
Spacetime dynamics of spinning particles: Exact electromagnetic analogies

L. Filipe O. Costa,1,2,* José Natário,2,† and Miguel Zilhão1,3,4,‡
1Centro de Física do Porto–CFP, Departamento de Física e Astronomia,

Faculdade de Ciências da Universidade do Porto–FCUP, Rua do Campo Alegre 687,
4169-007 Porto, Portugal

2Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico,
Universidade de Lisboa, 1049-001 Lisboa, Portugal

3Departamento de Física da Universidade de Aveiro and I3N, Campus de Santiago,
3810-183 Aveiro, Portugal

4Departament de Física Fonamental & Institut de Ciències del Cosmos,
Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain

(Received 30 July 2015; published 3 May 2016)

We compare the rigorous equations describing the motion of spinning test particles in gravitational and
electromagnetic fields, and show that if the Mathisson-Pirani spin condition holds then exact gravito-
electromagnetic analogies emerge. These analogies provide a familiar formalism to treat gravitational problems,
as well as a means for comparing the two interactions. Fundamental differences are manifest in the symmetries
and time projections of the electromagnetic and gravitational tidal tensors. The physical consequences of the
symmetries of the tidal tensors are explored comparing the following analogous setups: magnetic dipoles in the
fieldofnonspinning/spinningcharges, andgyroscopes in theSchwarzschild,Kerr, andKerr–deSitter spacetimes.
The implications of the time projections of the tidal tensors are illustrated by the work done on the particle in
various frames; in particular, a reciprocity is found to exist: in a frame comoving with the particle, the
electromagnetic (but not thegravitational) fielddoesworkon it, causingavariationof its propermass; conversely,
for “static observers,” a stationary gravitomagnetic (but not a magnetic) field does work on the particle, and the
associated potential energy is seen to embody the Hawking-Wald spin-spin interaction energy. The issue of
hiddenmomentum, and its counterintuitive dynamical implications, is also analyzed. Finally, a number of issues
regarding the electromagnetic interaction and the physical meaning of Dixon’s equations are clarified.
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I. INTRODUCTION

Analogies between the equations of motion for gyro-
scopes in a gravitational field and magnetic dipoles in an
electromagnetic field have been known for a long time, and
were presented in many different forms throughout the
years. This is the case for both the force and the spin
evolution equations for these test particles in external fields.
The former was first found by Wald [1] in the framework of
linearized theory: he showed that the gravitational force
exerted on a spinning pole-dipole test particle (hereafter a
gyroscope), whose center of mass is at rest in a stationary
field, takes the form ~FG ¼ K∇ð ~H · ~SÞ, where ~H is the so-
called “gravitomagnetic field,”K is some constant (depend-

ing on the precise definition of ~H, e.g. [2–5]), and ~S is the
particle’s angular momentum. This formula is similar to the
formula for the electromagnetic force on a magnetic dipole,
~FEM ¼ ∇ð~B · ~μÞ, where ~B is the magnetic field and ~μ is the
dipole’s magnetic moment. The analogy was later cast in an
exact form by one of the authors in [6], using the exact
“gravitoelectromagnetic” (GEM) inertial fields from the

so-called 1þ 3 “quasi-Maxwell” formalism. The force was
seen therein to consist of an electromagneticlike term of the
form above plus a term interpreted as the “weight of the
energy” of the gravitomagnetic dipole, and the limit of
validity of the analogy was extended to arbitrarily strong
stationary fields and when the gyroscope’s worldline is
tangent to any timelike Killing vector field (which compre-
hends e.g. circular trajectories with arbitrary speed in
axisymmetric spacetimes). In a different framework, it
was later shown that there is actually an exact, covariant,
and fully general analogy relating the two forces; such
analogy is made explicit not in the framework of the GEM
inertial fields, but by using instead the tidal tensors of both
theories, introduced in [7].
The analogy between the so-called “precession” of a

gyroscope in a gravitational field and the precession of a
magnetic dipole under the action of a magnetic field was
noticed long ago, in the framework of linearized theory, by
a number of authors, e.g. [3–5,8–11], who pointed out that
the spin vector of a gyroscope at rest in a stationary
field evolves as d~S=dt ¼ K~S × ~H. This formula is similar
to the formula for the precession of a magnetic dipole in a

magnetic field, d~S=dt ¼ ~μ × ~B. The analogy was later cast
in exact forms in e.g. [4,6,12,13]; these are not covariant,
holding only in specific frames, but (in the more general
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formulations in [12–14] and herein) the test particle can be
moving with arbitrary velocity in an arbitrary field.
These analogies provide a familiar formalism to treat

otherwise complicated gravitational effects, as well as a
means to compare the two interactions. In this paper we
explore them, exemplifying their usefulness in some
applications, and the insight they provide into fundamental,
yet not well known aspects of both interactions.
We will also make use of a third exact gravito-

electromagnetic analogy (see e.g. [15–17]), this one a
purely formal one (see [14]), relating the quadratic scalar
invariants of the Maxwell and Weyl tensors [15,16,18],
which proves useful in some applications.

A. The equations of motion

In this paper we start, in Sec. II, by writing the general
relativistic equations describing the motion of spinning test
particles with gravitational and electromagnetic pole-dipole
moments, subject to gravitational and electromagnetic
external fields, in terms of quantities with a clear physical
meaning. This turns out not to be a straightforward task,
as the covariant equations for this problem are still not
generally well understood, with different methods and
derivations leading to different versions of the equations,
the relationship between them not being clear. Perhaps
more surprising is the fact that it is the electromagnetic
sector that has been posing more difficulties, with a number
of misconceptions arising in the physical interpretation of
the quantities involved. These issues are clarified in
Appendix A, where the relation between the different
versions of the equations and their physical interpretation
are discussed in detail.
In order to form a determined system, the equations of

motion need to be supplemented by a spin condition; the
latter is even today still regarded as an open question, with a
long history of debates concerning which one is the “best”
condition (see [19] for a review and list of references).
In Sec. II Awe briefly discuss its meaning and the problem
of the relativistic definition of center of mass. This is of
relevance here because the two physical analogies men-
tioned above (for the force and for the spin precession) rely
on a specific choice—the Mathisson-Pirani spin condition.
Also related with the spin supplementary condition is an

issue central to the understanding of the dynamics of a
spinning particle: the decoupling of the 4-velocity Uα from
the 4-momentum Pα, discussed in Sec. II D. In general, Uα

is not parallel to Pα; the particle is said to possess “hidden
momentum,” for which another exact analogy is seen to
emerge. The hidden momentum is known to lead to
counterintuitive behaviors of the spinning particles; exam-
ples are the bobbings studied in [20], and the Mathisson
helical motions themselves, where a particle accelerates
without the action of any force [21]. Herein (Sec. III A) we
present another, perhaps even more surprising conse-
quence: a magnetic dipole with radial initial velocity in

the field of a point charge accelerates in approximately the
opposite direction to the force.

B. The main realizations

Most of our applications, Secs. III–V of this paper, will
deal with the tidal tensor formalism introduced in [7], and
the exact analogy it unveils: both the electromagnetic force
on a magnetic dipole and the gravitational force on a
gyroscope are given by a contraction of a rank 2 magnetic
type tidal tensor (Bαβ, Hαβ), with the dipole/spin 4-vector.
Here Bαβ gives the tidal effects of the magnetic field
and Hαβ is the magnetic part of the Riemann tensor, both
measured in the particle’s rest frame. This makes this
formalism specially suited to comparing the two forces—it
amounts to simply comparing the two tidal tensors. Such
comparison is done through Einstein’s and Maxwell’s
equations, as they also can be written in terms of tidal
tensors. Apart from the nonlinearity of Hαβ, the tensorial
structure differs when the fields vary along the test
particle’s worldline, since this endows Bαβ with an anti-
symmetric part, and a nonvanishing time projection along
that worldline, whereas its gravitational counterpart is
spatial relative to that worldline and, in vacuum, symmetric.
Both these aspects are related with the laws of electro-
magnetic induction (and the absence of a counterpart in the
gravitational tidal effects); we discuss them in two separate
sections, as described below.
In Sec. III we explore the physical consequences of the

different symmetries of the gravitational and electromag-
netic tidal tensors. They are seen to imply e.g. that particles
moving in a nonhomogeneous electromagnetic field always
measure a nonvanishing Bαβ (thus feel a force), which is not
necessarily the case in gravity. The following analogous
setups are compared: magnetic dipoles in the field of
nonspinning/spinning charges, and gyroscopes in the
Schwarzschild, Kerr, and Kerr-dS spacetimes. It is seen
that in the cases where Bαβ reduces to B½αβ�, we have
Hαβ ¼ 0 (thus no force) in the gravitational analogue.
Geodesic motions for spinning particles are even found
to exist in the Schwarzschild (radial geodesics) and in the
Kerr-dS (circular equatorial geodesics) spacetimes.
In Sec. IV we explore the physical content of the time

projections of the forces in different frames, which are
related with the rate of work done on the test particle by the
external fields. In order to obtain the relationship, we start
by deriving the general equation yielding the variation of
energy of a particle with multipole structure with respect to
an arbitrary congruence of observers. We then show that the
electromagnetic force has a nonvanishing time projection
along Uα, which is the power transferred to the dipole by
Faraday’s induction, reflected in a variation of its proper
mass m. The projection of the gravitational force along
Uα, by contrast, vanishes (as Hαβ is spatial relative to Uα),
leading to the conservation of the gyroscope’s mass.
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Also of particular interest in this context are the time
projections as measured by “static observers,” analyzed in
Sec. IV B. For these observers, the time projection of the
electromagnetic force vanishes, meaning that the total work
done on the magnetic dipole is zero. This reflects the well-
known fact that the work done by the stationary magnetic
field is zero; in this framework, it is seen to arise from an
exchange of energy between three forms, translational
kinetic energy, proper mass m, and “hidden energy,”
occurring in a way such that their variations cancel out,
keeping the total energy constant. In the gravitational case,
since m is constant, such cancellation does not occur and
(by contrast with its electromagnetic counterpart) a sta-
tionary field does work on mass currents, so that there
exists an associated potential spin-curvature potential
energy, of which the Wald-Hawking spin-spin interaction
energy [1,22] is seen to be a special case.
In Sec. V we study the weak field and slow motion

regime, and show that the above-mentioned differences
between the two interactions appear at leading order (thus
are not negligible) therein, which is commonly overlooked
in the literature concerning this regime.

C. Beyond the pole-dipole

In Sec. VI we go beyond the pole-dipole approximation,
including the moments of quadrupole order, to clarify the
mechanism by which the proper mass of a spinning particle
in an electromagnetic field varies, and solve an apparent
contradiction of the former approximation: on the one
hand, as stated above, the mass m of a particle with
magnetic moment varies due (from the point of view of
the particle’s frame) to the work done on it by the induced
electric field (which, by having a curl, should torque the
body). On the other hand, the associated torque is not
manifest in the dipole order equations. In Sec. VI A we
show that such torque is indeed exerted on the particle
(governed by the time projection of the magnetic tidal
tensor, Bα

βUβ), but it involves quadrupole order moments
of the charge, which is why it does not show up to dipole
order. The subtlety here is that the work it does, and the
associated variation of mass/kinetic energy of rotation, is of
dipole order (yielding indeed the time projection of the
dipole force along its worldline, as obtained in Sec. IVA).
Then in Sec. VI B we study the analogous gravitational
problem, showing that, as expected (as Hαβ is spatial with
respect to Uα), no analogous torque exists.

D. Notation and conventions

(1) Signature and signs.—We use the signature
−þþþ; ϵαβγδ ≡ ffiffiffiffiffiffi−gp ½αβγδ� denotes the Levi-
Civita tensor, and we follow the orientation ½1230� ¼
1 (i.e., in flat spacetime, ϵ1230 ¼ 1). ϵijk ≡ ϵijk0 is
the 3D alternating tensor. Our convention for the
Riemann tensor is Rα

βμν ¼ Γα
βν;μ − Γα

βμ;ν þ � � �.

(2) We use bold fonts to denote tensors T (including
4-vectors P), and arrows for the spatial components
~P of a 4-vector P. Greek letters α; β; γ;… denote 4D
spacetime indices, running 0–3; Roman letters
i; j; k;… denote spatial indices, running 1–3. Fol-
lowing the usual practice, we sometimes use com-
ponent notation Tαβ to refer to a tensor T.

(3) By uα we denote a generic unit timelike vector,
which can be interpreted as the instantaneous
4-velocity of some observer. Uα ≡ dzα=dτ is the
tangent vector to the test body’s representative
worldline zαðτÞ, taken to be a suitably defined center
of mass (CM). Uα is thus the CM 4-velocity.

(4) Time and space projectors.—ð⊤uÞαβ ≡ −uαuβ and
ðhuÞαβ ≡ δαβ þ uαuβ denote, respectively, the pro-
jectors parallel and orthogonal to a unit timelike
vector uα; they may be interpreted as the time and
space projectors in the local rest frame of an observer
with 4-velocity uα.

(5) Tensors resulting from a measurement process.—
ðAuÞα1…αn denotes the tensor A as measured by an
observer OðuÞ of 4-velocity uα. For example,
ðEuÞα ≡ Fα

βuβ, ðEuÞαβ ≡ Fαγ;βuγ and ðEuÞαβ ≡
Rαμβνuμuν denote, respectively, the electric field, elec-
tric tidal tensor, and gravitoelectric tidal tensor as
measured by OðuÞ. For the space components of

a vector in a given frame we use the notation ~AðuÞ;
for example, ~EðuÞ denotes the space components
of ðEuÞα. When uα ¼ Uα (i.e., the particle’s
CM 4-velocity) we drop the superscript [e.g.
ðEUÞα ≡ Eα],or theargumentof thevector: ~EðUÞ≡ ~E.

(6) Electromagnetic field.—The Maxwell tensor Fαβ

and its dual ⋆Fαβ decompose in terms of the electric
ðEuÞα ≡ Fα

βuβ and magnetic ðBuÞα ≡ ⋆Fα
βuβ fields

measured by an observer of 4-velocity uα as

Fαβ ¼ 2u½αðEuÞβ� þ ϵαβγδuδðBuÞγ; ð1Þ

⋆Fαβ ¼ 2u½αðBuÞβ� − ϵαβγδuδðEuÞγ: ð2Þ

(7) Static observers.—In stationary, asymptotically flat
spacetimes, we dub “static observers” the rigid
congruence of observers whose worldlines are tan-
gent to the temporal Killing vector field ξ ¼ ∂=∂t;
they may be interpreted as the set of points rigidly
fixed to the “distant stars” (the asymptotic inertial
rest frame of the source). In the Kerr spacetime,
these correspond to the observers of zero 3-velocity
in Boyer-Lindquist coordinates. This agrees with the
convention in e.g. [23,24]. (The denomination
“static observers” has, however, a different meaning
in some literature, e.g. [25], where it designates
rigid, vorticity-free congruences tangent to a time-
like Killing vector field, existing only in static
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spacetimes.) In the case of the electromagnetic
systems in flat spacetime, by static observers we
mean the globally inertial rest frame of the sources.

(8) GEM.—This is the acronym for gravitoelectromag-
netism. By “inertial GEM fields,” we mean the fields
of inertial forces that arise from the 1þ 3 splitting of
spacetime: the gravitoelectric field ~G, which plays in
this framework a role analogous to the electric field
of electromagnetism, and the gravitomagnetic field
~H, analogous to the magnetic field. We discuss these
fields in detail in [14].

II. EQUATIONS OF MOTION FOR SPINNING
POLE-DIPOLE PARTICLES

In most of this paper we will be dealing with the
dynamics of the so-called pole-dipole spinning test par-
ticles. We consider systems composed of a test body
plus background gravitational and electromagnetic fields.
Let ðT totÞαβ ¼ Θαβ þ ðTmatterÞαβ denote the total energy-
momentum tensor, which splits into the electromagnetic
stress-energy tensor Θαβ and the energy-momentum tensor
of the matter ðTmatterÞαβ. Moreover, let Tαβ and jα denote,
respectively, the energy-momentum tensor and the current
density 4-vector of the test body. We also consider that the
only matter and currents present are the ones arising from
the test body: ðTmatterÞαβ ¼ Tαβ, jαtot ¼ jα. In this case (see
[26] for details) the conservation of total energy-momen-
tum tensor yields (cf. e.g. [20,27,28])

ðT totÞαβ;β ¼ 0 ⇒ Tαβ
;β ¼ −Θαβ

;β ⇔ Tαβ
;β ¼ Fαβjβ; ð3Þ

where Fαβ is the Maxwell tensor of the external (back-
ground) electromagnetic field.
In a multipole expansion the body is represented by the

moments of jα (its “electromagnetic skeleton”) and a set of
moments of Tαβ, called “inertial” or “gravitational”
moments (forming the so-called [29] “gravitational
skeleton”). Truncating the expansion at dipole order, the
equations of motion for such a particle involve only two
moments of Tαβ,

Pα̂ ≡
Z
Σðτ;UÞ

T α̂ β̂dΣβ̂; ð4Þ

Sα̂ β̂ ≡ 2

Z
Σðτ;UÞ

x½α̂T β̂�γ̂dΣγ̂; ð5Þ

and the electromagnetic moments [30]:

q≡
Z
Σ
jαdΣα; ð6Þ

dα̂ ≡
Z
Σðτ;UÞ

xα̂jβ̂dΣβ̂; ð7Þ

μα̂ ≡ 1

2
ϵα̂β̂ γ̂ δ̂U

δ̂

Z
Σðτ;UÞ

xβ̂jγ̂dΣ: ð8Þ

These are taken with respect to a reference worldline zαðτÞ,
of proper time τ and (unit) tangent vector Uα ≡ dzα=dτ,
and to a hypersurface of integration Σðτ; uÞ, which is the
spacelike hypersurface generated by all geodesics orthogo-
nal to some timelike vector uα at the point zαðτÞ; following
[30] we take uα ¼ Uα. Also,

dΣγ ≡ −nγdΣ ðat zα∶nα ¼ UαÞ; ð9Þ

where nα is the (future-pointing) unit vector normal do
Σðτ; UÞ, and dΣ is the 3-volume element of this hypersur-
face. The integrations are performed in a system of
Riemann normal coordinates fxα̂g (e.g. [23,31]) centered
at the point zα of the reference worldline (i.e., zα̂ ¼ 0). The
resulting expressions, however, are tensors (see below),
which can be expressed in any frame. PαðτÞ is the
4-momentum of the test particle, q its total charge (an
invariant, independent of Σ), and SαβðτÞ, dαðτÞ and μαðτÞ
are, respectively, the angular momentum, and the intrinsic
electric and magnetic dipole moments about the point zαðτÞ
of the reference worldline. It is useful to introduce also the
magnetic dipole 2-form μαβ by

μαβ ≡ ϵαβγδμ
γUδ; μα ¼ 1

2
ϵαβγδUβμγδ: ð10Þ

In some applications we will assume μαβ to be proportional
to the spin tensor: μαβ ¼ σSαβ, where σ is the gyromagnetic
ratio. The moments dα and μα are dubbed “intrinsic”
because they are evaluated in a frame comoving with the
particle’s representative point zαðτÞ (where Ui ¼ 0). If this

frame is inertial, they take the forms dα ¼ ð0; ~dÞ and

μα ¼ ð0; ~μÞ, where ~d and ~μ are given by the usual textbook

definitions (e.g. [32]): ~d ¼ R
ρc~xd3x, ~μ ¼ R

~x × ~jd3x=2.
Expressions (4), (5), (7) and (8) are integrals of tensors

over Σ (i.e., they add tensor components at different points
in a curved spacetime), which requires a justification.
By using Riemann normal coordinates, one is implicitly
using the exponential map to pull back the integrands from
the spacetime manifold to the tangent space at zα, and
integrating therein, which is a well-defined tensor oper-
ation, see [31,33]. (Note also that, by being associated to
the exponential map, such coordinates are naturally adapted
to integrations over geodesic hypersurfaces Σ). Other
schemes to perform such integrations were proposed in
the literature, based on bitensors in [20,27,34–36], or less
sophisticated ones in e.g. [37]. In the pole-dipole approxi-
mation [where Tαβ and jα are nonvanishing only in a very
small region around zαðτÞ, so that only terms linear in xα̂

are kept] they are all equivalent (see Appendix A 1
and [33,36]).
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The motion of the test particle is described by the
reference worldline zαðτÞ; its choice will be discussed
below. The equations of motion that follow from (3) are
[30,34,38] (see Appendix A for a discussion)

DPα

dτ
¼ qFα

βUβ þ 1

2
Fμν;αμμν −

1

2
Rα

βμνSμνUβ

þ Fα
γ;βUγdβ þ Fα

β
Ddβ

dτ
; ð11Þ

DSαβ

dτ
¼ 2P½αUβ� þ 2μθ½βFα�

θ þ 2d½αFβ�
γUγ; ð12Þ

where Fαβ is the background Maxwell tensor.
The first term in (11) is the Lorentz force; the second

term, 1
2
Fμν;αμμν ≡ Fα

EM, is the force due to the tidal
coupling of the electromagnetic field to the magnetic
dipole moment; and the third, − 1

2
Rα

βμνSμνUβ ≡ Fα
G, is

the Mathisson-Papapetrou spin-curvature force. The last
two terms are the force exerted on the electric dipole,
consisting of a tidal term Fα

γ;βUγdβ and of a nontidal term
Fα

βDdβ=dτ. Note that the terms involving μα and dα are
substantially different; this can be traced back to the
intrinsic difference between the two types of dipole—μα

being the dipole moment of the spatial current density
ðhUÞαβjβ, and dα the dipole moment of the charge density
ρc ≡ −jαUα, cf. Eqs. (7) and (8). The former can be
modeled by a current loop, the latter by a pair of oppositely
charged monopoles, and these two types of objects behave
differently as test particles; in this paper we shall discuss
some dynamical implications.
Up until now, the reference worldline zαðτÞ, relative to

which the moments in Eqs. (11) and (12) are taken, is still
undefined. Had we made an exact expansion keeping all the
infinite multipole moments as in [35,36], such worldline
would be arbitrary. Herein, however, it must be assumed
that it passes through the body (or close enough), so that the
pole-dipole approximation is valid; it will be chosen as
being prescribed by a suitably defined center of mass of the
test particle. As discussed in the next section, that is done
through a supplementary condition Sαβuβ ¼ 0, for some
timelike unit vector field uα. If Fαβ ¼ 0 there are 13
unknowns in Eqs. (11) and (12) (Pα, three independent
components of Uα, and six independent components of
Sαβ) for only ten equations. The condition Sαβuβ ¼ 0, for a
definite uα, closes the system as it kills off three compo-
nents of Sαβ. In the general case where Fαβ ≠ 0 one also
needs to give the laws of evolution for μαβ and dα in order
for the system to be determined, cf. [28].

