the
effective metric

ds2eff ¼ dt2 −
�
1þ g2

Ω2

�
ðdx2 þ dy2Þ: ð61Þ

Note that an effective metric in 1þ 1 dimensions would not
be sufficient (unless g=Ω is constant) because the effective
action (60) is not conformally invariant. Furthermore, the
above form is not unique—one could also use other choices
(e.g., in 3þ 1 dimensions).
After a Lorentz boost to the pulse frame according to

Eq. (6), the effective metric transforms to
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ds2eff ¼ γ2
�
1 − v2

�
1þ g2

Ω2

��
dτ2 − 2vγ2

g2

Ω2
dτdχ

− γ2
�
1þ g2

Ω2
− v2

�
dχ2 −

�
1þ g2

Ω2

�
dy2: ð62Þ

Since 1=c2low ¼ 1þ g2=Ω2 according to Eq. (5), this
corresponds to Eq. (26). Calculating the surface gravity
from the above metric,

κ ¼ 1

2





 ∂χgeff00

geff01











horizon

¼ vξ; ð63Þ

we find that the Hawking temperature is given by the
standard expression (as expected)

TH ¼ κ

2π
¼ vξ

2π
: ð64Þ

Note that the transformation from the above stationary
Painlevé-Gullstrand-Lemaître-type coordinates τ and χ to
static Schwarzschild-type coordinates τ� and χ via

dτ� ¼ dτ þ geff01

geff00

dχ ð65Þ

does not change the geff00 component of the metric,

ds2eff ¼ γ2
�
1 − v2

�
1þ g2

Ω2

��
dτ2�

− γ−2
�
1 − v2

�
1þ g2

Ω2

��−1�
1þ g2

Ω2

�
dχ2

−
�
1þ g2

Ω2

�
dy2: ð66Þ

In complete analogy to the Schwarzschild metric, we may
introduce the tortoise coordinate χ� via

dχ� ¼ γ−2
�
1 − v2

�
1þ g2

Ω2

��−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

Ω2

r
dχ; ð67Þ

such that the metric becomes

ds2eff ¼ γ2
�
1 − v2

�
1þ g2

Ω2

��
ðdτ2� − dχ2�Þ −

�
1þ g2

Ω2

�
dy2:

ð68Þ

For a large χ� → þ∞, this coordinate coincides with the
original one, χ� ≈ χ, while the other limit, χ� → −∞,
approaches the horizon, χ↓0.

A. Breakdown of conformal invariance

The fact that the effective action (60) is not conformally
invariant has important consequences. One of them is that

left- and right-moving modes are not decoupled from each
other. In our case, we find that the counterpropagating
mode couples to the other modes (such as the Hawking
radiation), which results in the second branch cut and the
additional Bogoliubov coefficient ηω, which in turn gives
rise to the gray-body factor Γω.
If we consider the limit where v approaches 1 (the

vacuum speed of light), we find that g2=Ω2 becomes very
small (near the horizon) and thus the effective action (60) is
nearly conformal (even though one has to be careful with
such an asymptotic statement). In this limit, the counter-
propagating mode decouples approximately. Therefore, the
second branch-cut contribution (ψ cut−

ω ) and the associated
additional Bogoliubov coefficient ηω go to zero such that
the gray-body factor approaches unity and the Hawking
temperature converges to the ordinary expression ξ=ð2πÞ.
As one can easily imagine, a pulse with a very small
polarizability moving with almost the vacuum speed of
light has very little impact on counterpropagating photons.
Note that the effective action (60) could be made

conformally invariant if we added a magnetic permeability
μ to the dielectric permittivity ε and demanded that ε ¼ μ.
In this case, Leff ¼ ðεj∂tAj2 − j∂xAj2=μÞ=2, we may intro-
duce an effective metric such as ds2eff ¼ dt2 − ε2dx2, which
is 1þ 1 dimensional and thus can be cast into a con-
formally flat form. This conformal invariance leads to
several simplifications (e.g., decoupling of left- and right-
moving modes), which have been exploited in the liter-
ature; see, e.g., Refs. [5,14,17]. However—as we have seen
above—these simplifications are not necessary for our
purpose (the derivation of Hawking radiation). Of course,
they can make not only obtaining but also interpreting the
results easier. For example, as we discuss below in
Sec. VIII, identifying the correct Hawking temperature
in the case of broken conformal symmetry requires more
care than in the conformally invariant situation, where one
can easily read it off the Hawking spectrum.

B. Effective potential

The scattering of modes (coupling between left- and
right-moving modes) due to the breakdown of conformal
invariance can be understood nicely in terms of the
effective potential. After transforming to the aforemen-
tioned tortoise coordinate χ� and rescaling Aω according to
Aω ¼ jgeff22 j1=4Aω, the wave equation reads

�
ω2 þ ∂2

∂χ2� − Veffðχ�Þ
�
Aω ¼ 0; ð69Þ

with the effective potential

Veff ¼ −v2ξ3χð1 − v2Þ 2 − ð3þ v2Þξχ − 16v2ξ2χ2

ð1þ 2ξχÞ3ð1þ 2v2ξχÞ3 : ð70Þ
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For large χ� → þ∞, this potential decreases as 1=χ3� while
in the other limit, χ� → −∞, it decreases exponentially
(when approaching the horizon); see Fig. 7.
Note that Eq. (69) is formally equivalent to a

Schrödinger scattering problem with the potential Veff

and the nonrelativistic energy E ∝ ω2. Thus, we get the
usual transmission and reflection coefficients.

