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Spacetime dynamics of spinning particles: Exact electromagnetic analogies
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We compare the rigorous equations describing the motion of spinning test particles in gravitational and
electromagnetic fields, and show that if the Mathisson-Pirani spin condition holds then exact gravito-
electromagnetic analogies emerge. These analogies provide a familiar formalism to treat gravitational problems,
as well as a means for comparing the two interactions. Fundamental differences are manifest in the symmetries
and time projections of the electromagnetic and gravitational tidal tensors. The physical consequences of the
symmetries of the tidal tensors are explored comparing the following analogous setups: magnetic dipoles in the
field of nonspinning/spinning charges, and gyroscopes in the Schwarzschild, Kerr, and Kerr—de Sitter spacetimes.
The implications of the time projections of the tidal tensors are illustrated by the work done on the particle in
various frames; in particular, a reciprocity is found to exist: in a frame comoving with the particle, the
electromagnetic (but not the gravitational) field does work on it, causing a variation of its proper mass; conversely,
for “static observers,” a stationary gravitomagnetic (but not a magnetic) field does work on the particle, and the
associated potential energy is seen to embody the Hawking-Wald spin-spin interaction energy. The issue of
hidden momentum, and its counterintuitive dynamical implications, is also analyzed. Finally, a number of issues

regarding the electromagnetic interaction and the physical meaning of Dixon’s equations are clarified.
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I. INTRODUCTION

Analogies between the equations of motion for gyro-
scopes in a gravitational field and magnetic dipoles in an
electromagnetic field have been known for a long time, and
were presented in many different forms throughout the
years. This is the case for both the force and the spin
evolution equations for these test particles in external fields.
The former was first found by Wald [1] in the framework of
linearized theory: he showed that the gravitational force
exerted on a spinning pole-dipole test particle (hereafter a
gyroscope), whose center of mass is at rest in a stationary
field, takes the form Fg = KV(H - S), where H is the so-
called “gravitomagnetic field,” K is some constant (depend-

ing on the precise definition of H , e.2. [2-5]), and S is the
particle’s angular momentum. This formula is similar to the
formula for the electromagnetic force on a magnetic dipole,
Fpy = V(Z% - i), where Bis the magnetic field and j is the
dipole’s magnetic moment. The analogy was later cast in an
exact form by one of the authors in [6], using the exact
“gravitoelectromagnetic” (GEM) inertial fields from the
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so-called 1 + 3 “quasi-Maxwell” formalism. The force was
seen therein to consist of an electromagneticlike term of the
form above plus a term interpreted as the “weight of the
energy” of the gravitomagnetic dipole, and the limit of
validity of the analogy was extended to arbitrarily strong
stationary fields and when the gyroscope’s worldline is
tangent to any timelike Killing vector field (which compre-
hends e.g. circular trajectories with arbitrary speed in
axisymmetric spacetimes). In a different framework, it
was later shown that there is actually an exact, covariant,
and fully general analogy relating the two forces; such
analogy is made explicit not in the framework of the GEM
inertial fields, but by using instead the tidal tensors of both
theories, introduced in [7].

The analogy between the so-called “precession” of a
gyroscope in a gravitational field and the precession of a
magnetic dipole under the action of a magnetic field was
noticed long ago, in the framework of linearized theory, by
a number of authors, e.g. [3-5,8—11], who pointed out that
the spin vector of a gyroscope at rest in a stationary
field evolves as dS/dt = KS x H. This formula is similar
to the formula for the precession of a magnetic dipole in a

magnetic field, ds /dt = 1 x B. The analogy was later cast
in exact forms in e.g. [4,6,12,13]; these are not covariant,
holding only in specific frames, but (in the more general
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formulations in [12—14] and herein) the test particle can be
moving with arbitrary velocity in an arbitrary field.

These analogies provide a familiar formalism to treat
otherwise complicated gravitational effects, as well as a
means to compare the two interactions. In this paper we
explore them, exemplifying their usefulness in some
applications, and the insight they provide into fundamental,
yet not well known aspects of both interactions.

We will also make use of a third exact gravito-
electromagnetic analogy (see e.g. [15-17]), this one a
purely formal one (see [14]), relating the quadratic scalar
invariants of the Maxwell and Weyl tensors [15,16,18],
which proves useful in some applications.

A. The equations of motion

In this paper we start, in Sec. I, by writing the general
relativistic equations describing the motion of spinning test
particles with gravitational and electromagnetic pole-dipole
moments, subject to gravitational and electromagnetic
external fields, in terms of quantities with a clear physical
meaning. This turns out not to be a straightforward task,
as the covariant equations for this problem are still not
generally well understood, with different methods and
derivations leading to different versions of the equations,
the relationship between them not being clear. Perhaps
more surprising is the fact that it is the electromagnetic
sector that has been posing more difficulties, with a number
of misconceptions arising in the physical interpretation of
the quantities involved. These issues are clarified in
Appendix A, where the relation between the different
versions of the equations and their physical interpretation
are discussed in detail.

In order to form a determined system, the equations of
motion need to be supplemented by a spin condition; the
latter is even today still regarded as an open question, with a
long history of debates concerning which one is the “best”
condition (see [19] for a review and list of references).
In Sec. I A we briefly discuss its meaning and the problem
of the relativistic definition of center of mass. This is of
relevance here because the two physical analogies men-
tioned above (for the force and for the spin precession) rely
on a specific choice—the Mathisson-Pirani spin condition.

Also related with the spin supplementary condition is an
issue central to the understanding of the dynamics of a
spinning particle: the decoupling of the 4-velocity U* from
the 4-momentum P%, discussed in Sec. II D. In general, U*
is not parallel to P%; the particle is said to possess “hidden
momentum,” for which another exact analogy is seen to
emerge. The hidden momentum is known to lead to
counterintuitive behaviors of the spinning particles; exam-
ples are the bobbings studied in [20], and the Mathisson
helical motions themselves, where a particle accelerates
without the action of any force [21]. Herein (Sec. [l A) we
present another, perhaps even more surprising conse-
quence: a magnetic dipole with radial initial velocity in
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the field of a point charge accelerates in approximately the
opposite direction to the force.

B. The main realizations

Most of our applications, Secs. III-V of this paper, will
deal with the tidal tensor formalism introduced in [7], and
the exact analogy it unveils: both the electromagnetic force
on a magnetic dipole and the gravitational force on a
gyroscope are given by a contraction of a rank 2 magnetic
type tidal tensor (B3, H,z), with the dipole/spin 4-vector.
Here B,; gives the tidal effects of the magnetic field
and Hyy is the magnetic part of the Riemann tensor, both
measured in the particle’s rest frame. This makes this
formalism specially suited to comparing the two forces—it
amounts to simply comparing the two tidal tensors. Such
comparison is done through FEinstein’s and Maxwell’s
equations, as they also can be written in terms of tidal
tensors. Apart from the nonlinearity of H,g, the tensorial
structure differs when the fields vary along the test
particle’s worldline, since this endows B,; with an anti-
symmetric part, and a nonvanishing time projection along
that worldline, whereas its gravitational counterpart is
spatial relative to that worldline and, in vacuum, symmetric.
Both these aspects are related with the laws of electro-
magnetic induction (and the absence of a counterpart in the
gravitational tidal effects); we discuss them in two separate
sections, as described below.

In Sec. III we explore the physical consequences of the
different symmetries of the gravitational and electromag-
netic tidal tensors. They are seen to imply e.g. that particles
moving in a nonhomogeneous electromagnetic field always
measure a nonvanishing B, (thus feel a force), which is not
necessarily the case in gravity. The following analogous
setups are compared: magnetic dipoles in the field of
nonspinning/spinning charges, and gyroscopes in the
Schwarzschild, Kerr, and Kerr-dS spacetimes. It is seen
that in the cases where Baﬂ reduces to B[aﬂ], we have
H,s = 0 (thus no force) in the gravitational analogue.
Geodesic motions for spinning particles are even found
to exist in the Schwarzschild (radial geodesics) and in the
Kerr-dS (circular equatorial geodesics) spacetimes.

In Sec. IV we explore the physical content of the time
projections of the forces in different frames, which are
related with the rate of work done on the test particle by the
external fields. In order to obtain the relationship, we start
by deriving the general equation yielding the variation of
energy of a particle with multipole structure with respect to
an arbitrary congruence of observers. We then show that the
electromagnetic force has a nonvanishing time projection
along U%, which is the power transferred to the dipole by
Faraday’s induction, reflected in a variation of its proper
mass m. The projection of the gravitational force along
U?, by contrast, vanishes (as H,; is spatial relative to U%),
leading to the conservation of the gyroscope’s mass.
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Also of particular interest in this context are the time
projections as measured by “static observers,” analyzed in
Sec. IV B. For these observers, the time projection of the
electromagnetic force vanishes, meaning that the total work
done on the magnetic dipole is zero. This reflects the well-
known fact that the work done by the stationary magnetic
field is zero; in this framework, it is seen to arise from an
exchange of energy between three forms, translational
kinetic energy, proper mass m, and ‘“hidden energy,’
occurring in a way such that their variations cancel out,
keeping the total energy constant. In the gravitational case,
since m is constant, such cancellation does not occur and
(by contrast with its electromagnetic counterpart) a sta-
tionary field does work on mass currents, so that there
exists an associated potential spin-curvature potential
energy, of which the Wald-Hawking spin-spin interaction
energy [1,22] is seen to be a special case.

In Sec. V we study the weak field and slow motion
regime, and show that the above-mentioned differences
between the two interactions appear at leading order (thus
are not negligible) therein, which is commonly overlooked
in the literature concerning this regime.

C. Beyond the pole-dipole

In Sec. VI we go beyond the pole-dipole approximation,
including the moments of quadrupole order, to clarify the
mechanism by which the proper mass of a spinning particle
in an electromagnetic field varies, and solve an apparent
contradiction of the former approximation: on the one
hand, as stated above, the mass m of a particle with
magnetic moment varies due (from the point of view of
the particle’s frame) to the work done on it by the induced
electric field (which, by having a curl, should torque the
body). On the other hand, the associated torque is not
manifest in the dipole order equations. In Sec. VI A we
show that such torque is indeed exerted on the particle
(governed by the time projection of the magnetic tidal
tensor, B“ﬁU/j ), but it involves quadrupole order moments
of the charge, which is why it does not show up to dipole
order. The subtlety here is that the work it does, and the
associated variation of mass/kinetic energy of rotation, is of
dipole order (yielding indeed the time projection of the
dipole force along its worldline, as obtained in Sec. IV A).
Then in Sec. VIB we study the analogous gravitational
problem, showing that, as expected (as H,; is spatial with
respect to U%), no analogous torque exists.

D. Notation and conventions

(1) Signature and signs.—We use the signature
—+ 4+ €45 = /—9lapyd] denotes the Levi-
Civita tensor, and we follow the orientation [1230] =
1 (i.e., in flat spacetime, €239 = 1). €;jx = €;jx0 18
the 3D alternating tensor. Our convention for the
Riemann tensor is R, =1, , — 1Y, , + -
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We use bold fonts to denote tensors T (including
4-vectors P), and arrows for the spatial components

P of a 4-vector P. Greek letters a,p,y, ... denote 4D
spacetime indices, running 0-3; Roman letters
i,j, k,... denote spatial indices, running 1-3. Fol-
lowing the usual practice, we sometimes use com-
ponent notation T% to refer to a tensor T.

By u” we denote a generic unit timelike vector,
which can be interpreted as the instantaneous
4-velocity of some observer. U* = dz%/dz is the
tangent vector to the test body’s representative
worldline z%(7), taken to be a suitably defined center
of mass (CM). U“ is thus the CM 4- velocity

Time and space projectors—(T")*; = —u"uy and
(h*)*; = 6% + u“uy denote, respectively, the pro-
jectors parallel and orthogonal to a unit timelike
vector u*; they may be interpreted as the time and
space projectors in the local rest frame of an observer
with 4-velocity u“.

Tensors resulting from a measurement process.—
(A*)--% denotes the tensor A as measured by an
observer O(u) of 4-velocity u® For example,
(E")* = Ful, (E"),5=Fupu’ and (EY),; =
R,pw'u” denote, respectively, the electric field, elec-
tric tidal tensor, and gravitoelectric tidal tensor as
measured by O(u). For the space components of

a vector in a given frame we use the notation A(u);

for example, E (u) denotes the space components
of (E*)*. When u*=U* (ie., the particle’s
CM 4-velocity) we drop the superscrlpt [e. g
(EY)* = E“],orthe argumentof the vector: E(U )= E.
Electromagnetic field—The Maxwell tensor F%
and its dual x F*” decompose in terms of the electric
(E")* = F*su and magnetic (B*)* = »F*gu” fields
measured by an observer of 4-velocity u® as

Fop = 2“[a(Eu)/3] + €apysut®(BY)7; (1)
*Faﬂ = 2M[a(Bu)ﬂ] - €a/3},§lxt5(Eu)y. (2)

Static observers.—In stationary, asymptotically flat
spacetimes, we dub “static observers” the rigid
congruence of observers whose worldlines are tan-
gent to the temporal Killing vector field £ = 0/0r;
they may be interpreted as the set of points rigidly
fixed to the “distant stars” (the asymptotic inertial
rest frame of the source). In the Kerr spacetime,
these correspond to the observers of zero 3-velocity
in Boyer-Lindquist coordinates. This agrees with the
convention in e.g. [23,24]. (The denomination
“static observers” has, however, a different meaning
in some literature, e.g. [25], where it designates
rigid, vorticity-free congruences tangent to a time-
like Killing vector field, existing only in static
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spacetimes.) In the case of the electromagnetic
systems in flat spacetime, by static observers we
mean the globally inertial rest frame of the sources.
(8) GEM.—This is the acronym for gravitoelectromag-
netism. By “inertial GEM fields,” we mean the fields
of inertial forces that arise from the 1 + 3 splitting of

spacetime: the gravitoelectric field é which plays in
this framework a role analogous to the electric field
of electromagnetism, and the gravitomagnetic field

H , analogous to the magnetic field. We discuss these
fields in detail in [14].

II. EQUATIONS OF MOTION FOR SPINNING
POLE-DIPOLE PARTICLES

In most of this paper we will be dealing with the
dynamics of the so-called pole-dipole spinning test par-
ticles. We consider systems composed of a test body
plus background gravitational and electromagnetic fields.
Let (Tio)® = O% + (T paser)® denote the total energy-
momentum tensor, which splits into the electromagnetic
stress-energy tensor @% and the energy-momentum tensor
of the matter (7' aer)®. Moreover, let 7% and j* denote,
respectively, the energy-momentum tensor and the current
density 4-vector of the test body. We also consider that the
only matter and currents present are the ones arising from
the test body: (Tmaer)® = T, j&, = j* In this case (see
[26] for details) the conservation of total energy-momen-
tum tensor yields (cf. e.g. [20,27,28])

f f 7 , af
(Ttol)(ﬁ;/} =0= T(ﬁ;/} = _G)a[;/} < T(ﬁ;/)’ = F(/}J/J» (3)

where F is the Maxwell tensor of the external (back-
ground) electromagnetic field.

In a multipole expansion the body is represented by the
moments of j* (its “electromagnetic skeleton™) and a set of
moments of 7%, called “inertial” or “gravitational”
moments (forming the so-called [29] “gravitational
skeleton”). Truncating the expansion at dipole order, the
equations of motion for such a particle involve only two
moments of 7%,

pi = / Télds;, (@)
(z,U)

S&/;EQ/ AT 3, (5)
2(z7,U)

and the electromagnetic moments [30]:

g = / JUdE,, (6)
>

di = / xtjhdz;, (7)
3(z,U)
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These are taken with respect to a reference worldline z%(7),
of proper time 7 and (unit) tangent vector U* = dz%/dx,
and to a hypersurface of integration X(z, u), which is the
spacelike hypersurface generated by all geodesics orthogo-
nal to some timelike vector u“ at the point z%(z); following
[30] we take u* = U“. Also,

dX, = -n,dx (at z*:n% = U%), 9)
where n” is the (future-pointing) unit vector normal do
%(z,U), and dZ is the 3-volume element of this hypersur-
face. The integrations are performed in a system of
Riemann normal coordinates {x*} (e.g. [23,31]) centered
at the point z* of the reference worldline (i.e., z¥ = 0). The
resulting expressions, however, are fensors (see below),
which can be expressed in any frame. P*(r) is the
4-momentum of the test particle, ¢ its total charge (an
invariant, independent of X), and $*(z), d*(z) and u“(z)
are, respectively, the angular momentum, and the intrinsic
electric and magnetic dipole moments about the point z%(z)
of the reference worldline. It is useful to introduce also the
magnetic dipole 2-form g,z by

1
Hap = Eqpysh’ U’ IS §€aﬂ75Uﬂ/ﬂ6- (10)

In some applications we will assume u* to be proportional
to the spin tensor: u* = ¢S%, where o is the gyromagnetic
ratio. The moments d* and u* are dubbed “intrinsic”
because they are evaluated in a frame comoving with the
particle’s representative point z%(z) (where U’ = 0). If this
frame is inertial, they take the forms d* = (0, Zl) and
u®* = (0,4), where d and 4 are given by the usual textbook
definitions (e.g. [32]): d = [pxd’x, i = [Xx jd3x)2.

Expressions (4), (5), (7) and (8) are integrals of tensors
over X (i.e., they add tensor components at different points
in a curved spacetime), which requires a justification.
By using Riemann normal coordinates, one is implicitly
using the exponential map to pull back the integrands from
the spacetime manifold to the tangent space at z% and
integrating therein, which is a well-defined tensor oper-
ation, see [31,33]. (Note also that, by being associated to
the exponential map, such coordinates are naturally adapted
to integrations over geodesic hypersurfaces X). Other
schemes to perform such integrations were proposed in
the literature, based on bitensors in [20,27,34-36], or less
sophisticated ones in e.g. [37]. In the pole-dipole approxi-
mation [where 7% and j* are nonvanishing only in a very
small region around z%(7), so that only terms linear in x%
are kept] they are all equivalent (see Appendix Al
and [33,36]).
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The motion of the test particle is described by the
reference worldline z%(7); its choice will be discussed
below. The equations of motion that follow from (3) are
[30,34,38] (see Appendix A for a discussion)

DP*

_ gpe b 4 ey, e qups
e AT e T
Dd’
+ F*,5U'dP + F rt (11)
DS plaghl + 2,00 )y
—— = 20U 4 2V 4 2d A, U7, (12)

where F? is the background Maxwell tensor.

The first term in (11) is the Lorentz force; the second
term, §F*u,, = Fgy, is the force due to the tidal
coupling of the electromagnetic field to the magnetic
dipole moment; and the third, —1R%,, S* U’ = Fg, is
the Mathisson-Papapetrou spin-curvature force. The last
two terms are the force exerted on the electric dipole,
consisting of a tidal term F*,.; U’d” and of a nontidal term
F "ﬁDdﬁ /dz. Note that the terms involving u* and d* are
substantially different; this can be traced back to the
intrinsic difference between the two types of dipole—u®
being the dipole moment of the spatial current density
(hY )% j”, and d* the dipole moment of the charge density
pe=—j*U,, cf. Eqs. (7) and (8). The former can be
modeled by a current loop, the latter by a pair of oppositely
charged monopoles, and these two types of objects behave
differently as test particles; in this paper we shall discuss
some dynamical implications.

Up until now, the reference worldline z%(z), relative to
which the moments in Egs. (11) and (12) are taken, is still
undefined. Had we made an exact expansion keeping all the
infinite multipole moments as in [35,36], such worldline
would be arbitrary. Herein, however, it must be assumed
that it passes through the body (or close enough), so that the
pole-dipole approximation is valid; it will be chosen as
being prescribed by a suitably defined center of mass of the
test particle. As discussed in the next section, that is done
through a supplementary condition $*u; = 0, for some
timelike unit vector field u® If F% =0 there are 13
unknowns in Egs. (11) and (12) (P%, three independent
components of U% and six independent components of
§%) for only ten equations. The condition S u; = 0, for a
definite u®, closes the system as it kills off three compo-
nents of S%. In the general case where F* # 0 one also
needs to give the laws of evolution for 4* and d* in order
for the system to be determined, cf. [28].

A. Center of mass (CM) and spin
supplementary condition

In relativistic physics, the center of mass of a spinning
body is observer dependent. This is illustrated in Fig. 1 of
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[21]. Thus one needs to specify the frame where it is to
be evaluated. That amounts to supplementing Egs. (11)
and (12) (which, as discussed above, would otherwise be
undetermined) by the spin supplementary condition
S%uz =0, as we will show next. The vector (df)* =
—S"/’uﬁ yields the “mass dipole moment” (i.e. the mass
times the displacement of the reference worldline relative
to the center of mass) as measured by the observer O of
4-velocity u® In order to see this consider, at the point z* of
the reference worldline, a system of Riemann normal
coordinates {x*} momentarily comoving with O (i.e., 95 =
u at z%). In this frame, ul =0 and S?/A’uﬁ = Smué = —§i0,
From Eq. (5) we have

§i0 _ / x?TG?dZ}A, = m(u)x’CM(u) (13)
X(7.u)

where m(u) = —P”u, denotes the mass as measured by O,
and we used the fact that X(z, u) coincides with the spatial

hypersurface x0 = 0. We see that 570 is by definition the
mass dipole in the frame {x*}: §0 = m(u)x;'CM(u)E
(d’é)’ and x?CM(u) = Sm/m(u) is the position of the center
of mass. Thus the condition

S%Puy =0, (14)

implying in this frame 50 = 0 = xi,,,(u) = 0, is precisely
the condition that the reference worldline is the center of
mass (or “centroid”) as measured in this frame (or,
equivalently, that the mass dipole vanishes for such an
observer). For details on how the center of mass position
changes in a change of observer, we refer the reader to
[21,33]. The set of all the possible positions of the center of
mass, as measured by every possible observer, forms a
worldtube (the “minimal worldtube” [39]), which is typ-
ically very narrow, and always contained within the convex
hull of the body’s worldtube (see [33,40,41]).

Usually one prefers equations of motion that do not
depend on a CM measured by some ‘“‘external” observer,
but instead the field u“ to be defined in terms of the timelike
vectors (P* or U“) already present in Eqs. (11) and (12).
This is the case of the two most common [19] conditions in
the literature: the Frenkel-Mathisson-Pirani [29,42-44]
condition S*U s = 0 (hereafter the Mathisson-Pirani con-
dition, as it is best known) and the Tulczyjew-Dixon
[34,45] condition S”/’Pﬂ = 0. The former seems the most
natural choice, as it amounts to computing the center of
mass in its proper frame, i.e., in the frame where it has zero
3-velocity. It also arises in a natural fashion in some
derivations [46,47] (see also [48]), and has been argued
[49-51] to be the only one that can be applied in the case of
massless particles. It turns out, however, that it does not
determine the worldline uniquely. For instance, in the case
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of a free particle in flat spacetime, it is known to lead, in
addition to the expected straightline motion, to an infinite
set of helical motions, notably found by Mathisson [43],
and which have been poorly understood and subject of
some misconceptions in the literature. These were clarified
in [21], where it was shown that the different worldlines
compatible with this condition are just equivalent descrip-
tions of the same physical motion.

The Tulczyjew-Dixon condition S*P; =0 amounts to
computing the CM in the frame where it has zero
3-momentum. This condition determines uniquely the CM
worldline [27,52,53]; there is no ambiguity in this case, since
P* is given in advance by (4), and for this reason it is
preferred by a number of authors. For a free particle in flat
spacetime, the worldline specified by S% Py = 0 corresponds
to Mathisson’s nonhelical solution; but in the presence of
gravitational/electromagnetic field, P* cannot in general be
parallel to U”* under these spin conditions [cf. Egs. (29) and
(34), below], so the solutions do not coincide.

The fundamental point to be emphasized here is that
these two conditions, as well as other reasonable conditions
in the literature (such as the Corinaldesi-Papapetrou
condition [54], the “parallel” condition in [39], or the
Newton-Wigner condition [55,56], used in Hamiltonian
and effective field theory approaches [57-63]), are, as
shown explicitly in [33], equivalent descriptions of the
motion of the test particle, the choice between them being a
matter of convenience.

In most of this paper we will adopt the Mathisson-Pirani
condition, since it is the one that leads to the exact grav-
itoelectromagnetic analogies we use. If the Tulczyjew-Dixon
condition is chosen instead, one still recovers the same
analogies to a good approximation. The spin conditions, their
effective differences and their suitability for the applications in
this paper, as well as their impact on the gravitoelectromag-
netic analogies, are discussed in detail in Appendix C. Therein
we show that exact analogies turn out to exist for an arbitrary
spin condition, only the corresponding equations are slightly
more complicated.