A. Center of mass (CM) and spin
supplementary condition

In relativistic physics, the center of mass of a spinning
body is observer dependent. This is illustrated in Fig. 1 of

[21]. Thus one needs to specify the frame where it is to
be evaluated. That amounts to supplementing Eqs. (11)
and (12) (which, as discussed above, would otherwise be
undetermined) by the spin supplementary condition
Sαβuβ ¼ 0, as we will show next. The vector ðduGÞα ≡
−Sαβuβ yields the “mass dipole moment” (i.e. the mass
times the displacement of the reference worldline relative
to the center of mass) as measured by the observer O of
4-velocity uα. In order to see this consider, at the point zα of
the reference worldline, a system of Riemann normal
coordinates fxα̂gmomentarily comoving withO (i.e., ∂ 0̂ ¼
u at zα). In this frame, uî ¼ 0 and Sî β̂uβ̂ ¼ Sî 0̂u0̂ ¼ −Sî 0̂.
From Eq. (5) we have

Sî 0̂ ¼
Z
Σðτ;uÞ

xîT 0̂ γ̂dΣγ̂ ≡mðuÞxîCMðuÞ; ð13Þ

where mðuÞ ¼ −Pαuα denotes the mass as measured by O,
and we used the fact that Σðτ; uÞ coincides with the spatial
hypersurface x0̂ ¼ 0. We see that Sî 0̂ is by definition the
mass dipole in the frame fxα̂g: Sî 0̂ ¼ mðuÞxîCMðuÞ≡
ðduGÞî, and xîCMðuÞ ¼ Sî 0̂=mðuÞ is the position of the center
of mass. Thus the condition

Sαβuβ ¼ 0; ð14Þ

implying in this frame Sî 0̂ ¼ 0 ⇒ xîCMðuÞ ¼ 0, is precisely
the condition that the reference worldline is the center of
mass (or “centroid”) as measured in this frame (or,
equivalently, that the mass dipole vanishes for such an
observer). For details on how the center of mass position
changes in a change of observer, we refer the reader to
[21,33]. The set of all the possible positions of the center of
mass, as measured by every possible observer, forms a
worldtube (the “minimal worldtube” [39]), which is typ-
ically very narrow, and always contained within the convex
hull of the body’s worldtube (see [33,40,41]).
Usually one prefers equations of motion that do not

depend on a CM measured by some “external” observer,
but instead the field uα to be defined in terms of the timelike
vectors (Pα or Uα) already present in Eqs. (11) and (12).
This is the case of the two most common [19] conditions in
the literature: the Frenkel-Mathisson-Pirani [29,42–44]
condition SαβUβ ¼ 0 (hereafter the Mathisson-Pirani con-
dition, as it is best known) and the Tulczyjew-Dixon
[34,45] condition SαβPβ ¼ 0. The former seems the most
natural choice, as it amounts to computing the center of
mass in its proper frame, i.e., in the frame where it has zero
3-velocity. It also arises in a natural fashion in some
derivations [46,47] (see also [48]), and has been argued
[49–51] to be the only one that can be applied in the case of
massless particles. It turns out, however, that it does not
determine the worldline uniquely. For instance, in the case
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of a free particle in flat spacetime, it is known to lead, in
addition to the expected straightline motion, to an infinite
set of helical motions, notably found by Mathisson [43],
and which have been poorly understood and subject of
some misconceptions in the literature. These were clarified
in [21], where it was shown that the different worldlines
compatible with this condition are just equivalent descrip-
tions of the same physical motion.
The Tulczyjew-Dixon condition SαβPβ ¼ 0 amounts to

computing the CM in the frame where it has zero
3-momentum. This condition determines uniquely the CM
worldline [27,52,53]; there is no ambiguity in this case, since
Pα is given in advance by (4), and for this reason it is
preferred by a number of authors. For a free particle in flat
spacetime, theworldline specified by SαβPβ ¼ 0 corresponds
to Mathisson’s nonhelical solution; but in the presence of
gravitational/electromagnetic field, Pα cannot in general be
parallel to Uα under these spin conditions [cf. Eqs. (29) and
(34), below], so the solutions do not coincide.
The fundamental point to be emphasized here is that

these two conditions, as well as other reasonable conditions
in the literature (such as the Corinaldesi-Papapetrou
condition [54], the “parallel” condition in [39], or the
Newton-Wigner condition [55,56], used in Hamiltonian
and effective field theory approaches [57–63]), are, as
shown explicitly in [33], equivalent descriptions of the
motion of the test particle, the choice between them being a
matter of convenience.
In most of this paper we will adopt the Mathisson-Pirani

condition, since it is the one that leads to the exact grav-
itoelectromagnetic analogies we use. If the Tulczyjew-Dixon
condition is chosen instead, one still recovers the same
analogies to a good approximation. The spin conditions, their
effectivedifferences and their suitability for theapplications in
this paper, as well as their impact on the gravitoelectromag-
netic analogies, are discussed in detail inAppendixC.Therein
we show that exact analogies turn out to exist for an arbitrary
spin condition, only the corresponding equations are slightly
more complicated.
With the Mathisson-Pirani condition, we have Sμν ¼

ϵμντλSτUλ, where Sα is the spin 4-vector, which has

components ð0; ~SÞ in an orthonormal frame comoving with
the CM. Substituting into Eqs. (11) and (12) (and also
performing the contractions with Uα) we obtain

DPα

dτ
¼ qEα þ Eαβdβ þ Bβαμβ − HβαSβ þ Fα

β
Ddβ

dτ
; ð15Þ

DFSμ

dτ
¼ ϵμαβνUνðdαEβ þ μαBβÞ; ð16Þ

where Eα ≡ FαβUβ and Bα ≡ ⋆FαβUβ are the electric and
magnetic fields as measured by the test particle, and
Eαβ ≡ Fαμ;βUμ, Bαβ ≡ ⋆Fαμ;βUμ and Hαβ ≡ ⋆RαμβσUμUσ

are, respectively, the electric, magnetic and gravitomag-
netic tidal tensors as defined in [7,14], as measured by the
test particle. The operator DF=dτ denotes the Fermi-
Walker derivative along Uα (e.g. [23,64]), which, for some
vector Vμ, reads

DFVμ

dτ
¼ DVμ

dτ
− 2U½μaν�Vν; ð17Þ

where aα ≡DUα=dτ is the CM acceleration.

B. Force on gyroscope vs force on magnetic
dipole—exact analogy based

on tidal tensors

Herein we are interested in purely magnetic dipoles, i.e.,
dipoles whose electric moment vanishes in the CM frame;
this is ensured by the condition dα ¼ 0. In this case,
Eq. (15) simplifies to

DPα

dτ
¼ qFαβUβ þ Bβαμβ − HβαSβ: ð18Þ

These equations manifest the physical analogy Bαβ ↔ Hαβ,
summarized in Table I: (i) both the electromagnetic force
on a magnetic dipole and the gravitational force on a
gyroscope are determined by a contraction of the spin/
magnetic dipole 4-vector with a magnetic type tidal tensor.
Bαβ may be cast as the derivative of the magnetic field
Bα ¼ ⋆Fα

βUβ as measured in the inertial frame momen-
tarily comoving with the test particle: Bαβ ¼ Bα;βjU¼const.
For this reason it is dubbed the magnetic tidal tensor, and
its gravitational counterpart Hαβ the gravitomagnetic tidal
tensor [7]. (ii) It turns out that Bαβ and Hαβ obey the
formally similar equations (I.2) and (I.3) in Table I, which
in one case are Maxwell’s equations, and in the other are

TABLE I. Analogy between the electromagnetic force on a magnetic dipole and the gravitational force on a
gyroscope.

Electromagnetic force on a magnetic dipole Gravitational force on a spinning particle

Fβ
EM ¼ Bα

βμα; Bα
β ≡ ⋆Fα

μ;βUμ (I.1a) Fβ
G ¼ −Hα

βSα; Hα
β ≡ ⋆Rα

μβνUμUν (I.1b)

Equations for the magnetic tidal tensor Equations for the gravitomagnetic tidal tensor
Bα

α ¼ 0 (I.2a) Hα
α ¼ 0 (I.2b)

B½αβ� ¼ 1
2
⋆Fαβ;γUγ − 2πϵαβσγjσUγ (I.3a) H½αβ� ¼ −4πϵαβσγJσUγ (I.3b)

BαβUα ¼ 0; BαβUβ ¼ ϵβγαδE½βγ�Uδ (I.4a) HαβUα ¼ HαβUβ ¼ 0 (I.4b)
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exact Einstein’s equations. That is, the traces (I.2) are,
respectively, the time projection (with respect to Uα) of
the electromagnetic Bianchi identity ⋆Fαβ

;β ¼ 0 and the
time-time projection of the algebraic Bianchi identities
⋆Rγα

γβ ¼ 0; the antisymmetric parts (I.3a) are, respectively,
the space projection of Maxwell’s equations Fαβ

;β ¼ 4πjα

and the time-space projection of Einstein’s equations
Rμν ¼ 8πðTμν − 1

2
gμνTα

αÞ. The electromagnetic equations
take a familiar form in an inertial frame: Eq. (I.2a) becomes

∇ · ~B ¼ 0; the space part of (I.3a) is the Maxwell-Ampère

law ∇ × ~B ¼ ∂ ~E=∂tþ 4π~j. The latter means that the space
part of B½αβ� encodes the curl of Bα, which is actually a more
general statement, holding in arbitrarily accelerated frames:
denote by Uα the 4-velocity of the rest observers in such
frames; if the frame is nonrotating and nonshearing,
Uα;β ¼ −aαUβ, cf. Eq. (70) below, and we have

ϵβγαδBγβUδ ¼ ϵβγαδBγ;βUδ ⇒ ϵikjBjk ¼ ð∇ × ~BÞi: ð19Þ

Expressing also the second member of (I.3a) in terms of
the electric and magnetic fields Eα and Bα measured in this
frame, we obtain, in 3-vector notation,

∇ × ~B ¼ D~E
dτ

− ~a × ~Eþ 4π~j ð20Þ

which is the generalization of Maxwell-Ampère law for
accelerated frames [cf. Eq. (19) of [17]]. This equation, as
well as Eq. (23) below, is of use in the particle’s CM frame
(as it in general accelerates).
Note this important aspect of Eq. (I.3a), considering for

simplicity the vacuum case jα ¼ 0: it tells us that when the
field Fαβ varies along the particle’s worldline (of 4-velocity
Uα), that endows Bαβ with an antisymmetric part, implying
that Bαβ itself is nonvanishing. Hence, whenever the
particle moves in a nonhomogeneous field, a force will
be exerted on it (except for special orientations of ~μ). From
Eqs. (19) and (20), this can be interpreted, taking the
perspective of the inertial frame momentarily comoving
with the particle, as the time-varying electric field inducing

a curl in the magnetic field ~B (and thus a nonvanishing
magnetic tidal tensor). The fact that its gravitomagnetic
counterpart Hαβ is symmetric in vacuum tells us that no
analogous induction phenomenon occurs in gravity. The
physical consequences shall be explored in Sec. III below.
There is an electric counterpart to this analogy, relating

the electric tidal tensor Eαβ with the electric part of the
Riemann tensor:

Eαβ ≡ Fαμ;βUμ ↔ Eαβ ≡ RαμβνUμUν;

which is manifest in the worldline deviations of both
theories, see [7], and together they form the gravitoelec-
tromagnetic analogy based on tidal tensors [7,14]. These

tensors obey the following equations, which will be useful
in this work:

E½αβ� ¼
1

2
Fαβ;γUγ; ðaÞ E½αβ� ¼ 0: ðbÞ ð21Þ

Equation (21a) results from the space projection (relative to
Uα) of the identity ⋆Fαβ

;β ¼ 0, and Eq. (21b) from
the time-space projection of the identity ⋆Rγα

γβ ¼ 0.
Contracting (21a) with the spatial 3-form ϵαβγδUδ yields
Eq. (I.4a) of Table I. Again, for a (nonrotating and non-
shearing) arbitrarily accelerated frame we have

ϵβγαδEγβUδ ¼ ϵβγαδEγ;βUδ ⇒ ϵikjEjk ¼ ð∇ × ~EÞi: ð22Þ

Expressing also the second member of (21a) in terms of
the fields Eα and Bα measured in this frame, we obtain, in
3-vector notation:

∇ × ~E ¼ −
D~B
dτ

− ~a × ~E; ð23Þ

which is a generalization ofMaxwell-Faraday equation∇ ×
~E ¼ −∂ ~B=∂t for accelerated frames, cf. Eq. (20) of [17].
The fact that the gravitoelectric tidal tensor Eαβ is

symmetric again means that there is no analogous gravi-
tational induction effect, and this is a key observation for
the applications in Secs. IVA and VI.
Equations (I.4) are the time projections of the tidal

tensors with respect to the observer Uα measuring them (if
Uα is the particle’s CM 4-velocity, they are the time
projection in its rest frame); they are zero in the gravita-
tional case, as Hαβ is spatial relative to Uα, and nonzero in
the electromagnetic case, which again is related to electro-
magnetic induction, as the right Eq. (I.4a) corresponds to
the spatially projected Eq. (21a). This means that Fα

G is
spatial with respect to Uα, whereas Fα

EM is not, which has
important implications on the work done by the fields on
the particle, as will be discussed in Sec. IV.
Finally, note that Fα

EM ¼ Bβαμβ is the covariant gener-
alization of the familiar textbook 3D expression
~FEM ¼ ∇ð~μ · ~BÞ, the latter being valid only in the inertial
frame momentarily comoving with the particle.

C. Spin precession—exact analogy based
on inertial GEM fields from the

1þ 3 formalism

For purely magnetic dipoles (dα ¼ 0), Eq. (16) for the
spin evolution under the Mathisson-Pirani condition
simplifies to

DFSμ

dτ
¼ ϵμαβνUνμαBβ; ð24Þ

or equivalently [cf. Eq. (17)]
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DSμ

dτ
¼ SνaνUμ þ ϵμαβνUνμαBβ; ð25Þ

where Bβ is the magnetic field as measured by the test
particle. The first term in (25) embodies the Thomas
precession. The second term is a covariant form for the

familiar torque τ ¼ ~μ × ~B causing the Larmor precession of
a magnetic dipole under a magnetic field.
Consider now an orthonormal frame eα̂ carried by an

observer of 4-velocity Uα, such that U ¼ e0̂, comoving

with the test particle. In such frame, S0̂ ¼ 0 and Uα̂ ¼ δα̂
0̂
,

and Eq. (25) reduces to (see [14])

DSî

dτ
¼ ð~μ × ~BÞî ⇔ dSî

dτ
¼ ð~S × ~Ωþ ~μ × ~BÞî; ð26Þ

where ~Ω is angular velocity of rotation of the spatial axes eî
relative to a tetrad Fermi-Walker transported along the
center of mass worldline. If Bα ¼ 0, Eqs. (24)–(26) tell us
that Sα undergoes Fermi-Walker transport, i.e., it follows
the local “compass of inertia” [3,65] (the so-called gyro-

scope “precession”, of frequency − ~Ω, is thus in fact just
minus the rotation of the eî relative to a locally nonrotating
frame, and therefore, locally, an artifact of the reference

frame, manifest only in the ordinary derivative d~S=dτ). Up

until now ~Ω is arbitrary; of special interest is, in asymp-
totically flat spacetimes, the case where the triads eî are
locked to the so-called “frame of the distant stars.” If the
spacetime is stationary, such a frame is set up by choosing
the congruence of static observers (cf. point 7 of Sec. I D),

and demanding ~Ω to match their vorticity ~ω [defined in

Eq. (70) below], ~Ω ¼ ~ω. That is, demanding the triads eî to
corotate [12,66] with the observers, relative to Fermi-
Walker transport; we dub such frame congruence adapted.
This ensures that the axes eî point to fixed neighboring
observers, cf. Eq. (41) of [14]. Since the observer con-
gruence is rigid and, at infinity, inertial, the axes eî locked
to it are locked to the inertial frame at infinity (the rest
frame of the “distant stars”), and Eq. (26) yields the
precession of spinning particle with respect to the distant
stars. For more details we refer to Secs. 3.1 and 3.3 of the
companion paper [14].
Note the analogy between the two terms of the second

Eq. (26); when the frame is congruence adapted, then
~Ω ¼ ~H=2, where ~H is the “gravitomagnetic” or Coriolis
field felt in such frame, which plays in the exact geodesic
equations [e.g. Eq. (58) of [14]] the same role as the

magnetic field ~B in the electromagnetic Lorentz force.

Moreover, the field equations for ~H exhibit striking

similarities with the Maxwell equations for ~B in an
accelerated, rotating frame, see Table 2 of [14]. In the
linear regime, for stationary fields, they become similar to
Maxwell’s equations in a Lorentz frame, as is well known

[1,3,11,20,67,68]. That tells us that analogous setups
generate fields alike. A well-known realization is the
similarity between the gravitomagnetic field produced by
a spinning mass (as measured by the congruence of static
observers), and the magnetic field produced by a spinning
charge, e.g. Eqs. (6.1.9) and (6.1.25) of [3].
The analogy in Eq. (26) is valid for arbitrary fields,

unlike the case of most gravitoelectromagnetic analogies1

based on GEM inertial fields (not tidal tensors), which do
not hold (in the sense of a one to one correspondence) when
one considers time-dependent fields [14,69] (another
exception is the hidden momentum analogy, presented in
the next section).
Finally, note that, if we assume ~μ ¼ σ~S, then the quantity

S2 ¼ SαSα ¼ SαβSαβ=2 is a constant of the motion, which is
immediately seen contracting (25) with Sμ.