VIII. CONCLUSIONS

Based on the Hopfield model (1), we presented a fully
relativistic derivation of the analog of Hawking radiation in
a dispersive dielectric medium employing a minimal set of
assumptions/approximations. As expected, we find that the
Hawking temperature (55) is set by the surface gravity (63),
but we also obtain a gray-body factor (56), which results in
a nonthermal spectrum (54) observed at infinity.
Let us emphasize that just this nonthermal spectrum

hn̂H
ω iin ¼ jβωj2 is not enough to determine the Hawking

temperature. Instead, the Hawking temperature can be
read off the ratio (53) of the Bogoliubov coefficients.
This identification can be based on the following picture:
imagine an initial short-wavelength wave packet composed
of kþ⋆ and k−⋆ modes with this ratio (53). Due to its short
wavelength (and its thereby reduced group velocity), this
wave packet approaches the horizon without scattering (by
the effective potential Veff ) and is constantly stretched
during this approach (analog of gravitational redshift). Near
the horizon, it is then stretched to long wavelengths and
starts to escape to infinity as Hawking radiation (as its
group velocity has increased). However, on the way out to
infinity, part of this Hawking wave packet is scattered (by
the effective potential Veff due to the breaking of conformal
invariance) and thereby transformed into a counterpropa-
gating mode, which is then swallowed by the horizon. Now,
in order to have only the Hawking mode at late times, we
can send in an additional counterpropagating mode such
that the two amplitudes (this direct counterpropagating
mode and the scattered mode) beyond the horizon precisely
cancel each other. This then leads to the form (48), which

relates the final Hawking mode to a linear combination of
initial short-wavelength modes (with amplitudes αω and
βω) plus an initial counterpropagating mode (with the
amplitude ηω). In view of this scale separation (short
and long wavelengths), we may distinguish the pure
scattering process (leading to ηω), which does not mix
positive- and negative-norm states, from the mechanism of
particle creation (involving the amplitudes αω and βω). The
latter can be understood as an amplification process due to
the horizon and is associated with the Hawking temper-
ature, while the former gives rise to the gray-body factor.
As another way of demonstrating that the ratio (53)

determines the Hawking temperature, let us reconstruct the
analog of the Israel-Hartle-Hawking state (thermal equi-
librium) and imagine sending in the long-wavelength
modes in a thermal state with the temperature T in, while
the short-wavelength modes are still in their vacuum state.
In this situation, the expectation value for the Hawking
particles reads

hn̂H
ω iin ¼ jβωj2 þ jηωj2hn̂cp

ω iin
¼ 1 − jηωj2

eω=TH − 1
þ jηωj2
eω=Tin − 1

; ð71Þ

where we have inserted the above result (54) for jβωj2 and
the Bose-Einstein distribution (with temperature T in) for
hn̂cp

ω iin. We see that for T in ¼ TH, we obtain a thermal
spectrum for hn̂H

ω iin with that temperature—which pre-
cisely corresponds to the detailed balance condition, as
expected in a thermal equilibrium state.
Note that for obtaining the above results—such as the

Hawking temperature as determined by the surface gravity
and the gray-body factor—it is essential to take both branch
cuts and thus also the counterpropagating mode into
account. This might be one reason for the difference
between our results and those in the recent paper [47].
In their paper, the second branch cut and the counter-
propagating mode are apparently neglected and the
Hawking temperature obtained there differs from our
expression (and thus also from the surface gravity).
In our derivation, we had both branch cuts running

upwards in the complex plane because this was most
convenient for obtaining the solution which is evanescent
inside the black hole; see the discussion of the boundary
condition in Sec. IV B. For other choices of the branch cuts
(with respect to the integration contour), we would obtain
solutions with different boundary conditions. For example,
having the two branch cuts run downwards to infinity (e.g.,
one in the bottom-right valley and the other one in the
bottom-left valley), an analogous calculation would give
the solution with the two initial short-wavelength solutions,
k�⋆ , outside and the two final modes, ~kp⋆ and ~kcp⋆ , inside the
black hole. In this way, by considering all possible
combinations (both branch cuts up or both down or one
up and one down), one can derive the 3 × 3 “scattering”

FIG. 7. Effective potential (70) outside the black hole as a
function of the tortoise coordinate χ� for v ¼ 2=3 (however, the
shape of the graph is generic for arbitrary pulse velocities). The
coordinate transformation χ ¼ χðχ�Þ was carried out numerically.
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matrix which connects the three initial modes, k�⋆ and kcp⋆
(all outside), with the three final modes, ~kp⋆ and ~kcp⋆ (inside),
as well as kH⋆ (outside).
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