With the Mathisson-Pirani condition, we have S* =
€S U,, where S% is the spin 4-vector, which has

components (0, 3‘) in an orthonormal frame comoving with
the CM. Substituting into Egs. (11) and (12) (and also
performing the contractions with U*) we obtain

TABLE L
gyroscope.
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DP? Dd’
— gE° E(lﬁ d B/}a _ H/}a S F@ : 15
g 9T s+ B p (15)
DpSH
= U (dE + ), (16)

where E* = F*Uj and B* = xF*’ Uy, are the electric and
magnetic fields as measured by the test particle, and
Eop = FoupU", Boy = xFp,5U" and H,p = %R, UM U°
are, respectively, the electric, magnetic and gravitomag-
netic tidal tensors as defined in [7,14], as measured by the
test particle. The operator Dy/dr denotes the Fermi-
Walker derivative along U* (e.g. [23,64]), which, for some
vector V¥, reads

DpV#  DVH
P = —20Uka!V,, (17)
dr dr

where a®* = DU%/dz is the CM acceleration.

B. Force on gyroscope vs force on magnetic
dipole—exact analogy based
on tidal tensors

Herein we are interested in purely magnetic dipoles, i.e.,
dipoles whose electric moment vanishes in the CM frame;
this is ensured by the condition d* = 0. In this case,
Eq. (15) simplifies to

Dp¢
dr

= qFUg + BPu; — WS, (18)

These equations manifest the physical analogy B,; <> Hyp,
summarized in Table I: (i) both the electromagnetic force
on a magnetic dipole and the gravitational force on a
gyroscope are determined by a contraction of the spin/
magnetic dipole 4-vector with a magnetic type tidal tensor.
B,; may be cast as the derivative of the magnetic field
B* = x4 U? as measured in the inertial frame momen-
tarily comoving with the test particle: By = Byg|y—consi-
For this reason it is dubbed the magnetic tidal tensor, and
its gravitational counterpart H,; the gravitomagnetic tidal
tensor [7]. (ii) It turns out that B,; and H,; obey the
formally similar equations (I.2) and (I.3) in Table I, which
in one case are Maxwell’s equations, and in the other are

Analogy between the electromagnetic force on a magnetic dipole and the gravitational force on a

Electromagnetic force on a magnetic dipole

Gravitational force on a spinning particle

Fy = B/u® By = «F,,U* (I.1a)
Equations for the magnetic tidal tensor

B*, =0 (1.2a)
Blap = %*Fa,;;, U = 2re 5, j°UT (1.3a)
BU* = 0; ByyUP = € (5E, U° (I.4a)

Fé = —H,/S% H = %R, U U" (I.1b)
Equations for the gravitomagnetic tidal tensor

He, =0 (1.2b)
Higg = —4€,55,J°U" (1.3b)
HosU* = HyyUP =0 (1.4b)
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exact Einstein’s equations. That is, the traces (I.2) are,
respectively, the time projection (with respect to U%) of
the electromagnetic Bianchi identity *F “/};/, =0 and the
time-time projection of the algebraic Bianchi identities
* R, 5 = 0; the antisymmetric parts (I.3a) are, respectively,
the space projection of Maxwell’s equations F% p = 4nj”
and the time-space projection of Einstein’s equations
R,, =8n(T,, —39,T%). The electromagnetic equations
take a familiar form in an inertial frame: Eq. (I.2a) becomes
V-B= 0; the space part of (I.3a) is the Maxwell-Ampere
law V x B = OE /0t + 47]. The latter means that the space
part of B, encodes the curl of B*, which is actually a more
general statement, holding in arbitrarily accelerated frames:
denote by U“ the 4-velocity of the rest observers in such
frames; if the frame is nonrotating and nonshearing,
Uup = —a,Up, cf. Eq. (70) below, and we have

Gﬂ}/aaB},ﬂUé = €ﬁymsB},;ﬁU(s = €iijjk = (V X é)l (19)

Expressing also the second member of (I.3a) in terms of
the electric and magnetic fields E* and B* measured in this
frame, we obtain, in 3-vector notation,

-

N

DE > -
VXB:d——aXE+4n'j (20)
T

which is the generalization of Maxwell-Ampere law for
accelerated frames [cf. Eq. (19) of [17]]. This equation, as
well as Eq. (23) below, is of use in the particle’s CM frame
(as it in general accelerates).

Note this important aspect of Eq. (I.3a), considering for
simplicity the vacuum case j* = 0: it tells us that when the
field F,; varies along the particle’s worldline (of 4-velocity
U?), that endows B with an antisymmetric part, implying
that B, itself is nonvanishing. Hence, whenever the
particle moves in a nonhomogeneous field, a force will
be exerted on it (except for special orientations of x). From
Eqgs. (19) and (20), this can be interpreted, taking the
perspective of the inertial frame momentarily comoving
with the particle, as the time-varying electric field inducing

a curl in the magnetic field B (and thus a nonvanishing
magnetic tidal tensor). The fact that its gravitomagnetic
counterpart H,; is symmetric in vacuum tells us that no
analogous induction phenomenon occurs in gravity. The
physical consequences shall be explored in Sec. III below.

There is an electric counterpart to this analogy, relating
the electric tidal tensor E,; with the electric part of the
Riemann tensor:

Eaﬂ = Faﬂ;ﬂUﬂ <> [Eaﬁ' = RaﬂﬂyUMUv’
which is manifest in the worldline deviations of both
theories, see [7], and together they form the gravitoelec-

tromagnetic analogy based on tidal tensors [7,14]. These
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tensors obey the following equations, which will be useful
in this work:

1
Elap =5 Fapy UTs (a) Epg=0. (b) (21)

Equation (21a) results from the space projection (relative to
U%) of the identity *F® 5 =0, and Eq. (21b) from
the time-space projection of the identity *R"*,; = 0.
Contracting (21a) with the spatial 3-form eaﬂy(;Ué yields
Eq. (I.4a) of Table I. Again, for a (nonrotating and non-
shearing) arbitrarily accelerated frame we have

é‘ﬂ}/m;E‘},ﬁU(S = GﬁyaﬁEy;/;Ué = eikjEjk = (V X E)l (22)

Expressing also the second member of (21a) in terms of
the fields E* and B* measured in this frame, we obtain, in
3-vector notation:

- DB _ -
VXE=—-——-axE, (23)
dr

which is a generalization of Maxwell-Faraday equation V x

E=-0B /Ot for accelerated frames, cf. Eq. (20) of [17].

The fact that the gravitoelectric tidal tensor E,z is
symmetric again means that there is no analogous gravi-
tational induction effect, and this is a key observation for
the applications in Secs. IVA and VL.

Equations (I.4) are the time projections of the tidal
tensors with respect to the observer U* measuring them (if
U” is the particle’s CM 4-velocity, they are the time
projection in its rest frame); they are zero in the gravita-
tional case, as H,; is spatial relative to U“, and nonzero in
the electromagnetic case, which again is related to electro-
magnetic induction, as the right Eq. (I.4a) corresponds to
the spatially projected Eq. (21a). This means that Fg is
spatial with respect to U*, whereas F§,, is not, which has
important implications on the work done by the fields on
the particle, as will be discussed in Sec. I'V.

Finally, note that Fgy; = Bﬁ"‘,uﬁ is the covariant gener-
alization of the familiar textbook 3D expression

Fpm = Vip- é), the latter being valid only in the inertial
frame momentarily comoving with the particle.

C. Spin precession—exact analogy based
on inertial GEM fields from the
1 4 3 formalism
For purely magnetic dipoles (d* = 0), Eq. (16) for the
spin evolution under the Mathisson-Pirani condition
simplifies to

DS+
dr

= eﬂa/}b UUM{IB/} ’ (24)

or equivalently [cf. Eq. (17)]
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Ds*
= S,a"U* + ¢ 1, U u"BP (25)

T
where B’ is the magnetic field as measured by the test
particle. The first term in (25) embodies the Thomas
precession. The second term is a covariant form for the
familiar torque 7 = i X B causing the Larmor precession of

a magnetic dipole under a magnetic field.

Consider now an orthonormal frame e, carried by an
observer of 4-velocity U“ such that U = e;, comoving
with the test particle. In such frame, S° = 0 and U% = 58’,
and Eq. (25) reduces to (see [14])

DS! . ds

—(GxB) e —(5xQ+ixB), (26)
dr dr

where Q is angular velocity of rotation of the spatial axes e;
relative to a tetrad Fermi-Walker transported along the
center of mass worldline. If B* = 0, Egs. (24)—(26) tell us
that S* undergoes Fermi-Walker transport, i.e., it follows
the local “compass of inertia” [3,65] (the so-called gyro-

scope “precession”, of frequency —Ez, is thus in fact just
minus the rotation of the e; relative to a locally nonrotating
frame, and therefore, locally, an artifact of the reference
frame, manifest only in the ordinary derivative ds /dz). Up
until now Q is arbitrary; of special interest is, in asymp-
totically flat spacetimes, the case where the triads e; are
locked to the so-called “frame of the distant stars.” If the
spacetime is stationary, such a frame is set up by choosing
the congruence of static observers (cf. point 7 of Sec. I D),
and demanding Q to match their vorticity @ [defined in
Eq. (70) below], Q = . That is, demanding the triads e; to
corotate [12,66] with the observers, relative to Fermi-
Walker transport; we dub such frame congruence adapted.
This ensures that the axes e; point to fixed neighboring
observers, cf. Eq. (41) of [14]. Since the observer con-
gruence is rigid and, at infinity, inertial, the axes e; locked
to it are locked to the inertial frame at infinity (the rest
frame of the “distant stars”), and Eq. (26) yields the
precession of spinning particle with respect to the distant
stars. For more details we refer to Secs. 3.1 and 3.3 of the
companion paper [14].

Note the analogy between the two terms of the second
Eq (26) when the frame is congruence adapted, then
Q=H /2, where H is the ¢ ‘gravitomagnetic” or Coriolis
field felt in such frame, which plays in the exact geodesic
equations [e.g. Eq. (58) of [14]] the same role as the
magnetic field B in the electromagnetic Lorentz force.
Moreover, the field equations for H exhibit striking
similarities with the Maxwell equations for B in an
accelerated, rotating frame, see Table 2 of [14]. In the
linear regime, for stationary fields, they become similar to
Maxwell’s equations in a Lorentz frame, as is well known
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[1,3,11,20,67,68]. That tells us that analogous setups
generate fields alike. A well-known realization is the
similarity between the gravitomagnetic field produced by
a spinning mass (as measured by the congruence of static
observers), and the magnetic field produced by a spinning
charge, e.g. Egs. (6.1.9) and (6.1.25) of [3].

The analogy in Eq. (26) is valid for arbitrary fields,
unlike the case of most gravitoelectromagnetic analogies1
based on GEM inertial fields (not tidal tensors), which do
not hold (in the sense of a one to one correspondence) when
one considers time-dependent fields [14,69] (another
exception is the hidden momentum analogy, presented in
the next section).

Finally, note that, if we assume ji = aS then the quantity
§? = 525, =S¥ Sqp/2 is a constant of the motion, which is
immediately seen contracting (25) with S*.

D. Momentum of the spinning particle—“hidden
momentum” and exact analogy based on inertial
GEM fields from the 1 4 3 formalism

The momentum (4) of a spinning particle is not in general
parallel to its center of mass 4-velocity U°. In order to see
that, let us re-write the spin evolution equation (12) as

DS

= 2Pl 4 1P, (27)

where we denoted
% =2 WF, 4+ 2deFP U, (28)
which is sometimes called the dipole “torque” tensor

[although only its spatial part contributes to the actual
torque, cf. Eq. (106)]. Consider a generic spin condition
Sab ug = 0, where u® denotes the 4-velocity of an arbitrary
observer O(u) [as discussed in Sec. IT A, this condition
means that we take as reference worldline the center of mass
as measured by O(u)]. An expression for P* can be obtained
contracting (27) with u, leading to

1
P* = <m(u) Ue + S(lﬂ
y(u,U)

P +r"/”uj> (29)

where y(U, u) = —U%u,, m(u) = —P%u,, and in the second
term we used S% ug = 0. We split P* in its projections
parallel and orthogonal to the CM 4-velocity U*:

'In the framework of the GEM inertial fields, the force on the
gyroscope [6,14] and the equation for the geodesics of (non-
spinning) test particles (e.g. [6,12,14]) can be exactly described
by equations analogous to the ones from electromagnetism, but
only if the fields are stationary and the gyroscope it at rest with
respect to a stationary observer (i.e., its worldline is tangent to a
timelike Killing vector), or, in the case of the geodesic equation, if
one considers a frame adapted to a rigid congruence of stationary
observers. See Secs. 3.2 and 3.6 of [14].
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P* =Pl + Phgs  Pln=mU% Py = (hY)%PP.
(30)

We dub the parallel projection Py, = mU“ “kinetic momen-
tum” associated with the motion of the center of mass. This
is the most familiar part of P%, formally similar to the
momentum of a monopole particle. The component P},
orthogonal to U* is the so-called hidden momentum [20].
The reason for the latter denomination is seen taking the
perspective of the particle’s center of mass frame (i.e., the
frame where U = 0): the 3-momentum is in general not zero
therein, P= }Bhid # 0; however, by definition, the particle’s
CM is at rest in that frame, and so this momentum must be
somehow hidden in the spinning particle. The hidden
momentum Pj.; consists of two parts of distinct origin:
Pia = Phiar + Phigem> Where

1 Du;
V), s —L, 31
o) ST (31)

a
P hidl

~
—~

1
Pilaem = v, U)

(hY)* 2% uy. (32)

The term Py, which we dub “inertial” hidden momentum
(the reason for such denomination will be clear below), is a
gauge term that depends only on the spin supplementary
condition, i.e., on the choice of the vector field u”
[the 4-velocity of the observers O(u) relative to which
the CM is being computed]. This type of hidden momentum
was first discussed in [20] (dubbed ‘“kinematical” therein).
It is in general not zero when Du®/dz # 0; this comes as a
natural consequence of what we discussed in Sec. IT A: the
position of the CM of a spinning body depends on the vector
u” relative to which it is computed; if that vector varies along
the reference worldline, it is clear that this is reflected in the
velocity U” of the CM (which in general will accelerate even
without the action of any forces; see Figs. 1 and 2 of [33]).
Since the momentum P% remains the same, U* will in
general not be parallel to P?, and so the centroid is not at rest
in the frame where P = 0; conversely, the momentum is not
zero in the CM frame (hidden momentum). If we take a field
u® such that Du®/dr = 0 (which was proposed in [39] as
one of the possible spin supplementary conditions), i.e., if
we take as reference worldline the center of mass as
measured with respect to a field u* that is parallel trans-
ported along it, then Py, (as well as the motion effects
induced by it, such as the bobbings studied in [20], or the
helical motions discussed in [21]) is made to vanish.

The term Py p, is what we dub “electromagnetic”
hidden momentum; it is a still not well-known feature of
relativistic electrodynamics (despite its discovery [70]
dating back from the 1960’s, and having since been
discussed in number of papers, e.g. [20,70-77]). It is

associated with the electromagnetic torque tensor 7%,
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and consists of a part which is gauge and arises, again,
from the choice of centroid (vanishing for suitable choices,
see [33] for details), plus a part that is not gauge, whose
motion effects (such as the bobbings in electromagnetic
systems studied in [20]) cannot in general be made to
vanish by any choice of center of mass.

With the Mathisson-Pirani condition S¥#U 3 =0, the
hidden momentum in Egs. (30)—(32) takes the suggestive
form

Py =—€%5,:8"a’ U?;

Pl = €%, YU, (33)

and so the particle’s total momentum, Eq (30), reads

P = mU% — e“ﬂ},{;Sﬁa” U + eaﬁy,;,u/}EyU‘s, (34)
where E* = F' "‘ﬁUﬁ is the electric field as measured in the
particle’s CM frame (of 4-velocity U%), and a“ its accel-
eration. In the particle’s CM frame (where U’ = 0), and in
vector notation, the space part reads (P),; = 0)

ﬁhid:i):—gxa—l—ﬁxizgxé—l—ﬁxﬁ. (35)
The term Ppgpy = ji X E is the most usual form for the
electromagnetic hidden momentum in the literature, e.g.
[32,71-74,78]. It equals minus the electromagnetic field

momentum P, generated by a magnetic dipole when
placed in an external electromagnetic field, which, in the
particle’s frame, reads (see [26])

- -

P, = /EXBdipole = —ji X E = —=Ppigem.

It should be noted however that i’hidEM (unlike i’x) is purely
mechanical in nature (not field momentum, even though it
is ultimately originated by the action of the electromagnetic
field), as explained in [71,72,78] using simple models.
This hidden momentum implies that, in the presence of an
electromagnetic field, the spatial momentum of a dipole
whose center of mass is at rest is in general not zero.
As explained in detail in [26], this actually plays a crucial
role in the conservation laws: consider a magnetic dipole at

rest in a stationary field; it is i)hidEM which allows for the

total spatial momentum P, = P ater + i’EM to vanish, as
required by the conservation equations (7o), s =0 fora
stationary configuration.

Equations (33)—(35) manifest an exact analogy: G* =
—a® is the gravitoelectric field (as defined in [6,12,14])
associated to the CM frame, which is a field of “inertial
forces,” and so Py, is the inertial analogue of Pjipy, With
S% and G* in the roles of y* and E“. The analogy above is
useful to understand the famous helical solutions allowed
by the condition S*U 5 = 0: we show in [21,75] that they
are a phenomena which can be cast as analogous to the
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bobbings of a magnetic dipole in an external electric field
(studied in Sec. III. B. 1 of [20]), in both cases the effect
being driven not by a force but solely by an interchange
between kinetic and hidden momentum.

E. Mass of the spinning particle

We take the scalar m = —P*U, as “the proper mass™

[41] of the spinning particle. It is simply the time projection
of P* in the particle’s CM frame, i.e., the particle’s energy
as measured in its center of mass rest frame. Whereas for a
monopole particle m is a constant of the motion, for a
spinning particle with dipole moments that is not the case in
general. It follows from the definition of m that

DP*

d
m___Ua_

DyP*
dr dr

dr

P%a, = Uy (36)
i.e., dm/dz is the time projection, in the CM frame, of the
Fermi-Walker derivative of the momentum. Noting that
P%a, = P{iemde> and  using  the  orthogonality
PiemUq = 0, we can rewrite this equation as

dm DP*  DP{iem
= -—22U,. 37
dr < dt dt “ (37)

Thus dm/dz equals also the time projection, in the CM
frame, of the force DP%/dz subtracted by the derivative of
the electromagnetic hidden momentum D Py, e/ d7. Let us
see the meaning of the first term. Contracting (15) with U?,
and noting that B**U, = U,DxF’" /dr, we obtain

bpe . _ D*F/frU L Dd’ (38)
dr ¢ dr Hp Pdr

showing that the force has a time projection if the Maxwell
tensor and/or the electric dipole vector vary along the
CM worldline. Now, noting from Egs. (34) and (2) that
Pta, = *Fﬂ7ay/tﬁ, and putting Eqgs. (36) and (38) together,
we see that

dm DB Ddr

=~ M +E dr (39)
Hence the mass of a particle possessing electric and
magnetic dipole moments is not constant in general. The
two contributions are substantially different: the mass
variation due to the coupling of the field to the magnetic
dipole occurs when the magnetic field varies along the

*This is the most natural definition of the body’s mass if one
uses the Mathisson-Pirani spin condition, since it is the quantity
which is conserved when F® = 0, cf. Eq. (39). If one uses the
Tulczyjew-Dixon condition S”’ﬂPﬁ =0 instead, then the con-
served quantity is M = +/—P*P, (not m), i.e., the particle’s
energy as measured in the zero 3-momentum frame (see e.g.

[19D.
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particle’s worldline; it may be interpreted as essentially the
rate of work done on the magnetic dipole through Faraday’s
law of induction (Fig. 3 below), as we shall see in detail in
Sec. IVA. The second term corresponds to the work done
on the electric dipole by the electric field when the dipole
vector varies, e.g., when it rotates; this term has nothing to
do with induction, and is nonzero even for constant,
uniform electric fields. The case of electric dipoles is
discussed in detail in Appendix B 2.

We are interested mostly in purely magnetic dipoles,
d* =0; in this case, if we take u* = o0S% with ¢ a
constant, and, since from Eq. (25), B*DS, /dr =0, we
have [28,79-81]

dm d
—=—0—(S,B* 40
=0t (5,B) (40)

:>m:m0—o'SﬂB":m0—03‘-l§, (41)

where m is a constant. Thus, if i = oS, the mass m is the

sum of a constant plus a variable part — - B, about which
we would like to make some remarks. The expression

-

—ji- B is commonly dubbed in elementary textbooks
“magnetic potential energy”; for this reason some authors
[27,38,81] have interpreted this term as meaning that the
potential energy contributes to the particle’s mass. We
argue (in agreement with the analysis in [§2—85]), that the

term — - Bis actually internal (not potential) energy of
the test particle; in fact, we shall see (Sec. VI A 3) that, for
a quasirigid body, it is essentially rotational kinetic
energy, associated with the rotation of the body around
its center of mass. What it actually does is to ensure that
the net work done by the magnetic field on a magnetic
dipole is zero (hence no potential energy can be assigned
to it). Potential energy comes into play instead in the case
of a monopole charged particle or of an electric dipole in
an electric field; but in neither case does it contribute to
the mass [m is a constant for a monopole particle, as well
as for an electric dipole if d* is parallel transported,
cf. Eq. (39)]. These issues are discussed in detail in
Sec. IVB 1 and Appendix B 4.

It is also important to understand that the varying mass m
(and its variable part —p - 79) is real and physically
measurable, not just a matter of definition [i.e. not an issue
that goes away by redefining m in Eq. (41) as the particle’s
mass], for m is the inertial mass of the particle. In order to
see that, take for simplicity the case when Pj.;, = 0; we
have

ppr_ L dm
dr ma dr

i.e., the projection of the force in the orthogonal space to U*
is ma“ (thus, in the CM frame, DITJ/ dr = ma). This inertial
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mass is measurable, for instance in collisions. The angular
velocity of rotation of a spinning body (since, as mentioned

above, in the case of a quasirigid body, —4 - B is kinetic
energy of rotation) is measurable as well.

In the purely gravitational case, by contrast, the proper
mass is a constant (m = my); the implications for the
work done by the fields on the particle are discussed in
Secs. IV B and VIC.

F. Center of mass motion

Equations (I.1) of Table I yield the force on the spinning
particle in the electromagnetic and gravitational case; not
the acceleration a* = DU*/dr, as P* # myU® in general.
Setting m = mg + m' in Eq. (34), and noting, from decom-
position (2), that €%, y’E'U° = xF/*ug + y’ BsU“, we
can write

P = moU® — €%4,58Pa’U° + (m' + p"B,)U* + xF 5P

This is simplified if we consider purely magnetic dipoles
(d* = 0), and assume p* = ¢S5%; in that case, cf. Eq. (41),
m' = —u®B,, and the third term vanishes. Differentiating,
using (18), and noting that, if j* = 0, *F 3. U" = 2By,
cf. Eq. (I.3a) of Table I, we have, in a region where the
charge current density j* is zero (most of the applications in
this paper deal with vacuum),

« = GFOU, 4+ By — s, — ,r 2
mod” = qF Uy + B4y Al

D
+ €aﬁy5U5% (S/}ay). (42)

Note the reversed indices in the second term as compared
to the expression for the force (I.1a). This leads to a
counterintuitive dynamical behavior, as we shall exemplify
in Sec. IIT A.