D. Momentum of the spinning particle—“hidden
momentum” and exact analogy based on inertial

GEM fields from the 1þ 3 formalism

The momentum (4) of a spinning particle is not in general
parallel to its center of mass 4-velocity Uα. In order to see
that, let us re-write the spin evolution equation (12) as

DSαβ

dτ
¼ 2P½αUβ� þ ταβ; ð27Þ

where we denoted

ταβ ≡ 2μθ½βFα�
θ þ 2d½αFβ�

γUγ; ð28Þ
which is sometimes called the dipole “torque” tensor
[although only its spatial part contributes to the actual
torque, cf. Eq. (106)]. Consider a generic spin condition
Sαβuβ ¼ 0, where uα denotes the 4-velocity of an arbitrary
observer OðuÞ [as discussed in Sec. II A, this condition
means that we take as reference worldline the center of mass
as measured byOðuÞ]. An expression forPα can be obtained
contracting (27) with uβ, leading to

Pα ¼ 1

γðu;UÞ
�
mðuÞUα þ Sαβ

Duβ
dτ

þ ταβuβ

�
; ð29Þ

where γðU; uÞ≡ −Uαuα,mðuÞ≡ −Pαuα, and in the second
term we used Sαβuβ ¼ 0. We split Pα in its projections
parallel and orthogonal to the CM 4-velocity Uα:

1In the framework of the GEM inertial fields, the force on the
gyroscope [6,14] and the equation for the geodesics of (non-
spinning) test particles (e.g. [6,12,14]) can be exactly described
by equations analogous to the ones from electromagnetism, but
only if the fields are stationary and the gyroscope it at rest with
respect to a stationary observer (i.e., its worldline is tangent to a
timelike Killing vector), or, in the case of the geodesic equation, if
one considers a frame adapted to a rigid congruence of stationary
observers. See Secs. 3.2 and 3.6 of [14].
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Pα ¼ Pα
kin þ Pα

hid; Pα
kin ≡mUα; Pα

hid ≡ ðhUÞαβPβ:

ð30Þ

We dub the parallel projectionPα
kin ¼ mUα “kinetic momen-

tum” associated with the motion of the center of mass. This
is the most familiar part of Pα, formally similar to the
momentum of a monopole particle. The component Pα

hid
orthogonal to Uα is the so-called hidden momentum [20].
The reason for the latter denomination is seen taking the
perspective of the particle’s center of mass frame (i.e., the

frame where ~U ¼ 0): the 3-momentum is in general not zero

therein, ~P ¼ ~Phid ≠ 0; however, by definition, the particle’s
CM is at rest in that frame, and so this momentum must be
somehow hidden in the spinning particle. The hidden
momentum Pα

hid consists of two parts of distinct origin:
Pα
hid ¼ Pα

hidI þ Pα
hidEM, where

Pα
hidI ≡ 1

γðu;UÞ ðh
UÞασSσβ

Duβ
dτ

; ð31Þ

Pα
hidEM ≡ 1

γðu;UÞ ðh
UÞαστσβuβ: ð32Þ

The term Pα
hidI, which we dub “inertial” hidden momentum

(the reason for such denomination will be clear below), is a
gauge term that depends only on the spin supplementary
condition, i.e., on the choice of the vector field uα

[the 4-velocity of the observers OðuÞ relative to which
the CM is being computed]. This type of hidden momentum
was first discussed in [20] (dubbed “kinematical” therein).
It is in general not zero when Duα=dτ ≠ 0; this comes as a
natural consequence of what we discussed in Sec. II A: the
position of the CM of a spinning body depends on the vector
uα relative to which it is computed; if that vector varies along
the reference worldline, it is clear that this is reflected in the
velocityUα of the CM (which in general will accelerate even
without the action of any forces; see Figs. 1 and 2 of [33]).
Since the momentum Pα remains the same, Uα will in
general not be parallel to Pα, and so the centroid is not at rest
in the frame where Pi ¼ 0; conversely, the momentum is not
zero in the CM frame (hidden momentum). If we take a field
uα such that Duα=dτ ¼ 0 (which was proposed in [39] as
one of the possible spin supplementary conditions), i.e., if
we take as reference worldline the center of mass as
measured with respect to a field uα that is parallel trans-
ported along it, then Pα

hidI (as well as the motion effects
induced by it, such as the bobbings studied in [20], or the
helical motions discussed in [21]) is made to vanish.
The term Pα

hidEM is what we dub “electromagnetic”
hidden momentum; it is a still not well-known feature of
relativistic electrodynamics (despite its discovery [70]
dating back from the 1960’s, and having since been
discussed in number of papers, e.g. [20,70–77]). It is
associated with the electromagnetic torque tensor ταβ,

and consists of a part which is gauge and arises, again,
from the choice of centroid (vanishing for suitable choices,
see [33] for details), plus a part that is not gauge, whose
motion effects (such as the bobbings in electromagnetic
systems studied in [20]) cannot in general be made to
vanish by any choice of center of mass.
With the Mathisson-Pirani condition SαβUβ ¼ 0, the

hidden momentum in Eqs. (30)–(32) takes the suggestive
form

Pα
hidI≡−ϵαβγδSβaγUδ; Pα

hidEM≡ϵαβγδμ
βEγUδ; ð33Þ

and so the particle’s total momentum, Eq (30), reads

Pα ¼ mUα − ϵαβγδSβaγUδ þ ϵαβγδμ
βEγUδ; ð34Þ

where Eα ¼ Fα
βUβ is the electric field as measured in the

particle’s CM frame (of 4-velocity Uα), and aα its accel-
eration. In the particle’s CM frame (where Ui ¼ 0), and in
vector notation, the space part reads (P0

hid ¼ 0)

~Phid ¼ ~P ¼ −~S × ~aþ ~μ × ~E ¼ ~S × ~Gþ ~μ × ~E: ð35Þ

The term ~PhidEM ¼ ~μ × ~E is the most usual form for the
electromagnetic hidden momentum in the literature, e.g.
[32,71–74,78]. It equals minus the electromagnetic field

momentum ~P× generated by a magnetic dipole when
placed in an external electromagnetic field, which, in the
particle’s frame, reads (see [26])

~P× ¼
Z

~E × ~Bdipole ¼ −~μ × ~E ¼ −~PhidEM:

It should be noted however that ~PhidEM (unlike ~P×) is purely
mechanical in nature (not field momentum, even though it
is ultimately originated by the action of the electromagnetic
field), as explained in [71,72,78] using simple models.
This hidden momentum implies that, in the presence of an
electromagnetic field, the spatial momentum of a dipole
whose center of mass is at rest is in general not zero.
As explained in detail in [26], this actually plays a crucial
role in the conservation laws: consider a magnetic dipole at

rest in a stationary field; it is ~PhidEM which allows for the

total spatial momentum ~Ptot ≡ ~Pmatter þ ~PEM to vanish, as
required by the conservation equations ðT totÞαβ ;β ¼ 0 for a
stationary configuration.
Equations (33)–(35) manifest an exact analogy: Gα ¼

−aα is the gravitoelectric field (as defined in [6,12,14])
associated to the CM frame, which is a field of “inertial
forces,” and so Pα

hidI is the inertial analogue of P
α
hidEM, with

Sα and Gα in the roles of μα and Eα. The analogy above is
useful to understand the famous helical solutions allowed
by the condition SαβUβ ¼ 0: we show in [21,75] that they
are a phenomena which can be cast as analogous to the
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bobbings of a magnetic dipole in an external electric field
(studied in Sec. III. B. 1 of [20]), in both cases the effect
being driven not by a force but solely by an interchange
between kinetic and hidden momentum.

E. Mass of the spinning particle

We take the scalar m ¼ −PαUα as “the proper mass”2

[41] of the spinning particle. It is simply the time projection
of Pα in the particle’s CM frame, i.e., the particle’s energy
as measured in its center of mass rest frame. Whereas for a
monopole particle m is a constant of the motion, for a
spinning particle with dipole moments that is not the case in
general. It follows from the definition of m that

dm
dτ

¼ −
DPα

dτ
Uα − Pαaα ¼ −

DFPα

dτ
Uα; ð36Þ

i.e., dm=dτ is the time projection, in the CM frame, of the
Fermi-Walker derivative of the momentum. Noting that
Pαaα ¼ Pα

hidEMaα, and using the orthogonality
Pα
hidEMUα ¼ 0, we can rewrite this equation as

dm
dτ

¼ −
�
DPα

dτ
−
DPα

hidEM

dτ

�
Uα: ð37Þ

Thus dm=dτ equals also the time projection, in the CM
frame, of the force DPα=dτ subtracted by the derivative of
the electromagnetic hidden momentumDPα

hidEM=dτ. Let us
see the meaning of the first term. Contracting (15) with Uα,
and noting that BβαUα ¼ UγD⋆Fβγ=dτ, we obtain

−
DPα

dτ
Uα ¼ −

D⋆Fβγ

dτ
Uγμβ þ Eβ

Ddβ

dτ
; ð38Þ

showing that the force has a time projection if the Maxwell
tensor and/or the electric dipole vector vary along the
CM worldline. Now, noting from Eqs. (34) and (2) that
Pαaα ¼ ⋆Fβγaγμβ, and putting Eqs. (36) and (38) together,
we see that

dm
dτ

¼ −μγ
DBγ

dτ
þ Eγ

Ddγ

dτ
: ð39Þ

Hence the mass of a particle possessing electric and
magnetic dipole moments is not constant in general. The
two contributions are substantially different: the mass
variation due to the coupling of the field to the magnetic
dipole occurs when the magnetic field varies along the

particle’s worldline; it may be interpreted as essentially the
rate of work done on the magnetic dipole through Faraday’s
law of induction (Fig. 3 below), as we shall see in detail in
Sec. IVA. The second term corresponds to the work done
on the electric dipole by the electric field when the dipole
vector varies, e.g., when it rotates; this term has nothing to
do with induction, and is nonzero even for constant,
uniform electric fields. The case of electric dipoles is
discussed in detail in Appendix B 2.
We are interested mostly in purely magnetic dipoles,

dα ¼ 0; in this case, if we take μα ¼ σSα, with σ a
constant, and, since from Eq. (25), BμDSμ=dτ ¼ 0, we
have [28,79–81]

dm
dτ

¼ −σ
d
dτ

ðSμBμÞ ð40Þ

⇒ m ¼ m0 − σSμBμ ¼ m0 − σ~S · ~B; ð41Þ

where m0 is a constant. Thus, if ~μ ¼ σ~S, the mass m is the

sum of a constant plus a variable part −~μ · ~B, about which
we would like to make some remarks. The expression

−~μ · ~B is commonly dubbed in elementary textbooks
“magnetic potential energy”; for this reason some authors
[27,38,81] have interpreted this term as meaning that the
potential energy contributes to the particle’s mass. We
argue (in agreement with the analysis in [82–85]), that the
term −~μ · ~B is actually internal (not potential) energy of
the test particle; in fact, we shall see (Sec. VI A 3) that, for
a quasirigid body, it is essentially rotational kinetic
energy, associated with the rotation of the body around
its center of mass. What it actually does is to ensure that
the net work done by the magnetic field on a magnetic
dipole is zero (hence no potential energy can be assigned
to it). Potential energy comes into play instead in the case
of a monopole charged particle or of an electric dipole in
an electric field; but in neither case does it contribute to
the mass [m is a constant for a monopole particle, as well
as for an electric dipole if dα is parallel transported,
cf. Eq. (39)]. These issues are discussed in detail in
Sec. IV B 1 and Appendix B 4.
It is also important to understand that the varying massm

(and its variable part −~μ · ~B) is real and physically
measurable, not just a matter of definition [i.e. not an issue
that goes away by redefiningm0 in Eq. (41) as the particle’s
mass], for m is the inertial mass of the particle. In order to
see that, take for simplicity the case when Pα

hid ¼ 0; we
have

DPα

dτ
¼ maα þ dm

dτ
Uα;

i.e., the projection of the force in the orthogonal space toUα

ismaα (thus, in the CM frame,D~P=dτ ¼ m~a). This inertial

2This is the most natural definition of the body’s mass if one
uses the Mathisson-Pirani spin condition, since it is the quantity
which is conserved when Fαβ ¼ 0, cf. Eq. (39). If one uses the
Tulczyjew-Dixon condition SαβPβ ¼ 0 instead, then the con-
served quantity is M ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−PαPα

p
(not m), i.e., the particle’s

energy as measured in the zero 3-momentum frame (see e.g.
[19]).
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mass is measurable, for instance in collisions. The angular
velocity of rotation of a spinning body (since, as mentioned
above, in the case of a quasirigid body, −~μ · ~B is kinetic
energy of rotation) is measurable as well.
In the purely gravitational case, by contrast, the proper

mass is a constant (m ¼ m0); the implications for the
work done by the fields on the particle are discussed in
Secs. IV B and VI C.

F. Center of mass motion

Equations (I.1) of Table I yield the force on the spinning
particle in the electromagnetic and gravitational case; not
the acceleration aα ≡DUα=dτ, as Pα ≠ m0Uα in general.
Setting m≡m0 þm0 in Eq. (34), and noting, from decom-
position (2), that ϵαβγσμ

βEγUσ ¼ ⋆Fβαμβ þ μβBβUα, we
can write

Pα ¼ m0Uα − ϵαβγδSβaγUδ þ ðm0 þ μαBαÞUα þ ⋆Fβ
αμβ:

This is simplified if we consider purely magnetic dipoles
(dα ¼ 0), and assume μα ¼ σSα; in that case, cf. Eq. (41),
m0 ¼ −μαBα, and the third term vanishes. Differentiating,
using (18), and noting that, if jα ¼ 0, ⋆Fαβ;τUτ ¼ 2B½αβ�,
cf. Eq. (I.3a) of Table I, we have, in a region where the
charge current density jα is zero (most of the applications in
this paper deal with vacuum),

m0aα ¼ qFαβUβ þ Bαβμβ − HβαSβ − ⋆Fβ
α Dμβ

dτ

þ ϵαβγδUδ D
dτ

ðSβaγÞ: ð42Þ

Note the reversed indices in the second term as compared
to the expression for the force (I.1a). This leads to a
counterintuitive dynamical behavior, as we shall exemplify
in Sec. III A.

III. DYNAMICAL MANIFESTATIONS OF
THE SYMMETRIES OF THE MAGNETIC

TIDAL TENSORS

According to Table I, both in the case of the electro-
magnetic force on a magnetic dipole and in the case of the
gravitational force on a gyroscope, it is the magnetic/
gravitomagnetic tidal tensor, as seen by the test particle of
4-velocity Uα, that determines the force exerted upon it.
The explicit analogy in Table I is thus ideally suited to
compare the two forces, because in this framework it
amounts to comparing Bαβ to Hαβ. The most important
differences between them are: (i) Bαβ is linear in the
electromagnetic potentials and vector fields, whereas Hαβ

is not linear in the metric tensor, nor in the GEM “vector”
fields (for a detailed discussion of this aspect, we refer to
Secs. 3.5 and 6 of [14]); (ii) in vacuum, H½αβ� ¼ 0

(symmetric tensor), whereas Bαβ is generically

nonsymmetric, B½αβ� ≠ 0, even in vacuum; (iii) time com-
ponents: Hαβ is spatial with respect to Uα, whereas Bαβ is
not. The two latter differences, which are clear from
Eqs. (I.3) and (I.4), are the ones in which we are most
interested in the present work. In this section we start with
the physical consequences of the symmetries, and in the
next section we discuss the time projections.
Equation (I.3a) of Table I reads in vacuum (jα ¼ 0)

B½αβ� ¼
1

2
⋆Fαβ;γUγ; ð43Þ

this tells us that when the field Fαβ varies along the
worldline of the observer Uα, that endows Bαβ with an
antisymmetric part, implying that Bαβ itself is nonvanish-
ing. Now, since, in the force (I.1a), Bαβ is the magnetic tidal
tensor as measured by the particle (i.e., Uα is the test
particle’s 4-velocity), this means that whenever the particle
moves in a nonhomogeneous field, a force will be exerted
on it (except possibly for special orientations of ~μ). In the
inertial frame momentarily comoving with the particle,
this can be interpreted as being due to the time varying
(in this frame) electric field, which induces, via the law

∇ × ~B ¼ ∂ ~E=∂t, a curl in the magnetic field ~B, and implies
that the particle sees a nonvanishing magnetic tidal tensor,
cf. Eqs. (19) and (20).
The gravitomagnetic counterpart Hαβ, by contrast, is

symmetric in vacuum, which means that no analogous
induction phenomenon occurs in gravity. Indeed, even in
nonhomogeneous fields, there can be velocity fields for
which Hαβ ¼ 0, i.e., for which gyroscopes feel no force

(regardless of the direction of their spin ~S). We know that
from the curvature invariants, which we now briefly discuss.
In vacuum the Riemann tensor becomes the Weyl tensor

(ten independent components), which can be irreducibly
decomposed (see e.g. [17]) with respect to a unit timelike
4-vector uα into two spatial tensors, the gravitoelectric
ðEuÞαβ ≡ Rαγβδuγuδ and gravitomagnetic ðHuÞαβ ≡
⋆Rαγβδuγuδ tidal tensors measured by uα:

Rαβ
γδ ¼ 4f2u½αu½γ þ g½α½γgðEuÞβ�δ�

þ 2fϵαβμνðHuÞμ½δuγ�uν þ ϵγδμνðHuÞμ½βuα�uνg: ð44Þ
The tensors Eαβ and Hαβ are both symmetric and traceless
(in vacuum), possessing five independent components
each, thus encoding the ten independent components of
Rαβγδ. Again in vacuum, one can construct the two
quadratic scalar invariants (e.g. [15,16,86]),

EαγEαγ − HαγHαγ ¼
1

8
RαβγδRαβγδ ≡ 1

8
R ·R; ð45Þ

EαγHαγ ¼
1

16
Rαβγδ⋆Rαβγδ ≡ 1

16
⋆R ·R: ð46Þ
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Note that, in spite of the dependence of ðEuÞαβ and ðHuÞαβ
on the observer 4-velocity uα, the combinations (45)
and (46) are independent of uα (for this reason we dropped
the u superscript therein).
There is an analogy (a purely formal one, cf. [14]) with

the decomposition of the Maxwell tensor in electric and
magnetic parts [15–17], and the invariants they form, which
is illuminating for the problem at hand. With respect to a
unit timelike 4-vector uα, the Maxwell tensor (six inde-
pendent components) splits irreducibly into the two spatial
vectors (three independent components each) ðEuÞα ≡
Fαβuβ and ðBuÞα ≡ ⋆Fαβuβ, as can be seen from the
explicit decomposition (1), analogous to (44). The fields
ðEuÞα and ðBuÞα are covariant definitions for, respectively,
the electric and magnetic fields as measured by an observer
of 4-velocity uα. In spite of their uα dependence, combining
them one can construct the two quadratic scalar invariants
(e.g. [15,16,64]),

EαEα − BαBα ¼ −
1

2
FαβFαβ ≡ −

1

2
F · F; ð47Þ

EαBα ¼ −
1

4
Fαβ⋆Fαβ ≡ −

1

4
⋆F · F; ð48Þ

[where again we dropped the u superscripts in ðEuÞα and
ðBuÞα] formally similar to the quadratic invariants (45) and
(46). These are actually the only two3 independent scalar
invariants one can construct from Fαβ. They have the
following interpretation [18,64,87]: (i) if EαBα ≠ 0 then the
electric Eα and magnetic Bα fields are both nonvanishing
for all observers; (ii) if EαEα − BαBα > 0 (< 0) and
EαBα ¼ 0, then there are observers for which Bα (Eα)
is zero.
In the gravitational case, it turns out (cf. [18,86,88]) that,

for Petrov type D spacetimes (case of the examples studied
below), and in vacuum, one obtains formally equivalent
statements to (i) and (ii) above, replacing F by R. That is:
(i) ⋆R ·R ≠ 0 ⇒ Eαγ and Hαγ are both nonvanishing for
all observers; (ii) ⋆R ·R ¼ 0,R ·R > 0ð< 0Þ ⇒ there are
observers for which Hαγ (Eαγ) vanishes. When, at a given
point, observers exist for which Hαγ ¼ 0 (Eαγ ¼ 0), the
curvature tensor is dubbed “purely electric” (“purely
magnetic”) at that point, see e.g. [86,88–90]. Further
details and comments on this classification (for general
spacetimes), will be given in [18]. The velocity fields for
which Hαγ ¼ 0 will be exemplified below in gravitational
fields—Schwarzschild and Kerr spacetimes—with a clear
electromagnetic analogue—a static point charge and a

spinning charge, respectively—and we shall see that indeed
Hαγ, and therefore Fα

G, may vanish for moving spinning
particles, which contrasts with the electromagnetic analogue.

A. Radial motion in Schwarzschild spacetime

The Schwarzschild spacetime is a Petrov type D solution
whose quadratic curvature invariants read

EαγEαγ − HαγHαγ ¼
6M2

r6
; EαγHαγ ¼ 0: ð49Þ

In accordance with the classification above, this means that
this is a purely electric spacetime, i.e., everywhere there are
observers for which Hαβ ¼ 0. Let us find such observers.
The nonzero components of the gravitomagnetic tidal
tensor Hαβ ≡ ⋆RαμβνUμUν seen by an observer of arbitrary
4-velocity Uα ¼ ðUt; Ur; Uθ; UϕÞ, are, in Schwarzschild
coordinates, givenby (α≡ 3M sin θ=r)

Hrθ ¼ αUϕUt; Hrϕ ¼ αUtUθ;

Hθt ¼ −αUϕUr; Hϕt ¼ αUrUθ: ð50Þ

The condition Hαβ ¼ 0 implies Uϕ ¼ Uθ ¼ 0, whilst leav-
ingUr arbitrary. Thus, observers at rest, or in radial motion,
measure a vanishing Hαβ. Since, according to Eqs. (I.1) of
Table I, it is the gravitomagnetic tidal tensor, as seen by the
test particle, that determines the force on it, this means that
no force is exerted on a gyroscope at rest or in radial motion:

Fα
G ¼ −HβαSβ ¼ 0;

i.e., it moves along a geodesic (it is the trivial solution of the
equations of motion with the Mathisson-Pirani condition,

see Appendix C 1), regardless of its spin ~S. For instance, a
gyroscope dropped from rest will fall towards the singularity
along a radial geodesic just like a monopole particle, see
Fig. 1(a).

FIG. 1. An illustration of the physical consequences of the
different symmetries of the tidal tensors. A gyroscope dropped
from rest in Schwarzschild spacetime will move radially along a
geodesic towards the source, with no force exerted on it. A
magnetic dipole in (initially) radial motion in a Coulomb field, by
contrast, feels a force. Due to the hidden momentum, the force is
approximately opposite to the acceleration.

3This contrasts with the gravitational case, where (45) and (46)
are not the only algebraically independent invariants one can
construct from Rαβγδ. In vacuum (the simplest case), they reduce
to four, two cubic invariants existing in addition to the quadratic
invariants (45) and (46), see e.g. [16,86].
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This is not possible in the electromagnetic analogue,
due to the symmetries of Bαβ. Consider a magnetic dipole,
of 4-velocity Uα, in the field of a static point charge Q; the
force exerted on it is Fα

EM ¼ Bβαμβ, cf. Table I, where
Bαβ ¼ ⋆Fαμ;βUμ is the magnetic tidal tensor as seen by the
particle. The components of Bαβ, for a generic Uα, are
(α≡ 3Q sin θ=r)

Brθ ¼ αUϕ; Bθr ¼ α2Uϕ; Brϕ ¼ −αUθ;

Bϕr ¼ −2αUθ; Bθϕ ¼ αUr; Bϕθ ¼ −αUr: ð51Þ

The static observers Ui ¼ 0 are the only ones measuring
Bαβ ¼ 0, as expected from Eq. (43), since the field is
inhomogeneous and therefore not covariantly constant for a
moving observer (i.e., ⋆Fαμ;βUμ ≠ 0 ifUi ≠ 0). For a radial
velocity Uα ¼ ðUt; Ur; 0; 0Þ, the magnetic tidal tensor
reduces to its antisymmetric part, Bαβ ¼ B½αβ�, with non-
vanishing components Bθϕ ¼ −Bϕθ ¼ αUr. This means
that (except for the special case ~v∥~μ) a force4 will be
exerted on a magnetic dipole in (initially) radial motion:

F0
EM ¼ 0; Fi

EM ¼ B½αi�μα ¼
γQ
r3

ð~v × ~μÞi; ð52Þ

where ~v ¼ ~U=γ and γ is the Lorentz factor. This force
comes entirely from the antisymmetric part of Bαβ; it is then
natural, given the symmetry ofHαβ in vacuum, that it has no
gravitational counterpart.
It is however important to note that, due the hidden

momentum that the spinning particle possesses, the relation
between this force and the particle’s center of mass
acceleration is not straightforward. This is manifest in
Eq. (42); for flat spacetime, and a particle whose only
electromagnetic moment is μα (q ¼ 0), it reads

m0aα ¼ Bαβμβ þ ϵαβγδ
D
dτ

UδðSβaγÞ − ⋆Fβ
α Dμβ

dτ
:

The last term vanishes if one assumes μα ¼ σSα, since:
BαðUÞ ¼ 0 for radial motion; thus, fromEq. (25),Dμμ=dτ¼
σSνaνUμ and ⋆Fβ

αDμβ=dτ ¼ −σBðUÞαSνaν ¼ 0. The sec-
ond term can also be taken to a good approximation as being
zero [which, as explained in Sec. V, to an accuracy of order
OðS2Þ, amounts to saying that we pick the “nonhelical”

solution allowed by the Mathisson-Pirani condition].
Therefore, since, in this application, BðαβÞ ¼ 0, we are led
to the conclusion that m0aα ≈ Bαβμβ ¼ −Bβαμβ ¼ −Fα

EM
[see Fig. 1(b)]! This clearly shows how careful one must be
with the notion of force [understood as Fα ¼ DPα=dτ, with
Pα defined in the usual way by Eq. (4)], because it can
significantly differ from maα when the particle has hidden
momentum.
Finally, it is worth mentioning that the vanishing of Hαβ

for certain velocity fields in the Schwarzschild spacetime is
analogous instead to the vanishing of the magnetic field Bα

(not the tidal tensor Bαβ) in a Coulomb field. The quadratic
invariants of Fαβ have a structure formally analogous to the
curvature invariants (49): E2 − B2 ¼ Q2=r4, EαBα ¼ 0,
telling us that there are everywhere observers for which
Bα ¼ 0. For an arbitrary Uα, the nonvanishing components
of Bα are

Bθ ¼ −
QUϕ

r2
sin θ; Bϕ ¼ QUθ

r2
csc θ;

therefore, observers at rest or in purely radial motion
measure Bα ¼ 0, just like with the case of Hαβ in the
Schwarzschild spacetime. One should however bear in
mind that this one is a purely formal analogy, as the
parallelism drawn is between gravitational tidal tensors and
electromagnetic fields. The physical effects are very differ-
ent: the vanishing of Hαβ for radial velocities means that a
gyroscope feels no force, whereas the vanishing of Bα does
not mean that dipoles moving radially feel no force (which
they do, as discussed above), but instead that they do not

undergo Larmor precession [D~S=dτ ¼ 0 in the comoving
frame, cf. Eq. (25)].

B. Equatorial motion in Kerr and
Kerr-dS spacetimes

In this section we compare the motions of gyroscopes in
the Kerr and Kerr–de Sitter spacetimes to magnetic dipoles
in the field of a spinning charge. It is shown that in the
equatorial plane there are observers for which the grav-
itomagnetic tidal tensor Hαβ vanishes (i.e., gyroscopes
moving with such velocities feel no force), and that
consequently circular geodesics for gyroscopes even exist
in Kerr-dS (independently of the particle’s spin). This
contrasts with the electromagnetic system, where observers
for which Bαβ ¼ 0 do not exist at all (consequence of
the symmetries of Bαβ, i.e., the laws of electromagnetic
induction, as explained above), and therefore (except for
special orientations of ~μ) a force is always exerted on a
magnetic dipole, regardless of its motion.
The vanishing of Hαβ is instead analogous to the

vanishing of the magnetic field Bα, which likewise occurs
in the equatorial plane, for asymptotically similar velocity
fields. That gives useful insight into the gravitational

4The force (52) may seem at first sight to contradict what
one might naively expect from the textbook expression
Fi
EM ¼ −∇ið~B · ~μÞ≡ Bj;iμj, which holds in the particle’s

momentarily comoving inertial frame, because the radially
moving dipole indeed sees a vanishing magnetic field ~B.
However its curl is nonzero [implying Bi;j ¼ Bij ≠ 0,
cf. Eq. (22)], which, taking the perspective of such frame, is
induced by the time-varying electric field, by virtue of vacuum
equation ∇ × ~B ¼ ∂ ~E=∂t.

SPACETIME DYNAMICS OF SPINNING PARTICLES: … PHYSICAL REVIEW D 93, 104006 (2016)

104006-13



problem; for this reason we shall start by the simpler
electromagnetic case.

1. A magnetic dipole in the field of a
spinning charge

Velocity field for which Bα ¼ 0.—We start by the
electromagnetic system, which will serve as a guide for
the gravitational case. The electromagnetic field produced
by a spinning charge (magnetic moment ~μs) is described by

the 4-potential Aα ¼ ðϕ; ~AÞ:

ϕ ¼ Q
r
; ~A ¼ ~μs × ~r

r3
¼ μs

r3
~eϕ: ð53Þ

The invariant structure for this electromagnetic field is

(
~E2 − ~B2 ¼ Q2

r4 −
μ2s ð5þ3 cos 2θÞ

2r6 > 0;

~E · ~B ¼ 2μsQ cos θ
r5

ð¼ 0 in the equatorial planeÞ;
ð54Þ

the first inequality always holding assuming the classical
gyromagnetic ratio μs=J ¼ Q=2M (corresponding to a
source in which the charge and mass are identically
distributed). Expressions (54) tell us that in the equatorial
plane θ ¼ π=2 there are observers that measure Bα to be

zero (since ~E · ~B ¼ 0 and ~E2 − ~B2 > 0 therein). It is
straightforward to obtain the 4-velocity of such observers.
The magnetic field Bα ¼ ⋆FαβUβ seen by an arbitrary
observer of 4-velocity Uα ¼ ðUt; Ur; Uθ; UϕÞ is given by

Br ¼ 2μs cos θ
r3

Ut; Bθ ¼
�
μsUt

r4
−
UϕQ
r2

�
sin θ;

Bϕ ¼ QUθ

r2 sin θ
; Bt ¼ μs

r3
ð2Ur cos θ þ rUθ sin θÞ:

Thus, the condition Br ¼ 0 implies θ ¼ π=2 (i.e., equato-
rial plane, as expected); in the equatorial plane, Bt ¼ 0

implies Uθ ¼ 0, and Bθ ¼ 0 implies

dϕ
dt

¼ Uϕ

Ut ¼
μs
Qr2

¼ J
2Mr2

≡ ωðB¼0Þ; ð55Þ

where in the third equality again we assumed μs=J ¼
Q=2M. Therefore, observers with angular velocity (55)
measure a vanishing magnetic field in the equatorial plane.
No restriction is imposed on the radial component of
the velocity, apart from the normalization condition
UαUα ¼ −1. The velocity field corresponding to the case
Ur ¼ 0 is plotted in Fig. 2(a). The vanishing of Bα for these
observers comes from an exact cancellation between the
magnetic field generated by the relative translation of the
source and the field produced by its rotation. It means that a
magnetic dipole possessing a velocity of the form (55) does

not undergo Larmor precession, since the second term of
Eq. (25) vanishes.
In [26] we investigate the corresponding gravitational

problem, i.e., if there are boost velocities for which
gyroscopes in the Kerr spacetime do not precess.
Bαβ never vanishes.—The force (I.1a) exerted on the

dipole, however, does not vanish, as it is only the magnetic
field Bα, not the tidal tensor Bαβ, that vanishes for the
velocity fields of the type (55). As measured by a generic
observer Uα, Bαβ has the following components in the
equatorial plane:

Brθ ¼ αðr2QUϕ − 3μsUtÞ; Bθr ¼ αð2r2QUϕ − 3μsUtÞ;
Brϕ ¼ −αQr2Uθ; Bϕr ¼ −2αQr2Uθ;

Brϕ ¼ −αQr2Uθ; Bϕr ¼ −2αQr2Uθ;

Btr ¼ 3αμsUθ; Btθ ¼ 3αμsUr; ð56Þ

with α≡ 1=r3. Thus we see that in order to make BðαβÞ
vanish, we must have Uθ ¼ Ur ¼ 0 and

dϕ
dt

¼ Uϕ

Ut ¼ 2
μs
Qr2

¼ J
Mr2

≡ ωðBðαβÞ¼0Þ ð57Þ

[differs from a factor of 2 from the angular velocity (55)
which makes Bα vanish; the second equality again assumes
μs=J ¼ Q=2M]. However, B½αβ� only vanishes if ~v ¼ 0;
hence it is not possible to find any observer for which
Bαβ ¼ BðαβÞ þ B½αβ� ¼ 0. Again, the fact that B½αβ� cannot
vanish for a moving observer is a direct consequence of

FIG. 2. (a) Velocity field ~vðB¼0Þ, which makes the magnetic
field Bα vanish in the equatorial plane of a spinning charge;
magnetic dipoles with such velocities do not undergo Larmor
precession. (b) Velocity field ~vðH¼0Þ for which the gravitomag-
netic tidal tensor Hαβ vanishes in the equatorial plane of Kerr
spacetime; gyroscopes moving with such velocities feel no force,
Fα
G ¼ 0. If Λ > 0 (Kerr-dS spacetime), circular geodesics for

gyroscopes even exist (Sec. III B 3). Asymptotically, ~vðH¼0Þ and
~vðB¼0Þ match up to a factor of 2. The velocity ~vðH¼0Þ however has
no physical electromagnetic analogue: due to the laws of
electromagnetic induction, for a moving dipole B½αβ� ≠ 0 ⇒
Bαβ ≠ 0 always, generically implying Fα

EM ≠ 0.
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Maxwell’s equations, or the laws of electromagnetic
induction: a dipole moving relative to the spinning charge
always sees a varying electromagnetic field; that endows
Bαβ with an antisymmetric part, by virtue (from the point of
view of a momentarily comoving inertial frame) of the
vacuum equation ∇ × ~B ¼ ∂E=∂t, or, covariantly, by
Eq. (I.3a). Note that this is true even if one considers a
dipole in a circular equatorial trajectory around the central
source: D⋆Fαβ=dτ ¼ 2B½αβ� ≠ 0 along such worldline,
which is due to the variation of the electric field along
the curve (it is constant in magnitude, but varying in
direction).

2. A gyroscope in Kerr spacetime

Velocity for which Hαβ ¼ 0.—From what we learned in
the electromagnetic problem, we expect the existence of
observers for which Hαβ vanishes, based on two observa-
tions. First, we have seen that in the equatorial plane of the
electromagnetic system there are velocities (57) for which
the magnetic tidal tensor reduces to its antisymmetric
part Bαβ ¼ B½αβ�; since the gravitomagnetic tidal tensor is
symmetric in vacuum: Hαβ ¼ HðαβÞ, it is natural to expect,
in the spirit of the analogy, that Hαβ ¼ 0 in the correspond-
ing gravitational setup. Second, there is a close analogy
between the invariants of the two systems. The Kerr
spacetime is of Petrov type D, hence a classification for
the curvature tensor based on quadratic invariants formally
analogous to the one for Fαβ applies, as discussed in
Sec. III. The invariants (45) and (46) read (e.g. [91])

R ·R ¼ 48M2

Σ6
ða4cos4θ − 14a2r2cos2θ þ r4Þ

· ðr2 − a2cos2θÞ

⋆R ·R ¼ 96M2ra
Σ6

ða2cos2θ − 3r2Þð3a2cos2θ − r2Þ cos θ;
ð58Þ

where Σ≡ r2 þ a2cos2θ. For large r we have the
structure:

(
EαγEαγ − HαγHαγ ≃r→∞ 6M2

r6
> 0;

EαγHαγ ≃r→∞18JM cos θ
r7 ð¼ 0 in the equatorial planeÞ;

formally analogous to its electromagnetic counterpart (54).
Note in particular that the result EαγHαγ ¼ 0 for the
equatorial plane (θ ¼ π=2) is exact, cf. Eq. (58). Since
R ·R > 0 therein, this means that in the equatorial plane
there are observers for which Hαβ vanishes, in analogy
with the vanishing of Bα in the equatorial plane of the field
of a spinning charge. It is straightforward to determine the
4-velocity of such observers. In the equatorial plane, the
nonzero components of the gravitomagnetic tidal tensor

Hαβ ≡ ⋆RαμβνUμUν seen by an arbitrary observer of
4-velocity Uα ¼ ðUt; Ur; Uθ; UϕÞ, are given (exactly) by

Hrθ ¼ α½ð2a2 þ r2ÞUϕUt − aða2 þ r2ÞðUϕÞ2 − aðUtÞ2�;
Hrϕ ¼ αða2 þ r2ÞðaUϕ − UtÞUθ;

Hrt ¼ αaðaUϕ − UtÞUθ;

Hθϕ ¼ αa½ða2 þ r2ÞUϕ − aUt�Ur;

Hθt ¼ −α½ða2 þ r2ÞUϕ − aUt�Ur;

Hϕϕ ¼ −2αaUrUθ ¼ Htt;

Hϕt ¼ αð2a2 þ r2ÞUrUθ; ð59Þ

where α≡ 3M=r3. It is easily seen that in order to make all
components vanish we must have Uθ ¼ 0 (i.e. the observer
must move in the equatorial plane, as expected and in
analogy with the electromagnetic case above) and

dϕ
dt

¼ Uϕ

Ut ¼
a

a2 þ r2
≡ ωðH¼0Þ: ð60Þ

Thus, observers with angular velocity ω ¼ ωðH¼0Þ measure
a vanishing gravitomagnetic tidal tensor in the equatorial
plane. Again, no restriction is imposed on Ur, apart from
the normalization conditionUαUα ¼ −1. The velocity field
corresponding to the case Ur ¼ 0 is plotted in Fig. 2(b).
It is interesting to note that, asymptotically, ωðH¼0Þ matches
the angular velocity (57) for which the symmetric part of
the magnetic tidal tensor Bαβ vanishes in the electromag-
netic analogue [and, up to a factor of 2, the angular velocity
(55) for which Bα vanishes].
As discussed above, ωðH¼0Þ has no electromagnetic

counterpart; the magnetic tidal tensor Bαβ can never vanish
for a moving observer, due to Eq. (43), i.e., the laws of
electromagnetic induction. We have thus here another
illustration of the physical consequences of the different
symmetries of Hαβ as compared to Bαβ, signaling the
absence of electromagneticlike induction effects in the
physical gravitational forces. Note that these differences
are manifest even in the weak field and slow motion regime,
since taking the field to be weak (either by going far away
from the source, or by taking a to be small) only amounts to
making the velocity for which Fα

G vanishes smaller, since
jvj ≈ a=r. That illustrates how misleading the usual treat-
ments in the literature on gravitoelectromagnetism in the
framework of the linearized theory (e.g. [2,3]) can be,
naively casting the force on a gyroscope as an expression of

the type ~FG ¼ K∇ð~S · ~HÞ (similar to the electromagnetic
force on a magnetic dipole). This regime is studied in detail
in Sec. V.
Finally, it is interesting to note that the angular velocity

(60) appeared before in apparently unrelated contexts; it
coincides with the angular velocity of the “Carter canonical
observers” (e.g. [92]), which are observers that measure the
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photons of the principal null congruences (see page 902 of
[23]) to be in purely radial motion. It also appeared in a
recent paper [93], Eq. (30) therein, where it is shown that
the Kerr metric can be obtained by a rescaling of an
orthonormal tetrad field in Minkowski space, constructed
from spheroidal coordinates in differential rotation, each
spheroidal shell r ¼ constant rotating rigidly with an
angular velocity that is precisely ωðH¼0Þ.
No circular geodesics for spinning material particles in

Kerr spacetime.—the vanishing of Fα
G for gyroscopes

moving with angular velocity (60) makes one wonder if
a spinning particle can move along circular geodesics
around a Kerr black hole, which we shall now check.
Equation (60) corresponds to prograde motion; the angular
velocity of prograde circular geodesics reads (e.g. [94])

ωgeo ≡Uϕ
geo

Ut
geo

¼ 1

aþ
ffiffiffiffi
r3
M

q : ð61Þ

Equating this expression to (60), we obtain r ¼ a2=M;
this solution, however, lies inside the horizon: since rþ ¼
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, the condition r ≥ rþ implies

a2

M
≥ M þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=M2

q
⇔ 1 − A2 ≤ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p
;

where we defined the dimensionless parameter A≡ a=M.
Note that A ¼ 1 is the extreme Kerr case, and A > 1
corresponds to a naked singularity; therefore (excluding
the naked singularity scenario) the circular orbit would
exist only in the extreme case, it would be precisely at the
horizon, and thus it would be a null geodesic. Otherwise, no
circular geodesics exist with angular velocity (60), and so
Hαβ ≠ 0 along any timelike circular geodesic.
The only possibility of having Fα

G ¼ HβαSβ ¼ 0 would
then be if Sα was an eigenvector of Hβ

α corresponding to a
zero eigenvalue; that does not lead to circular geodesics
however, because Sα cannot remain an eigenvector. For
Uα ¼ ðUt; 0; 0; UϕÞ, the only eigenvectors ofHβ

α with zero
eigenvalue are Uα and eϕ; Sα (orthogonal to Uα) cannot
remain in the eigenspace spanned by Uα and eϕ, by virtue
of the transport law (25), which can be seen as follows.
Consider a frame rigidly rotating with an angular velocity
ωgeo corresponding to a geodesic at some value of r
(the associated coordinates are obtained from the Boyer-
Lindquist coordinates by the transformation t0 ¼ t, r0 ¼ r,
θ0 ¼ θ, ϕ0 ¼ ϕ − ωgeot), and the orthonormal basis eα̂0
tied to it, such that et̂0 ¼ U, and er̂0 , eθ̂0 eϕ̂0 follow from
normalizing er, eθ and ðhUÞ · eϕ, respectively. [Here ðhUÞ
is the projector orthogonal to Uα, cf. Sec. I D.] In such a
frame the gyroscope’s CM is at rest, therefore Eq. (25)

applies, dSî=dτ ¼ ð~S × ~ΩÞî; moreover the gravitomagnetic

field ~H ¼ 2 ~Ω takes the very simple form ~H ¼
−2

ffiffiffiffiffiffiffiffiffiffiffi
M=r3

p
~eθ̂0 , cf. Eq. (41) of [94]. Hence, for an initial

~S ¼ Sϕ̂
0
~eϕ̂0 , we have d~S=dτ ¼ SΩ~er̂ and therefore ~S cannot

remain parallel to eϕ̂0 (thus Sα does not remain in the
eigenspace of Uα and eϕ). We then conclude that no
circular geodesics for spinning classical particles are
possible in the Kerr spacetime.