III. DYNAMICAL MANIFESTATIONS OF
THE SYMMETRIES OF THE MAGNETIC
TIDAL TENSORS

According to Table I, both in the case of the electro-
magnetic force on a magnetic dipole and in the case of the
gravitational force on a gyroscope, it is the magnetic/
gravitomagnetic tidal tensor, as seen by the test particle of
4-velocity U% that determines the force exerted upon it.
The explicit analogy in Table I is thus ideally suited to
compare the two forces, because in this framework it
amounts to comparing B,; to H,z. The most important
differences between them are: (i) B,; is linear in the
electromagnetic potentials and vector fields, whereas H,
is not linear in the metric tensor, nor in the GEM “vector”
fields (for a detailed discussion of this aspect, we refer to
Secs. 3.5 and 6 of [14]); (i) in vacuum, Hiap = 0
(symmetric  tensor), whereas B,; is generically
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nonsymmetric, Bj,g # 0, even in vacuum; (iii) time com-
ponents: Hy; is spatial with respect to U“, whereas B, is
not. The two latter differences, which are clear from
Egs. (I.3) and (1.4), are the ones in which we are most
interested in the present work. In this section we start with
the physical consequences of the symmetries, and in the
next section we discuss the time projections.
Equation (I.3a) of Table I reads in vacuum (j* = 0)

1
Biop) = B *Fop, U (43)

this tells us that when the field F,; varies along the
worldline of the observer U“ that endows B,; with an
antisymmetric part, implying that B itself is nonvanish-
ing. Now, since, in the force (I.1a), B, is the magnetic tidal
tensor as measured by the particle (i.e., U% is the test
particle’s 4-velocity), this means that whenever the particle
moves in a nonhomogeneous field, a force will be exerted
on it (except possibly for special orientations of ). In the
inertial frame momentarily comoving with the particle,
this can be interpreted as being due to the time varying
(in this frame) electric field, which induces, via the law

V x B =0E /0t, a curl in the magnetic field B, and implies
that the particle sees a nonvanishing magnetic tidal tensor,
cf. Egs. (19) and (20).

The gravitomagnetic counterpart H,z, by contrast, is
symmetric in vacuum, which means that no analogous
induction phenomenon occurs in gravity. Indeed, even in
nonhomogeneous fields, there can be velocity fields for
which H,s = 0, i.e., for which gyroscopes feel no force

(regardless of the direction of their spin 3’). We know that
from the curvature invariants, which we now briefly discuss.

In vacuum the Riemann tensor becomes the Weyl tensor
(ten independent components), which can be irreducibly
decomposed (see e.g. [17]) with respect to a unit timelike
4-vector u® into two spatial tensors, the gravitoelectric
(E")p = Rays and  gravitomagnetic  (H"),; =
*Raﬂ,guyu’i tidal tensors measured by u®:

su? ul

R(l[iy(s = 4{2’4[(1”[}/ + g[a[y}([Eu)/i]{s]

+ 2{eqpu (H ) Ourlur 4 e (H") yuqu,}. (44)
The tensors E,4 and H,; are both symmetric and traceless
(in vacuum), possessing five independent components
each, thus encoding the ten independent components of

R,p,5- Again in vacuum, one can construct the two
quadratic scalar invariants (e.g. [15,16,86]),

1 1
E“Eq, — H"H,, = gRa/)’yﬁRaﬂy& = 3 R-R, (45)

1 1
|an[|'[|ay = 1_6Raﬂy5*Raﬁy5 = 1_6 *R - R. (46)
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Note that, in spite of the dependence of (E"),; and (H"),,
on the observer 4-velocity u“ the combinations (45)
and (46) are independent of u* (for this reason we dropped
the u superscript therein).

There is an analogy (a purely formal one, cf. [14]) with
the decomposition of the Maxwell tensor in electric and
magnetic parts [15-17], and the invariants they form, which
is illuminating for the problem at hand. With respect to a
unit timelike 4-vector u”, the Maxwell tensor (six inde-
pendent components) splits irreducibly into the two spatial
vectors (three independent components each) (E*)* =
FPu; and (B“)* = xF%u;, as can be seen from the
explicit decomposition (1), analogous to (44). The fields
(E")* and (B")* are covariant definitions for, respectively,
the electric and magnetic fields as measured by an observer
of 4-velocity u. In spite of their u* dependence, combining
them one can construct the two quadratic scalar invariants
(e.g. [15,16,64]),

1 1
E'E,~B"B, =5 FyF” =—3F-F.  (47)

1 1
EaB(l = _ZF(I/}*Faﬁ = _Z *F - F, (48)

[where again we dropped the u superscripts in (E*)* and
(B")*] formally similar to the quadratic invariants (45) and
(46). These are actually the only two’ independent scalar
invariants one can construct from F,5. They have the
following interpretation [18,64,87]: (i) if E“B,, # 0 then the
electric £ and magnetic B* fields are both nonvanishing
for all observers; (ii) if E°E,—B*B, >0 (<0) and
E*B, = 0, then there are observers for which B* (E%)
is zero.

In the gravitational case, it turns out (cf. [18,86,88]) that,
for Petrov type D spacetimes (case of the examples studied
below), and in vacuum, one obtains formally equivalent
statements to (i) and (ii) above, replacing F by R. That is:
(i) xR -R # 0 = E,, and H,, are both nonvanishing for
all observers; (i) xR - R = 0, R - R > 0(< 0) = there are
observers for which H,, (E,,) vanishes. When, ar a given
point, observers exist for which H,, =0 (E,, = 0), the
curvature tensor is dubbed “purely electric” (“purely
magnetic”’) at that point, see e.g. [86,88-90]. Further
details and comments on this classification (for general
spacetimes), will be given in [18]. The velocity fields for
which H,, = 0 will be exemplified below in gravitational
fields—Schwarzschild and Kerr spacetimes—with a clear
electromagnetic analogue—a static point charge and a

3This contrasts with the gravitational case, where (45) and (46)
are not the only algebraically independent invariants one can
construct from R,s. In vacuum (the simplest case), they reduce
to four, two cubic invariants existing in addition to the quadratic
invariants (45) and (46), see e.g. [16,86].
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FIG. 1. An illustration of the physical consequences of the
different symmetries of the tidal tensors. A gyroscope dropped
from rest in Schwarzschild spacetime will move radially along a
geodesic towards the source, with no force exerted on it. A
magnetic dipole in (initially) radial motion in a Coulomb field, by
contrast, feels a force. Due to the hidden momentum, the force is
approximately opposite to the acceleration.

spinning charge, respectively—and we shall see that indeed
Hy,, and therefore Fg, may vanish for moving spinning
particles, which contrasts with the electromagnetic analogue.

A. Radial motion in Schwarzschild spacetime

The Schwarzschild spacetime is a Petrov type D solution
whose quadratic curvature invariants read

. . 6M>
E7E, ~ HHy =~

E“H,, = 0. (49)
In accordance with the classification above, this means that
this is a purely electric spacetime, i.e., everywhere there are
observers for which H,; = 0. Let us find such observers.
The nonzero components of the gravitomagnetic tidal
tensor H,; = *R,,5,U*U" seen by an observer of arbitrary
4-velocity U* = (U',U",U?, U?), are, in Schwarzschild
coordinates, givenby (¢ = 3M sin0/r)

H,y = aU?U",
Hy, = —aU?U";

H,, = aU'U’,
Hy = aU™U". (50)

The condition H,; = 0 implies U? = U? = 0, whilst leav-
ing U" arbitrary. Thus, observers at rest, or in radial motion,
measure a vanishing Hy4. Since, according to Egs. (I.1) of
Table I, it is the gravitomagnetic tidal tensor, as seen by the
test particle, that determines the force on it, this means that
no force is exerted on a gyroscope at rest or in radial motion:

Fg = WS, =0,

i.e., it moves along a geodesic (it is the trivial solution of the
equations of motion with the Mathisson-Pirani condition,

see Appendix C 1), regardless of its spin S. For instance, a
gyroscope dropped from rest will fall towards the singularity
along a radial geodesic just like a monopole particle, see
Fig. 1(a).
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This is not possible in the electromagnetic analogue,
due to the symmetries of B,4. Consider a magnetic dipole,
of 4-velocity U? in the field of a static point charge Q; the
force exerted on it is Ffy; = Bﬂ"‘yﬂ, cf. Table I, where
B,s = xF4,.sU" is the magnetic tidal tensor as seen by the
particle. The components of B, for a generic U?, are
(a=3Qsinb/r)

Br(') = aU‘/’,
B(/)r = —20(U9;

Ber = aZU’/’,
Bg(/) = aUr;

Br4) = —aUg;
By = —al’. (51)

The static observers U’ = 0 are the only ones measuring
B, =0, as expected from Eq. (43), since the field is
inhomogeneous and therefore not covariantly constant for a
moving observer (i.e., xF,.sU* # 0 if U' # 0). For a radial
velocity U* = (U',U",0,0), the magnetic tidal tensor
reduces to its antisymmetric part, B,z = Bj,, with non-
vanishing components By, = —Byy = aU". This means
that (except for the special case »||u) a force* will be
exerted on a magnetic dipole in (initially) radial motion:

Fip =0 = yr_g

Fipg = By, (o xp).  (52)

where 7 = U /v and y is the Lorentz factor. This force
comes entirely from the antisymmetric part of B ; it is then
natural, given the symmetry of H,; in vacuum, that it has no
gravitational counterpart.

It is however important to note that, due the hidden
momentum that the spinning particle possesses, the relation
between this force and the particle’s center of mass
acceleration is not straightforward. This is manifest in
Eq. (42); for flat spacetime, and a particle whose only
electromagnetic moment is u* (¢ = 0), it reads

Vi
mya® = B‘”ﬂ,u/; + 6“/;],5% Uo(SPar) — *F/;“Dd—/;.
The last term vanishes if one assumes u* = ¢S5, since:
B*(U) = 0 for radial motion; thus, from Eq. (25), Dy, /dt =
6S,a°U, and xF;*Dy’ /dv = —6B(U)*S,a* = 0. The sec-
ond term can also be taken to a good approximation as being
zero [which, as explained in Sec. V, to an accuracy of order
O(S?), amounts to saying that we pick the “nonhelical”

*The force (52) may seem at first sight to contradict what
one might naively expect from the textbook expression
Fiy = —ViI(B- ) =B/yu;, which holds in the particle’s
momentarily comoving inertial frame, because the radially
moving dipole indeed sees a vanishing magnetic field B.
However its curl is nonzero [implying B; ;= B;; #0,
cf. Eq. (22)], which, taking the perspective of such frame, is
induced by the time-varying electric field, by virtue of vacuum

equation V x B= 8E/Gt.
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solution allowed by the Mathisson-Pirani condition].
Therefore, since, in this application, B(gp) = 0, we are led
to the conclusion that moa® % B¥u; = —B*u; = —Fgy
[see Fig. 1(b)]! This clearly shows how careful one must be
with the notion of force [understood as F* = DP?*/dz, with
P* defined in the usual way by Eq. (4)], because it can
significantly differ from ma® when the particle has hidden
momentum.

Finally, it is worth mentioning that the vanishing of H,
for certain velocity fields in the Schwarzschild spacetime is
analogous instead to the vanishing of the magnetic field B*
(not the tidal tensor B,) in a Coulomb field. The quadratic
invariants of F* have a structure formally analogous to the
curvature invariants (49): E? — B> = Q?/r*, E°B, =0,
telling us that there are everywhere observers for which
B* = 0. For an arbitrary U“, the nonvanishing components
of B* are

U’ U’
sin 4, B? = ou csco;

Q
B = -
r2

2

therefore, observers at rest or in purely radial motion
measure B* = 0, just like with the case of H,; in the
Schwarzschild spacetime. One should however bear in
mind that this one is a purely formal analogy, as the
parallelism drawn is between gravitational tidal tensors and
electromagnetic fields. The physical effects are very differ-
ent: the vanishing of H,; for radial velocities means that a
gyroscope feels no force, whereas the vanishing of B* does
not mean that dipoles moving radially feel no force (which
they do, as discussed above), but instead that they do not

undergo Larmor precession [DS’ /dt = 0 in the comoving
frame, cf. Eq. (25)].

B. Equatorial motion in Kerr and
Kerr-dS spacetimes

In this section we compare the motions of gyroscopes in
the Kerr and Kerr—de Sitter spacetimes to magnetic dipoles
in the field of a spinning charge. It is shown that in the
equatorial plane there are observers for which the grav-
itomagnetic tidal tensor H,; vanishes (i.e., gyroscopes
moving with such velocities feel no force), and that
consequently circular geodesics for gyroscopes even exist
in Kerr-dS (independently of the particle’s spin). This
contrasts with the electromagnetic system, where observers
for which B,; =0 do not exist at all (consequence of
the symmetries of B, i.e., the laws of electromagnetic
induction, as explained above), and therefore (except for
special orientations of y) a force is always exerted on a
magnetic dipole, regardless of its motion.

The vanishing of H,; is instead analogous to the
vanishing of the magnetic field B*, which likewise occurs
in the equatorial plane, for asymptotically similar velocity
fields. That gives useful insight into the gravitational
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problem; for this reason we shall start by the simpler
electromagnetic case.

1. A magnetic dipole in the field of a
spinning charge
Velocity field for which B* = (0.—We start by the
electromagnetic system, which will serve as a guide for
the gravitational case. The electromagnetic field produced
by a spinning charge (magnetic moment y;) is described by
the 4-potential A% = (gb;X)

(53)

The invariant structure for this electromagnetic field is

2/°

(54)

- -

> > 2 .
{EZ _ BZ _ %2 __ #5(5+3c0s26) > 0,

E-B= M (= 0in the equatorial plane),

the first inequality always holding assuming the classical
gyromagnetic ratio u,/J = Q/2M (corresponding to a
source in which the charge and mass are identically
distributed). Expressions (54) tell us that in the equatorial
plane 0@ = /2 there are observers that measure B* to be
zero (since E-B=0 and EE—B*>0 therein). It is
straightforward to obtain the 4-velocity of such observers.
The magnetic field B* = xF*Uy; seen by an arbitrary
observer of 4-velocity U* = (U',U", U?, U?) is given by

241, cos 0 U U
Br =22y 39_(”5 - Q) sin 6,

3 A 2
Qu’ U )
g =7 t__ s r 0
B 2 nd B =3 (2U" cos @ + rU%sin ).

Thus, the condition B” = 0 implies 6 = z/2 (i.e., equato-
rial plane, as expected); in the equatorial plane, B’ = 0
implies U? = 0, and B = 0 implies

W_v_ g
d U

or? oM T @m0

(55)

where in the third equality again we assumed p,/J =
Q/2M. Therefore, observers with angular velocity (55)
measure a vanishing magnetic field in the equatorial plane.
No restriction is imposed on the radial component of
the velocity, apart from the normalization condition
U*U, = —1. The velocity field corresponding to the case
U" = Ois plotted in Fig. 2(a). The vanishing of B for these
observers comes from an exact cancellation between the
magnetic field generated by the relative translation of the
source and the field produced by its rotation. It means that a
magnetic dipole possessing a velocity of the form (55) does
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FIG. 2. (a) Velocity field ¥(g_¢), which makes the magnetic
field B* vanish in the equatorial plane of a spinning charge;
magnetic dipoles with such velocities do not undergo Larmor
precession. (b) Velocity field TJ(H:@ for which the gravitomag-
netic tidal tensor H,; vanishes in the equatorial plane of Kerr
spacetime; gyroscopes moving with such velocities feel no force,
F& =0.If A>0 (Kerr-dS spacetime), circular geodesics for
gyroscopes even exist (Sec. Il B 3). Asymptotically, _g) and
T}(B:O) match up to a factor of 2. The velocity TJ(HZO) however has

no physical electromagnetic analogue: due to the laws of
electromagnetic induction, for a moving dipole B # 0 =

B,y # 0 always, generically implying Fgy; # 0.

not undergo Larmor precession, since the second term of
Eq. (25) vanishes.

In [26] we investigate the corresponding gravitational
problem, i.e., if there are boost velocities for which
gyroscopes in the Kerr spacetime do not precess.

B, never vanishes.—The force (I.1a) exerted on the
dipole, however, does not vanish, as it is only the magnetic
field B*, not the tidal tensor B, that vanishes for the
velocity fields of the type (55). As measured by a generic
observer U”, B,; has the following components in the
equatorial plane:

Br@ = (erU¢ - 3ﬂ§U[)» B()r = a(erQU¢ - 3ﬂ§Ut)7
B,, = —aQr*U’, By, = —2aQr?U’
B,, = —aQr*U% By = -2aQ0r*U"%

B, = 3a/"sU6; B,y = 3“/"5 U, (56)

with @ = 1/73. Thus we see that in order to make B qp)
vanish, we must have U = U” = 0 and

dp _UP e T _
e Qrz M2 = O(B 5 =0)

d U

(57)

[differs from a factor of 2 from the angular velocity (55)
which makes B vanish; the second equality again assumes
ps/J = Q/2M]. However, By, only vanishes if o = 0;
hence it is not possible to find any observer for which
Bog = B(ap) + Blap) = 0. Again, the fact that B, cannot
vanish for a moving observer is a direct consequence of
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Maxwell’s equations, or the laws of electromagnetic
induction: a dipole moving relative to the spinning charge
always sees a varying electromagnetic field; that endows
B, with an antisymmetric part, by virtue (from the point of
view of a momentarily comoving inertial frame) of the

vacuum equation V x B= OE/0t, or, covariantly, by
Eq. (I.3a). Note that this is true even if one considers a
dipole in a circular equatorial trajectory around the central
source: DxF,z/dr = 2Bj,5 #0 along such worldline,
which is due to the variation of the electric field along
the curve (it is constant in magnitude, but varying in
direction).

2. A gyroscope in Kerr spacetime

Velocity for which H,; = 0.—From what we learned in
the electromagnetic problem, we expect the existence of
observers for which H,; vanishes, based on two observa-
tions. First, we have seen that in the equatorial plane of the
electromagnetic system there are velocities (57) for which
the magnetic tidal tensor reduces to its antisymmetric
part B,y = Bj,p; since the gravitomagnetic tidal tensor is
symmetric in vacuum: Hys = Hi4p), it is natural to expect,
in the spirit of the analogy, that H,; = 0 in the correspond-
ing gravitational setup. Second, there is a close analogy
between the invariants of the two systems. The Kerr
spacetime is of Petrov type D, hence a classification for
the curvature tensor based on quadratic invariants formally
analogous to the one for F,; applies, as discussed in
Sec. III. The invariants (45) and (46) read (e.g. [91])

48M?
R-R= (a*cos*d — 14a’r’cos®6 + r*)
- (r* = d*cos*0)
96M?
*R-R = =6 ra (a*cos?0 — 3r?)(3a*cos?d — r?) cos 0,

(58)

where X = r? + a’cos’d. For large r we have the
structure:

r—>oo 2
{ E“E, — HYH,, = %L >0,

[E"‘Y[H]ayr;ww (= 0in the equatorial plane),

formally analogous to its electromagnetic counterpart (54).
Note in particular that the result E“H, =0 for the
equatorial plane (0 = x/2) is exact, cf. Eq. (58). Since
R - R > 0 therein, this means that in the equatorial plane
there are observers for which H,s vanishes, in analogy
with the vanishing of B* in the equatorial plane of the field
of a spinning charge. It is straightforward to determine the
4-velocity of such observers. In the equatorial plane, the
nonzero components of the gravitomagnetic tidal tensor
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Hyp = %R, U*UY seen by an arbitrary observer of
4-velocity U* = (U', U", U%, U?), are given (exactly) by

H,y = a[(2a*> + r*)U?U' — a(a® + r*)(U?)* - a(U")?],
H,, = a(a®> + r*)(aU? - U")U?,

H,, = aa(aU? — U"U?,

Hoy = aal(a® + r*)U? — aU'|U",

Hy, = —al(a* + r*)U? — aU"|U",

I]-I],M, = 2aalU"U? = H,;,

Hy: = a(2a* + r2)UTU?, (59)

where @ = 3M /3. It is easily seen that in order to make all
components vanish we must have U? = 0 (i.e. the observer
must move in the equatorial plane, as expected and in
analogy with the electromagnetic case above) and

dp U? a
- = = m = a)([H]:O)' (60)

dt U’
Thus, observers with angular velocity @ = wy—) measure
a vanishing gravitomagnetic tidal tensor in the equatorial
plane. Again, no restriction is imposed on U’, apart from
the normalization condition U*U, = —1. The velocity field
corresponding to the case U” = 0 is plotted in Fig. 2(b).
It is interesting to note that, asymptotically, @ y—_q) matches
the angular velocity (57) for which the symmetric part of
the magnetic tidal tensor B,; vanishes in the electromag-
netic analogue [and, up to a factor of 2, the angular velocity
(55) for which B* vanishes].

As discussed above, @—g) has no electromagnetic
counterpart; the magnetic tidal tensor B4 can never vanish
for a moving observer, due to Eq. (43), i.e., the laws of
electromagnetic induction. We have thus here another
illustration of the physical consequences of the different
symmetries of H,; as compared to B, signaling the
absence of electromagneticlike induction effects in the
physical gravitational forces. Note that these differences
are manifest even in the weak field and slow motion regime,
since taking the field to be weak (either by going far away
from the source, or by taking a to be small) only amounts to
making the velocity for which Fg vanishes smaller, since
|v| ~ a/r. That illustrates how misleading the usual treat-
ments in the literature on gravitoelectromagnetism in the
framework of the linearized theory (e.g. [2,3]) can be,
naively casting the force on a gyroscope as an expression of

the type F =K V(§ H ) (similar to the electromagnetic
force on a magnetic dipole). This regime is studied in detail
in Sec. V.

Finally, it is interesting to note that the angular velocity
(60) appeared before in apparently unrelated contexts; it
coincides with the angular velocity of the “Carter canonical
observers” (e.g. [92]), which are observers that measure the
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photons of the principal null congruences (see page 902 of
[23]) to be in purely radial motion. It also appeared in a
recent paper [93], Eq. (30) therein, where it is shown that
the Kerr metric can be obtained by a rescaling of an
orthonormal tetrad field in Minkowski space, constructed
from spheroidal coordinates in differential rotation, each
spheroidal shell r = constant rotating rigidly with an
angular velocity that is precisely @ y—o).

No circular geodesics for spinning material particles in
Kerr spacetime.—the vanishing of F¢ for gyroscopes
moving with angular velocity (60) makes one wonder if
a spinning particle can move along circular geodesics
around a Kerr black hole, which we shall now check.
Equation (60) corresponds to prograde motion; the angular
velocity of prograde circular geodesics reads (e.g. [94])

Ut

1
a)geO:Uf—iii.
€0 r
g a+\/;

Equating this expression to (60), we obtain r = a*/M,
this solution, however, lies inside the horizon: since r, =

M + VM? — a?, the condition r > r, implies

(61)

2
C’MzMJrzm/l—aZ/M2 s 1-A2<—V1-A2

where we defined the dimensionless parameter A = a/M.
Note that A =1 is the extreme Kerr case, and A > 1
corresponds to a naked singularity; therefore (excluding
the naked singularity scenario) the circular orbit would
exist only in the extreme case, it would be precisely at the
horizon, and thus it would be a null geodesic. Otherwise, no
circular geodesics exist with angular velocity (60), and so
H,s # 0 along any timelike circular geodesic.

The only possibility of having Fg = I]-I]ﬂ“Sﬂ =0 would
then be if $* was an eigenvector of Hz” corresponding to a
zero eigenvalue; that does not lead to circular geodesics
however, because S cannot remain an eigenvector. For
U* = (U',0,0, U?), the only eigenvectors of Hs* with zero
eigenvalue are U” and e,; S (orthogonal to U“) cannot
remain in the eigenspace spanned by U“ and e, by virtue
of the transport law (25), which can be seen as follows.
Consider a frame rigidly rotating with an angular velocity
Wy, corresponding to a geodesic at some value of r
(the associated coordinates are obtained from the Boyer-
Lindquist coordinates by the transformation ¢ = ¢, ¥/ = r,
0 =0, ¢’ = ¢ — wy,t), and the orthonormal basis ey
tied to it, such that ey = U, and ey, e; e P follow from
normalizing e,, e, and (hY) - e, respectively. [Here (h")
is the projector orthogonal to U%, cf. Sec. ID.] In such a
frame the gyroscope’s CM is at rest, therefore Eq. (25)

applies, ds /dt = (3‘ X ﬁ)’ moreover the gravitomagnetic
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field H=2Q takes the very simple form H=
—2\/M/r32@,/, cf. Eq. (41) of [94]. Hence, for an initial
S=25¢ > we have dS/dr = SQ&; and therefore S cannot
remain parallel to ey (thus S* does not remain in the
eigenspace of U” and ey). We then conclude that no

circular geodesics for spinning classical particles are
possible in the Kerr spacetime.

3. Circular geodesics in Kerr-dS spacetimes

The failure to obtain circular geodesics for spinning
material particles in the previous section was due to the fact
that the angular velocity of circular geodesics in the Kerr
spacetime dies off as ¥~2/3, whereas the angular velocity for
which H,; = 0 dies off as r~2; in other words, geodesics
are “too fast” But they should be possible in other
spacetimes; in this spirit, Kerr-de Sitter comes as natural
candidate, since a repulsive A should “slow down” the
circular geodesics. This is indeed the case. In Boyer-
Lindquist coordinates, the metric takes the form (e.g. [95])

A z z
ds? = ——= (dt — asin’0d¢)* + —dr* + — d&?