3. Circular geodesics in Kerr-dS spacetimes

The failure to obtain circular geodesics for spinning
material particles in the previous section was due to the fact
that the angular velocity of circular geodesics in the Kerr
spacetime dies off as r−2=3, whereas the angular velocity for
which Hαβ ¼ 0 dies off as r−2; in other words, geodesics
are “too fast.” But they should be possible in other
spacetimes; in this spirit, Kerr-de Sitter comes as natural
candidate, since a repulsive Λ should “slow down” the
circular geodesics. This is indeed the case. In Boyer-
Lindquist coordinates, the metric takes the form (e.g. [95])

ds2 ¼ −
Δr

χ2Σ
ðdt − asin2θdϕÞ2 þ Σ

Δr
dr2 þ Σ

Δθ
dθ2

þ Δθsin2θ
χ2Σ

½adt − ða2 þ r2Þdϕ�2; ð62Þ

where

Δr ≡ r2 − 2Mrþ a2 −
Λ
3
r2ðr2 þ a2Þ;

χ ≡ 1þ Λ
3
a2;

Δθ ¼ 1þ Λ
3
a2cos2θ;

Σ≡ r2 þ a2cos2θ:

Since Λ ≠ 0 ⇒ Rμν ¼ Λgμν, the vacuum classification
based on scalar invariants used in the previous section
does not apply herein to the Riemann tensor. However, a
similar classification holds for theWeyl tensorCαβγδ (again,
since it is of Petrov type D), see e.g. [86]. The relationship
between Hαβ and the magnetic part of the Weyl tensor,
Hαβ ≡ ⋆CαμβνUμUν, can be obtained from the expression
of Rαβγδ in terms of Cαβγδ, e.g. Eq. (2) of [91]; it reads

Hαβ ¼ Hαβ þ
1

2
ϵαβσγUγRσλUλ:

This tells us that, for this spacetime, Hαβ ¼ Hαβ. Therefore,
solving forHαβ ¼ 0 amounts to solving forHαβ ¼ 0, which
reduces to the same procedure of the previous section, but
this time using the invariants of the Weyl tensor. The
invariants have a similar structure, similarly leading to the
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conclusion that in the equatorial plane there are observers
for which Hαβ ¼ Hαβ ¼ 0. Actually, the gravitomagnetic
tidal tensor for the metric (62) is obtained by simply
multiplying expressions (59) by 9=ð3þ a2ΛÞ2:

ðHKerr-dSÞαβ ¼
9

ð3þ a2ΛÞ2 ðHKerrÞαβ:

Thus, the angular velocity of the observers for which
Hαβ ¼ 0 is given by the same Eq. (60). Now we need to
check if this velocity field can correspond to circular
geodesics. We can easily derive the geodesic equations
from the Euler-Lagrange equations

d
dτ

� ∂L
∂Uμ

�
−

∂L
∂xμ ¼ 0 ð63Þ

with Lagrangian L ¼ gμνUμUν=2. To compute the circular
geodesics we only need the r-equation, dðgrrUrÞ=dτ ¼
gμν;rUμUν=2, which for circular equatorial orbits yields

ðωgeoÞ� ¼
−Maþ Λ

3
ar3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr3 − Λ

3
r6

q
r3 − a2M þ Λ

3
a2r3

; ð64Þ

which reduces to the Kerr case, Eq. (61), when Λ ¼ 0.
There are two things we need to check: first, that the

geodesics lie outside the black hole event horizon (and
inside the cosmological horizon), and second, that the
geodesics are timelike. The horizons are located at the real
roots of Δr ¼ 0, which gives the equation

r2 − 2Mrþ a2 −
Λ
3
r2ðr2 þ a2Þ ¼ 0: ð65Þ

To find spinning particles that follow circular geodesics, we
have to equate the prograde solutions of Eq. (64) to (60),

a
a2 þ r2

¼
−Maþ Λ

3
ar3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr3 − Λ

3
r6

q
r3 − a2M þ Λ

3
a2r3

: ð66Þ

We cannot analytically solve this equation for r in general,
but for our purposes it suffices to numerically show that
such an r exists for some particular cases of a and Λ.
Consider for example the case a=M ¼ 0.8, ΛM2 ¼ 0.001.
Solving Eq. (66) for r, we find, as the only acceptable
solution, r≃ 14.2025M (the other roots are either complex
or fall within the horizon). This geodesic is timelike and
lies outside the event horizon, as one can see from Eq. (65).
Obviously, several other solutions of (66) for different
values of a and Λ are possible. We generically find that, for
fixed a=M, decreasing values of ΛM2 correspond to
solutions of (66) with increasing values of r.

Section III in brief.—The physical consequences of the
different symmetries of Bαβ and Hαβ:
(1) In electromagnetism, due to vacuum equation

B½αβ� ¼ ⋆Fαβ;γUγ=2, a force Fα
EM ¼ Bβαμβ is exerted

on the dipole whenever it moves in an inhomo-
geneous field (except for very special orientations
of ~μ).

(2) In gravity, H½αβ� ¼ 0, and there are velocity fields for
which Hαβ ¼ 0, i.e., for which gyroscopes feel
no force;
(a) in the examples studied, they correspond to the

situations where, in the electromagnetic ana-
logue, Bαβ ¼ B½αβ�;

(b) there are even geodesic motions for spinning
particles: radial geodesics in Schwarzschild,
circular geodesics in Kerr-dS spacetimes.

(3) Formal analogy between the quadratic scalar invar-
iants of Rαβγδ and Fαβ is useful to obtain velocities
for which Hαβ ¼ 0.

IV. MANIFESTATIONS OF THE TIME
PROJECTIONS OF THE TIDAL
TENSORS—THE WORK DONE

ON THE TEST PARTICLE

A fundamental difference between the gravitational and
electromagnetic interactions concerns the time projections
of the forces Fα

G and Fα
EM in the different frames, which we

shall explore in this section.5 We start by explaining the
meaning of the time projection of a force in a given frame,
and its relation with the work done by it and the particle’s
energy.
Consider a congruence of observersOðuÞ with 4-velocity

uα, and let Uα denote the 4-velocity of a test particle.
The following relation generically holds [12]:

Uα¼ γðuαþvαÞ; γ≡−uαUα ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−vαvα
p ; ð67Þ

where vα ¼ Uα=γ − uα is the velocity of the test particle
relative6 to OðuÞ. The energy of the particle relative to
OðuÞ is E≡ −Pαuα, and its rate of change per unit proper
time (the “power equation”) is

dE
dτ

¼ −Fαuα − Pαuα;βUβ; ð68Þ

where Fα ≡DPα=dτ denotes the 4-force. Thus we see that
the variation of the particle’s energy relative to OðuÞ
consists of two terms: the time projection of Fα along

5A (very) preliminary version of some of the results herein was
presented in [96].

6Let ðt; xiÞ be the coordinate system of a locally inertial frame
momentarily comoving with the observer; in such a frame ui ¼ 0
and vi ¼ dxi=dt is the ordinary 3-velocity of the test particle.
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uα, plus a term depending on the variation of uα along the
particle’s worldline. The first term is interpreted as the rate
of work, as measured byOðuÞ, done by the force on the test
particle (per unit proper time τ). In order to better under-
stand it, it is useful to split Fα into its components parallel
and orthogonal to the particle’s CM worldline,

Fα ¼ Fα
∥ þ Fα⊥;

Fα
∥ ≡ −FβUβUα;

Fα⊥ ≡ ðhUÞαβFβ;

the first term of (68) then reads, using (67),

−Fαuα ¼ −γFβUβ þ Fα⊥vα: ð69Þ

Forces orthogonal to Uα (Fα ¼ Fα⊥) are the more familiar
ones; it is the case of the forces on point particles with no
internal structure (monopole particles). Let us start by this
simplest case. Such particles have a momentum parallel
to the 4-velocity, Pα ¼ mUα, and constant mass m ¼ m0;
the force is thus parallel to the acceleration, Fα≡
DPα=dτ ¼ m0aα, which implies Fα

∥ ¼ −FβUβUα ¼ 0

(due to the condition UβUβ ¼ −1). That leads to
−Fαuα ¼ Fαvα, telling us that the time projection [in the
frame OðuÞ] of Fα is the familiar power ~F · ~v (see e.g.
[29,41]). If we take an inertial frame, so that the second
term of (68) vanishes, then −Fαuα ¼ dE=dτ ¼ m0dγ=dτ,
i.e., Fαvα ¼ m0dγ=dτ is the rate of variation of the
particle’s kinetic energy of translation. It is clear in
particular that dE=dτ ¼ Fαvα ¼ 0 in a frame comoving
with the particle. An example of such a force is the Lorentz
force, Fα ¼ qFαβUβ ¼ qEα, for which FαUα ¼ 0, and
whose projection along uα reads −uαFα ¼ qvαEα, yielding
the power transferred by the electric force to the moving
particle [relative to OðuÞ].
However, if the particle has internal structure then its

internal degrees of freedom may store energy (e.g., kinetic
energy of rotation about the center of mass), and so the
particle’s proper mass m ¼ −PαUα no longer has to be a
constant (cf. Sec. II E). Moreover, the momentum will not
be parallel toUα, as the particle in general possesses hidden
momentum, cf. Sec. II D. These, together (as we shall see
next), endow Fα with a nonvanishing component Fα

∥ along
Uα, which is the new ingredient. Fα

∥ is the rate of work done
by the force as measured in the frame comoving with the
particle.
Let us turn our attention now to the second term of

Eq. (68). Decomposing (e.g. [12,14,17])

uα;β ¼ −aðuÞαuβ þ ωαβ þ θαβ; ð70Þ

where aðuÞα ¼ uα;βuβ is the observers’ acceleration (not
the particle’s), ωαβ ≡ ðhuÞλαðhuÞνβu½λ;ν� is the vorticity, and

θαβ ≡ ðhuÞλαðhuÞνβuðλ;νÞ is the shear/expansion tensor of the
observer congruence [θαβ ≡ σαβ þ θðhuÞαβ=3, where σαβ is
the traceless shear and θ the expansion scalar]. Let us
denote by GðuÞα ¼ −aðuÞα the “gravitoelectric field”
[12,14] measured by the observers. Decomposing Pα ¼
mUα þ Pα

hid, cf. Eq. (30), and using (67) and (70), the
second term of Eq. (68) becomes

−Pαuα;βUβ ¼ mγ2½GðuÞα − θαβvβ�vα
þ γPα

hid½GðuÞα − ðωαβ þ θαβÞvβ�: ð71Þ

This part of dE=dτ depends only on the kinematical
quantities of the observer congruence, not on the physical
force Fα. In other words, it is an artifact of the reference
frame, which vanishes if it is locally inertial. Its importance
(in a nonlocal sense) cannot however be overlooked. To
understand this, consider a simple example, a monopole
particle in Kerr spacetime, from the point of view of the
congruence of static observers (cf. Sec. I D, point 7). Since
the congruence is rigid, θαβ ¼ 0; also, for a monopole
particle, Pα

hid ¼ 0, and, in a gravitational field, Fα ¼ 0 (the
particle moves along a geodesic). Therefore, the energy
variation reduces to dE=dτ ¼ −Pαuα;βUβ ¼ mγ2GðuÞαvα,
which is the rate of “work” done by the gravitoelectric
“force” [6,12,14] mγ2GðuÞα. (In the Newtonian limit, it

reduces to the work of the Newtonian forcem~G.) Hence we
see that (71) is the part of (68) that encodes the change in
translational kinetic energy of a particle (relative to the
static observers) which occurs due to the gravitational field
without the action of any (physical, covariant) force, and
that is nonzero for particles in geodesic motion.
Substituting Eqs. (69) and (71) into (68), we obtain a

generalization, for the case of test particles with varying m
and hidden momentum, of the “power equation” (6.12) of
[12] (the latter applying to monopole particles only).

A. Time components in test particle’s frame

A fundamental difference between the tensorial structure
of Hαβ and Bαβ is that whereas the former is spatial, in both
indices, with respect to the observer Uα measuring it,
ðHUÞαβUβ ¼ ðHUÞαβUα ¼ 0 (this follows from the sym-
metries of the Riemann tensor), the latter is not:
ðBUÞαβUα ¼ 0, but ðBUÞαβUβ ¼ ⋆Fαγ;βUγUβ ≠ 0 in gen-
eral. This means that whereas Fα

G is orthogonal to the
particle’s worldline, Fα

EM has a nonvanishing projection
along it (i.e., a time projection in the particle’s CM frame),
Fα
EMUα ≠ 0. Let us see its physical meaning. First note,

from Eq. (I.4a), that

Fα
EMUα ¼ BβαUαμβ ¼ ϵβδμνUδE½μν�μβ; ð72Þ

showing that it consists of a coupling between μα and the
space projection of the antisymmetric part of the electric
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tidal tensor Eαβ measured in the particle’s CM frame,
which, as discussed in Sec. II B, encodes Faraday’s law of
induction. Indeed, if one chooses the CM frame to be
locally nonshearing and nonrotating (as one can always
do), we may replace Eαβ by the covariant derivative of the
electric field Eα;β, cf. Eq. (22), and Eq. (72) becomes

therein, in vector notation, Fα
EMUα ¼ −ð∇ × ~EÞ · ~μ. Its

significance becomes clear if one thinks about the magnetic
dipole as a small current loop of area A and magnetic
moment ~μ ¼ ~nAI, see Fig. 3(a). It then follows:

−Fα
EMUα ¼ ð∇ × ~EÞ · ~nAI ¼ I

I
loop

~E≡ Pind; ð73Þ

where in the second equality we first used the fact that the
loop is (by definition) infinitesimal, so ð∇ × ~EÞ · ~nA ¼R
Σð2Þ ð∇ × ~EÞ · d~Σ for a 2-surface Σð2Þ enclosed by the loop,
and then applied the Stokes theorem in the 3D local rest
space of the dipole. Here ~E is the induced electric field,
coming from the induction law7 (23).
Thus −Fα

EMUα ≡ Pind is the rate of work transferred to
the dipole by Faraday’s law of induction. Using Eqs. (36)
and (37), we see that it consists of the variation of the proper
mass m, minus the projection along Uα of the derivative of

the hidden momentum (to which only the electromagnetic
hidden momentum contributes):

Pind ¼
dm
dτ

−
DPα

hid

dτ
Uα ¼

dm
dτ

−
DPα

hidEM

dτ
Uα: ð74Þ

Note, from Eq. (68), that Pind is the variation of the dipole’s
energy E ¼ −P0 as measured in a momentarily comoving
inertial frame.
The induction phenomenon in Eq. (73) has no counter-

part in gravity. Since Hαβ is spatial relative to Uα, we
always have

Fα
GUα ¼ 0; ð75Þ

and the proper mass m is a constant [since also Pαaα ¼
−UαDPα

hid=dτ ¼ 0, cf. Eqs. (36) and (37)]. That is, the
energy of the gyroscope, as measured in its CM rest frame,
is constant. We see thus that the spatial character of the
gravitational tidal tensors precludes induction effects
analogous to the electromagnetic ones.

B. Time components as measured by static observers

1. Electromagnetism

With respect to an arbitrary congruence of observers of
4-velocity uα, the time projection of the force exerted on a
magnetic dipole is, cf. Eq. (69),

−Fα
EMuα ¼ −γFα

EMUα þ Fα
EM⊥vα ¼ γPind þ Fα

EM⊥vα;
ð76Þ

where, in accordance with the discussion above, we
identify Pind ¼ −Fα

EMUα as the power transferred to the
dipole by Faraday’s induction, and Fα⊥EMvα is the power
transferred by the component of Fα

EM orthogonal to the
particle’s worldline. Consider now a congruence of observ-
ers along whose worldlines the fields are covariantly
constant, Fαβ

;γuγ ¼ 0; the time projection of the force with
respect to them vanishes:

−Fα
EMuα ≡ −

DPα

dτ
uα ¼ −⋆Fγβ;αUβμγuα ¼ 0: ð77Þ

This tells us that the total work done on the dipole, as
measured by such observers, is zero. Take these observers
to form, moreover, an inertial frame; these will be dubbed
in this context static or “laboratory”8 observers. In this case

FIG. 3. A magnetic dipole (depicted as a current loop) falling in
the inhomogeneous magnetic field of a strong magnet, from the
point of view of two different frames: (a) the particle’s rest frame;
(b) the rest frame of the strong magnet (static observers). Here
~μ ¼ IA~n; A≡ area of the loop; I ≡ current through the loop;

~n≡ unit vector normal to the loop; ~E≡ induced electric field.

In the dipole’s frame nonvanishing work is done on it by ~E, at
a rate Pind ¼ −Fα

EMUα, which is reflected in a variation of proper
massm. From the point of view of static observers uα, the work is
zero (−Fα

EMuα ¼ Pind þ Ptrans ¼ 0), manifesting that a stationary
magnetic field does no work. That may be regarded as an exact
cancellation between Pind and the rate of variation of the
particle’s translational kinetic energy, Ptrans.

7This generalization of theMaxwell-Faraday law for accelerated
frames is needed if one is to deal with the electric and magnetic
fields measured in the test particle’s frame, which in general
accelerates. One could instead base the analysis in the inertial
frame momentarily comoving with it, as done in Sec. V of [7],
where ∂ ~B=∂τ ¼ −∇ × ~E holds; the two treatments are equivalent.

8The reason for such denominations is that, in the electro-
magnetic setups herein [the magnet in Fig. 3(b), the spinning/
nonspinning charges of Secs. III and V], only the observers at rest
relative to the sources obey the condition Fαβ

;γuγ ¼ 0. Note that
even for e.g. observers u0α in circular motion around a Coulomb
charge we have Fαβ

;γu0γ ≠ 0 [as can be seen replacing Uα → u0α

in Eq. (51), which implies ⋆Fαβ
;γu0γ ¼ 2ðBu0 Þ½αβ� ≠ 0 when

u0i ≠ 0], even though u0α is in that case a symmetry of Fαβ,
Lu0Fαβ ¼ 0, and Fαβ is time independent in the corotating frame.
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uα;β ¼ 0 and the second term of Eq. (68) vanishes;
therefore, the energy of the particle, E ¼ −Pαuα, is a
conserved quantity in such frame. Using Eq. (30), we can
write it in the form

E ¼ mþ T þ Ehid ¼ constant; ð78Þ

where we dub Ehid ≡ −Pα
hiduα the “hidden energy” (i.e.,

the time component of the hidden momentum), and T ≡
ðγ − 1Þm is the kinetic energy of translation of the center of
mass, as measured in this frame (in the Newtonian regime,
T ≈mv2=2). In the (very scarce, to the authors’ knowledge)
literature addressing this problem, a cancellation between
the variations of T and m is suggested in [28], or, for the
case of a spherical spinning charged body, of T and kinetic
energy of rotation about the CM [83–85] (which agrees
with the former assertion, since for such a body, dm=dτ is
essentially a variation of kinetic energy of rotation, as we
shall see in Sec. VI A 3). Equation (78) shows however
that, in the general case when Pα

hid ≠ 0, the energy
exchange occurs between three components, with Ehid also
playing a role. A suggestive example are the bobbings of a
particle with magnetic dipole moment orbiting a cylindrical
charge considered in Sec. III. B. 1 of [20] (and illustrated in
Fig. 1 of [75]).
In this paper we are especially interested in the case

Pα
hid ¼ 0 (⇒ Ehid ¼ 0), so that mþ T ¼ constant; i.e., the

energy exchange, due to the action of the force Fα
EM, occurs

only between proper mass and translational kinetic energy.
It follows also that Pind ¼ dm=dτ. Therefore, from (68)
and (76) (and since uα;β ¼ 0),

dE
dτ

¼ −Fα
EMuα ¼ Pind þ Ptrans ¼ 0; ð79Þ

where

Ptrans ≡ dT
dτ

¼ Fα
EM⊥vα þ ðγ − 1Þ dm

dτ
ð80Þ

is the rate of variation of translational kinetic energy, and
we noted that Fα

EM⊥vα ¼ mdγ=dτ. An example is the
problem depicted in Fig. 3(b): a magnetic dipole falling
along the symmetry axis of the field generated by a strong
magnet. (We have Pα

hid ¼ 0 for this configuration.9) From

the point of view of the static observers, ~EðuÞ ¼ 0 and only
magnetic field ~BðuÞ is present; we know that the latter can
do no work, because if we think about the dipole as a
current loop (cf. Fig. 3) and consider the force exerted in
each of its individual moving charges, we see that the

magnetic force ~F ¼ qð~v × ~BÞ is always orthogonal to the
velocity ~v of the charges, so that no work can be done. It is
thus quite natural that Fα

EMuα ¼ 0. According to Eq. (79),
this arises from an exact cancellation between Ptrans and
Pind: on the one hand there is an attractive spatial force ~FEM
causing the dipole to gain translational kinetic energy; on
the other hand there is a variation of its internal energy
(proper mass m) by induction, which allows for the total
work to vanish (in agreement with the reasoning in [28],
page 21). Further remarks on this issue are given in
Secs. VI C and Appendix B 4.
It is worth mentioning that this cancellation solves an

apparent paradox that has for long been discussed in the
literature [28,82,83,85]—that on the one hand a force is
exerted on a magnetic dipole placed in a nonhomogeneous
magnetic field, causing it to move, whilst on the other hand
~B can do no work in any charge/current distribution. The
analysis above generalizes and reformulates, in a relativistic
covariant framework, the arguments in [82–85], and sup-
ports the claim in [28] that the solution of the apparent
paradox lies on the variation of m. It is also useful, to make
these points more clear, to compare with the cases of a
monopole charged particle, and of an electric dipole subject
to an electromagnetic field: there is also a force on the
particle, which is set into motion gaining kinetic energy;
but, in these cases, the electric field is doing work, there is a
potential energy involved, and the gain in translational
kinetic energy is not canceled out by a variation of the
particle’s proper mass (m is constant for a monopole
particle, and also for an electric dipole if one assumes
that the dipole vector is parallel transported). These cases
are discussed in detail in Appendix B 4.

2. Gravity

In gravity, where Fα
GUα ¼ 0 (i.e., the induction effects

are absent), we have, for arbitrary observers uα,

−Fα
Guα ¼ Fα

Gvα: ð81Þ

This implies that a cancellation similar to the one in
Eq. (79) does not occur. Except when vα⊥ Fα

G, F
α
G does

work whenever the particle moves relative to the reference
frame; in particular it is so from the point of view of static
observers in a stationary spacetime (i.e., a stationary
gravitomagnetic tidal field does work on mass currents),
by contrast with its electromagnetic counterpart. There is a
potential energy associated with such work, as we shall
now show.
A conserved quantity for a spinning particle in a

stationary spacetime is (e.g. [19,20,27,97])

Etot ¼ −Pαξα þ
1

2
ξα;βSαβ ¼ constant; ð82Þ

9That this is a solution of the equations of motion supple-
mented with Mathisson-Pirani condition can be seen by argu-
ments analogous to the ones given in Appendix C 1 for the
gravitational counterpart.
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where ξ≡ ∂=∂t is the time Killing vector field. Consider the
congruence of static observers,10 of 4-velocity parallel to ξα:
uα ¼ ξα=ξ, where ξ≡ ffiffiffiffiffiffiffiffiffiffiffiffi

−ξαξα
p

is their lapse, or redshift
factor (see e.g. [12,13]). The first term of (82), −Pαξα ¼ Eξ,
is the “Killing energy,” a conserved quantity for the case of a
nonspinning particle (Sαβ ¼ 0) in geodesic motion, which
yields its energy with respect to thestatic observers at
infinity.11 It can be interpreted as its “total energy”
(rest massþ kineticþ “Newtonian potential energy”) in a
gravitational field (e.g. [67]). The energy Etot can likewise be
interpreted as the energy at infinity for the case of a spinning
particle. To see the interpretation of the second term in (82),

V ≡ 1

2
ξα;βSαβ; ð83Þ

consider the case when Pα
hid ¼ 0. We have

0 ¼ dEtot

dτ
¼ −Fα

Gξα −mUαUβξα;β þ
dV
dτ

ð84Þ

⇔ ξFα
Guα ¼

dV
dτ

; ð85Þ

where we used the Killing equation ξðα;βÞ ¼ 0. The quantity
−ξFα

Guα ¼ ξFα
Gvα is the rate work (per unit of particle’s

proper time τ) of Fα
G, as measured by the static observers

at infinity, and thus V is the spin-curvature potential energy
associated with that work.12

In order to compare with the electromagnetic equa-
tion (78), note that dξ=dτ ¼ −γGðuÞαvα, and that for
Pα
hid ¼ 0 we have E ¼ γm ¼ mþ T. Thus we can write

dEtot=dτ ¼ dðξEþ VÞ=dτ in the form

ξ
dT
dτ

− ξmγ2Gαvα þ
dV
dτ

¼ 0: ð86Þ

The second term accounts for the “power” of the gravito-
electric “force” mγ2 ~GðuÞ (which is not a physical force,
arising, as explained above, from the observers’ acceler-
ation); it reduces to the variation of Newtonian potential
energy in the weak field slow motion limit. Equation (86)

tells us that the variation of translational kinetic energy T
comes from the spin-curvature potential energy V, and

from the power transferred by mγ2 ~GðuÞ (m being con-
stant); this contrasts with the case of the magnetic dipole
discussed above, where (again for Pα

hid ¼ 0) the variation
of kinetic energy comes from the variation of proper mass
m, with no potential energy being involved. In terms of
the work done on the particle, Fα

G is thus more similar to
the electromagnetic forces exerted on a monopole charge
or on an electric dipole (for Ddα=dτ ¼ 0), where the
proper mass is likewise constant and the energy exchange
is between T and potential energy (see Appendix B 4 for
more details).
There is a known consequence of the fact that Fα

G
does work (and of the interaction energy V): the spin
dependence of the upper bounds for the energy released
by gravitational radiation when two black holes collide
[Fig. 4(b)], obtained by Hawking [22] from the area law.
In order to see this, consider the apparatus in Fig. 4: two

Kerr black holes with their spins aligned, a large one
(mass M, spin J ¼ aM), which is the source, and a small
one (4-velocity Uα, spin S≡ ffiffiffiffiffiffiffiffiffiffi

SαSα
p

), which we take to be
the test particle, falling into the former along the symmetry
axis (how this is set up with the Mathisson-Pirani spin
condition is discussed in Appendix C 1). For this setup
U ¼ U0e0 þUrer, S ¼ S0e0 þ Srer, where eα ≡ ∂=∂α are
Boyer-Lindquist coordinate basis vectors; and Pα

hid ¼ 0.
Moreover, V becomes a pure spin-spin potential energy,
since, for radial motions, Fα

G ¼ 0 if J ¼ 0, cf. Eq. (50).
Using Sαβ ¼ ϵαβγδUδSγ (as follows from the condition
SαβUβ ¼ 0, cf. Sec. II A), and noting that SrU0 − S0Ur ¼
S (as follows from SαUα ¼ 0, and, along the axis,
g00 ¼ −1=grr), one obtains, for Eq. (83),

VðrÞ ¼ � 2aMSr
ða2 þ r2Þ2 ¼

Z
τðrÞ

∞
ξFα

Guαdτ;

FIG. 4. (a) Gyroscope (small Kerr black hole) in the field of a
large Kerr black hole; (b) black hole merger. Evidence that, unlike
its electromagnetic counterpart, the gravitomagnetic tidal field
does work: the spin-dependent part of the energy released is the
work (as measured by the static observers at infinity) of Fα

G.

10See point 7 of Sec. I D. In stationary asymptotically flat
spacetimes, such as the Kerr metric studied below, these are
observers rigidly fixed to the asymptotic inertial rest frame of
the source. They are thus the closest analogue of the flat
spacetime notion of observers at rest relative to the source in
the electromagnetic systems above.

11If the particle is in a bounded orbit, one can imagine this
measurement process as follows: let Etotðτ1Þ be the total energy of
the particle at τ1; if, at that instant, the particle was by some process
converted into light and sent to infinity, the resulting radiation
would reach infinity with an energy E ¼ −uαPα ¼ Etotðτ1Þ.12One may check explicitly that dV=dτ¼ ξα;βγSαβUγ ¼ ξFα

Gvα,
noting that DSαβ=dτ ¼ 0 if Pα

hid ¼ 0, and using the general
relation for a Killing vector ξμ;νλ ¼ Rλσμνξ

σ.
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the � sign applying to the case when ~S and ~J are parallel/
antiparallel. The second equality follows from Eq. (85); this
result can be checked noting that, in Boyer-Lindquist
coordinates, ξFα

Guα ¼ ðFGÞ0, and computing explicitly
the time component ðFGÞ0 for axial fall, Eq. (37) of [1].
Thus we see that VðrÞ is minus the work done by Fα

G as the
particle goes from infinity to r. Let us comment on the
presence of the lapse factor ξ in the integral above.
Computing the work of Fα

G does not amount to integrating
the power measured by the local static observers, −Fα

Guα ¼
Fα
Gvα (i.e., summing up the work elements dW ≡ Fα

Gvαdτ),
as that would mean adding energies measured by different
observers; instead, we should integrate quantity ξFα

Gvα,
which can be thought as summing up work elements
measured by the static observer at infinity.
Let us now analyze the problem of the black hole merger.

The increase of translational kinetic energy of the small
black hole during the fall is given by Eq. (86). The term
mγ2Gαvα is the gain in kinetic energy due to the
“Newtonian” attraction, and exists regardless of Sα; the
term involving the spin-spin potential energy V, however,
will cause the test particle’s kinetic energy and, therefore,
the energy available to be released by gravitational radi-
ation in the collision, to depend on S. Upper bounds for this
energy, which are, accordingly, spin dependent, were
obtained in [22] by a totally independent method. From
such limits, and for the setup in Fig. 4, Wald [1] obtained an
expression [Eq. (35) therein] for the amount of energy ΔEs

by which the upper bound is increased/reduced when ~S is

parallel/antiparallel to ~J, comparing with the case S ¼ 0

(fall along a geodesic). It turns out that this energy is
precisely minus the value of VðrÞ at the horizon rþ,
ΔEs ¼ −VðrþÞ; that is, it is the work done by Fα

G on
the small black hole as it comes from infinity to the
horizon: ΔEs ¼

R
τðrþÞ
∞ ð−ξFα

GuαÞdτ.
We close this section with some remarks on the meaning

of the work done by the gravitomagnetic tidal field. One
can associate to the static observers in the Kerr spacetime a
gravitomagnetic “vector” field ~H (see Sec. II C, and e.g.
[3,6,12,14]; in the weak field regime this field is well
known to be very similar to its electromagnetic counterpart,
e.g. [2,3,98]), causing inertial (i.e., fictitious) “forces” on

test particles of the type ~v × ~H, formally similar to the

magnetic force q~v × ~B. Namely, the force is orthogonal to
the velocity; hence this analogy might lead one to believe
that, similarly to its magnetic counterpart, the gravitomag-
netic field cannot do work on test particles. One must bear

in mind, however, that ~H (by contrast with ~B) has no local
existence, as it is a mere artifact of the reference frame;
hence it would never be involved in a covariant quantity
like the 4-force DPα=dτ, or the work done by it. Moreover,
both in electromagnetism and in gravity, it is the tidal fields
that yield the force; that is manifest in force Eqs. (I.1) of

Table I. The electromagnetic tidal tensors herein are essen-
tially derivatives of the fields; for this reasonwewere able to
argue in terms of the fields in the applications depicted in
Fig. 3 (even though it is their derivatives that show up in the
equations). But the gravitational tidal tensors cannot be cast
as derivatives of the GEM fields, even in the weak field
regime, except under very special conditions (see Sec. III. 5
of [14]); the forceFα

G is thus in general very different from its
electromagnetic counterpart. Namely, it is so whenever the
test particlemoves relative to the source—so that thework of
Fα
G can dramatically differ from that of Fα

EM, which is well
exemplified by the contrast herein: as measured in the test
particle’s frame, we have Fα

EMUα ≠ 0, Fα
GUα ¼ 0; as mea-

sured by the static observers uα, we have precisely the
opposite situation: Fα

EMuα¼0, Fα
Guα ≠ 0.

Section IV in brief.—The work done on the particle
(magnetic dipole vs gyroscope):

(i) The time projection of the force,−Fαuα, is the rate at
which it does work on the particle, as measured by
an observer of 4-velocity uα.

Time projections along the particle’s worldline (Uα):
(i) Electromagnetic is nonvanishing, Fα

EMUα ≠ 0; it is
the rate of work done by Faraday’s induction law,
arising from E½αβ� (or equivalently, from BαβUβ);
reflected in a variation of m.

(ii) Gravitational is zero, Fα
GUα ¼ 0; the gyroscope’s

proper mass m is constant; no analogous induction
effect (as HαβUβ ¼ 0).

Time projections relative to static observers (uα):
(i) Electromagnetic is zero, Fα

EMuα ¼ 0 ⇒ a stationary
electromagnetic field does no work on magnetic
dipoles.

(ii) Gravitational is nonzero, Fα
Guα ≠ 0 ⇒ gravitomag-

netic (tidal) field does work—there is a spin-
curvature potential energy; embodies Hawking-Wald
spin-spin interaction energy.

V. WEAK FIELD REGIME AND GRAVITATIONAL
SPIN-SPIN FORCE

In the previous two sections we discussed the crucial
differences between the gravitational and electromagnetic
forces on a spinning particle that are manifest in the
symmetries and time projections of the tidal tensors.
However, in the literature (e.g. [2,3,5,20]) concerning the
weak field, slow motion regime—where the nonlinearities
of the gravitational field are negligible, and one might
indeed expect a similarity between the gravitational and
electromagnetic interactions—they are usually portrayed as
being very similar. In this section we will study this regime,
and dissect the impact of the aforementioned differences.
We shall consider the basic example of analogous physical
systems: a magnetic dipole in the electromagnetic field of a
spinning charge (charge Q, magnetic moment μs), and a
gyroscope in the gravitational field of a spinning mass
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(mass M, angular momentum J), asymptotically described
by the Kerr solution.
We start by briefly describing the approximations that we

will use. The electromagnetic potentials are, exactly, ϕ≡
Q=r and ~A≡ ~μs × ~r=r3; for the gravitational field we take
the linearized Kerr metric

ds2 ¼ −ð1þ 2ΦÞdt2 þ 2Ajdtdxj þ ð1 − 2ΦÞδijdxidxj;
ð87Þ

with the gravitational “potentials” Φ≡ −M=r, ~A≡
−2~J × ~r=r3. The gravitational tidal tensors, are, consis-
tently, linearized in the potentials. The electromagnetic
tidal tensors are linear in the potentials, hence no weak field
assumption is made in the forces (90), (92) and (93). The
expression for the acceleration (42), however, involves a
term of second order in the electromagnetic fields, which is
to be neglected in a coherent comparison with linearized
gravity. In the computation of the electromagnetic and
gravitational tidal tensors involved in the forces (92)–(95),
exerted on slowly moving test particles (velocity v), only
terms up to first order in v are kept (as usual in slow motion
approximations, e.g. [1]). The relationship with the post-
Newtonian approximations in e.g. [99–105] is established
in [26].
Let us first consider stationary setups, where the test

particle is at rest relative to the central source (or singu-
larity, for the case of a black hole); i.e., at rest with respect
to the static observers uα (cf. point 7 of Sec. I D). For these
observers, the linearized gravitational tidal tensors match
the electromagnetic ones, identifying the appropriate
parameters:

ðEuÞij ≃M
r3

δij −
3Mrirj

r5
¼M↔QðEuÞij; ð88Þ

ðHuÞij ≃ 3

�ð~r · ~JÞ
r5

δij þ 2
rðiJjÞ
r5

− 5
ð~r · ~JÞrirj

r7

�
¼J↔μsðBuÞij

ð89Þ

(all the time components vanish identically for
these observers). Therefore, the force exerted on
a gyroscope whose center of mass is at rest relative to
the central mass is similar (apart for a minus sign) to its
electromagnetic counterpart, identifying μs ↔ J and
μ ↔ S,

Fi
G ¼ −HjiSj ≃fJ;Sg↔fμs;μg − Fi

EM: ð90Þ

In other words, there is, for stationary setups, a gravita-
tional spin-spin force similar to its electromagnetic counter-
part; this result is due to Wald [1].

Manifestation of the different symmetries.—In the gen-
eral case, where the dipole/gyroscope is allowed to move,
however, Table I makes clear that the two forces differ,
because Hαβ remains symmetric, whereas Bαβ acquires an
antisymmetric part. This leads to key differences in the
dynamics (already exemplified in Sec. III), which are non-
negligible in the weak fieldand slow motion approximation,
as we shall now see. Consider the test particles to be
moving with 3-velocity ~v relative to the central sources.
The magnetic tidal tensor as seen by the moving dipole,
Bαβ, can be obtained in terms of the tidal tensors ðEuÞαβ,
ðBuÞαβ measured by the static observers, using the decom-
position

⋆Fαβ;γ ¼ 2u½αðBuÞβ �γ − ϵαβμσuσðEuÞμγ: ð91Þ

The force (I.2a) exerted on the magnetic dipole reads, to
first order in v,

Fi
EM ≃ Bjiμj ≃ ðBuÞjiμj − ðEuÞliϵjklvkμj; ð92Þ

F0
EM ¼ Bi0μi ¼ 0: ð93Þ

The gravitomagnetic tidal tensor as seen by the moving
gyroscope, Hαβ, can analogously be obtained in terms of
the tidal tensors ðEuÞαβ, ðHuÞαβ measured by the static
observers, using the dual of decomposition (44),

⋆Rαβ
γδ ¼ 4ϵλταβuλu½γðEuÞτδ� − 2ϵταβ

½γðEuÞτδ�
þ 4ðHuÞ½β ½δuγ�uα� þ ϵλταβϵ

γδμνðHuÞμτuλuν:

The force exerted on the gyroscope reads, to linear order in
the fields, and to first order in v,

Fi
G ≃ −HjiSj ≃ −ðHuÞjiSj þ 2ðEuÞlðiϵjÞklvkSj; ð94Þ

F0
G ≃ −Hi0Si ≃ −ðHuÞjivjSi: ð95Þ

We note that, to this accuracy, the spatial part of the forces,
apart from global signs and a factor of 2 in the second term
of (94) as compared to (92), differ essentially in the fact that
the former expression is symmetrized in fi; jg, whereas the
latter is not. Thus the differences in the symmetries of the
tidal tensors, discussed in Sec. III, are manifest to leading
order. (Explicit expressions for ~FG and ~FEM are given
in [26].)
Also the differences in the time components, studied in

Sec IV, are manifest in Eqs. (95) and (93) herein:
F0
G ≃ −Fα

Guα ≠ 0, telling us that, from the point of view
of the static observers OðuÞ, non-negligible work is done
on the gyroscope; but F0

EM ¼ −Fα
EMuα ¼ 0 [an exact result,

cf. Eq. (77)], telling us that no work is done on the dipole.
One may also check that whereas Fα

GUα ¼ 0, Fα
EM has a
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nonvanishing time projection in the particle’s frame, which,
to first order in v, reads Fα

EMUα ≃ ðBuÞjiμjvi.
It should however be noted that the forces above do not

translate in a trivial fashion into accelerations; Fα is in
general not even parallel to aα, as the test particles possess
hidden momentum. Assuming μα ¼ σSα, from Eq. (42) we
have, in the electromagnetic case,

m0ai ≃ Fi
EM þ 2B½ij�μj ≃ Bijμj

≃ ðBuÞijμj − ðEuÞljϵiklvkμj: ð96Þ

The last two terms of (42) are herein neglected. As for the
term ⋆Fβ

iDμβ=dτ, it follows from Eq. (25), for μα ¼ σSα,
that it is of second order in the fields, thus to be neglected in
a coherent comparison with linearized gravity. The term
DPα

hidI=dτ ¼ ϵαβγδUδDðSγaβÞ=dτ is also negligible in this
approximation if, among the many possible solutions [21]
allowed by the condition SαβUβ ¼ 0, we choose the non-
helical one; actually, imposing Pα

hidI ≈ 0 amounts, in this
application (not in general), to picking such a solution, as
we explain in detail in [26]. The explicit result, substituting
ðEuÞij and ðBuÞij from Eqs. (88) and (89), reads

m0ai ≃ 3

r5

�
ð~r · ~μsÞμi þ 2rðjμiÞs μj − 5

ð~r · ~μsÞð~r · ~μÞri
r2

�

þ Q
r3

�
2~v × ~μþ 3~r½ð~v × ~rÞ · ~μ�

r2
þ 3

ð~v · ~rÞ~μ × ~r
r2

�
i
:

ð97Þ

In the gravitational system we have, from Eq. (42),

m0ai ≃ Fi
G ≃ −ðHuÞjiSj þ 2ðEuÞlðiϵjÞklvkSj: ð98Þ

Again the last term of (42) is negligible for the nonhelical
representation (in the purely gravitational case, to this
accuracy, taking Pα

hidI ≈ 0 ⇒ Pα ≈mUα works generically
as a means of picking such a representation [106]), as
explained in detail in [26]. The explicit result reads

m0ai ≃ −
3

r5

�
ð~r · ~JÞSi þ 2rðjJiÞSj − 5

ð~r · ~JÞð~r · ~SÞri
r2

�

−
3M
r3

�
~v × ~Sþ 2~r½ð~v × ~rÞ · ~S�

r2
þ ð~v · ~rÞ~S × ~r

r2

�i
:

ð99Þ

Comparing with (97) we note that all the terms in the
gravitational equation have an electromagnetic counterpart.
However, the spin-orbit interaction terms [second lines of
Eqs. (97) and (99)] all have differing factors; these factors
reflect, in this regime, the consequences of the different
symmetries of the tidal tensors, and account for the

contrasting effects studied in Sec. III. One may check,
for instance, why (99), but not (97), allows for radial
motion in the field of static sources (~μs ¼ ~J ¼ 0): if ~v is

radial, ~v × ~r ¼ 0 and ~v × ~S ¼ −ð~v · ~rÞ~S × ~r=r2, so the first
and third terms of the second line of Eq. (99) cancel out,
yielding m0ai ¼ 0. But such cancellation does not occur in
the electromagnetic equation (97), which yields m0ai ≠ 0.
To conclude, from Eqs. (I.3) of Table I we expected that if

the fields do not vary along the test particle’s worldline (so
that Fαβ;γUγ ¼ 0) then Fα

EM and Fα
G should be similar in the

weak field approximation, since Bαβ and Hαβ have the same
symmetries and the nonlinearities of the later are negligible;
and that otherwise, when Fαβ;γUγ ≠ 0, differences should
arise, due to the differing symmetries of the tidal tensors. In
the application herein, this translates into the following:
when the test particles are at rest with respect to the sources
the two forces indeed are similar; however, in the general
dynamical case where the particles move, the two forces
differ significantly even to first order in the velocity (and in
the fields), cf. Eqs. (97) and (99). Thus the tidal tensor
formalism makes transparent an aspect that can be rephrased
as in [1]: the spin-spin interactions in gravity and electro-
magnetism are very similar (in this regime), but the “spin-
orbit” interactions are substantially different.
In the literature concerning the weak field gravitoelec-

tromagnetic analogy (e.g. [2–5]), the gravitational force
acting on a gyroscope is commonly cast in the form ~FG ¼
K∇ð ~H · ~SÞ=2 (where K is some constant depending on the
convention, and Hi ≡ ϵijkg0k;j=K is the gravitomagnetic

field), similar to its electromagnetic counterpart ~FEM ¼
∇ð~B · ~μÞ, seemingly implying a similarity between the two
interactions. We emphasize that such expressions are not
suited to describe dynamics, as they hold only if the
gyroscope’s center of mass is at rest in a stationary field
(this is usually overlooked in the literature, despite the
assertion in [1], where this analogy was originally pre-
sented, that it was derived under these conditions). A
detailed discussion of these issues and comparison with the
results in the literature is given in [26].
Section V in brief.—
(i) In the stationary, weak field regime, when the

particles are at rest with respect to the sources,
the gravitational and electromagnetic interactions
are very similar, having a similar spin-spin force.