)(22’ Ar A()

Apsin?@

9321; ladt — (a® + r2)dg)2, (62)
X

where
— 2 2 Ao
A =r"=2Mr+a —37 (r* +a*);
r=1+=d%

A
Ap=1+ §a200529;
T = r? + a’cos?0.

Since A #0 = R,, = Ag,,, the vacuum classification
based on scalar invariants used in the previous section
does not apply herein to the Riemann tensor. However, a
similar classification holds for the Weyl tensor C,, (again,
since it is of Petrov type D), see e.g. [86]. The relationship
between H,; and the magnetic part of the Weyl tensor,
Hop = *Cyp, UFU", can be obtained from the expression
of Ry, in terms of Cpp,s5, €.2. Eq. (2) of [91]; it reads

Hop = Hop + %eaﬁgy U'R*U,.
This tells us that, for this spacetime, H,; = H,4. Therefore,
solving for H,; = 0 amounts to solving for H,; = 0, which
reduces to the same procedure of the previous section, but
this time using the invariants of the Weyl tensor. The
invariants have a similar structure, similarly leading to the
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conclusion that in the equatorial plane there are observers
for which ‘H,; = H,s = 0. Actually, the gravitomagnetic
tidal tensor for the metric (62) is obtained by simply
multiplying expressions (59) by 9/(3 + a?A)?:

9
(Hkerr-ds)ap = G+ aA? (Hkerr) gp-

Thus, the angular velocity of the observers for which
H,s = 0 is given by the same Eq. (60). Now we need to
check if this velocity field can correspond to circular
geodesics. We can easily derive the geodesic equations
from the Euler-Lagrange equations

d (0L oL
pE (W) “ow 0 (63)

with Lagrangian £ = g, U*U" /2. To compute the circular
geodesics we only need the r-equation, d(g,.U")/dr =
9, U*U" /2, which for circular equatorial orbits yields

—Ma+%ar’ £ \/Mr? 40
(64)

r —azM—i—%a2r3 ’

(wgeo)i =

which reduces to the Kerr case, Eq. (61), when A = 0.

There are two things we need to check: first, that the
geodesics lie outside the black hole event horizon (and
inside the cosmological horizon), and second, that the
geodesics are timelike. The horizons are located at the real
roots of A, = 0, which gives the equation

A
r2—2Mr+a2—§r2(r2+a2) =0. (65)

To find spinning particles that follow circular geodesics, we
have to equate the prograde solutions of Eq. (64) to (60),

~Ma +4ar’ +/Mr} = 4¢°
a 3 V 3T (66)

a? + r? r—a*M + %a2r3

We cannot analytically solve this equation for r in general,
but for our purposes it suffices to numerically show that
such an r exists for some particular cases of a and A.
Consider for example the case a/M = 0.8, AM? = 0.001.
Solving Eq. (66) for r, we find, as the only acceptable
solution, » = 14.2025M (the other roots are either complex
or fall within the horizon). This geodesic is timelike and
lies outside the event horizon, as one can see from Eq. (65).
Obviously, several other solutions of (66) for different
values of @ and A are possible. We generically find that, for
fixed a/M, decreasing values of AM? correspond to
solutions of (66) with increasing values of r.
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Section 11l in brief.—The physical consequences of the

different symmetries of B and Hg:

(1) In electromagnetism, due to vacuum equation
By = *F o5, U" /2, aforce Fy = By is exerted
on the dipole whenever it moves in an inhomo-
geneous field (except for very special orientations
of ).

(2) In gravity, Hi,5 = 0, and there are velocity fields for
which H,; =0, ie., for which gyroscopes feel
no force;

(a) in the examples studied, they correspond to the
situations where, in the electromagnetic ana-
logue, B,s = By

(b) there are even geodesic motions for spinning
particles: radial geodesics in Schwarzschild,
circular geodesics in Kerr-dS spacetimes.

(3) Formal analogy between the quadratic scalar invar-
iants of R,z,5 and Fg is useful to obtain velocities
for which H,; = 0.

IV. MANIFESTATIONS OF THE TIME
PROJECTIONS OF THE TIDAL
TENSORS—THE WORK DONE

ON THE TEST PARTICLE

A fundamental difference between the gravitational and
electromagnetic interactions concerns the time projections
of the forces Fg; and F, in the different frames, which we
shall explore in this section.” We start by explaining the
meaning of the time projection of a force in a given frame,
and its relation with the work done by it and the particle’s
energy.

Consider a congruence of observers O(u) with 4-velocity
u®, and let U® denote the 4-velocity of a test particle.
The following relation generically holds [12]:

1
yE—MaUa:\/TTU, (67)

where v* = U%/y — u® is the velocity of the test particle
relative® to O(u). The energy of the particle relative to
O(u) is E = —P“u,, and its rate of change per unit proper
time (the “power equation”) is

U =y(u*+v*);

dE . .
g —F%uy — PouyzUP, (68)

where F* = DP“/dz denotes the 4-force. Thus we see that

the variation of the particle’s energy relative to O(u)
consists of two terms: the time projection of F* along

A (very) preliminary version of some of the results herein was
presented in [96].

O et (¢, x) be the coordinate system of a locally inertial frame
momentarily comoving with the observer; in such a frame u’ = 0
and v' = dx'/dt is the ordinary 3-velocity of the test particle.
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u®, plus a term depending on the variation of u* along the
particle’s worldline. The first term is interpreted as the rate
of work, as measured by O(u), done by the force on the test
particle (per unit proper time 7). In order to better under-
stand it, it is useful to split F* into its components parallel
and orthogonal to the particle’s CM worldline,

F* = Fi + F%;
Fif = -F'U,U%,
F% = (hY)",FP;

the first term of (68) then reads, using (67),
—F%u, = —yFﬂUﬂ + F{v,. (69)

Forces orthogonal to U* (F* = F) are the more familiar
ones; it is the case of the forces on point particles with no
internal structure (monopole particles). Let us start by this
simplest case. Such particles have a momentum parallel
to the 4-velocity, P* = mU®%, and constant mass m = my;
the force is thus parallel to the acceleration, F%=
DP®/dr = mya”, which implies Fjj = —FﬂUﬂU" =0
(due to the condition UPU 3 = —1). That leads to
—F%u, = F%v,, telling us that the time projection [in the
frame O(u)] of F? is the familiar power F -7 (see e.g.
[29,41]). If we take an inertial frame, so that the second
term of (68) vanishes, then —F%u, = dE/dt = mydy/dz,
ie.,, F%v, = mydy/dr is the rate of variation of the
particle’s kinetic energy of translation. It is clear in
particular that dE/dr = F*v, =0 in a frame comoving
with the particle. An example of such a force is the Lorentz
force, F* = gF*’Uj = gE®, for which F*U, =0, and
whose projection along u“ reads —u,F* = qv,E*, yielding
the power transferred by the electric force to the moving
particle [relative to O(u)].

However, if the particle has internal structure then its
internal degrees of freedom may store energy (e.g., kinetic
energy of rotation about the center of mass), and so the
particle’s proper mass m = —P“U, no longer has to be a
constant (cf. Sec. Il E). Moreover, the momentum will not
be parallel to U%, as the particle in general possesses hidden
momentum, cf. Sec. II D. These, together (as we shall see
next), endow F* with a nonvanishing component F along

U?%, which is the new ingredient. F* ﬁ’ is the rate of work done

by the force as measured in the frame comoving with the
particle.

Let us turn our attention now to the second term of
Eq. (68). Decomposing (e.g. [12,14,17])

Ugyp = —a(u)auﬂ + @yp + Oyp, (70)

where a(u)® = u®4uP is the observers’ acceleration (not
the particle’s), @z = (h*)5(h*)5up,) is the vorticity, and
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Oup = (h“)fl(h”)’;,u( 2, 1s the shear/expansion tensor of the
observer congruence [0, = 6,5 + Q(h”)aﬂ /3, where o, is
the traceless shear and @ the expansion scalar]. Let us
denote by G(u)* = —a(u)* the “gravitoelectric field”
[12,14] measured by the observers. Decomposing P* =
mU* + Py, cf. Eq. (30), and using (67) and (70), the
second term of Eq. (68) becomes

—PunsUP = my?[G(u) , — Gppv” 0"
+ }/Pgid[G(u)a - (wrxﬂ + Haﬂ)v/j]' (71)

This part of dE/dr depends only on the kinematical
quantities of the observer congruence, not on the physical
force F. In other words, it is an artifact of the reference
frame, which vanishes if it is locally inertial. Its importance
(in a nonlocal sense) cannot however be overlooked. To
understand this, consider a simple example, a monopole
particle in Kerr spacetime, from the point of view of the
congruence of static observers (cf. Sec. I D, point 7). Since
the congruence is rigid, 6,3 = 0; also, for a monopole
particle, Pi; = 0, and, in a gravitational field, F* = 0 (the
particle moves along a geodesic). Therefore, the energy
variation reduces to dE/dt = —P®u,zU" = my*G(u) v,
which is the rate of “work” done by the gravitoelectric
“force” [6,12,14] myzG(u)“. (In the Newtonian limit, it
reduces to the work of the Newtonian force mé.) Hence we
see that (71) is the part of (68) that encodes the change in
translational kinetic energy of a particle (relative to the
static observers) which occurs due to the gravitational field
without the action of any (physical, covariant) force, and
that is nonzero for particles in geodesic motion.

Substituting Egs. (69) and (71) into (68), we obtain a
generalization, for the case of test particles with varying m
and hidden momentum, of the “power equation” (6.12) of
[12] (the latter applying to monopole particles only).

A. Time components in test particle’s frame

A fundamental difference between the tensorial structure
of H,s and B, is that whereas the former is spatial, in both
indices, with respect to the observer U® measuring it,
(HY) s UP = (HY),,U" = 0 (this follows from the sym-
metries of the Riemann tensor), the latter is not:
(BY),sU* = 0, but (BY),U = xF,,,U'U’ #0 in gen-
eral. This means that whereas Fg is orthogonal to the
particle’s worldline, F,, has a nonvanishing projection
along it (i.e., a time projection in the particle’s CM frame),
FgmUq # 0. Let us see its physical meaning. First note,
from Eq. (I.4a), that

FenU, = BPU g = €45, UPEWYP (72)

showing that it consists of a coupling between x* and the
space projection of the antisymmetric part of the electric
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( \f\b) i
N N
“ ' A

FIG. 3. A magnetic dipole (depicted as a current loop) falling in
the inhomogeneous magnetic field of a strong magnet, from the
point of view of two different frames: (a) the particle’s rest frame;
(b) the rest frame of the strong magnet (static observers). Here
u=1IAn; A = area of the loop; I = current through the loop;
i = unit vector normal to the loop; E = induced electric field.
In the dipole’s frame nonvanishing work is done on it by E at
arate Pyg = —FgyU,. which is reflected in a variation of proper
mass m. From the point of view of static observers u%, the work is
zero (—Fyty = Ping + Puans = 0), manifesting that a stationary
magnetic field does no work. That may be regarded as an exact
cancellation between P;,y and the rate of variation of the
particle’s translational kinetic energy, Pyans-

tidal tensor E,; measured in the particle’s CM frame,
which, as discussed in Sec. II B, encodes Faraday’s law of
induction. Indeed, if one chooses the CM frame to be
locally nonshearing and nonrotating (as one can always
do), we may replace E,; by the covariant derivative of the
electric field E,jp, cf. Eq. (22), and Eq. (72) becomes

therein, in vector notation, F%,,U, = —(V x E) p. Its
significance becomes clear if one thinks about the magnetic
dipole as a small current loop of area A and magnetic
moment y = nAl, see Fig. 3(a). It then follows:

—F&, U, = (VX E) - hAl = 174 E=P.. (73)

loop

where in the second equality we first used the fact that the
loop is (by definition) infinitesimal, so (V x E) ‘nA =
Jsor (V x E) - dX. for a 2-surface =) enclosed by the loop,
and then applied the Stokes theorem in the 3D local rest

space of the dipole. Here E is the induced electric field,
coming from the induction law’ (23).

Thus —Fg\,U, = Pjy is the rate of work transferred to
the dipole by Faraday’s law of induction. Using Egs. (36)
and (37), we see that it consists of the variation of the proper
mass m, minus the projection along U® of the derivative of

"This generalization of the Maxwell-Faraday law for accelerated
frames is needed if one is to deal with the electric and magnetic
fields measured in the test particle’s frame, which in general
accelerates. One could instead base the analysis in the inertial
frame momentarily comoving with it, as done in Sec. V of [7],
where OB/0t = —V X E holds; the two treatments are equivalent.
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the hidden momentum (to which only the electromagnetic
hidden momentum contributes):

d_m _ DPiy _ d_m _ DPyiiem

Pina = dr dt % dr dr

U,. (74)
Note, from Eq. (68), that P, is the variation of the dipole’s
energy E = —P, as measured in a momentarily comoving
inertial frame.

The induction phenomenon in Eq. (73) has no counter-
part in gravity. Since H,; is spatial relative to U%, we
always have

FeU, =0, (75)

and the proper mass m is a constant [since also P%a, =
-U,DPy.,/dt =0, cf. Egs. (36) and (37)]. That is, the
energy of the gyroscope, as measured in its CM rest frame,
is constant. We see thus that the spatial character of the
gravitational tidal tensors precludes induction effects
analogous to the electromagnetic ones.

B. Time components as measured by static observers

1. Electromagnetism
With respect to an arbitrary congruence of observers of
4-velocity u%, the time projection of the force exerted on a
magnetic dipole is, cf. Eq. (69),
—YFimUo + Fin Ve = YPind + Fini Ve
(76)

_a _
FEMua_

where, in accordance with the discussion above, we
identify Pj,q = —F§\y U, as the power transferred to the
dipole by Faraday’s induction, and Fg,,v, is the power
transferred by the component of FF,, orthogonal to the
particle’s worldline. Consider now a congruence of observ-
ers along whose worldlines the fields are covariantly
constant, F* yu” = 0; the time projection of the force with
respect to them vanishes:

—F\ g = — Ta u* = —xF,5, UPpru*=0.  (77)

This tells us that the total work done on the dipole, as
measured by such observers, is zero. Take these observers

to form, moreover, an inertial frame; these will be dubbed
in this context static or “laboratory”® observers. In this case

%The reason for such denominations is that, in the electro-
magnetic setups herein [the magnet in Fig. 3(b), the spinning/
nonspinning charges of Secs. III and V], only the observers at rest
relative to the sources obey the condition F* ou” = 0. Note that
even for e.g. observers #/* in circular motion around a Coulomb
charge we have F% 1" # 0 [as can be seen replacing U — u'
in Eq. (51), which implies *F* u'" = 2(B“')W,] #0 when
u'" # 0], even though u™ is in that case a symmetry of Fg,
L, Fap = 0, and F is time independent in the corotating frame.
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Upp =0 and the second term of Eq. (68) vanishes;
therefore, the energy of the particle, £ = —P,u”% is a
conserved quantity in such frame. Using Eq. (30), we can
write it in the form

E =m+ T + E,;y = constant, (78)

where we dub Eyy = —Pp u, the “hidden energy” (i.e.,
the time component of the hidden momentum), and 7 =
(y — 1)m is the kinetic energy of translation of the center of
mass, as measured in this frame (in the Newtonian regime,

~ mv?/2). In the (very scarce, to the authors’ knowledge)
literature addressing this problem, a cancellation between
the variations of 7 and m is suggested in [28], or, for the
case of a spherical spinning charged body, of T and kinetic
energy of rotation about the CM [83-85] (which agrees
with the former assertion, since for such a body, dm/dr is
essentially a variation of kinetic energy of rotation, as we
shall see in Sec. VI A 3). Equation (78) shows however
that, in the general case when Py, # 0, the energy
exchange occurs between three components, with Ey;4 also
playing a role. A suggestive example are the bobbings of a
particle with magnetic dipole moment orbiting a cylindrical
charge considered in Sec. III. B. 1 of [20] (and illustrated in
Fig. 1 of [75]).

In this paper we are especially interested in the case
Pry = 0 (= Eyq = 0), so that m + T = constant; i.e., the
energy exchange, due to the action of the force Fg,,, occurs
only between proper mass and translational kinetic energy.
It follows also that P;,q = dm/dz. Therefore, from (68)
and (76) (and since u,z = 0),

dE
E - _F%Mua = Pind + 7Dtralns = 0’ (79)
where
dT dm
trans:?_FgMLva+(y_ I)E (80)

is the rate of variation of translational kinetic energy, and
we noted that F§y, v, = mdy/dr. An example is the
problem depicted in Fig. 3(b): a magnetic dipole falling
along the symmetry axis of the field generated by a strong
magnet. (We have Py, = 0 for this conﬁguration.9) From

the point of view of the static observers, E (u) = 0 and only

magnetic field Z?(u) is present; we know that the latter can
do no work, because if we think about the dipole as a
current loop (cf. Fig. 3) and consider the force exerted in
each of its individual moving charges, we see that the

That this is a solution of the equations of motion supple-
mented with Mathisson-Pirani condition can be seen by argu-
ments analogous to the ones given in Appendix C1 for the
gravitational counterpart.
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magnetic force F = q(v x f?) is always orthogonal to the
velocity v of the charges, so that no work can be done. It is
thus quite natural that F§,,u, = 0. According to Eq. (79),
this arises from an exact cancellation between P,,, and

Pina: on the one hand there is an attractive spatial force Fgy
causing the dipole to gain translational kinetic energy; on
the other hand there is a variation of its internal energy
(proper mass m) by induction, which allows for the total
work to vanish (in agreement with the reasoning in [28],
page 21). Further remarks on this issue are given in
Secs. VIC and Appendix B 4.

It is worth mentioning that this cancellation solves an
apparent paradox that has for long been discussed in the
literature [28,82,83,85]—that on the one hand a force is
exerted on a magnetic dipole placed in a nonhomogeneous
magnetic field, causing it to move, whilst on the other hand

B can do no work in any charge/current distribution. The
analysis above generalizes and reformulates, in a relativistic
covariant framework, the arguments in [82-85], and sup-
ports the claim in [28] that the solution of the apparent
paradox lies on the variation of m. It is also useful, to make
these points more clear, to compare with the cases of a
monopole charged particle, and of an electric dipole subject
to an electromagnetic field: there is also a force on the
particle, which is set into motion gaining kinetic energy;
but, in these cases, the electric field is doing work, there is a
potential energy involved, and the gain in translational
kinetic energy is not canceled out by a variation of the
particle’s proper mass (m is constant for a monopole
particle, and also for an electric dipole if one assumes
that the dipole vector is parallel transported). These cases
are discussed in detail in Appendix B 4.

2. Gravity

In gravity, where FEU, = 0 (i.e., the induction effects
are absent), we have, for arbitrary observers u®,

—Flu, = F&v,. (81)

This implies that a cancellation similar to the one in
Eq. (79) does not occur. Except when v* L Fg, Fg does
work whenever the particle moves relative to the reference
frame; in particular it is so from the point of view of static
observers in a stationary spacetime (i.e., a stationary
gravitomagnetic tidal field does work on mass currents),
by contrast with its electromagnetic counterpart. There is a
potential energy associated with such work, as we shall
now show.

A conserved quantity for a spinning particle in a
stationary spacetime is (e.g. [19,20,27,97])

1
Eiy = —-P%, + Egazﬂsaﬂ = constant, (82)
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where & = 0/ 0t is the time Killing vector field. Consider the
congruence of static observers,'® of 4-velocity parallel to £*:

¥ =¢¥/E where &= ./-E%, is their lapse, or redshift
factor (see e.g. [12,13]). The first term of (82), —P*¢, = EE,
is the “Killing energy,” a conserved quantity for the case of a
nonspinning particle (S = 0) in geodesic motion, which
yields its energy with respect to thestatic observers at
infinity.'" It can be interpreted as its “total energy”
(rest mass + kinetic + “Newtonian potential energy”) in a
gravitational field (e.g. [67]). The energy E, can likewise be
interpreted as the energy at infinity for the case of a spinning
particle. To see the interpretation of the second term in (82),

V=288, (83)

1
2

consider the case when Py, = 0. We have

dE " " dv
0= dTO - _FGfa - mU Uﬂ&a/}’ + dr (84)
dav
Fly, =-—, &5
< EFGu, dr (85)

where we used the Killing equation &,.3) = 0. The quantity
—¢F¢u, = EFg v, is the rate work (per unit of particle’s
proper time 7) of F&, as measured by the static observers
at infinity, and thus V is the spin-curvature potential energy
associated with that work."?

In order to compare with the electromagnetic equa-
tion (78), note that d¢/dr = —yG(u),v” and that for
P, =0 we have E=ym = m+ T. Thus we can write
dE/dr = d(EE + V)/dz in the form

ar 4V
fE—fmy G, —l—E—O. (86)

The second term accounts for the “power” of the gravito-

electric “force” myzé(u) (which is not a physical force,
arising, as explained above, from the observers’ acceler-
ation); it reduces to the variation of Newtonian potential
energy in the weak field slow motion limit. Equation (86)

1See point 7 of Sec. I D. In stationary asymptotically flat
spacetimes, such as the Kerr metric studied below, these are
observers rigidly fixed to the asymptotic inertial rest frame of
the source. They are thus the closest analogue of the flat
spacetime notion of observers at rest relative to the source in
the electromagnetic systems above.

If the particle is in a bounded orbit, one can imagine this
measurement process as follows: let E(7;) be the total energy of
the particle at z;; if, at that instant, the particle was by some process
converted into light and sent to infinity, the resulting radiation
would reach infinity with an energy E = —u*P, = E (7).

One may check exp11c1tly that dV/dr =¢&,. ,,,S PUr = EFY G Vas
noting that DS¥/dr =0 if Py =0, and using the general
relation for a Killing vector &,.., = R;,,,&°.
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FIG. 4. (a) Gyroscope (small Kerr black hole) in the field of a
large Kerr black hole; (b) black hole merger. Evidence that, unlike
its electromagnetic counterpart, the gravitomagnetic tidal field
does work: the spin-dependent part of the energy released is the
work (as measured by the static observers at infinity) of Fg.

tells us that the variation of translational kinetic energy T
comes from the spin-curvature potential energy V, and

from the power transferred by myzé(u) (m being con-
stant); this contrasts with the case of the magnetic dipole
discussed above, where (again for P}, = 0) the variation
of kinetic energy comes from the variation of proper mass
m, with no potential energy being involved. In terms of
the work done on the particle, F§ is thus more similar to
the electromagnetic forces exerted on a monopole charge
or on an electric dipole (for Dd*/dr = 0), where the
proper mass is likewise constant and the energy exchange
is between T and potential energy (see Appendix B 4 for
more details).

There is a known consequence of the fact that F{
does work (and of the interaction energy V): the spin
dependence of the upper bounds for the energy released
by gravitational radiation when two black holes collide
[Fig. 4(b)], obtained by Hawking [22] from the area law.

In order to see this, consider the apparatus in Fig. 4: two
Kerr black holes with their spins aligned, a large one
(mass M, spin J = aM), which is the source, and a small
one (4-velocity U, spin S = /5%§,), which we take to be
the test particle, falling into the former along the symmetry
axis (how this is set up with the Mathisson-Pirani spin
condition is discussed in Appendix C 1). For this setup
U= U+ U’e,,S = S%, + S"e,, where e, = 9/0,, are
Boyer-Lindquist coordinate basis vectors; and Py =0.
Moreover, V becomes a pure spin-spin potential energy,
since, for radial motions, F§ = 0 if J =0, cf. Eq. (50).
Using S,z = eaﬁyﬁU(sSY (as follows from the condition
§%Us = 0, cf. Sec. II A), and noting that S"U° — S°U" =
S (as follows from S*U, =0, and, along the axis,
Joo = —1/g,,), one obtains, for Eq. (83),

/ EFEu,dr,

ZaMSr
a + r

V(r) = :I:
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the + sign applying to the case when S and J are parallel/
antiparallel. The second equality follows from Eq. (85); this
result can be checked noting that, in Boyer-Lindquist
coordinates, £F&u, = (Fg)y, and computing explicitly
the time component (Fg), for axial fall, Eq. (37) of [1].
Thus we see that V(r) is minus the work done by FY, as the
particle goes from infinity to r. Let us comment on the
presence of the lapse factor £ in the integral above.
Computing the work of F{ does not amount to integrating
the power measured by the local static observers, —Fgu,, =
F¢u, (i.e., summing up the work elements dW = F¢v,d7),
as that would mean adding energies measured by different
observers; instead, we should integrate quantity SFv,,
which can be thought as summing up work elements
measured by the static observer at infinity.

Let us now analyze the problem of the black hole merger.
The increase of translational kinetic energy of the small
black hole during the fall is given by Eq. (86). The term
my’G,v* is the gain in kinetic energy due to the
“Newtonian” attraction, and exists regardless of S%; the
term involving the spin-spin potential energy V, however,
will cause the test particle’s kinetic energy and, therefore,
the energy available to be released by gravitational radi-
ation in the collision, to depend on S. Upper bounds for this
energy, which are, accordingly, spin dependent, were
obtained in [22] by a totally independent method. From
such limits, and for the setup in Fig. 4, Wald [1] obtained an
expression [Eq. (35) therein] for the amount of energy AE,

by which the upper bound is increased/reduced when S is

parallel/antiparallel to j comparing with the case S =0
(fall along a geodesic). It turns out that this energy is
precisely minus the value of V(r) at the horizon r,,
AE; = —V(r,); that is, it is the work done by F§ on
the small black hole as it comes from infinity to the
horizon: AE, = [%)(—EF&u,)dr.

We close this section with some remarks on the meaning
of the work done by the gravitomagnetic tidal field. One
can associate to the static observers in the Kerr spacetime a
gravitomagnetic “vector” field H (see Sec. IIC, and e.g.
[3.,6,12,14]; in the weak field regime this field is well
known to be very similar to its electromagnetic counterpart,
e.g. [2,3,98]), causing inertial (i.e., fictitious) “forces” on
test particles of the type v x IEI formally similar to the

magnetic force gv x B. Namely, the force is orthogonal to
the velocity; hence this analogy might lead one to believe
that, similarly to its magnetic counterpart, the gravitomag-
netic field cannot do work on test particles. One must bear

in mind, however, that H (by contrast with 75’) has no local
existence, as it is a mere artifact of the reference frame;
hence it would never be involved in a covariant quantity
like the 4-force DP*/dz, or the work done by it. Moreover,
both in electromagnetism and in gravity, it is the tidal fields
that yield the force; that is manifest in force Egs. (I.1) of
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Table 1. The electromagnetic tidal tensors herein are essen-
tially derivatives of the fields; for this reason we were able to
argue in terms of the fields in the applications depicted in
Fig. 3 (even though it is their derivatives that show up in the
equations). But the gravitational tidal tensors cannot be cast
as derivatives of the GEM fields, even in the weak field
regime, except under very special conditions (see Sec. III. 5
of [14]); the force F¢; is thus in general very different from its
electromagnetic counterpart. Namely, it is so whenever the
test particle moves relative to the source—so that the work of
Fg can dramatically differ from that of F§y,, which is well
exemplified by the contrast herein: as measured in the test
particle’s frame, we have Fg,U, # 0, F§U, = 0; as mea-
sured by the static observers u®, we have precisely the
opposite situation: Ffyu,=0, F&u, # 0.

Section 1V in brief.—The work done on the particle
(magnetic dipole vs gyroscope):

(1) The time projection of the force, —F%u,, is the rate at
which it does work on the particle, as measured by
an observer of 4-velocity u”.

Time projections along the particle’s worldline (U%):

(i) Electromagnetic is nonvanishing, FgU, # 0; it is
the rate of work done by Faraday’s induction law,
arising from Ep, (or equivalently, from BaﬁUﬂ);
reflected in a variation of m.

(ii) Gravitational is zero, FEU, = 0; the gyroscope’s
proper mass m is constant; no analogous induction
effect (as Hy3UP = 0).

Time projections relative to static observers (u®):

(i) Electromagnetic is zero, F'§u, = 0 = a stationary
electromagnetic field does no work on magnetic
dipoles.

(ii) Gravitational is nonzero, F§u, # 0 = gravitomag-
netic (tidal) field does work—there is a spin-
curvature potential energy; embodies Hawking-Wald
spin-spin interaction energy.

V. WEAK FIELD REGIME AND GRAVITATIONAL
SPIN-SPIN FORCE

In the previous two sections we discussed the crucial
differences between the gravitational and electromagnetic
forces on a spinning particle that are manifest in the
symmetries and time projections of the tidal tensors.
However, in the literature (e.g. [2,3,5,20]) concerning the
weak field, slow motion regime—where the nonlinearities
of the gravitational field are negligible, and one might
indeed expect a similarity between the gravitational and
electromagnetic interactions—they are usually portrayed as
being very similar. In this section we will study this regime,
and dissect the impact of the aforementioned differences.
We shall consider the basic example of analogous physical
systems: a magnetic dipole in the electromagnetic field of a
spinning charge (charge O, magnetic moment ), and a
gyroscope in the gravitational field of a spinning mass
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(mass M, angular momentum J), asymptotically described
by the Kerr solution.

We start by briefly describing the approximations that we
will use. The electromagnetic potentials are, exactly, ¢ =

Q/r and A= Jis x 7/ r; for the gravitational field we take
the linearized Kerr metric

ds? = —(1 + 28)de® + 2A;d1dx’ + (1 = 28)5;;dx’dx,
(87)

with the gravitational “potentials” ®=-M/r, A=
27 x 7/r3. The gravitational tidal tensors, are, consis-
tently, linearized in the potentials. The electromagnetic
tidal tensors are linear in the potentials, hence no weak field
assumption is made in the forces (90), (92) and (93). The
expression for the acceleration (42), however, involves a
term of second order in the electromagnetic fields, which is
to be neglected in a coherent comparison with linearized
gravity. In the computation of the electromagnetic and
gravitational tidal tensors involved in the forces (92)—(95),
exerted on slowly moving test particles (velocity v), only
terms up to first order in v are kept (as usual in slow motion
approximations, e.g. [1]). The relationship with the post-
Newtonian approximations in e.g. [99-105] is established
in [26].

Let us first consider stationary setups, where the test
particle is at rest relative to the central source (or singu-
larity, for the case of a black hole); i.e., at rest with respect
to the static observers u” (cf. point 7 of Sec. I D). For these
observers, the linearized gravitational tidal tensors match
the electromagnetic ones, identifying the appropriate
parameters:

M 3MrirjM<:Q

(E") (88)

ij

(89)

(all the time components vanish identically for
these observers). Therefore, the force exerted on
a gyroscope whose center of mass is at rest relative to
the central mass is similar (apart for a minus sign) to its
electromagnetic counterpart, identifying u, <> J and
H< S,

. .. J.S}e{us. .
P, = s, U

(90)
In other words, there is, for stationary setups, a gravita-
tional spin-spin force similar to its electromagnetic counter-
part; this result is due to Wald [1].
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Manifestation of the different symmetries.—In the gen-
eral case, where the dipole/gyroscope is allowed to move,
however, Table I makes clear that the two forces differ,
because H,4; remains symmetric, whereas B, acquires an
antisymmetric part. This leads to key differences in the
dynamics (already exemplified in Sec. III), which are non-
negligible in the weak fieldand slow motion approximation,
as we shall now see. Consider the test particles to be
moving with 3-velocity  relative to the central sources.
The magnetic tidal tensor as seen by the moving dipole,
B4, can be obtained in terms of the tidal tensors (E"),,
(B"),s measured by the static observers, using the decom-
position

*Fa[)’;y = 2“[(1(Bu)ﬁ]}, - ea/}ﬂrru”(Eu)”y' (91)
The force (I.2a) exerted on the magnetic dipole reads, fo
first order in v,

Fiyg = Blip; = (B“)iu; — (E“)lel yofu;,  (92)

Fiy = B%; = 0. (93)
The gravitomagnetic tidal tensor as seen by the moving
gyroscope, Hys, can analogously be obtained in terms of
the tidal tensors (E"),;, (H"),; measured by the static
observers, using the dual of decomposition (44),

*R(Jz/}]/(s = 4611(1/11"/1”[7([[514)15] - 2€Ta[)’[y(u£u)15]

+ 4([]-[]“)[/,[5147] Ug + 6’“(,/3675”’“(|]-|]”)mu,1u,,

The force exerted on the gyroscope reads, to linear order in
the fields, and to first order in v,

F = —WiS; = —(H")/iS; + 2(E")/e) j0*S;,  (94)

FY = —HOS; = —(H")/v;S,. (95)
We note that, to this accuracy, the spatial part of the forces,
apart from global signs and a factor of 2 in the second term
of (94) as compared to (92), differ essentially in the fact that
the former expression is symmetrized in {i, j}, whereas the
latter is not. Thus the differences in the symmetries of the
tidal tensors, discussed in Sec. III, are manifest to leading
order. (Explicit expressions for F ¢ and F EM are given
in [26].)

Also the differences in the time components, studied in
Sec 1V, are manifest in Egs. (95) and (93) herein:
FY = —F&u, # 0, telling us that, from the point of view
of the static observers O(u), non-negligible work is done
on the gyroscope; but F%, = —F%,u, = 0 [an exact result,
cf. Eq. (77)], telling us that no work is done on the dipole.
One may also check that whereas FGU, = 0, F§y, has a
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nonvanishing time projection in the particle’s frame, which,
to first order in v, reads Ff§, U, = (B“)/'u;v;.

It should however be noted that the forces above do not
translate in a trivial fashion into accelerations; F* is in
general not even parallel to a“, as the test particles possess
hidden momentum. Assuming y* = ¢5%, from Eq. (42) we
have, in the electromagnetic case,

~ (B; = (E)erhu (9

The last two terms of (42) are herein neglected. As for the
term % F ﬂiDuﬂ /dz, it follows from Eq. (25), for u* = 65%,
that it is of second order in the fields, thus to be neglected in
a coherent comparison with linearized gravity. The term
DP{y/dr = €“4,sU°D(S7a”) /dr is also negligible in this
approximation if, among the many possible solutions [21]
allowed by the condition S¥U 5 = 0, we choose the non-
helical one; actually, imposing Py, ~# 0 amounts, in this
application (not in general), to picking such a solution, as
we explain in detail in [26]. The explicit result, substituting
(E");; and (B");; from Egs. (88) and (89), reads

o3 s L - 7o) ()
moa' = 5 [(i’-ﬂs),u + Zr(jﬂs)/ij — 5%}

- . 3F(vxF)-p Do

+r—Q3[2vxu+ ( r2>/4+3( 22” ]

In the gravitational system we have, from Eq. (42),
moa’ = Fi = —(H")/1S; + 2(E*)!0e)) kS ;. (98)

Again the last term of (42) is negligible for the nonhelical
representation (in the purely gravitational case, to this
accuracy, taking Py ~# 0 = P*~ mU” works generically
as a means of picking such a representation [106]), as
explained in detail in [26]. The explicit result reads

, 3. = . 7 DG S
mya' = —— [(r J)ST+ 27008 — 5%}
r

27[(3 x 7) - ]
}’2 + 1"2

— i xS+

3

3M {q N
(99)

Comparing with (97) we note that all the terms in the
gravitational equation have an electromagnetic counterpart.
However, the spin-orbit interaction terms [second lines of
Egs. (97) and (99)] all have differing factors; these factors
reflect, in this regime, the consequences of the different
symmetries of the tidal tensors, and account for the
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contrasting effects studied in Sec. III. One may check,
for instance, why (99), but not (97), allows for radial
motion in the field of static sources (i, = J = 0): if D is
radial, 7 x 7 = 0 and 7 x S = —(v- 7)3‘ x 7/r?, so the first
and third terms of the second line of Eq. (99) cancel out,
yielding mga’ = 0. But such cancellation does not occur in
the electromagnetic equation (97), which yields mgya’ # 0.

To conclude, from Egs. (I1.3) of Table I we expected that if
the fields do not vary along the test particle’s worldline (so
that F4., U” = 0) then Fgy; and Fg should be similar in the
weak field approximation, since B, and H,; have the same
symmetries and the nonlinearities of the later are negligible;
and that otherwise, when F ;. U” # 0, differences should
arise, due to the differing symmetries of the tidal tensors. In
the application herein, this translates into the following:
when the test particles are at rest with respect to the sources
the two forces indeed are similar; however, in the general
dynamical case where the particles move, the two forces
differ significantly even to first order in the velocity (and in
the fields), cf. Egs. (97) and (99). Thus the tidal tensor
formalism makes transparent an aspect that can be rephrased
as in [1]: the spin-spin interactions in gravity and electro-
magnetism are very similar (in this regime), but the “spin-
orbit” interactions are substantially different.

In the literature concerning the weak field gravitoelec-
tromagnetic analogy (e.g. [2-5]), the gravitational force
acting on a gyroscope is commonly cast in the form Fg =

KV(IjI .S )/2 (where K is some constant depending on the
convention, and H' = e/* gy, ;/K is the gravitomagnetic
field), similar to its electromagnetic counterpart F EM =
V(E - i), seemingly implying a similarity between the two
interactions. We emphasize that such expressions are not
suited to describe dynamics, as they hold only if the
gyroscope’s center of mass is at rest in a stationary field
(this is usually overlooked in the literature, despite the
assertion in [1], where this analogy was originally pre-
sented, that it was derived under these conditions). A
detailed discussion of these issues and comparison with the
results in the literature is given in [26].

Section V in brief.—

(1) In the stationary, weak field regime, when the
particles are at rest with respect to the sources,
the gravitational and electromagnetic interactions
are very similar, having a similar spin-spin force.

(ii) When the test particles move, the differences (made
clear in the symmetries of the tidal tensors) are of
leading order, thus non-negligible in any slow
motion approximation.

VI. BEYOND POLE-DIPOLE—THE TORQUE ON
THE SPINNING PARTICLE

In the pole-dipole approximation, as we have seen in
Sec. IIC, it follows from Eq. (25) that purely magnetic
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dipoles with y = oS have S? as a constant of the motion.
This might be somewhat surprising. If one imagines the
magnetic dipole as a spinning charged body, one expects, in
a time-varying magnetic field, the induced electric field to
exert in general (due to its curl) a net torque on it, which
will accelerate™ its rotation. Indeed, we have seen in
Sec. IV that the induced electric field does work on the
spinning body, causing a variation dm/dt = —ji - DZE/ dr
of its proper mass m. Such variation is known, from the
nonrelativistic treatments in [83,85], where a rigid spherical
body is considered, to be a variation of rotational kinetic
energy.'” Thus we expect it to be associated to a variation of
the spinning angular velocity, and hence of S?. However,
the dipole torque in Egs. (25) and (26) consists only of the

term ,74 X B (which is there even if the field is constant, and
conserves S?); there is no term coupling to the derivatives
of the electromagnetic fields, i.e., no sign of induction
phenomena.

As we shall see below, this apparent inconsistency is an
artifact inherent to the pole-dipole approximation, where
terms O(a?) (a = size of the particle), which are of quad-
rupole order, are neglected. Indeed, whereas the contribu-
tion of the work done by the induced electric field to the

body’s energy is of the type Ji - B, ie. of dipole order, the
associated torque involves the trace of the quadrupole
moment of the charge distribution. Moreover, there is no
analogous torque in the gravitational case, confirming the
absence of an analogous gravitational induction effect.

For clarity, we will treat the two interactions (electro-
magnetic and gravitational) separately.

A. Electromagnetic torque

We start by the electromagnetic case in flat spacetime.
The equation for the spin evolution of an extended spinning
charged body subject to an electromagnetic field is, up to
quadrupole order [e.g. Eq. (8.5) of [30]],

DS,

= 2Pl U+ 200 F ) 4 2mlx, AW (100)
T

where P, and S‘C'fn are defined by Egs. (A7) and (AS8),
and consist on the sum of the physical momenta P*, S,
Egs. (4) and (5), plus electromagnetic terms, see Appen-
dix A. It is shown in [107] that S&, and P, + gA® = P%,
are the canonical momenta associated to the Lagrangian of
the system. In the equation above Q% is the electromagnetic

BUnlike the dipole torque 7 = ji x B, the torque due to the

induced electric field will not in general be orthogonal to S, and
hence will change its magnitude. For instance, in the example in

Figl. 5(a) below, Eind has circular lines around S, so that 7;,4||S.
Ar, . . ..

It is not cast therein as a variation of proper mass m (as those
are nonrelativistic treatments), but of the Hamiltonian term

>

—ii- B.
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dipole moment as defined in (A5), and m®” is an electro-
magnetic quadrupole moment, defined as

mebr = g QP Qr = galbrl 4 %qa[ﬁyr], (101)

where 7" and ¢ are, respectively, the current and charge
“quadrupole moments,”" see Egs. (3.8) and (3.9) of [30] 6,

¢P = / Xl jidz,; (102)
>(z,U)

Jeh = / xixb jdy. (103)
2(z,U)

In flat spacetime, the normal coordinates {x%} are just a
rectangular coordinate system originating at z*(z). Decom-
posing J into its projections parallel and orthogonal to
U¥, we obtain
TP = qPUv + jaﬂy(hu);, (104)
where we noted that, in flat spacetime, X(z,U) is a
hyperplane orthogonal to n* = U, thus —j*U, dX = jd%,.
Using Eq. (A11ii), we may rewrite Eq. (100) explicitly in
terms of the physical angular momentum S%:

Ds? DS, _ DS st _ pio_ o
— , — Fla_ghlo.

dr dr dr (105)

Note that DS'* /dr is a quadrupole type contribution.

We are interested in the torque 7%, i.e., the vector that
measures the rate of deviation of the spin vector from
Fermi-Walker transport, Eq. (17):

DpS” 1 DS

™= dr = 17° = §€(l/365U5 dr (106)
Using Eqgs. (100) and (105), it follows that
DpS*
% = Them + T0rM> (107)

Following the convention in e.g. [20,35,36], we dub
integrals of the type (102) and (103) quadrupole moments.
However, frequently in the literature the term “charge quadru-
pole moment” refers to the traceless part of ¢g*. Note that
g # 0 for a uniform spherical body, contrary with its traceless
part, which measures a type of deviation from spherical
symmetry (more consistent with the actual picture of a quadru-
pole of charges). Sometimes (e.g. [23], p. 977) ¢* is called the
“second moment of the charge.”

151 Eq. (3.8) of [30], w"dZ,, instead of dZ, appears; however,
wl = n’ + O(x?), cf. Eq. (Al), yielding a correction to the
integrand of order O(x*), negligible to quadrupole order [where
only terms up to O(x?) are to be kept [31]]. Hence we can take
therein w’d%, = n’d%, = dZ, cf. Eq. (9).
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7'-%EM = 60(1/31/ Uy(daEﬁ + ”(IB/)’)’ (108)
TEEM = TaEMcan -7 (109)
TaQEMcan = €Gaﬂv Uvm[apﬂFﬂ]ﬂ;p, (1 10)

1
70 = 56'1(1/3VU”E[”/}] (9,87 —q°))
DgPr
" dr

1
4+ — 60—,1/,’,/ UYF*

5 (111)

Here 7f), is the dipole torque already present in Eq. (16),
i.e., just a covariant form for 7 = p x B+dxE We split
the quadrupole torque 7)) into two parts. The first part,
TOEMcans Which we may dub the * canonical electromagnetic
quadrupole torque,” is the torque'’ coming from the third
term of (100) (i.e. the quadrupole contribution to
DS /dr). The second part, 7/° = leaﬂ"‘s UsDS' | dr,
plays a crucial role in this discussion, since the first term
of (111) is minus the torque due to the electric field induced
in the CM frame by the Maxwell-Faraday law (23). This is
what we shall now see.

1. The induction torque

Consider the rectangular coordinates {x%} to be comov-
ing with the particle’s CM, d; = U. In such a frame, the
torque (about the CM) due to the induced electric field is
Tind = [ peX X Eyd®x, where p, = —jU, is the charge
density in the CM frame. Let us expand Eina Taylor series
around the CM: E' = E?CM + EIC{VIxj + - - - (for the integral
above, to quadrupole order, only terms up to linear order in
X are to be kept in this expansion), which, splitting

Eéj{\/[ = E[’ Iy EE;M), we may write as
;] (i
E'= Ely - 5 % (Vx E)em] + Ecyy x;.

The second term is the part of E that has a curl, that is, the

induced electric field: Ejg(x) &~ —% x (V x E)oy/2. (The
third term may be cast as a gradient of some scalar function,
thus not related with induction.) Therefore, recalling the
definition of g%, Eq. (102) above, we have

"In the literature concerning Dixon’s multipole scheme,
TOEMean 1S cOmmonly portrayed as the quadrupole torque, see
e.g. [20]. However, it is clear from Eq. (107) that it is not the fotal
quadrupole torque zgp)y, and the results below show how crucial
this distinction is.

PHYSICAL REVIEW D 93, 104006 (2016)
Ty = (V X ECM) /pc [x?xj - 5?}x2]d3x

1 = ALA Y
—z(v X ECM)j[ql] —513'43%, (112)

which, by relations (22), is a noncovariant form for

1
==, UEM g (113)

Tind — 2 o 505qu]

1
=3 Bﬂ/) Uﬂ[qaa - 5aﬂqyy]’

> (114)

i.e., the first term of (111). In the second equality we used
Egs. (I.4a) of Table I.

2. Rigid spinning charged body
Consider the case when the test particle is a charged,
“quasirigid” body [27,47,108], rotating with an angular
velocity Q¢ defined as follows. If A% is a spatial vector
with origin at the CM, orthogonal to the CM 4-velocity U,
and fixed to the body, then

DpA%
dr

= Q”ﬁAﬂs Qaﬂ = 6/311;41/9” v*. (1 15)
Let Uy be the 4-velocity field of the points in the body; we
may write Uy = y,(U* + v3); v, = —UgU,, cf. Egs. (67),
where vj Q“ﬂxﬁ is the velocity of a point in the body
relative t0 the CM frame. It follows that the charge
4-current density is
J = pelU + 1) = p(U° + Q7).

whose space part reads, in the CM frame, j(7) = pcé X X;
here p. = —j*U,, is the charge density as measured in the
CM frame. The magnetic dipole moment, Eq. (8), then
becomes

a

QB . Y a
== [0%a", — 4. (116)
where we used (102), and noted that p.dX = j'd%,.
Thus the rate of work done on this body by the induction
torque 7y, P = 15,9, is, from Egs. (113) and (114),
¢ Q. =

ind

= —€4,,, U EWWP = —B*sUPu, = —Fg\ U,
(117)

That is, we obtain precisely the work P,y = —F¢\,U,, of
Sec. IVA, Eqgs. (72) and (73). This is the result we seek: we
have just proved that the work transferred to the body by
Faraday’s law of induction, which, to pole-dipole order, is
manifest in the projection along U“ of the dipole force Fiy,
(and in the variation of the proper mass dm/dr), is indeed
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associated to an induction torque, which causes S? to vary
as expected (since 7§ ; is not orthogonal to $* in general).
This torque was known to exist from some nonrelativistic
treatments [83—85] dealing with the special case of spin-
ning spherical charged bodies. It just happens that it is not
manifest to pole-dipole order, as it involves the second
moment of the charge g4, which is of quadrupole order."®
But the rate of work that this torque does, 7§ ,L,, is
manifest to dipole order, since, for a rigid body, ¢,; and Q*
combine into the magnetic dipole moment u“, by virtue
of Eq. (116).

3. Torque on spherical charged body

In this context, and in view of a comparison with the
gravitational problem, it is interesting to consider the case
of a uniform, spherical charged body, whose quadrupole
moments of j* reduce to the trace of g4, so that we expect
the total quadrupole torque on the particle z* to come
essentially from 7f ;.

First let us explicitly compute the quadrupole moments
for this type of body. It is clear that the charge quadrupole,
Eq. (102), is such that, in rectangular coordinates {x%}
originating at the center of mass and comoving with it

(0y = U), its time components are zero, q()() = qm =0,
and its spatial part reduces to its trace, ¢'/ = §'/¢*;/3.
Such tensor is covariantly written as

1
g = gq’T(hU)“”- (118)

As for the tensor J%7, due to the axisymmetry and
the reflection symmetry with respect to the equatorial

plane, all of its spatial components J 17k in the CM frame
vanish. The only nonvanishing components are J ij0 —
Jo_o xix) j0d3x = ¢'/. Hence j“’jy(hU)’; =0; thus, by
virtue of Eq. (104), 7% = ¢’ U", and therefore

1
T =34 U, (19
Substituting (118) and (119) into (101), we have
1 U 1
O =g (W) VU =247 gV U, (120)

Let us now compute the quadrupole torque exerted on
the body, Eq. (109). Substituting (120), (101) into
Eq. (110), we obtain

"8Note also that in order to assign a moment of inertia 1,5 and
an angular velocity to a spinning particle one must go beyond
dipole order, as I,z = (h"),;(mq)7, — (mq)ys (cf. e.g. [23]),
where (mq),; is the mass quadrupole, Eq. (136).