(ii) When the test particles move, the differences (made
clear in the symmetries of the tidal tensors) are of
leading order, thus non-negligible in any slow
motion approximation.

VI. BEYOND POLE-DIPOLE—THE TORQUE ON
THE SPINNING PARTICLE

In the pole-dipole approximation, as we have seen in
Sec. II C, it follows from Eq. (25) that purely magnetic
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dipoles with ~μ ¼ σ~S have S2 as a constant of the motion.
This might be somewhat surprising. If one imagines the
magnetic dipole as a spinning charged body, one expects, in
a time-varying magnetic field, the induced electric field to
exert in general (due to its curl) a net torque on it, which
will accelerate13 its rotation. Indeed, we have seen in
Sec. IV that the induced electric field does work on the
spinning body, causing a variation dm=dτ ¼ −~μ ·D~B=dτ
of its proper mass m. Such variation is known, from the
nonrelativistic treatments in [83,85], where a rigid spherical
body is considered, to be a variation of rotational kinetic
energy.14 Thus we expect it to be associated to a variation of
the spinning angular velocity, and hence of S2. However,
the dipole torque in Eqs. (25) and (26) consists only of the
term ~μ × ~B (which is there even if the field is constant, and
conserves S2); there is no term coupling to the derivatives
of the electromagnetic fields, i.e., no sign of induction
phenomena.
As we shall see below, this apparent inconsistency is an

artifact inherent to the pole-dipole approximation, where
terms Oða2Þ (a≡ size of the particle), which are of quad-
rupole order, are neglected. Indeed, whereas the contribu-
tion of the work done by the induced electric field to the
body’s energy is of the type ~μ · ~B, i.e., of dipole order, the
associated torque involves the trace of the quadrupole
moment of the charge distribution. Moreover, there is no
analogous torque in the gravitational case, confirming the
absence of an analogous gravitational induction effect.
For clarity, we will treat the two interactions (electro-

magnetic and gravitational) separately.

A. Electromagnetic torque

We start by the electromagnetic case in flat spacetime.
The equation for the spin evolution of an extended spinning
charged body subject to an electromagnetic field is, up to
quadrupole order [e.g. Eq. (8.5) of [30]],

DSαβcan
dτ

¼ 2P½α
DixU

β� þ 2Qθ½βFα�
θ þ 2m½α

ρμFβ�μ;ρ; ð100Þ

where Pα
Dix and Sαβcan are defined by Eqs. (A7) and (A8),

and consist on the sum of the physical momenta Pα; Sαβ,
Eqs. (4) and (5), plus electromagnetic terms, see Appen-
dix A. It is shown in [107] that Sαβcan and Pα

Dix þ qAα ≡ Pα
can

are the canonical momenta associated to the Lagrangian of
the system. In the equation aboveQαβ is the electromagnetic

dipole moment as defined in (A5), and mαβγ is an electro-
magnetic quadrupole moment, defined as

mαβγ ≡ 4

3
QðαβÞγ; Qαβγ ≡ J α½βγ� þ 1

2
qα½βUγ�; ð101Þ

whereJ αβγ and qαβ are, respectively, the current and charge
“quadrupole moments,”15 see Eqs. (3.8) and (3.9) of [30]16:

qα̂ β̂ ≡
Z
Σðτ;UÞ

xα̂xβ̂jγ̂dΣγ̂; ð102Þ

J α̂ β̂ ν̂ ≡
Z
Σðτ;UÞ

xα̂xβ̂jν̂dΣ: ð103Þ

In flat spacetime, the normal coordinates fxα̂g are just a
rectangular coordinate system originating at zαðτÞ. Decom-
posing J αβν into its projections parallel and orthogonal to
Uν, we obtain

J αβν ¼ qαβUν þ J αβγðhUÞνγ ; ð104Þ

where we noted that, in flat spacetime, Σðτ; UÞ is a
hyperplane orthogonal to nα ¼Uα, thus−jνUνdΣ ¼ jγdΣγ .
Using Eq. (A11ii), we may rewrite Eq. (100) explicitly in

terms of the physical angular momentum Sαβ:

DSαβ

dτ
¼ DSαβcan

dτ
−
DS0αβ

dτ
; S0αβ ¼ F½α

σqβ�σ: ð105Þ

Note that DS0αβ=dτ is a quadrupole type contribution.
We are interested in the torque τα, i.e., the vector that

measures the rate of deviation of the spin vector from
Fermi-Walker transport, Eq. (17):

τα ≡DFSα

dτ
⇒ τσ ¼ 1

2
ϵαβ

σδUδ
DSαβ

dτ
: ð106Þ

Using Eqs. (100) and (105), it follows that

DFSα

dτ
¼ ταDEM þ ταQEM; ð107Þ

13Unlike the dipole torque ~τ ¼ ~μ × ~B, the torque due to the
induced electric field will not in general be orthogonal to ~S, and
hence will change its magnitude. For instance, in the example in
Fig. 5(a) below, ~Eind has circular lines around ~S, so that ~τind∥~S.

14It is not cast therein as a variation of proper mass m (as those
are nonrelativistic treatments), but of the Hamiltonian term
−~μ · ~B.

15Following the convention in e.g. [20,35,36], we dub
integrals of the type (102) and (103) quadrupole moments.
However, frequently in the literature the term “charge quadru-
pole moment” refers to the traceless part of qαβ. Note that
qαβ ≠ 0 for a uniform spherical body, contrary with its traceless
part, which measures a type of deviation from spherical
symmetry (more consistent with the actual picture of a quadru-
pole of charges). Sometimes (e.g. [23], p. 977) qαβ is called the
“second moment of the charge.”

16In Eq. (3.8) of [30], wγdΣγ , instead of dΣ, appears; however,
wγ̂ ¼ nγ̂ þOðx2Þ, cf. Eq. (A1), yielding a correction to the
integrand of order Oðx4Þ, negligible to quadrupole order [where
only terms up to Oðx2Þ are to be kept [31]]. Hence we can take
therein wγdΣγ ≃ nγdΣγ ¼ dΣ, cf. Eq. (9).
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τσDEM ≡ ϵσαβνUνðdαEβ þ μαBβÞ; ð108Þ

τσQEM ≡ τσQEMcan − τ0σ; ð109Þ

τσQEMcan ≡ ϵσαβνUνm½α
ρμFβ�μ;ρ; ð110Þ

τ0σ ¼ 1

2
ϵλαβνUνE½αβ�ðqγγδσλ − qσλÞ

þ 1

2
ϵσαβνUνFα

γ
Dqβγ

dτ
: ð111Þ

Here ταDEM is the dipole torque already present in Eq. (16),

i.e., just a covariant form for ~τ ¼ ~μ × ~Bþ ~d × ~E. We split
the quadrupole torque τσQEM into two parts. The first part,
τσQEMcan, which we may dub the “canonical electromagnetic
quadrupole torque,” is the torque17 coming from the third
term of (100) (i.e. the quadrupole contribution to
DSαβcan=dτ). The second part, τ0σ ≡ 1

2
ϵαβ

σδUδDS0αβ=dτ,
plays a crucial role in this discussion, since the first term
of (111) is minus the torque due to the electric field induced
in the CM frame by the Maxwell-Faraday law (23). This is
what we shall now see.

1. The induction torque

Consider the rectangular coordinates fxα̂g to be comov-
ing with the particle’s CM, ∂ 0̂ ¼ U. In such a frame, the
torque (about the CM) due to the induced electric field is

~τind ¼
R
ρc~x × ~Eindd3x, where ρc ≡ −jαUα is the charge

density in the CM frame. Let us expand ~E in a Taylor series

around the CM: Eî ¼ Eî
CM þ Eî;ĵ

CMxĵ þ � � � (for the integral
above, to quadrupole order, only terms up to linear order in
~x are to be kept in this expansion), which, splitting

Eî;ĵ
CM ¼ E½î;ĵ�

CM þ Eðî;ĵÞ
CM , we may write as

Eî ¼ Eî
CM −

1

2
½~x × ð∇ × ~EÞCM�î þ Eðî;ĵÞ

CM xĵ:

The second term is the part of ~E that has a curl, that is, the
induced electric field: ~EindðxÞ ≈ −~x × ð∇ × ~EÞCM=2. (The
third term may be cast as a gradient of some scalar function,
thus not related with induction.) Therefore, recalling the
definition of qαβ, Eq. (102) above, we have

τîind ¼ −
1

2
ð∇ × ~ECMÞĵ

Z
ρc½xîxĵ − δî ĵx

2�d3x

¼ −
1

2
ð∇ × ~ECMÞĵ½qîĵ − δî ĵq

γ
γ�; ð112Þ

which, by relations (22), is a noncovariant form for

ταind ¼
1

2
ϵσμνλUλE½μν�½qασ − δασqγγ� ð113Þ

¼ 1

2
Bσ

βUβ½qασ − δασqγγ�; ð114Þ

i.e., the first term of (111). In the second equality we used
Eqs. (I.4a) of Table I.

2. Rigid spinning charged body

Consider the case when the test particle is a charged,
“quasirigid” body [27,47,108], rotating with an angular
velocity Ωα, defined as follows. If Aα is a spatial vector
with origin at the CM, orthogonal to the CM 4-velocity Uα,
and fixed to the body, then

DFAα

dτ
¼ Ωα

βAβ; Ωαβ ¼ ϵβαμνΩμUν: ð115Þ

Let Uα
p be the 4-velocity field of the points in the body; we

may write Uα
p ¼ γpðUα þ vαpÞ; γp ≡ −Uα

pUα, cf. Eqs. (67),
where vαp ¼ Ωα

βxβ is the velocity of a point in the body
relative to the CM frame. It follows that the charge
4-current density is

jα ¼ ρcðUα þ vαpÞ ¼ ρcðUα þΩα
βxβÞ;

whose space part reads, in the CM frame, jð~rÞ ¼ ρc ~Ω × ~x;
here ρc ¼ −jαUα is the charge density as measured in the
CM frame. The magnetic dipole moment, Eq. (8), then
becomes

μα̂ ¼ Ωβ̂

2
½δα̂β̂qγγ − qα̂β̂�; ð116Þ

where we used (102), and noted that ρcdΣ ¼ jγdΣγ .
Thus the rate of work done on this body by the induction
torque ταind, P ¼ ταindΩα, is, from Eqs. (113) and (114),

ταindΩα ¼ −ϵβμνλUλE½μν�μβ ¼ −Bα
βUβμα ¼ −Fα

EMUα:

ð117Þ

That is, we obtain precisely the work Pind ¼ −Fα
EMUα of

Sec. IVA, Eqs. (72) and (73). This is the result we seek: we
have just proved that the work transferred to the body by
Faraday’s law of induction, which, to pole-dipole order, is
manifest in the projection along Uα of the dipole force Fα

EM
(and in the variation of the proper mass dm=dτ), is indeed

17In the literature concerning Dixon’s multipole scheme,
τσQEMcan is commonly portrayed as the quadrupole torque, see
e.g. [20]. However, it is clear from Eq. (107) that it is not the total
quadrupole torque τσQEM, and the results below show how crucial
this distinction is.
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associated to an induction torque, which causes S2 to vary
as expected (since ταind is not orthogonal to Sα in general).
This torque was known to exist from some nonrelativistic
treatments [83–85] dealing with the special case of spin-
ning spherical charged bodies. It just happens that it is not
manifest to pole-dipole order, as it involves the second
moment of the charge qαβ, which is of quadrupole order.18

But the rate of work that this torque does, ταindΩα, is
manifest to dipole order, since, for a rigid body, qαβ and Ωα

combine into the magnetic dipole moment μα, by virtue
of Eq. (116).

3. Torque on spherical charged body

In this context, and in view of a comparison with the
gravitational problem, it is interesting to consider the case
of a uniform, spherical charged body, whose quadrupole
moments of jα reduce to the trace of qαβ, so that we expect
the total quadrupole torque on the particle τα to come
essentially from ταind.
First let us explicitly compute the quadrupole moments

for this type of body. It is clear that the charge quadrupole,
Eq. (102), is such that, in rectangular coordinates fxα̂g
originating at the center of mass and comoving with it
(∂ 0̂ ¼ U), its time components are zero, q0̂ 0̂ ¼ q0̂ î ¼ 0,

and its spatial part reduces to its trace, qî ĵ ¼ δî ĵqk̂k̂=3.
Such tensor is covariantly written as

qαβ ¼ 1

3
qττðhUÞαβ: ð118Þ

As for the tensor J αβγ, due to the axisymmetry and
the reflection symmetry with respect to the equatorial
plane, all of its spatial components J î ĵ k̂ in the CM frame
vanish. The only nonvanishing components are J î ĵ 0̂ ¼R
x0̂¼0

xîxĵj0̂d3x ¼ qî ĵ. Hence J αβγðhUÞνγ ¼ 0; thus, by
virtue of Eq. (104), J αβν ¼ qαβUν, and therefore

J αβν ¼ 1

3
qσσUνðhUÞαβ: ð119Þ

Substituting (118) and (119) into (101), we have

Qαβγ ¼ 1

2
qττðhUÞα½βUγ� ¼ 1

2
qττgα½βUγ�: ð120Þ

Let us now compute the quadrupole torque exerted on
the body, Eq. (109). Substituting (120), (101) into
Eq. (110), we obtain

τσQEMcan ¼
1

3
qγγU½αFβ�λ

;λϵαβ
σδUδ ¼ 0; ð121Þ

the second equality holding in vacuum (which is the
problem at hand) by virtue of Maxwell’s equations
Fαβ
;β ¼ 4πjα. This means that τσQEM ¼ −τ0σ . In order to

compute τ0σ , Eq. (111), we must give a law of evolution for
qαβ. Equation (118) guarantees that the body is spherical;
we also demand dqαα=dτ ¼ 0, so that it has constant size (in
a comoving frame). Together, these relations imply that qαβ
is Fermi-Walker transported, DFqαβ=dτ ¼ 0, i.e., it has
constant components in an orthonormal tetrad comoving
with the body’s CM, as expected. It then follows from
Eqs. (109), (111), (113) and (114) that the quadrupole
torque reduces to

τσQEM ¼ −τ0σ ¼ τσind þ
1

6
ϵσαβλUλaαEβqγγ; ð122Þ

τσind ¼ −
qγγ
3

ϵσαβλUλE½αβ� ¼ −
qγγ
3

Bσ
βUβ: ð123Þ

In other words, up to an acceleration dependent term
(arising from the Fermi-Walker transport of qαβ), τσQEM is
the torque due to the induced electric field.
To compare with the results known in the literature,

consider a body with uniform charge and mass densities.
For such a body we may write 2σIαβ ¼ ðqγγðhUÞαβ − qαβÞ,
where σ ≡ q=2m is the classical gyromagnetic ratio and Iαβ
the moment of inertia tensor (cf. footnote 18); in the
spherical case we have qσσ=3 ¼ σIσσ=3 ¼ σI, where I ¼
Izz ¼ Ixx ¼ Iyy denotes the moment of inertia of the sphere
with respect to any axis of rotation passing through its
center. Thus ταind ¼ −σIϵαμνλUλE½μν� ¼ −σIBα

βUβ. In the
CM frame, and in vector notation, the total torque (106) on
such a body reads

~τ≡D~S
dτ

¼ ~τDEM þ ~τQEM ¼ ~μ × ~B − σI
D~B
dτ

−
σI
2
~a × ~E;

ð124Þ

which is the relativistic generalization of Eq. (1) of [83], or
Eq. (6) of [84] [those nonrelativistic results follow from
Eq. (124) above by replacing τ → t, and neglecting the
acceleration dependent term].
Work done on the particle and rotational kinetic

energy.—Let us now compute the work, τσΩσ , done by
the total torque τα ¼ ταDEM þ ταQEM on the particle. First
note that, for a quasirigid body, the relation Sα ¼ IαβΩβ

holds [27]; which, for a uniform spherical body, becomes

Sα ¼ IΩα: ð125Þ

18Note also that in order to assign a moment of inertia Iαβ and
an angular velocity to a spinning particle one must go beyond
dipole order, as Iαβ ¼ ðhUÞαβðmQÞττ − ðmQÞαβ (cf. e.g. [23]),
where ðmQÞαβ is the mass quadrupole, Eq. (136).
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Hence, assuming the proportionality μα ¼ σSα, it follows
from Eq. (108) (with dα ¼ 0, which is the problem at hand)
that the work of the dipole torque is zero, ταDEMΩα ¼ 0.
Thus, τσΩσ ¼ ταQEMΩα. From Eqs. (116) and (118), we
have

μα ¼ 1

3
Ωαqγγ; ð126Þ

and therefore, from Eqs. (122) and (33),

τσΩσ ¼ τσindΩσ þ
1

2
ϵσαβλUλaαEβμσ ¼ τσindΩσ −

1

2
Pα
hidEMaα:

Now consider the case when there is no electromagnetic
hidden momentum (Pα

hidEM ¼ 0), as is the case of the setup
in Fig. 5(a); then τσΩσ ¼ τσindΩσ. On the other hand, from
Eqs. (106) and (125), we have that τσ ¼ IDFΩσ=dτ and
2τσΩσ ¼ IdðΩ2Þ=dτ. Therefore, using (117), we obtain

1

2
I
dðΩ2Þ
dτ

¼ τσindΩσ ¼ −Fα
EMUα: ð127Þ

Note that IΩ2=2 is the body’s kinetic energy of rotation
about its CM, see e.g. [27,47]; hence Eq. (127) tells us that,
for this setup, the rate of variation of the body’s kinetic
energy of rotation equals the rate of work, as measured in
the CM frame, done by the dipole force Fα

EM on the particle
(that is, its projection −Fα

EMUα).
Observing, from Eqs. (I.1a) of Table I, (2), and (33), that

Pα
hidEM ¼ 0 implies Fα

EMUα ¼ μαDBα=dτ, and using
μα ¼ σSα, together with Eqs. (107), (108), (122) and
(123), we can rewrite Eq. (127) as

I
2

dðΩ2Þ
dτ

¼ −
dðBαμαÞ

dτ
þ Bα Dμα

dτ

¼ −
dðBαμαÞ

dτ
−
σqγγ
6

�
dðB2Þ
dτ

þ ϵσαβδUδaαEβBσ

�
;

ð128Þ

which is the relativistic generalization of Eq. (10) of [84] (the
acceleration dependent term is absent therein). From this
equation we see that, for this setup, the varying part of the
mass,−Bαμα, present in thedipole approximation, Eq. (41), is
kinetic energy of rotation (not potential energy, as claimed in
some literature, e.g. [27,38,81]). This establishes, in a
relativistic covariant formulation, and in the context of
Dixon’s multipole approach, the claims in [82–85]. The
second terms in the rightmembers ofEq. (128), of quadrupole
order, are notmanifest in the dipole ordermass equation (40),
since to that accuracy BαDμα=dτ ¼ 0, by virtue of Eq. (25).

B. Gravitational torque

The equation for the spin evolution of an extended body
in a gravitational field is, up to quadrupole order [20,36]

DSκλ

dτ
¼ 2P½κUλ� þ 4

3
Jμνρ½κRλ�

ρμν; ð129Þ

leading to the torque [cf. Eq. (106)]

DFSσ

dτ
¼ τσQG; τσQG ≡ 4

6
Jμνρ½κRλ�

ρμνϵκλ
σδUδ: ð130Þ

Here [cf. Eqs. (9.12) of [36] or (5.29) of [30]]

Jαβγδ ¼ 1

2
ðtγ½αβ�δ − tδ½αβ�γÞ −U½αpβ�½γδ� − U½γpδ�½αβ�; ð131Þ

where the moments tαβγδ and pαβγ can be written, in
Riemann normal coordinates fxα̂g, as

tα̂ β̂ γ̂ δ̂ ≡
Z
Σðτ;UÞ

xα̂xβ̂T γ̂ δ̂dΣ; ð132Þ

pα̂ β̂ γ̂ ≡
Z
Σðτ;UÞ

xα̂xβ̂Jγ̂dΣ; ð133Þ

FIG. 5. (a) A spinning, positively charged spherical body being
pulled by a strong magnet; ~Eind ≡ electric field induced in the
body’s CM frame. (b) A spinning spherical body falling into a
Kerr black hole. As the spinning charge moves in the inhomo-

geneous magnetic field ~B, a torque ταind, Eq. (123), is exerted on it

due to ~Eind, i.e., due to the skew part E½αβ� of the electric tidal
tensor. This causes S, and the body’s angular velocityΩ ¼ S=I, to
vary. The torque ταind does work at a rate ταindΩα ¼ Pind, which
exactly matches the time projection of the dipole force Fα

EM it its
rest frame, cf. Eq. (117). This causes the body’s kinetic energy of
rotation to decrease, manifest in a decrease of proper massm, and
canceling out the gain in translational kinetic energy (Ptrans), so
that the total work transfer, as measured in the laboratory frame,
is zero (cf. Sec. IV B). In the gravitational case no analogous
induction effects occur (as expected, since E½αβ� ¼ 0): no torque is
exerted on the spinning particle; its angular momentum S, angular
velocity Ω, and proper mass m, are constant; and there is a net
work done on it by Fα

G at a rate Ptot ¼ Fα
Gvα, corresponding to an

increase of translational kinetic energy.
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where Jγ ≡ −Tγδnδ is the mass/energy current as measured
by the observers orthogonal to Σðτ; UÞ [so that
TγδdΣδ ¼ JγdΣ, cf. Eq. (9)]. Expressions (132) and (133)
correspond,19 in flat spacetime, to Eqs. (5.2) and (5.3) of
[30], and, in curved spacetime, to Eqs. (9.4) and (9.11) of
[36]. They are tensors (similarly to the expressions in [36]),
since the use of Riemann normal coordinates fxα̂g amounts
to defining the moments in terms of the exponential map
(see [31,33]).
The tensor pαβγ has the interpretation of the quadrupole

moment of the mass current, analogous to the quadrupole
moment of the charge current J αβγ , Eq. (103). Note more-
over that −tαβγδUδ ¼ pαβγ , since nα̂ ¼ Uα̂ þOðx2Þ,
cf. Eq. (A2), and therefore, to quadrupole order, we may
take Jγ ≃ −TγδUδ in (133). We may thus decompose
tαβγδ as

tαβγδ ¼ pαβγUδ þ pαβσðhUÞδσUγ þ tαβλσðhUÞγλðhUÞδσ:
ð134Þ

Similarly, pαβγ may also be decomposed as

pαβγ ¼ ðmQÞαβUγ þ pαβλðhUÞγλ; ð135Þ
analogous to (104), where

ðmQÞα̂ β̂ ¼
Z
Σðτ;UÞ

xα̂xβ̂Jγ̂dΣγ̂ ð136Þ

is the mass quadrupole (or “second moment of the mass”
see [20,23,109] and footnote 15), analogous to the charge
quadrupole (102).