PHYSICAL REVIEW D 93, 104006 (2016)

1 1
TgEMcan = gqu U[(lFﬂ] ;AeaﬂmsUé =0, (121)

the second equality holding in vacuum (which is the
problem at hand) by virtue of Maxwell’s equations
FOZJ = 4xj*. This means that Qg = —7'°. In order to
compute 7%, Eq. (111), we must give a law of evolution for
qqp- Equation (118) guarantees that the body is spherical;
we also demand dg%/dr = 0, so that it has constant size (in
a comoving frame). Together, these relations imply that g,
is Fermi-Walker transported, Dpq,s/dr =0, i.., it has
constant components in an orthonormal tetrad comoving
with the body’s CM, as expected. It then follows from
Egs. (109), (111), (113) and (114) that the quadrupole
torque reduces to

1
Tem = 77 = T TV B (122)

o P (af] -
Tind = —?6 aﬁAU E = —?B ﬂU . (123)

In other words, up to an acceleration dependent term
(arising from the Fermi-Walker transport of gp), Ty 18
the torque due to the induced electric field.

To compare with the results known in the literature,
consider a body with uniform charge and mass densities.
For such a body we may write 261”4 = (q/(hU);j - q%),
where ¢ = q/2m is the classical gyromagnetic ratio and /
the moment of inertia tensor (cf. footnote 18); in the
spherical case we have ¢,°/3 = 61,°/3 = oI, where [ =
I.. =1I,, = I, denotes the moment of inertia of the sphere
with respect to any axis of rotation passing through its
center. Thus 77y = —ole®,,,U'EW = —6IB*;U”. In the
CM frame, and in vector notation, the total torque (106) on
such a body reads

1

L _ - DB ol. -
:TDEM+TQEM:/AXB—GI———CZXE,

. D
T=—
dr dr 2

(124)

which is the relativistic generalization of Eq. (1) of [83], or
Eq. (6) of [84] [those nonrelativistic results follow from
Eq. (124) above by replacing 7 — ¢, and neglecting the
acceleration dependent term].

Work done on the particle and rotational kinetic
energy.—Let us now compute the work, 7°Q,, done by
the total torque 7% = 7fpy + 74y on the particle. First

note that, for a quasirigid body, the relation S* = I“ﬁQﬂ
holds [27]; which, for a uniform spherical body, becomes

5 = 1Qe. (125)
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FIG.5. (a) A spinning, positively charged spherical body being
pulled by a strong magnet; E;,q = electric field induced in the
body’s CM frame. (b) A spinning spherical body falling into a
Kerr black hole. As the spinning charge moves in the inhomo-
geneous magnetic field ZS’ a torque 7j; 4, Eq. (123), is exerted on it
due to Eind, i.e., due to the skew part E, of the electric tidal
tensor. This causes S, and the body’s angular velocity Q = S/1, to
vary. The torque {}; does work at a rate z{j;Q, = Pj,q, Which
exactly matches the time projection of the dipole force Fg,, it its
rest frame, cf. Eq. (117). This causes the body’s kinetic energy of
rotation to decrease, manifest in a decrease of proper mass m, and
canceling out the gain in translational kinetic energy (Pans), SO
that the total work transfer, as measured in the laboratory frame,
is zero (cf. Sec. IV B). In the gravitational case no analogous
induction effects occur (as expected, since Ef,5 = 0): no torque is
exerted on the spinning particle; its angular momentum S, angular
velocity €, and proper mass m, are constant; and there is a net
work done on it by F§ at arate P, = Fguv,, corresponding to an
increase of translational kinetic energy.

Hence, assuming the proportionality u* = ¢5% it follows
from Eq. (108) (with d* = 0, which is the problem at hand)
that the work of the dipole torque is zero, 7fg\ 2, = 0.
Thus, °Q, = rgEMQa. From Egs. (116) and (118), we
have

1
a —

W= 50, (126)

and therefore, from Egs. (122) and (33),

1 1
7°Q, = 17,Q, + 5€6aﬁAUAaaEﬁﬂa = Tha€ — EPﬁidEMaa'

Now consider the case when there is no electromagnetic
hidden momentum (P}, = 0), as is the case of the setup
in Fig. 5(a); then 7°Q,; = 7{ €. On the other hand, from
Egs. (106) and (125), we have that 7° = ID;Q°/dz and
27°Q,, = 1d(Q?)/dr. Therefore, using (117), we obtain

1 d(Q?
G Q, = —F&,U,.

dr T (127)
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Note that 1Q?/2 is the body’s kinetic energy of rotation
about its CM, see e.g. [27,47]; hence Eq. (127) tells us that,
for this setup, the rate of variation of the body’s kinetic
energy of rotation equals the rate of work, as measured in
the CM frame, done by the dipole force Ff,,; on the particle
(that is, its projection —Fgy\U,).

Observing, from Egs. (I.1a) of Table I, (2), and (33), that
Ppiem = 0 implies  Fgy U, = u,DB%/dr, and using
u* = 0S% together with Egs. (107), (108), (122) and
(123), we can rewrite Eq. (127) as

1d(Q%)  d(B%ua) Dy,
- —_ B®
2 dr dr * dr
d(B*u,) oq, [d(B? . "
T (dr )_Ty (df)+€aﬂ5U5a E'B,|.
(128)

which is the relativistic generalization of Eq. (10) of [84] (the
acceleration dependent term is absent therein). From this
equation we see that, for this setup, the varying part of the
mass, —B%*u,, present in the dipole approximation, Eq. (41), is
kinetic energy of rotation (not potential energy, as claimed in
some literature, e.g. [27,38,81]). This establishes, in a
relativistic covariant formulation, and in the context of
Dixon’s multipole approach, the claims in [82-85]. The
second terms in the right members of Eq. (128), of quadrupole
order, are not manifest in the dipole order mass equation (40),
since to that accuracy B*Du,/dz = 0, by virtue of Eq. (25).

B. Gravitational torque

The equation for the spin evolution of an extended body
in a gravitational field is, up to quadrupole order [20,36]

Dg =2PkyA 4+ gJ"”P[KR”pW, (129)
leading to the torque [cf. Eq. (106)]
% = 36 06 = %Jﬂvﬂ[KRﬂp,weKﬁ Us. (130)
Here [cf. Egs. (9.12) of [36] or (5.29) of [30]]
Jabrs — %(ﬂ/[aﬂ]ts _ #adlry _ glaphlbdl _ glrpdlesl | (131)

where the moments 7% and p®’ can be written, in
Riemann normal coordinates {x%}, as

11h78 = / XTIy, (132)
3(r,U)

i = / xxb s, (133)
2(7,U)
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where J7 = —T7’n; is the mass/energy current as measured
by the observers orthogonal to X(z,U) [so that
Trdys = J7d¥, cf. Eq. (9)]. Expressions (132) and (133)
correspond,19 in flat spacetime, to Eqgs. (5.2) and (5.3) of
[30], and, in curved spacetime, to Egs. (9.4) and (9.11) of
[36]. They are tensors (similarly to the expressions in [36]),
since the use of Riemann normal coordinates {x%} amounts
to defining the moments in terms of the exponential map
(see [31,33)).

The tensor p®” has the interpretation of the quadrupole
moment of the mass current, analogous to the quadrupole
moment of the charge current 7%, Eq. (103). Note more-
over that —t?1°Us = p", since ny = U,z + O(x?),
cf. Eq. (A2), and therefore, to quadrupole order, we may

take J” = —T"Us in (133). We may thus decompose
la/}yﬁ as

[a/}yﬁ — paﬂyUﬁ + pa/ia(hU)ﬁo_Uy + taﬂﬂﬂ(hU)yl(hU)ﬁU‘

(134)
Similarly, p*” may also be decomposed as
P = (mQ) U + p VY, (139)
analogous to (104), where
(mg)®h = / o yias, (136)
2(7,U)

is the mass quadrupole (or “second moment of the mass”
see [20,23,109] and footnote 15), analogous to the charge
quadrupole (102).

1. Torque on “spherical” body

Our goal in this section is to consider the gravitational
analogue of the problem in Sec. VIA3. Therein we
considered a spherical charged body in flat spacetime,
whose charge quadrupole moment was shown to reduce to
its trace, q%; = q’,(hU)“/,/ 3, and whose current quadru-
pole was J% = ¢°, U*(hV)* /3. We prescribe the analo-
gous test body for the gravitational problem by demanding
it to have an analogous multipole structure (i.e., an
analogous “gravitational skeleton” [29]), rather than
demanding its shape to be spherical, which in a general
curved spacetime is not a well defined notion. (A body with
such multipole structure will of course be a sphere in the
case of flat spacetime; and otherwise may be thought of as
one if the field is not too strong.) As shown above, the

Noting that w?d¥; = dZ + O(x?), cf. footnote 16, and that,
in the system {x%}, the bitensors in [36] read o% = —x?,
6&325’7’[,—0—0()62), @:%Aﬁﬁ:gﬁ(ﬂgﬁ)i+@(x2)’ H&[} _ 5&[} + (’)(xz);
so the corrections due to them in (132) and (133) are integrands of
order O(x*), negligible to quadrupole order [where only terms up
to O(x?) are to be kept].
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quadrupole moment p®”, Eq. (133), has an analogous
definition to J%", Eq. (103), only with J* in the place of
J% hence its structure must be [analogously to Eq. (119)]:
1

P = g(mQ)TT(hU)“ﬂUV- (137)
The last term of (134) is the quadrupole moment of the
space part of 77, (hV)7,(hV)? T? =T’} which has no
electromagnetic analogue. For a quasirigid spinning body,
we have (e.g. [108,110]) T*(p) = pUgUg + 5%, where
s are the stresses, U = y,(U” + v%) is the 4-velocity of
the (rotating) mass element at the point p of the body, v} is
the spatial velocity of p relative to the center of mass frame,
and y, =-UgU,, see decomposition (67). Hence
T = pr2vgvh + 57, its two terms being of the same
order of magnitude ~pv12) (e.g. [110]). For nonrelativistic
rotation speeds v, < 1, we have ||Ti’ﬂ || < p, and therefore

the last term of (134) is negligible compared to the others. It
then follows:

JP1 x5 —(mg)7, Ul Pl U, (138)
[in agreement with Eq. (7.31) of [27]]. Substituting in
Eq. (130), we obtain the gravitational torque:

1
d6 = -3 (mq)" . URY ,Ure,;Us = 0,

the second equality holding for vacuum (R** = 0), which
(as in the electromagnetic case) is the problem at hand.
Thus, no gravitational torque is exerted, up to quadrupole
order, on a spinning spherical body.*’ This means that there
is no gravitational counterpart to the electromagnetic torque
il exerted on the spherical charged body of Sec. VI A 3
(generated, from the viewpoint of the particle’s frame, by
the induced electric field). This is the result we expected
from the discussion in Sec. IIB: f};, comes from the
antisymmetric part of E 4, or, equivalently, from the (time)
projection along U” of B, cf. Egs. (113) and (114). Since
the gravitoelectric tidal tensor E; is symmetric, and Hyy is
spatial with respect to U”, the absence of an analogous
torque in gravity is thus natural.

C. Summarizing with a simple realization

The results in Secs. VI A and VI B entirely corroborate
the discussion in Sec. IV (and Sec. I E); namely, the
manifestation of electromagnetic induction and the absence

*This is consistent with the results from the post-Newtonian
treatment in e.g. [109], where the approximate vacuum
expression 74 ~ € ;[E/, 7' + 4H/, 8™ /3] (Eq. (1.9¢) therein)
is derived. In our notation, &K =¢lk, plim 7. =
(mq);j — (mq)¥5;/3: it then follows from the analysis above
that, for a spherical body, &;; = 7;; =0 = 7o = 0.
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of an analogous phenomenon in the physical gravitational
forces and torques. In this context, it is interesting to
consider the analogous setups in Fig. 5: a spinning
spherical charge moving in the field of a strong magnet
(or another spinning charged body), and a spinning
“spherical” mass moving in Kerr spacetime.

Let us start by the electromagnetic case. A force Fy;,
Eq. (I.1a), will be exerted on the particle, causing it to move
[thereby gaining translational kinetic energy, at a rate Py,
Eq. (80)]. As it moves in an inhomogeneous magnetic field,
a torque 7, is exerted upon it; from the viewpoint of the
observer comoving with the particle, this is due to the
electric field induced by the time-varying magnetic field.
That torque will cause a variation of the particle’s angular
momentum S, and therefore of its angular velocity Q* =
S?/I [measured with respect to the comoving Fermi-
Walker transported tetrad, cf. Eq. (115)]. Clearly, S* is
not conserved, since d(S*S,)/dr = 27*S, # 0, as we see
from Eqs. (122) and (123) or (124). The variation of Q also
implies a variation of the particle’s rotational kinetic
energy, equal to the work of the torque z{ ;, which in turn
is exactly the work done by the dipole force FF,, as
measured in the frame comoving with the particle,
cf. Eq. (127). (This is reflected in a variation of the
particle’s proper mass m.) From the point of view of the
laboratory frame (i.e., the static observers u“), no net work
is done on the particle, Fgyu, = 0, and its total energy,
E = —P,u%,is conserved, cf. IV B. That means that the rate
of variation in translational kinetic energy P, of the
center of mass is exactly canceled out by the variation of
rotational kinetic energy P;,q (the work of 7 ;), guarantee-
ing that a stationary magnetic field does not do work.

In the gravitational case, there is also a net force F§; on
the body, cf. Eq. (I.1b) of Table I, causing it to gain kinetic
energy at a rate P, = F§v,. But no torque is exerted on
it; up to quadrupole order we have

D S(I
; =0; S2 = constant
T

(i.e., the spin vector of the spinning spherical mass is
Fermi-Walker transported), implying Q = constant. This is
consistent with the constancy of the proper mass (manifest
in the fact that F'g is orthogonal to U“), because, since there
is no torque, the kinetic energy of rotation is constant. Thus
in this case the gain in translational kinetic energy is not
canceled out by a variation of rotational kinetic energy, and
therefore a stationary gravitomagnetic field will do a net
rate of work —Fu, = Py on the particle.

We close this section with a few additional remarks.
The application in Fig. 5 illustrates an important aspect of
the frame dragging effect, and the contrast with the electro-
magnetic analogue. For clarity, let us consider the case when
the test balls are initially nonspinning. In the electromagnetic
case, Fig. 5(a), as the ball moves towards the magnet, it starts
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spinning, increasingly faster (relative to the Fermi-Walker
transported tetrad) due to the torque 7j,. In the frame
comoving with the ball, 7;,4 is due to the induced electric

field E ind> and from the point of view of the laboratory frame
(static observers), where the field is stationary (thus there is
no induced electric field therein), 7;,q comes from the overall

effect of the Lorentz force dqv x B applied to each charge
element dgq of the ball. In the gravitational case, Fig. 5(b), no
such rotation arises. If initially Q* = 0, the ball in Fig. 5(b)
will never gain any rotation relative to the local compass of
inertia; S* remains always zero. Indeed, an observer sitting
firmly with his tetrad on top of the ball will not detect any sign
of rotation: he will not measure any Coriolis forces acting on
any test particle that he may throw, and will see gyroscope axes
fixed. However, from the point of view of a frame adapted to the
static observers (which is anchored to the “distant stars,” see
Sec.II C), the ball indeed starts spinning increasingly faster as it
approaches the black hole. This is because, due to frame
dragging, a system of axes which is locally nonrotating (i.e.,
Fermi-Walker transported) close to the black hole, is seen to be
rotating from a frame fixed to the distant stars. The effect is
larger the closer one gets to the black hole, and is quite
analogous to the electromagnetic situation as viewed by the
static observers: in the linear limit, it is well known

[2,3,14,68,69,111] that the gravitomagnetic field H is very
similar to its electromagnetic analogue; then the gravitomag-

netic “force” ¥ x H , acting on each mass element, seemingly
leads to an analogous “torque”. These are not, however, real
forces or torques, but artifacts of the reference frame, not
measurable in any local experiment (only by locking the frame
to the distant stars, e.g. by means of a telescope); it is therefore
no surprise that they are not manifest in the torque equa-
tion (130). For indeed it is the static observers that rotate
relative to the local compass of inertia, which is manifest in the

fact that they have vorticity, and measure a nonzero H (causing,
in their frame, test particles in geodesic motion to be deflected

by fictitious Coriolis forces v x H,and gyroscopes to precess,
cf. Sec. I C; for more details, see e.g. [14] Secs. 3.2 and 3.3).
This contrasts with the situation in the electromagnetic
analogue, where 7 ; is a physical, covariant torque, causing
the particle to indeed have an accelerated rotation with respect
to the local compass of inertia.

Section VI in brief.—

(1) The electromagnetic quadrupole torque contains the
torque z{} ; due to Faraday’s law of induction; it is a
coupling of Ej,4 to q,4 (the charge quadrupole).
(a) Dipole approximation ignores q,4; hence z{; is

not manifest to dipole order;

(b) but the rate of work it does, 7 ,9Q,, is of dipole
order (Q” and g,z combining into x”). For a
rigid body, it equals the projection of the dipole
force along its worldline, —F§y,U,,.
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(2) The torque 7, has no gravitational analogue
(consistent with Efgg = 0).

(3) A time-varying electromagnetic field torques a
spherical charged body, changing its angular mo-
mentum S, angular velocity €, and kinetic energy
of rotation (manifest in m). The gravitational field
never torques a “spherical” body; S, Q, and m, are
constant.

VII. CONCLUSION

In this paper we studied the dynamics of spinning test
particles in general relativity, in the framework of exact
gravitoelectromagnetic analogies. A detailed summary of
the main results and realizations is given in Sec. I; herein
we conclude with some additional remarks.

Both equations of motion—force and spin evolution—of
a spinning particle in a gravitational field are related to their
electromagnetic counterparts by exact analogies, valid for
generic fields. Moreover, a third analogy arises, for the so-
called “hidden momentum,” first obtained in [20] as an
approximate result, and introduced herein in its exact form.
All these analogies are shown to emerge from the rigorous
equations of motion for pole-dipole particles if the
Mathisson-Pirani spin condition is employed.

The first remark we want to make is that it is important to
realize that the existence of these analogies does not
mean that the interactions are similar. These are functional
analogies: the magnetic tidal tensor B, plays in Eq. (I 1a) of
Table I, for the force exerted on a magnetic dipole, the same
role as the gravitomagnetic tidal tensor H,; in Eq. (I.1b) for
the gravitational force exerted on a gyroscope. The analogy
extends to the Maxwell and Einstein field equations, as
manifest in Table 1. Moreover, in the appropriate frame,

the gravitomagnetic field H plays in the precession of the

gyroscope an analogous role to B in the precession of a
magnetic dipole, cf. Eq. (26) (the analogy also extends,
under certain conditions, to the equations for the geodesics,
for the force on the test particle, and to the field equations,
see [6,12,14]). But the analogies do not imply, even in
seemingly analogous setups, that the objects are similar.

First, H and Hyp. unlike their electromagnetic counterparts,
are nonlinear. Second, even in the weak field regime (where
the nonlinearities of the gravitational field can be neglected),
the symmetries and the time projections of the tidal tensors
B,; and H,s continue to differ crucially. The apparent
similarity suggested by the usual linear approaches in the
literature, e.g. [2-5], can be misleading, as the differing
terms in the force/acceleration equations are of leading order,
as shown in Sec. V. We have actually seen (Sec. IV) cases
where the electromagnetic and gravitational effects are
opposite: in a frame comoving with the test particle, the
work done by the spin-curvature force Fg is zero
(F&U, = 0) whereas the work of its electromagnetic
counterpart F'gy, is nonzero (FgyU, # 0); from the point
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of view of static observers u%, the situation is reversed: it is
the electromagnetic force that does no work, Fgyu, =0
(stationary electromagnetic fields cannot do work on a
magnetic dipole) whereas the gravitational one does,

Glg # 0.

The analogies are instead suited for a comparison between
the two interactions, as this amounts to comparing math-
ematical objects that play analogous dynamical roles in both
theories. It is the main point of this work that one can learn a
lot (about both of them) from such a comparison. The
differences in the structure of the gravitational and electro-
magnetic tidal tensors encode fundamental differences in the
interactions, namely the phenomenon of electromagnetic
induction, and the way it manifests itself in the electromag-
netic tidal forces and torques, which has no analogue in
gravity. We have seen in Sec. III that B,; has an antisym-
metric part, reading, in vacuum, ZBW] = xFu5,U".
This equation (which encodes the Maxwell equation

V x B =0E /0t) tells us that whenever the field varies
along the particle’s worldline (e.g. when it moves in a
nonuniform electric field), B, # 0, hence B, is non-
vanishing, and so a force F§, = By’ # 0 is exerted on the
magnetic dipole (except for some special orientations of ).
Such induction effect has no counterpart in gravity, since, in
vacuum, Hy; is always symmetric; indeed, it is possible for
particles moving in a (nonuniform) gravitational field to
measure Hys =0, so that no force is exerted on them,
F& = —Hy*SP = 0. This leads to the existence of geodesic
motions for spinning particles, as exemplified in Secs. III A
and III B by radial geodesics in Schwarzschild spacetimes,
and circular geodesics in Kerr-dS. Reinforcing the insight of
the analogy, the velocity fields for which H,; = 0 mirror the
ones where, in the electromagnetic analogue, B, reduces to
its antisymmetric part.

Likewise, the results in Sec. IV, concerning the time
components of the force, and in Sec. VI, concerning the
torque exerted on the spinning particle, are manifestations of
the antisymmetric part of the electric tidal tensor E (or,
equivalently, to the projection of B,z along U?), and of the
absence of a gravitational counterpart. The antisymmetric

part Ej, encodes the Maxwell-Faraday law V x E=

-0B /Ot; the gravitoelectric tidal tensor by contrast is
symmetric, E|,5 = 0, translating in an absence of analogous

induction effects in the physical21 gravitational forces and

*In the framework of inertial forces, the fact_that the time-
dependent gravitoelectric G and gravitomagnetic H fields have a
curl, in analogy with their electromagnetic counterparts, can be
interpreted as analogous to the electromagnetic induction laws,
see e.g. [112]. These, however, are reference frame artifacts; such
curls do not contribute to the tidal tensors E,4, H,p (i€., to the
tidal forces, which are the only locally measurable forces of

gravity), only the symmetrized derivatives of G and H do. For
more details see Secs. 3.5 and 4 of [14].

104006-31



COSTA, NATARIO, and ZILHAO

torques. In this framework, we understood the variation of
proper mass m of a classical particle with magnetic dipole
moment—it arises from the work done on it by the induced
electric field (at a rate Pjg = —Fg\U,), encoded in the
projection of B, along the particle’s 4-velocity U%—and
why m is conserved for a gyroscope in a gravitational field—
it is because H* is spatial with respect to U®, signaling the
absence of an analogous effect. We have also understood the
contrast between the work of these forces as measured by
static observers, and the spin dependence of Hawking’s
upper bound [22] for the energy released when two black
holes collide: if one considers a magnetic dipole falling into
a strong magnet [Fig. 3(b)], there is no net gain in the
particle’s energy (from the point of view of static observers);
any gain in translational kinetic energy is exactly canceled
out by the work transferred to the dipole by Faraday’s
induction law (i.e., by a loss in proper mass dm/dt = Piyq),
ensuring that the stationary magnetic field does no net work
on it. In gravity, however, since P;,4 has no counterpart (m is
constant), such cancellation does not occur, and therefore a
net work —Fgu, = Fguv, is done on a gyroscope; there is a
potential energy associated with it, of which the Hawking-
Wald spin interaction energy [1] is a special case. In other
words, the gravitational spin interaction energy, and the spin
dependence of the black hole collision energy (at least in the
case where one black hole is much smaller than the other, so
that it can be treated as a test particle moving in a stationary
field), are justified by the fact that, unlike its electromagnetic
counterpart, a stationary gravitational (tidal) field does work
on mass currents.

The analogies and formalism herein also provide useful
tools and intuition for practical applications, which is
exemplified in Sec. III. From the formal analogy between
the quadratic invariants of the Maxwell and Weyl tensors, we
guessed that H,; should vanish for observers at rest or
moving radially in the Schwarzschild spacetime, in analogy
with the situation for B* in a Coulomb field. The tidal tensor
form of the spin-curvature force, F¢, = —l]-l]/;"Sﬂ , then tells us
that no force is exerted on gyroscopes comoving with such
observers; for instance, a gyroscope dropped from rest will
fall along a geodesic towards the singularity. In the same
framework, we predicted that in the equatorial plane of the
Kerr or Kerr-dS spacetimes there should be velocity fields
for which H,; = 0 (because it is so for B* in the equatorial
plane of a spinning charge), and from that the existence of
circular geodesics for spinning particles in Kerr-dS (which
were not known in the literature, to our knowledge). Note
that even the problem of the radial fall in the Schwarzschild
spacetime (the simplest in this work) could be a complex
problem outside the tidal tensor formalism/the Mathisson-
Pirani spin condition (involving possibly complicated
descriptions, and difficulties in setting up its initial con-
ditions, see Appendix C1). As for the geodesics for
gyroscopes in Kerr-dS, it would be very difficult to ever
notice the effect otherwise.

PHYSICAL REVIEW D 93, 104006 (2016)

In the course of this paper anumber of issues concerning the
dynamics of spinning particles in general relativity were
clarified. First, the problem of the equations of motion for
pole-dipole particles; the gravitational part is well established,
but difficulties exist in the electromagnetic part, as there are
different versions of the equations in the literature, and
inconsistencies in their physical interpretation, whose clari-
fication is the purpose of Appendix A 2. Moreover, the time
projections of the forces, their physical content, and relation-
ship with the mass of the particle and the work done by the
fields, is ignored in most literature, or misunderstood (e.g.
[27,38,81,113,114]); they are thoroughly discussed
in Sec. IV and (for particles with electric dipole moment)
in Appendix B. Another important clarification was made in
Sec. VI A, concerning the quadrupole order torque according
to Dixon’s equations [20,30,36], and the physical meaning of
the quantities involved therein. In their usual form they are
equations for the “canonical” angular momentum ngn,
Eq. (A4), not for the physical angular momentum S,
Eq. (5); failing to notice this leads one to overlook the torque
(z§}4) exerted on the body due to the curl of the electric field
(i.e., to the antisymmetric part of the electric tidal tensor), and
to incorrectly conclude e.g. that the electromagnetic field
cannot torque a spherical body—which is known, from basic
electromagnetism [83-85], to be false, and would be at odds
with the variation of the particle’s mass discussed in Secs. Il E
and IV (which, for a rigid body, is essentially a variation of
rotational kinetic energy, cf. Sec. VI A 3).

As a future direction, we plan an investigation of the
gravitoelectromagnetic analogies in the equations of
motion for spinning particles to quadrupole and higher
orders in the multipole expansion.
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APPENDIX A: THE EQUATIONS OF MOTION
FOR SPINNING PARTICLES IN THE
LITERATURE

It is perhaps surprising that the problem of the covariant
equations describing the motion of spinning particles
subject to gravitational and electromagnetic fields is still
not generally well understood, with different methods
and derivations leading to different versions of the equations,
whose relation is not always clear. Curiously, it is the
electromagnetic field that has been posing more problems
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(some authors [113,114] have even concluded that such
covariant description is not possible). The equations of
motion for pole-dipole particles in electromagnetic fields
are derived in unambiguous forms in [28], for special
relativity, and in [34] in the context of general relativity.
Rigorous derivations are also given in [20,30,36]; in this
case, however, one must be aware of the subtleties involved
in their interpretation. These equations (unlike the ones in
[28,34,38]) are symmetric with respect to electric and
magnetic dipoles; this is actually the most common form
of the equations, appearing in many other works, e.g.
[27,79,80,115,116]. If not properly interpreted, that would
lead to physically inconsistent predictions (given the differ-
ent nature of the two dipole models), as we shall see below
and in Appendix B. Moreover, if one takes the “angular
momentum” tensor defined in [30,36] as the physical one,
the torque equations therein would, at quadrupole order,
seemingly contradict well-known results from elementary
electromagnetism (and experimental evidence), as discussed
in Sec. VI A. Herein we will dissect these issues and explain
how the different versions of the equations relate to each
other, and to the ones used in this paper.

1. Relation with the equations used in this paper

Equations (11) and (12) correspond to Dixon’s equa-
tions (6.31) and (6.32) of [34] [cf. also (3.1) and (3.2) of
[38]], with the following simplifications in the definitions
of the moments:

(1) instead of the bitensors in [34], we use (following
[31]) the exponential map to define the moments in
curved spacetime [which amounts to using Riemann
normal coordinates {x?} in the integrals (4)—(8)].
The bitensor —o** of [34], which is the vector at z*
tangent to the geodesic connecting z* to the point of
integration x%, and whose length equals that of the
geodesic, has, in the system {x%}, coordinates given
simply by —c** = x% The bitensor of geodesic
displacement g*, of [34] reads, in the system
{x%}, g4 = 8% + O(x?) (see Appendix of [33]);
thus to dipole order (which is linear in x), g%, = 5%,
and indeed our definitions of P%, S% (=J% in [34]),
and d* (=¢“ in [34]) agree with [34].

(2) The vector w” involved in the definition of g,y
(=mgp in [34]) via the moment j* therein, which is
a vector such that displacement of every point by
w’dr maps X(7) into X(z + dr), can, to pole-dipole
order, be taken as w” = n’. That is, w/dZ, = dZ,
cf. Eq. (9). This is easily seen in the case of flat
spacetime22 [30,117], where we have [for X(U)
orthogonal to U?, and noting that n% = U%]

21t suffices for this purpose to work in flat spacetime; a
generalization of w”® to curved spacetime only amounts to small
corrections to something already negligible in special relativity.
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. » Dn® , ;
wh =i (11— 2 o n’(1 4 xza%). (A1)
nﬁn/’) dr

Hence jo% = [y, x%jPwidZ;, Eq. (6.8) of [34],
reads

jaﬁ — / x&j/}dZ _ a;,/ xax&jﬁdi‘,,
¥(z,U) 2(7,U)

the second term being negligible to pole-di-
pole order.

(3) The 1-form n, normal to X(z,U) reads, in the
coordinates  {x%}, ng = (-1,0,0,0)(—g"")"1/2
Since ¢"% = -1+ O(x?) (see e.g. [23]), and, at
the reference worldline z% nz;=(-1,0,0,0) =
U,, we have

Ny = U& + O(.Xz); (AZ)
hence, to dipole order, we may take (when of
interest) d¥; = —ngdX = —UjzdZ. It follows that
—j?U s = d?, cf. Eq. (7), and therefore the magnetic
dipole tensor m® defined in [34] as m® = jl*l —
d“UP matches ours: m® = (hV)* (hV)/5jll =
u®, cf. Egs. (10) and (8).

(4) The moments are defined relative to an hypersurface
of integration X(z, U) normal to U* at z%, as done in
[28,30], whereas in e.g. [27,34,36] hypersurfaces
¥(z, P) orthogonal to P* are used. That does not
change the shape of the equations to dipole order,
as one can check™ comparing the equations in
[27,34,36] with the ones in [30] (identifying the
appropriate quantities, as explained in Sec. A2
below), or in the independent derivation in [28].

2. Dixon’s “symmetric” equations

In later works by Dixon [27,30,36] the equations of
motion for spinning particles are presented in a different
form, e.g. Egs. (1.33) and (1.34) of [36], symmetric with
respect to the electric and magnetic dipoles. Taking into
account the different signature and conventions, they read,
to dipole order,

DP2. 1 . 1
dzl-)lx _ qFa/} Uy + 3 F;w,aQW _ 5R(Jz/}le/ll/ U, (A3)
DS&,
can _ ZP{;X U¥ + ZQ()L{}FUc]G7 (A4)

dr

ZIn the purely gravitational case (F% = 0), the integrals (4)
and (5), defined at z*(z) over an hypersurface X(z, u) orthogonal
to u“, are actually, to pole-dipole order, independent of u“,
see [33].
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where Q% is the electromagnetic dipole moment tensor
about z%(z) [Eq. (5.62) of [35], or, for flat spacetime,
Eq. (3.44) of [30]], which reads, in the system {x%},

0% = / xlajblas 4+ ylb / x@jrds,.  (AS)
2(z,U) 3(z,U)

Since dXy = —UjzdZ, cf. Eq. (A2), this tensor embodies
the intrinsic electric and magnetic dipoles d* and pg,

Eqgs. (7)—(10), as its time and space projections with respect
to U“,

de = —Q(II}U/;” a/} (hU)a (hU)/} Qy& (A6)

in terms of which it has the decomposition
0% = 24leyP) + eaﬁyﬁﬂy Us.

It must be noted that Pg,. and SCdn (P*, S% in the notation
of [27,30,35,36]) are not the physical momentum and
angular momentum given by Eqs. (4) and (5) above,
but instead contain additional electromagnetic terms,
cf. [27,30]. In our framework, they can be written as

j = / abas,
(z,U)

S =2 / xe®P ji gy, (A8)
(z.0)

P& = P+ PO, (A7)

Scan Sa/)’ + kY {1/3

with
Vé(z,x) = —Al Faﬁ(u)xﬁdu, (A9)
Pi(z,x) = —Al uF&ﬁ(u)deu. (A10)

Equations (A9) and (A10) are integrals along the geodesic
n*(u) connecting z* and x*, parametrized by u so that
n*(0) = z% n*(1) = x* In flat spacetime, these expres-
sions are exactly” Egs. (7.1), (7.2), (7.6) and (7.7) of [30].
In curved spacetime, they match, to the accuracy at hand,
Egs. (3.14), (3.15), (5.1) and (5.2) of [27] [corrections due
to the bitensors therein are of order O(a?) for P'%, and
O(a*) for §'*, where a = size of the body, hence both
negligible to quadrupole order, O(a?)].

2Therein Cartesian coordinates are used, and F* has argu-
ment F%(z + ur), where r* = x% — z% is the vector connecting
the reference worldline to the point x*. Since #%(u) is in this case
a straightline, indeed 7*(u) = z* 4+ ur®. Noting moreover that
7% =0, r* = x% in the system {x%}, one obtains (A7)—(A10).
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The lowest order approximation to these integrals is to
take only the zeroth order term in the expansion of F%
around z% i.e., to take F% = constant along the body;
this is sufficient for our purposes, as higher terms in the
expansion of F? lead to contributions of higher multipole
moments to P'* and S'*. We obtain

P =—F"d, (i) S =Fl gflo, (i), (A1)
where d* and ¢* are the charge dipole and quadrupole
moments, Egs. (7) and (102). As such, ' is negligible to
pole-dipole order, but it is of crucial importance in Sec. VI,
where terms up to quadrupole order are kept.

Note now the following: substituting (A3), (A4), and
(A1l) into Eqgs. (A3) and (A4) (and noting that, to dipole
order, §% = can) we obtain Eqgs. (11) and (12); hence
indeed the two sets of equations are equivalent.

As shown in [107], P&, + gA® = P&, and S, have the
interpretation of canonical momenta associated to the
Lagrangian of the system. PZ,, is the quantity conserved in
collisions [118], and its time component PY,, = —P,,, - 0, is
the scalar conserved under stationaly fields in flat spacetime,
cf. Eq. (B9) below. The quantity s an generalizes the canonical
angular momentum of some nonrelativistic treatments
[83-85]; in [85], a canonical angular momentum vector,
Eq. (31) therein, is obtained differentiating 0L/ oQ (L=
Lagrangian of the system, Q= angular velocity of the body).
Such 3-vector is but a noncovariant form for the spatial25
vector Stan = ezaﬂngn U /2, as can be easily shown. From
(A8), Stan = S7 + S, with

4,° — 44 (A12)

1 B“

St = Ee}’”aﬂUﬂS’“ﬂ =7 [6 o
where we used Eq. (1) and the orthogonality condition
q?U, = q* U = 0. If the body has uniform mass and
energy density, S'7 = (q/2m)B%1,’, where I? is the mo-
ment of inertia (see footnote 18). In this case we have, in the

partlcle s CM frame (where U’ = 0), St,, = (O, g'can), with

Scan =S+5 matching expression (31) of [85].

The distinction between Pf,, in Eqs. (A3) and (A4) and
the physical momentum P* should not be overlooked when
the particle possesses electric dipole moment. Since those
equations are essentially symmetric with respect to d* and

u*, failing to make that distinction would lead one to

believe that the two dipoles are dynamically similar. Given
their different nature, as defined by Egs. (7) and (8) (the
magnetic dipole is modeled by a current loop, the electric

The definition of S%an is not a dualization of ngn, as neither
S nor §' are spatial with respect to U* under the Mathisson-

Pirani condition S¥U 5 = 0. Hence S'7 and S%,, do not contain
the same information as SCan and S'* (only their spatial part).
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dipole by a pair of opposite charges), that would
be physically inconsistent: (i) the electric dipole would
have a hidden momentum (just like a magnetic dipole),
cf. Eq. (B4), which would violate the conservation equa-
tions; (ii) a static electric field would do no work on the
dipole (regardless of its motion), which is well known to be
false; (iii) the particle’s proper mass m would vary in a way
consistent with a dipole arising from a current of magnetic
monopoles, not a pair of charges; (iv) the spatial part of the
force would not be consistent with the results known from
classical electromagnetism. A detailed account of these
issues is given in the next section.

At quadrupole order, it is also crucial to not confuse SL‘ln
with the physical angular momentum S% (the one which is
proportional to the angular velocity in the case of a rigid
body). Otherwise, as discussed in Sec. VI A, one would
erroneously conclude that in vacuum the electromagnetic
field does not couple to the trace of g4, implying e.g. that

no torque (besides the dipole torque 7 = ji x B, if it spins)
could be exerted on a spherical charged body, which is well
known, both from elementary electromagnetism and from
experiment, to be false.

APPENDIX B: THE ELECTRIC DIPOLE

In order to better understand some key issues in this
work—the physical meaning of the time projection of the
force on a magnetic dipole, the variation of its proper mass,
the work done on it by the external fields, and the hidden
momentum—it is useful to make the contrast with the case
of an electric dipole.

It is clear from Eqgs. (11) and (12) that both the force and
the spin evolution equations are different for electric and
magnetic dipoles. This is due to the intrinsic differences of
the two types of dipole: d*, Eq. (7), is the dipole moment of
the charge density, which can be modeled by a pair of two
(close) opposite charges; u%, Eq. (8), is the dipole moment
of the spatial current, modeled by a (small) current loop.
For a particle possessing only electric dipole moment
u* =0, g = 0) in flat spacetime, Eqs. (11) and (12) read

DP? Dd’
——=Fi= E%dP + F% — (B1)
DS 5

y = 2Py 4 2dl°FP U7 (B2)
T

where E, ;3 = F,,;U" is the electric tidal tensor [7].

First we note that, unlike its magnetic counterpart
Eq. (I.1a) of Table I, the force on an electric dipole is
not (generically) given by a contraction of a tidal tensor
with the dipole vector (only if Dd*/dzr = 0). Indeed, it is
not entirely a tidal effect, due to the extra term F "ﬂDd/” /dt
(overlooked in most literature), which does not involve
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derivatives of F,z. This term is physically interpreted as
follows. From Eq. (3.23a) of [30] we have

par

Ug,
dr 1

where J% = [y, *wdZ;. g is the particle’s total
charge, and J“ is roughly its total current. Then J7 —
U’ q is essentially the particle’s spatial current with respect
to U°. For an electric dipole (¢ =0), Eq. (B1) can be
rewritten as

F& = E%dl + F*3J7. (B3)
The term F*,J7 has a straightforward interpretation: if the
dipole vector d* varies with 7 (e.g., if the dipole rotates)
then it generates a net electric current in the CM frame;
therefore, a magnetic force F "yj 7 is exerted on it, in
addition to the tidal force E“d”. As a simple example,
consider a rotating electric dipole under a uniform magnetic
field; a net force arises from the magnetic forces (with the
same direction) that act on each of its charge poles, due to
their circular motion about the CM.

Second, we note that in the term E% dj the indices of the
tidal tensor are reversed as compared to the force on the
magnetic dipole, Eq. (I.1a). In Secs. B 2 and B 3 below we
shall see some consequences.

For an electric dipole at rest in an inertial frame (where

E;=V,E), the Fy=
(Zl V)E - B x Dd /dr, matching the result from classical
treatments, e.g. [72]. Note also that D13DiX /dt = V(E . ZZ)
[analogous to the force on a magnetic dipole, F EM =

space part of (Bl) reads

(B #)], which differs from the physical force Fel =
DP/ dr.

1. No hidden momentum for electric dipole

Unlike the current loop, the two-charge type of dipole
cannot store hidden momentum of electromagnetic origin,
see e.g. [72]. The expression for the momentum of an
electric dipole is obtained contracting Eq. (B2) with Uy,
leading to (using U%d, = 0) P* = mU“* + Saﬂaﬂ, showing
that the only hidden momentum present is the pure gauge
term Pgy = S%ay arising from the spin condition (which
exists regardless of the electromagnetic multipole structure
of the particle). This was expected from conservation
arguments. Unlike its magnetic counterpart, the electric
dipole does not generate electromagnetic field momentum
(cross momentum P%, see [26]) when placed in an
electromagnetic field [119]. Now consider a stationary
configuration; in this case the conservation equations

(Ttot)“;}ﬂ = 0 imply that the total spatial momentum van-

ishes, ﬁw[ = 0; if the dipole were to have any hidden
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momentum, it would not be canceled out by the field
momentum, violating the conservation equations.

This shows the importance of distinguishing between the
physical momentum P* and Dixon’s momentum Pf, =
P* + P'* of Egs. (A3) and (A4); as can be seen from (A7)
and (Al1), P{, includes a term —€agﬂgd€Bﬂ U°’, analogous
to the hidden momentum Pz = €%, E*U° of the
magnetic dipole (but of opposite sign):

Py = P*— EPdyU” — €%,,d°B*U°. (B4)
Thus, confusing P{,  with P* would lead one to believe
that the electric dipole has a hidden momentum just like a
magnetic dipole, which not only would make no sense for

the dipole model at stake, as it would violate the con-
servation equations.

2. Proper mass and time projection of the force
in the CM frame

Contracting (B1) with U* one obtains

" Ddr ,
FoU, = _Erﬂ =-EJ’,

(BS)

where E* = F¥U 5 1s the electric field as measured by the
test particle. Hence, like the force on a magnetic dipole
(Fg\), F% has in general a (time) projection along the
particle’s worldline. They are very different, however. As
noticed above, the order of the indices in the tidal tensor of
(B1) is reversed compared to F§y, = Bﬂ“ﬂﬂ; since E,p and
B, are spatial relative to U in the first, but not in the second
index, then, by contrast with F{;, the projection of the tidal
force E*# dy along U“ is zero. This means that, as measured
in the particle’s CM frame, the tidal force does no work.
Thus F% U, reduces to the projection of the second term of
(B1), arising from the variation of the dipole vector d* along
the particle’s worldline. This contrasts with its magnetic
counterpart FfU, = Uﬂ,uVD*Fyﬂ/dr, cf. Eq. (I.la) of
Table I, which comes from the variation of the field.
Equation (B5) makes sense: J7 is essentially the total
current as measured in the dipole’s frame; when it is
nonvanishing (for instance, due to a rotation of the dipole),
a nonvanishing work, in this frame, is done on the dipole by
the electric field. Noting from (34) that P%a, = 0, we have

dm a Dd"
E:_FelUUC:E}’?' (B6)
Hence, if Dd*/dr =0, the particle’s proper mass is
constant, which contrasts with the situation for a magnetic
dipole, where dm/dz is zero only if DB*/dr =0 (not
Du®/dz = 0), cf. Eq. (39).

Consider now the special case of a rigid dipole which is
allowed to rotate: Dypd®/dr = Q",;d/’, with €, defined by
Egs. (115). In this case, using (17),
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d
T CFUU, = €, U B = PPQy;

dr (B7)

this is the rate of work done by the torque 7¥ =
e’ u U d"E" exerted on the dipole by virtue of Eqgs. (B2)
and (106). The torque 7” causes an accelerated rotation of
the dipole; the corresponding variation of rotational kinetic
energy reflects itself in a variation of m.

Note that Egs. (B6) and (B7) yield, e.g., the well-known
work done on an electric dipole whose CM is at rest in a
static, uniform electric field, from the point of view of the
rest frame. Thus again we see the importance of not
confusing Pf, in Egs. (A3) and (A4) with the physical
momentum P?: overlooking the distinction would lead to
the conclusion that, just like for a magnetic dipole, a static
field does no work on a rotating electric dipole, which we
know from basic electromagnetism to be false.

3. Time component of the force as measured
by generic observers

With respect to a congruence of observers O(u) of
4-velocity u“, the time projection of the force exerted on the
electric dipole is

Dd*
~ Pty = 7(EV)ydiof + (B, =,

(B8)

where (E*)* = F*%uy and (E"), = Fp,. u" are, respec-
tively, the electric field and electric tidal tensor measured by
O(u), and v* [the particle’s velocity relative to O(u)] and y
are defined in Eqs. (67). As discussed in Sec. IV, this is the
rate of work done by the force as measured by O(u). The
first term is a natural result: in a nonuniform electric field
[(E")4s # 0], a force is in general exerted on an electric
dipole; if it is allowed to move (v* # 0) that force does
work. The second term contributes when Dd*/dr # 0, and
is nonzero even if the fields are uniform. It is the work done
by the electric field when the dipole rotates or oscillates,
discussed in the previous section.

The power —F¢u,, differs significantly from its magnetic
counterpart Eq. (76). Consider (when they exist) observers
along whose worldlines the field is covariantly constant,

F%u” = 0 (e.g. the static observers of Sec. IV B 1, cf. foot-
note 8); as we have seen in Sec. IV B, relative to such
observers, the field does no work on a magnetic dipole,
Fenvug = 0, cf. Eq. (77). But it does work on an electric
dipole, both terms of (B1) contributing to it (regarding the
tidal term, the reason why E%sd” does work, E%3d’u, # 0,
whereas Fy; = Bs“u” does not, is again due to the order of
the indices in the tidal tensor). This was to be expected
given the different nature of the dipoles: in the magnetic
case, the total work is zero due to (in the simplest case when
there is no hidden momentum) a cancellation between the
variation of translational kinetic energy and the work done
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on the current loop by the electric field induced in it; the
latter has no counterpart in the electric dipole, since it does
not consist of a current of magnetic monopoles; therefore
such cancellation does not occur.

4. Conserved quantities, proper mass and work
done by the fields

In order to better elucidate the relationship between the
work done by the fields and the variation of the proper
mass, we will compare, in a static electromagnetic field,
three different test particles: a point monopole charge,
an electric dipole, and a magnetic dipole. Let u* be the
4-velocity of the inertial frame O(u) relative to which the
fields are static. Then u” preserves the electromagnetic
field, £,F* =0, and, therefore, from the constancy of
expressions (5.3) of [27], or (29) of [20], we have

P, uy + gA%u, = P*u, + (E*)*d, — q¢p = constant,
(B9)

where ¢ = —A%u, is the electric potential measured in
O(u). Using Eq. (30), it is useful to rewrite (B9) as

m+ T 4V + Eyq = constant, (B10)

where V = —(E")*d, + q¢ is the potential energy of the
particle under the field, T = (y — 1)m is the kinetic energy
associated to the translation of its center of mass,
y = —-U%,, and Eyq = —Pp, u, the hidden energy [i.e.,
the time component of the hidden momentum relative to
O(u), see Sec. IV B]. In this section we shall ignore the
inertial hidden momentum Pﬁidl, as in the applications
below it either vanishes or is made negligible by appro-
priate choices of the reference worldline (e.g. Tulczyjew-
Dixon, or Mathisson-Pirani nonhelical centroids). Thus,
Pﬁid = PﬁidEM herein.

Point monopole charge (d* = P}y = 0).—In this case,
condition (B10) reads m + T 4 gq¢ = constant. There is no
exchange of energy with the proper mass of the particle,
which is a constant:

dm __DP,
dr dr

U* = —qF ,,zUUP = 0.

This just tells us that, in a stationary electromagnetic field,
the “total mechanical energy” of the particle—kinetic
energy 7, plus electric potential energy V = g¢p—is a
constant of the motion, as is well known. Every gain in
T must come from the potential energy V, so there is no
doubt that the field doing work, at a rate given by the time
projection of the Lorentz force F{ = gF* Uy relative to
O(u), cf. Eq. (68):

dE dv
dr = —Ffu, = qy(Eu)aUa = _E = F{v,.
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In vector notation, dE/dt = qyE(u)-v, with E(u) =
-V¢p =-VV/q.

Electric dipole (q = P}y = 0).—Condition (B10) reads
m+ T — (E")*d, = constant. From Eq. (B6), the proper
mass m is not constant; this means that energy is exchanged
between the three forms: potential energy V = —(E")%d,,,
translational kinetic energy 7, and m. Two special subcases
are particularly enlightening:

(1) Dipole vector covariantly constant, Dd*/dz = 0,
implying dm/dr = 0. In this case the energy ex-
change is similar to the monopole charge: every gain
in translational kinetic energy comes from the
potential energy V. It is clear that the electric tidal
field is doing work, at a rate [cf. Eq. (B8)]

dE av
E = _F(ellua = Y(Eu)ﬁydyvﬂ = _E = Falva-

(2) Dipole’s CM at rest (U* = u*, v* =0), i.e., T = 0.
In this case, m — E*d, = constant, and the energy
exchange occurs between the potential energy V =
—E%d, and proper mass m (which includes rota-
tional kinetic energy of the particle). The work of the
field thus equals the mass variation,

dE pa dm dav
_— = - u, =— = ——-,:.
dr e gr dr
Magnetic dipole (g = d* = 0).—Condition (B10)

means in this case m + T + E;y = constant; if we take
u* = 08%, from Eq. (41) we have m = my — u*B,, and thus
the condition becomes T — u”B, + Ey;q = constant. The
energy exchange is between translational kinetic energy,
proper mass and Ej;q. There is no potential energy involved
(cf. [82-85]), which is consistent with the fact that the
static field does no work on the magnetic dipole:
dE/dr = —F{u, =0, cf. Eq. (77). A case of interest
in the context of this work is the one depicted in Fig. 3(b), a
magnetic dipole falling towards a magnet along the field’s
axis of symmetry. In this case Py, = Ey;q = 0, implying
T + m = constant. The energy exchange is only between
translational kinetic energy and proper mass; every gain in
the former comes at the expense of latter (which, for a rigid
body, consists essentially of a variation of rotational kinetic
energy, cf. Sec. VI A 3 and [82-85]). Hence what the field
does is to interconvert translational kinetic energy into
rotational or other forms of internal energy.

APPENDIX C: COMPARISON OF THE
DIFFERENT SPIN CONDITIONS

In this paper we have so far been using equations of
motion supplemented by the Mathisson-Pirani (MP) spin
condition, as it is the one that makes explicit the analogies
used. As we shall see below, it is also the one that leads to
the simplest description of the force/center of mass motion
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in the applications in Secs. III and IV B. However, other
spin conditions (14) can be used; as explained in Sec. I A,
the (infinite) possible choices of u* correspond to differ-
ent, but equivalent, ways of describing the motion of a
spinning body, they differ just in the choice of its
representative point. Below we compare some best known
spin conditions in the applications in this paper, and
explore the gravitoelectromagnetic analogies that emerge
using them.

1. Comparison of the spin conditions in the
applications in this paper

We start with the problem of the falling motion along the
symmetry axis (f =0 in Boyer-Lindquist coordinates,
hereafter the “z-axis”) of a gyroscope in a Kerr spacetime,
discussed in Sec. IV B. Setting its initial position, velocity

U and spin S all along the axis, one expects, at first sight,
from symmetry arguments, an axial fall. It turns out,
however, that such naive prescription of initial conditions
does not completely determine the problem, nor does it
ensure its axial symmetry. One needs also to prescribe
the field of unit timelike vectors u” relative to which the
CM is computed (i.e., the field entering the spin condition
Sab ug = 0), which, for an arbitrary choice, breaks the axial
symmetry. The momentum-velocity relation also depends
on this choice, cf. Eq. (29), implying that U will not in
general be parallel to P (hidden momentum), so that they
do not both lie along the z-axis. Note that, as explained in
Sec. II D, the acceleration of the CM does not originate
solely from the force, but also from the variation of field u*
along the CM worldline.

In order to prescribe an axisymmetric problem, we
start by demanding, as initial conditions, U, = U%e, (¢,=
¢, = 0/0r in Boyer-Lindquist coordinates, for 6 = 0),
u = u*é,, and an initial CM position z¢ = x%,(u)l;, also
along the z-axis. The MP condition, u* = U?, clearly
allows for these initial conditions, so let us start with it.
The momentum reads, cf. Eq. (34),

P = mU* — ¢%4,55/ a7 U°, (C1)
and the spatial part of the equation of motion Fé =
DP’/dr = —H¥S,, [cf. Eq. (I.1b)] reads

. D(Sxya -
i — (S xy a)

= Fs = —H"S ¢, Cc2
dr G a€i ( )

where S xy a denotes the space components of
€5,58%a’ U°. Initially, with U;, = U%¢,, one obtains
Fgli, = —H¥S, e, (it is straightforward to check that along
the axis we have H'* = 0 if i # z); thus the force is along z,
as expected from symmetry arguments, given the axial
symmetry of the initial setup and the fact that H,; =

*R 5 UM U” depends only on U“. It is clear from the
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equation above that one’® of the possible solutions of (C2)
is the most natural result, namely motion along the z-axis,
with the body accelerating in the direction of the force (and
of S): & = a%e, = S xy @ = 0, implying P? = mU®, and
F¢ =ma®. It is a nonhelical solution (since it is a
straightline), and therefore the description we seek. Hence
we have solved the axial fall problem, and a unique relation
between P* and U” was naturally established (for this
solution) in the course of the analysis.

Now let us compare with the equivalent descriptions for
this problem given by other spin conditions. For a generic
field u® with u not lying along the z-axis, we no longer have
axial symmetry, therefore we should not expect to obtain a
centroid moving in straightline along the axis; what we
expect, in general, is a different (possibly exotic) but
equivalent description of the same physical motion, using
a different representative worldline. The problem, however,
is how to prescribe its initial conditions. If one naively sets
up an initial position z{¥ = x&(u)|;, lying on the z-axis,
and then P or U [there is an ambiguity on this choice, as
they are not parallel in general, cf. Eq. (29)] also along the
z-axis, the solution in general will not be an axial fall; in
fact, it will not even be a different description for it, but a
different physical motion.

So first we must establish how we make sure that we are
dealing with the same particle. A pole-dipole particle is
characterized by its two moments: P* and S?. These are
defined with respect to a reference worldline z*(z) and a
hypersurface of integration X(z,u), cf. Egs. (4) and (5);
different representations of the same particle must yield the
same moments with respect to the same point and X(z, u). To
dipole order, P* isindependent of the spin condition (see [33]),
but S% = $%(z) depends onit. Let S* and S% be the angular
momentum taken about, respectively, the centroids z* =
xZy(u) and 7% = xg&y (#); ie., S%uz =0, and $%u,; =0,
cf. Sec. II A. The integral expressions for $¢” and S/, in
normal coordinates {x%} originating at z%, are given, to dipole
order,”” by Eq. (5) (in the case of $%7, replacing therein x@ by
x* — 7% so that it is taken about the point z%). We obtain

%0ther solutions are possible, because the set of initial
conditions {z%, S%, U%, m};, is not sufficient to uniquely specify
a solution under the MP condition, see [33]. Note however that,
since U] is fixed, such solutions correspond to different values of
P, therefore they are not representations of the same physical
motion (i.e., those will be “helical” representations but of
different motions).

This is because both the dependence of $% on the argument
u® of X (see [33]), and the nonlinearity, due to the curvature, of
the transformation between normal coordinates originating at z*
and 7% (denote the latter by {x}), are negligible to dipole order:
X = x — 7% 4+ O(||x* — z%)|?Ax), cf. e.g. Eq. (11.12) of [120];
hence, in the computation of $%, one can use x% = x% — 7% as the
correction is of order O(a*), whereas to dipole order only terms
of O(a) are kept (a = size of the body).
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Sah — §ab 4 oplapnyd], (C3)
where Ax* = 7% — z# = 7% this is similar to the flat
spacetime transformation (e.g. [21,23]). Hence, to obtain
a solution corresponding to the same physical motion
above, we must prescribe the same momentum
P= P, and correct the spin tensor and initial position
of the centroid using Eq. (C3). As can be seen contracting
(C3) with i (taking u* = U?%), the condition S‘“ﬁﬁﬁ =0
yields, in general, a centroid z% = x%,(&) at a different
point compared to the MP centroid z* = x&,(U), not on
the z-axis, manifesting that the problem is no longer
axisymmetric. Since, in general, U*}P?, cf. Eq. (29),
the centroid z* does not even move parallel to the axis.
Writing S5 = €45, 5", where 5% denotes the new spin
vector, the force now reads
DpP“ 1

= __RO!
dr 2 A

UHFSY = —*R%, Utit,S,;, (C4)
which depends both on U and %%, and, in general, will also
not be parallel to the axis. This clearly leads to a more
complicated description of the same problem.

The case of the Tulczyjew-Dixon (TD) condition,
u* = P*/M, exemplifies some of these difficulties. First,
we face the complicated equation relating P* and U“
[19,108,121,122],

ye— M <Pa+
M2

which in general are not parallel; and to obtain the force,
given by Eq. (C4), one needs to know both (not just U%, as
with the MP condition). Based only on these equations, it
would not be clear that an axial fall (of the physical body) is
possible, what kind of solution represents it in this gauge,
and how to set up its initial conditions. Using the knowl-
edge of the MP solution (which is an axial fall), we know

25'051/ R Skﬁ P°
VTKA ) . (C 3 )

AM? + R 5,550 S7°

that, for this problem, Pis parallel to e_; then, tentatively
setting S = S, + S%e., and z% along the z-axis, it can
eventually be shown from (C5) (see e.g. [123]) that, for
such a setup, P* = mU?% and therefore the solution
coincides with the one obtained using the MP condition.
We thus end up (in this case) with the same solution, but
taking a more complicated route.

In Sec. III B 3 we concluded that in the equatorial plane
of Kerr-dS, for suitable r and 7, spinning particles move in
prograde circular geodesics; we were able to do it only
because we used the MP condition. With this condition, the
force is given by a contraction of H,, with S, cf. Eq. (I.1b).
From the curvature invariants, we deduced that in the
equatorial plane there is a velocity field for which H,; = 0,
Eq. (60); for certain r = ry, [solution of Eq. (66)], it
matches the velocity of a circular geodesic. Along such a
circle, the equation of motion reduces to
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DPe o D(SPar)
dr =0 & ma* — G(ﬁy(;U(sT

=0, (C6)

admitting a® = 0 as trivial solution (obviously a nonhelical
one); the spinning particle will thus move along the circular
geodesic. We would not be able to reach this conclusion
using other spin conditions: for #* # U“, the force is no
longer governed by the magnetic part of the Riemann tensor
H,s [but instead by a tensor Hos = *R,,5, 4" U” involving
both W’ and UP, cf. Eq. (C4)], and therefore a similar
analysis in terms of curvature invariants is not possible. In
particular, in the framework of the TD condition
u* = P*/M, we doubt that it would ever be possible to
notice this effect using the system formed by Egs. (C4) and
(12), coupled with the momentum-velocity relation (C5).
As for the application in Sec. III A, the motion in the
Schwarzschild spacetime of a particle with radial initial
velocity, first notice that, for a particle with generic spin
S?, the problem does not have spherical symmetry
[regardless of the spin condition; indeed, a force orthogo-
nal to ¢, arises in the analogous electromagnetic setup,
cf. Eq. (52)]. Using the MP condition, setting U= Ure,,
we have, cf. Egs. (50), H,3 = 0 = DP?%/dr = 0. Hence
we have (C6) as the equation of motion, with trivial
solution a* = 0 = P* = mU", i.e., the gyroscope moves
along a radial geodesic. In the case of the TD condition,
again we face the complicated Eqgs. (C4) and (C5),
not being transparent what occurs if one sets initially
U l,, = U’e,, or if the solution thereby obtained corre-
sponds to the same physical motion above (a radial fall; in
this framework it is not even obvious that it occurs). From
the analysis with the MP condition, we know that, in order

to represent the same problem, P= P%e, = constant. It is
useful to rewrite Eq. (C5) in terms of tidal tensors,

Ua:1<,m+
M2

(HP) gy = *RypsP’P°/M*  and  (FF), =

ay —

€ay153'TP5(HP>0;/SG
M? + (FP)*S,S,

) e

where
*Rx5,5PPP°/M?* are, respectively, the gravitomagnetic
tidal tensor and the “F tensor” [14,124] measured by an
observer of 4-velocity % = P*/M. Noting, from Eq. (50),
that, for radial P, (I]-I]P)aﬂ =0, Eq. (C7) yields P* = mU?,
and Eq. (C4) gives DP*/dzr = 0; i.e., we end up with the
same solution obtained with the MP condition. Other spin
conditions, in general, will lead to DP%/dr # 0, and
U} P* (see Figs. 6(c) and 6(d) of [33]), thus more
complicated descriptions for this motion.

In the case of the analogous electromagnetic problem, a
magnetic dipole with initial radial velocity in the Coulomb
field, first we note that, due to the electromagnetic hidden
momentum P} .\, in general P* cannot be parallel to U%.
Furthermore, since Fgy # 0 and a” # 0, it is not trivial
to (exactly) prescribe the initial conditions for the MP
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nonhelical solution (which in the previous examples was
ensured by a* = 0). To first order in S, we can impose it by
taking S“ﬂaﬂ ~ 0, see [26]. With the TD condition, we face
again a complicated equation relating P* with U* (and
therefore Fgy with a®), Eq. (35) of [20]. An interesting
choice for this system is the Corinaldesi-Papapetrou con-
dition [54] §% iy = 0, where @ = 9/0t corresponds to the
static observers. In this case S*Diiz/dr =0, thus
Py =0, cf. Eq. (31), leading to P* = mU* + P} jem>
which is the simplest momentum-velocity relation possible
for this problem.

More generally, in arbitrarily curved spacetimes, the
inertial hidden momentum Py, can always be made to
vanish by choosing a #* parallel transported along the
reference worldline, cf. Eq. (31). This choice may actually
be cast as a spin supplementary condition [39] (for its
detailed discussion, see [33,39,125]). It is especially
favored for pole-dipole particles in purely gravitational
systems, because it leads to particularly simple equations:
the momentum-velocity relation is simply P* = mU?, and
S is parallel transported, DS% /dr = 0, cf. Eq. (12). On
the other hand, in some treatments spin conditions for
which Pfl.; # 0 are preferred; that is the case of the Newton-
Wigner [55,56] condition #* &< P*/M + uf,, where uf, is
the 4-velocity of some “laboratory” observer [58] (it may
thus be cast as a combination of the Tulczyjew-Dixon and
Corinaldesi-Papapetrou conditions). It is of advantage in
some Hamiltonian and effective field theory approaches
[57-63] (see also [126,127]) because it leads to canonical
Dirac brackets (to linear order in the spin, in the case of
curved spacetime [57,61]). The bottom line is that the spin
condition is gauge freedom, and as such one should choose,
in each application, the one that suits it the most. For the
ones in this paper (where we have been exploring exact
analogies that rely on it), it is the MP condition that is of
clear advantage, as explained above.

2. Analogies under other spin conditions

The exact gravitoelectromagnetic analogies studied so
far in this paper were obtained by employing, in the
equations of motion, the Mathisson-Pirani (MP) spin
condition. In this section we will study how the situation
changes by choosing other spin conditions.

a. Analogy based on tidal tensors

For an arbitrary spin condition S% ig = 0, it is natural to
define, as above, the spin vector S# by Saﬁ = eaﬁﬂy:?”ﬁ’“, in
terms of which the spin-curvature force reads DP*/dr =
—'Hyo’SW, where H,3 = *R,p,i" U, cf. Eq. (C4). Thus the
force is still given by a contraction of a rank 2 tensor H
with S%; this new tensor, however, does not coincide with the
magnetic part of the Riemann tensor (H"),; = * Ryt u”
as measured by any observer u®, because it results from a
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contraction of xRz, with two different vectors (#* and U").
It does not obey the field equations in Table I, since the trace
and antisymmetric parts of H,; no longer yield projections
of the Einstein field equations, nor equations of the type
(1.2b) and (1.3b) of Table 1.** Instead, another analogy can be
drawn here. First note that by choosing, as reference
worldline, the centroid x¢&,,(i) given by the condition
S%ii; = 0, that generates a mass dipole d% = —S%U in
the centroid rest frame, cf. Eq. (13). Decomposing S%
into its time and space projections relative to the centroid 4-
velocity U* = dx,(it)/dr, we have

59 = 2d5UP + e, UM SV, (C8)

where we used Eq. (4) of [14], and the vector
QU \u —1 u o Saprry C9
(S ) = 56 aﬂyS U ( )

encodes the components of S% spatial with respect to U?,
that is, what one would physically interpret as the classical
angular momentum 3-vector (cf. e.g. [128]) about x¢,, (i),
as measured in the centroid frame (i.e., as measured by the
observer of 4-velocity U%). Substituting Eq. (C8) into the
second member of Eq. (C4) yields

DP*
dr

= —Hy*(3V)P — E4*dy;. (C10)
This resembles the electromagnetic force exerted on a
particle possessing both magnetic and electric dipole mo-
ments (as measured in the centroid frame). Indeed, the
right-hand member of Eq. (C10) is formally analogous to
the second and third terms of Eq. (15); however the last
term of (15) (which is also part of the force on an electric
dipole), has no counterpart in (C10). Since this term is not a
tidal term, it is natural that it has no gravitational counter-
part. An exact analogy exists however between Eq. (C10)
and the canonical electromagnetic force on a particle with
electric and magnetic dipole moments (and zero charge),

DPp

I = Bﬁ“yﬂ + Eﬂ“d/’ (C11)
obtained by substituting Eq. (AS5) into (A3).
Tulczyjew-Dixon (TD) condition (a* = P*/M).—

Noting that U* = (P* — P{,,)/m, we have in this case

*Namely those will not be equations involving only tidal
tensors and sources, by contrast with both their magnetic
counterparts (I.2a) and (I.3a) of Table I, and also with the
gravitoelectric counterparts Eqs. (1.3b) and (1.7b) of Table 1
of [14]. Moreover, the tensorial structure of H,; (unlike Hyp) is
not similar to its gravitoelectric counterpart Eg, i.e., it is not
spatial in both indices with respect to the same timelike vector,
nor does it have to be symmetric in vacuum.
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de = -8PU,; = §4PLy/m = O, and (SU) =8+ 0,
where O is of order O(S?) if electromagnetic hidden
momentum is present (P& ey # 0), or O(S?) otherwise.
Therefore, to a good approximation (in particular in a pole-
dipole approximation), Eq. (C10) becomes Fg = —IH]ﬂ“S’/’ ,
and the analogy in Table I holds.

Corinaldesi-Papapetrou (CP) condition (i, = uf,).—
This condition was introduced, for the case of
Schwarzschild spacetime, in the noncovariant form
S0 = 0 [54], where it states that the reference worldline
is the centroid as measured by the observers at rest in
Schwarzschild coordinates. It can be generalized [33,39] to
arbitrary coordinate systems in arbitrary spacetimes in the
covariant form S‘“ﬁu{}ab = 0, where ulﬁab is the 4-velocity of
the observers at rest in the chosen coordinate system
(the laboratory observers ufab =0 [20,33]). In this case
dg=—8"Uy==8v5(U,upyp)y(U. 1), where vf (U, up)
is the velocity of the centroid relative to the laboratory
observers, cf. decomposition (67). Therefore the second
term of (C10) is of first order in S and cannot in general be
neglected (for instance, in the Schwarzschild spacetime,
the two terms are typically of the same magnitude, see
Sec. 3.4.2 of [33]). So the analogy that holds is between
Egs. (C10) and (C11) (not the one in Table I, between the
spin curvature and the force on a magnetic dipole).

Newton-Wigner (NW) condition (i*  uf, + P*/M).—
In this case the reference worldline is chosen as the centroid
x¢y(unw) as measured by observers of 4-velocity
(cf. [57,58,61,125])

P* M
¢ = K[ u? — K _ C12
w <ulab " M ) 2(M + myg,) (€12)

(my,, = —uf P,), that is, an even-weighted combination of
the 4-velocity of the laboratory and the zero 3-momentum
observers. Due to that, the situation with this spin condition
is essentially similar to with the CP condition; it resembles
more the electromagnetic force on a particle possessing
both electric and magnetic moments (as measured in the
centroid frame), and is closely analogous to the canonical
electromagnetic force on such particle (except that the mass
dipole d% = —5%/ Uy is different from the CP one, as S is
now a different tensor, obeying S’"‘ﬂufrw = 0).

Parallel condition (Du*/dr = 0).—This condition
chooses as reference worldline some timelike vector &*
parallel transported along the reference worldline z*. Since
the initial vector u{ is arbitrary [39], we may choose it as
i, = U*“, so that initially one obtains exactly the analogy
in Table I, just like for the MP condition. Since, in general,
the motion is nongeodesic, #* will progressively diverge
from U?%, so at later instants that analogy will be only
approximate, whilst the analogy between Egs. (C10)
and (C11) remains exact.
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b. Spin precession

The analogy found in Eq. (26) of Sec. II C using the MP
condition holds in an orthonormal frame comoving with the
centroid, for a spin vector $* which represents the angular
momentum, as measured in the centroid frame, taken about
the centroid x&,(U) measured, again, in is own rest frame.
Other spin conditions S% g =0 correspond to different
angular momentum tensors S%, taken about the centroids
x&y () measured by the observer of 4-velocity #* (not U%).
The vector which encodes the angular momentum about
x%M(ﬁ), and as measured in the centroid frame is, as
explained above, (5Y)%, see Egs. (C8) and (C9). To
compute its evolution equation, one first notes that
€apysU°DS™ [dr = 2D(SY), /dr — €,5,5a°S*"; then, using
(27) (with % = §%) and (C8), we have

D(SY)yr
dr

_ 1
= (8Y),a"U" + € 45 U° {d’gaa + 57"4 .

In an orthonormal tetrad e, comoving with the centroid,
this equation reads, using (28) (see Sec. 11 C),

2U
das = S - B
d—:SUxQ+deG+,uxB+de, (C13)
T
where G* = —a“ is the gravitoelectric field as measured in

the centroid frame, cf Sec. II D. This equation manifests
that, for an arbitrary spin condition, an exact analogy
always exists, with {E‘U ZZG} playing a role analogous to
the magnetic and electric dipole moment vectors {z, Zl},
and the inertial fields {52, é} playing a role analogous to
the electromagnetic fields {é, E‘} (all quantities measured
in the centroid frame). As discussed in Sec. II1C, if e, is
adapted to a congruence of observers, then Q=H /2, and
the analogy deepens. The term Zz’G xG= —ZlG x a is the
exact version of the “instrumental torque” discussed in
[128]% in the weak field and slow motion regime. If one
chooses u* = U* (MP condition) then ZZG =0, E'U = 3‘
and, taking also particles with no electric dipole moment in
the centroid frame (2 = 0), Eq. (C13) reduces to Eq. (26).
Under the TD condition S*P; = 0 the situation is similar
to a good approximation: as we have seen in Sec. C2 a, d{
is of order O(8?) if Pfyey # 0, or O(S?) otherwise.

To make the connection with [128], we note that: therein the
CP condition is considered, so dg = —S"ﬁUﬂ = e"yéﬂUﬁv‘sS}’
with o7 = 9" (U, uyy,), reading, in the centroid frame,
- =N z 2U . . .
dg=Sxv;, S=8, § =8, in their notation; and
a=F/m+ O(S).
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Under the CP condition (S’“ﬂuﬁb =0), ZZG is of order
O(S) (cf. footnote 29), hence the situation depends on

the type of force applied on the body. If g = d= 0,
and only gravitational and electromagnetic forces are

present, (_fG x a~ O(S?), and one recovers, to a good
approximation, the analogy in Eq. (26) (with S’U in the
place of §). Otherwise, for a generic force (or if g # 0),
dg x a ~O(S), non-negligible in pole-dipole, nor in
weak-field slow motion approximations [128], thus in
this case it is only the analogy in Eq. (C13) that holds.

With the NW condition, S“’ﬁuﬁNW = (0, the situation is

very similar, due to the contribution of uf, to ufy
in Eq. (C12).
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c. Hidden momentum

Under an arbitrary spin condition neither Py nor Piipy
take the forms (33), and there is no longer a close analogy
between the two. For instance, under the parallel condition
Diu*/dr = 0, one has simply Pp.,; = 0; moreover Py o
[Eq. (32)] takes in general a complicated form, encoding
not only the hidden momentum modeled in e.g. Fig. 9 of
[71] (which is physical), but also a pure gauge part that is
due solely to the choice of centroid, see Sec. 3.5.1 of [33].
An exception is the TD condition, under which Eq. (33) is
still obtained to a good approximation [namely by neglect-
ing terms of order O(S?) and O(Sd), consistent with a
dipole approximation]; it was actually in such approximate
form that this analogy was first introduced in [20].
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