1. Torque on “spherical” body

Our goal in this section is to consider the gravitational
analogue of the problem in Sec. VI A 3. Therein we
considered a spherical charged body in flat spacetime,
whose charge quadrupole moment was shown to reduce to
its trace, qαβ ¼ qττðhUÞαβ=3, and whose current quadru-
pole was J αβν ¼ qσσUνðhUÞαβ=3. We prescribe the analo-
gous test body for the gravitational problem by demanding
it to have an analogous multipole structure (i.e., an
analogous “gravitational skeleton” [29]), rather than
demanding its shape to be spherical, which in a general
curved spacetime is not a well defined notion. (A body with
such multipole structure will of course be a sphere in the
case of flat spacetime; and otherwise may be thought of as
one if the field is not too strong.) As shown above, the

quadrupole moment pαβγ, Eq. (133), has an analogous
definition to J αβγ, Eq. (103), only with Jα in the place of
jα; hence its structure must be [analogously to Eq. (119)]:

pαβγ ¼ 1

3
ðmQÞττðhUÞαβUγ: ð137Þ

The last term of (134) is the quadrupole moment of the
space part of Tγδ, ðhUÞγλðhUÞδσTλσ ≡ Tγδ

⊥ , which has no
electromagnetic analogue. For a quasirigid spinning body,
we have (e.g. [108,110]) TαβðpÞ ¼ ρUα

pU
β
p þ sαβ, where

sαβ are the stresses, Uα
p ¼ γpðUα þ vαpÞ is the 4-velocity of

the (rotating) mass element at the point p of the body, vαp is
the spatial velocity of p relative to the center of mass frame,
and γp ¼ −Uα

pUα, see decomposition (67). Hence

Tαβ
⊥ ¼ ργ2pvαpv

β
p þ sαβ⊥ , its two terms being of the same

order of magnitude ∼ρv2p (e.g. [110]). For nonrelativistic

rotation speeds vp ≪ 1, we have ‖Tαβ
⊥ ‖ ≪ ρ, and therefore

the last term of (134) is negligible compared to the others. It
then follows:

Jαβγδ ≈ −ðmQÞττU½αgβ�½γUδ�; ð138Þ
[in agreement with Eq. (7.31) of [27]]. Substituting in
Eq. (130), we obtain the gravitational torque:

τσQG ¼ −
1

3
ðmQÞττU½αRβ�

μUμϵαβ
σδUδ ¼ 0;

the second equality holding for vacuum (Rμν ¼ 0Þ, which
(as in the electromagnetic case) is the problem at hand.
Thus, no gravitational torque is exerted, up to quadrupole
order, on a spinning spherical body.20 This means that there
is no gravitational counterpart to the electromagnetic torque
ταind exerted on the spherical charged body of Sec. VI A 3
(generated, from the viewpoint of the particle’s frame, by
the induced electric field). This is the result we expected
from the discussion in Sec. II B: ταind comes from the
antisymmetric part of Eαβ, or, equivalently, from the (time)
projection along Uβ of Bαβ, cf. Eqs. (113) and (114). Since
the gravitoelectric tidal tensor Eαβ is symmetric, and Hαβ is
spatial with respect to Uβ, the absence of an analogous
torque in gravity is thus natural.

C. Summarizing with a simple realization

The results in Secs. VI A and VI B entirely corroborate
the discussion in Sec. IV (and Sec. II E); namely, the
manifestation of electromagnetic induction and the absence

19Noting that wσ̂dΣσ̂ ¼ dΣþOðx2Þ, cf. footnote 16, and that,
in the system fxα̂g, the bitensors in [36] read σα̂ ¼ −xα̂,
σα̂β̂¼δα̂β̂þOðx2Þ, Θκ̂λ̂μ̂ν̂¼δκ̂ðμ̂δν̂Þλ̂þOðx2Þ, Hα̂ β̂ ¼ δα̂ β̂ þOðx2Þ;
so the corrections due to them in (132) and (133) are integrands of
orderOðx4Þ, negligible to quadrupole order [where only terms up
to Oðx2Þ are to be kept].

20This is consistent with the results from the post-Newtonian
treatment in e.g. [109], where the approximate vacuum
expression τiQG ≈ ϵijk½Ej

lJlk þ 4Hj
lSlk=3� (Eq. (1.9c) therein)

is derived. In our notation, Sjk ¼ ϵðklmpjÞlm, Jij ¼
ðmQÞij − ðmQÞkkδij=3; it then follows from the analysis above
that, for a spherical body, Sij ¼ Jij ¼ 0 ⇒ ~τQG ¼ 0.
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of an analogous phenomenon in the physical gravitational
forces and torques. In this context, it is interesting to
consider the analogous setups in Fig. 5: a spinning
spherical charge moving in the field of a strong magnet
(or another spinning charged body), and a spinning
“spherical” mass moving in Kerr spacetime.
Let us start by the electromagnetic case. A force Fα

EM,
Eq. (I.1a), will be exerted on the particle, causing it to move
[thereby gaining translational kinetic energy, at a rate Ptrans,
Eq. (80)]. As it moves in an inhomogeneous magnetic field,
a torque ταind is exerted upon it; from the viewpoint of the
observer comoving with the particle, this is due to the
electric field induced by the time-varying magnetic field.
That torque will cause a variation of the particle’s angular
momentum Sα, and therefore of its angular velocity Ωα ¼
Sα=I [measured with respect to the comoving Fermi-
Walker transported tetrad, cf. Eq. (115)]. Clearly, S2 is
not conserved, since dðSαSαÞ=dτ ¼ 2ταSα ≠ 0, as we see
from Eqs. (122) and (123) or (124). The variation of Ω also
implies a variation of the particle’s rotational kinetic
energy, equal to the work of the torque ταind, which in turn
is exactly the work done by the dipole force Fα

EM as
measured in the frame comoving with the particle,
cf. Eq. (127). (This is reflected in a variation of the
particle’s proper mass m.) From the point of view of the
laboratory frame (i.e., the static observers uα), no net work
is done on the particle, Fα

EMuα ¼ 0, and its total energy,
E ¼ −Pαuα, is conserved, cf. IV B. That means that the rate
of variation in translational kinetic energy Ptrans of the
center of mass is exactly canceled out by the variation of
rotational kinetic energy Pind (the work of ταind), guarantee-
ing that a stationary magnetic field does not do work.
In the gravitational case, there is also a net force Fα

G on
the body, cf. Eq. (I.1b) of Table I, causing it to gain kinetic
energy at a rate Ptrans ¼ Fα

Gvα. But no torque is exerted on
it; up to quadrupole order we have

DFSα

dτ
¼ 0; S2 ¼ constant

(i.e., the spin vector of the spinning spherical mass is
Fermi-Walker transported), implying Ω ¼ constant. This is
consistent with the constancy of the proper mass (manifest
in the fact that Fα

G is orthogonal toUα), because, since there
is no torque, the kinetic energy of rotation is constant. Thus
in this case the gain in translational kinetic energy is not
canceled out by a variation of rotational kinetic energy, and
therefore a stationary gravitomagnetic field will do a net
rate of work −Fα

Guα ¼ Ptrans on the particle.
We close this section with a few additional remarks.

The application in Fig. 5 illustrates an important aspect of
the frame dragging effect, and the contrast with the electro-
magnetic analogue. For clarity, let us consider the case when
the test balls are initially nonspinning. In the electromagnetic
case, Fig. 5(a), as the ball moves towards the magnet, it starts

spinning, increasingly faster (relative to the Fermi-Walker
transported tetrad) due to the torque ταind. In the frame
comoving with the ball, ~τind is due to the induced electric

field ~Eind; and from the point of view of the laboratory frame
(static observers), where the field is stationary (thus there is
no induced electric field therein), ~τind comes from the overall

effect of the Lorentz force dq~v × ~B applied to each charge
element dq of the ball. In the gravitational case, Fig. 5(b), no
such rotation arises. If initially Ωα ¼ 0, the ball in Fig. 5(b)
will never gain any rotation relative to the local compass of
inertia; Sα remains always zero. Indeed, an observer sitting
firmly with his tetrad on top of the ball will not detect any sign
of rotation: he will not measure any Coriolis forces acting on
any test particle that hemay throw, andwill seegyroscope axes
fixed.However, fromthepointofviewofa frameadapted to the
static observers (which is anchored to the “distant stars,” see
Sec. II C), theball indeedstarts spinning increasingly fasteras it
approaches the black hole. This is because, due to frame
dragging, a system of axes which is locally nonrotating (i.e.,
Fermi-Walker transported) close to the black hole, is seen to be
rotating from a frame fixed to the distant stars. The effect is
larger the closer one gets to the black hole, and is quite
analogous to the electromagnetic situation as viewed by the
static observers: in the linear limit, it is well known

[2,3,14,68,69,111] that the gravitomagnetic field ~H is very
similar to its electromagnetic analogue; then the gravitomag-

netic “force” ~v × ~H, acting on each mass element, seemingly
leads to an analogous “torque”. These are not, however, real
forces or torques, but artifacts of the reference frame, not
measurable in any local experiment (only by locking the frame
to the distant stars, e.g. bymeans of a telescope); it is therefore
no surprise that they are not manifest in the torque equa-
tion (130). For indeed it is the static observers that rotate
relative to the local compass of inertia, which ismanifest in the

fact that theyhavevorticity, andmeasureanonzero ~H (causing,
in their frame, test particles in geodesic motion to be deflected

by fictitious Coriolis forces ~v × ~H, and gyroscopes to precess,
cf. Sec. II C; for more details, see e.g. [14] Secs. 3.2 and 3.3).
This contrasts with the situation in the electromagnetic
analogue, where ταind is a physical, covariant torque, causing
the particle to indeed have an accelerated rotation with respect
to the local compass of inertia.
Section VI in brief.—
(1) The electromagnetic quadrupole torque contains the

torque ταind due to Faraday’s law of induction; it is a
coupling of E½αβ� to qαβ (the charge quadrupole).
(a) Dipole approximation ignores qαβ; hence ταind is

not manifest to dipole order;
(b) but the rate of work it does, ταindΩα, is of dipole

order (Ωα and qαβ combining into μα). For a
rigid body, it equals the projection of the dipole
force along its worldline, −Fα

EMUα.
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(2) The torque ταind has no gravitational analogue
(consistent with E½αβ� ¼ 0).

(3) A time-varying electromagnetic field torques a
spherical charged body, changing its angular mo-
mentum S, angular velocity Ω, and kinetic energy
of rotation (manifest in m). The gravitational field
never torques a “spherical” body; S, Ω, and m, are
constant.

VII. CONCLUSION

In this paper we studied the dynamics of spinning test
particles in general relativity, in the framework of exact
gravitoelectromagnetic analogies. A detailed summary of
the main results and realizations is given in Sec. I; herein
we conclude with some additional remarks.
Both equations of motion—force and spin evolution—of

a spinning particle in a gravitational field are related to their
electromagnetic counterparts by exact analogies, valid for
generic fields. Moreover, a third analogy arises, for the so-
called “hidden momentum,” first obtained in [20] as an
approximate result, and introduced herein in its exact form.
All these analogies are shown to emerge from the rigorous
equations of motion for pole-dipole particles if the
Mathisson-Pirani spin condition is employed.
The first remark we want to make is that it is important to

realize that the existence of these analogies does not
mean that the interactions are similar. These are functional
analogies: the magnetic tidal tensor Bαβ plays in Eq. (I.1a) of
Table I, for the force exerted on a magnetic dipole, the same
role as the gravitomagnetic tidal tensor Hαβ in Eq. (I.1b) for
the gravitational force exerted on a gyroscope. The analogy
extends to the Maxwell and Einstein field equations, as
manifest in Table I. Moreover, in the appropriate frame,
the gravitomagnetic field ~H plays in the precession of the
gyroscope an analogous role to ~B in the precession of a
magnetic dipole, cf. Eq. (26) (the analogy also extends,
under certain conditions, to the equations for the geodesics,
for the force on the test particle, and to the field equations,
see [6,12,14]). But the analogies do not imply, even in
seemingly analogous setups, that the objects are similar.
First, ~H and Hαβ, unlike their electromagnetic counterparts,
are nonlinear. Second, even in the weak field regime (where
the nonlinearities of the gravitational field can be neglected),
the symmetries and the time projections of the tidal tensors
Bαβ and Hαβ continue to differ crucially. The apparent
similarity suggested by the usual linear approaches in the
literature, e.g. [2–5], can be misleading, as the differing
terms in the force/acceleration equations are of leading order,
as shown in Sec. V. We have actually seen (Sec. IV) cases
where the electromagnetic and gravitational effects are
opposite: in a frame comoving with the test particle, the
work done by the spin-curvature force Fα

G is zero
(Fα

GUα ¼ 0) whereas the work of its electromagnetic
counterpart Fα

EM is nonzero (Fα
EMUα ≠ 0); from the point

of view of static observers uα, the situation is reversed: it is
the electromagnetic force that does no work, Fα

EMuα ¼ 0

(stationary electromagnetic fields cannot do work on a
magnetic dipole) whereas the gravitational one does,
Fα
Guα ≠ 0.
The analogies are instead suited for a comparison between

the two interactions, as this amounts to comparing math-
ematical objects that play analogous dynamical roles in both
theories. It is the main point of this work that one can learn a
lot (about both of them) from such a comparison. The
differences in the structure of the gravitational and electro-
magnetic tidal tensors encode fundamental differences in the
interactions, namely the phenomenon of electromagnetic
induction, and the way it manifests itself in the electromag-
netic tidal forces and torques, which has no analogue in
gravity. We have seen in Sec. III that Bαβ has an antisym-
metric part, reading, in vacuum, 2B½αβ� ¼ ⋆Fαβ;γUγ .
This equation (which encodes the Maxwell equation

∇ × ~B ¼ ∂ ~E=∂t) tells us that whenever the field varies
along the particle’s worldline (e.g. when it moves in a
nonuniform electric field), B½αβ� ≠ 0, hence Bαβ is non-
vanishing, and so a forceFα

EM ¼ Bβ
αμβ ≠ 0 is exerted on the

magnetic dipole (except for some special orientations of ~μ).
Such induction effect has no counterpart in gravity, since, in
vacuum, Hαβ is always symmetric; indeed, it is possible for
particles moving in a (nonuniform) gravitational field to
measure Hαβ ¼ 0, so that no force is exerted on them,
Fα
G ¼ −Hβ

αSβ ¼ 0. This leads to the existence of geodesic
motions for spinning particles, as exemplified in Secs. III A
and III B by radial geodesics in Schwarzschild spacetimes,
and circular geodesics in Kerr-dS. Reinforcing the insight of
the analogy, the velocity fields for which Hαβ ¼ 0 mirror the
ones where, in the electromagnetic analogue, Bαβ reduces to
its antisymmetric part.
Likewise, the results in Sec. IV, concerning the time

components of the force, and in Sec. VI, concerning the
torque exerted on the spinning particle, are manifestations of
the antisymmetric part of the electric tidal tensor Eαβ (or,
equivalently, to the projection of Bαβ along Uα), and of the
absence of a gravitational counterpart. The antisymmetric

part E½αβ� encodes the Maxwell-Faraday law ∇ × ~E ¼
−∂ ~B=∂t; the gravitoelectric tidal tensor by contrast is
symmetric, E½αβ� ¼ 0, translating in an absence of analogous
induction effects in the physical21 gravitational forces and

21In the framework of inertial forces, the fact that the time-
dependent gravitoelectric ~G and gravitomagnetic ~H fields have a
curl, in analogy with their electromagnetic counterparts, can be
interpreted as analogous to the electromagnetic induction laws,
see e.g. [112]. These, however, are reference frame artifacts; such
curls do not contribute to the tidal tensors Eαβ, Hαβ (i.e., to the
tidal forces, which are the only locally measurable forces of
gravity), only the symmetrized derivatives of ~G and ~H do. For
more details see Secs. 3.5 and 4 of [14].
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torques. In this framework, we understood the variation of
proper mass m of a classical particle with magnetic dipole
moment—it arises from the work done on it by the induced
electric field (at a rate Pind ¼ −Fα

EMUα), encoded in the
projection of Bαβ along the particle’s 4-velocity Uα—and
whym is conserved for a gyroscope in a gravitational field—
it is because Hαβ is spatial with respect to Uα, signaling the
absence of an analogous effect. We have also understood the
contrast between the work of these forces as measured by
static observers, and the spin dependence of Hawking’s
upper bound [22] for the energy released when two black
holes collide: if one considers a magnetic dipole falling into
a strong magnet [Fig. 3(b)], there is no net gain in the
particle’s energy (from the point of view of static observers);
any gain in translational kinetic energy is exactly canceled
out by the work transferred to the dipole by Faraday’s
induction law (i.e., by a loss in proper mass dm=dτ ¼ Pind),
ensuring that the stationary magnetic field does no net work
on it. In gravity, however, sincePind has no counterpart (m is
constant), such cancellation does not occur, and therefore a
net work −Fα

Guα ¼ Fα
Gvα is done on a gyroscope; there is a

potential energy associated with it, of which the Hawking-
Wald spin interaction energy [1] is a special case. In other
words, the gravitational spin interaction energy, and the spin
dependence of the black hole collision energy (at least in the
case where one black hole is much smaller than the other, so
that it can be treated as a test particle moving in a stationary
field), are justified by the fact that, unlike its electromagnetic
counterpart, a stationary gravitational (tidal) field does work
on mass currents.
The analogies and formalism herein also provide useful

tools and intuition for practical applications, which is
exemplified in Sec. III. From the formal analogy between
the quadratic invariants of the Maxwell andWeyl tensors, we
guessed that Hαβ should vanish for observers at rest or
moving radially in the Schwarzschild spacetime, in analogy
with the situation for Bα in a Coulomb field. The tidal tensor
form of the spin-curvature force, Fα

G ¼ −Hβ
αSβ, then tells us

that no force is exerted on gyroscopes comoving with such
observers; for instance, a gyroscope dropped from rest will
fall along a geodesic towards the singularity. In the same
framework, we predicted that in the equatorial plane of the
Kerr or Kerr-dS spacetimes there should be velocity fields
for which Hαβ ¼ 0 (because it is so for Bα in the equatorial
plane of a spinning charge), and from that the existence of
circular geodesics for spinning particles in Kerr-dS (which
were not known in the literature, to our knowledge). Note
that even the problem of the radial fall in the Schwarzschild
spacetime (the simplest in this work) could be a complex
problem outside the tidal tensor formalism/the Mathisson-
Pirani spin condition (involving possibly complicated
descriptions, and difficulties in setting up its initial con-
ditions, see Appendix C 1). As for the geodesics for
gyroscopes in Kerr-dS, it would be very difficult to ever
notice the effect otherwise.

In the courseof thispaper anumberof issues concerning the
dynamics of spinning particles in general relativity were
clarified. First, the problem of the equations of motion for
pole-dipole particles; thegravitational part iswell established,
but difficulties exist in the electromagnetic part, as there are
different versions of the equations in the literature, and
inconsistencies in their physical interpretation, whose clari-
fication is the purpose of Appendix A 2. Moreover, the time
projections of the forces, their physical content, and relation-
ship with the mass of the particle and the work done by the
fields, is ignored in most literature, or misunderstood (e.g.
[27,38,81,113,114]); they are thoroughly discussed
in Sec. IV and (for particles with electric dipole moment)
in Appendix B. Another important clarification was made in
Sec. VI A, concerning the quadrupole order torque according
to Dixon’s equations [20,30,36], and the physical meaning of
the quantities involved therein. In their usual form they are
equations for the “canonical” angular momentum Sαβcan,
Eq. (A4), not for the physical angular momentum Sαβ,
Eq. (5); failing to notice this leads one to overlook the torque
(ταind) exerted on the body due to the curl of the electric field
(i.e., to the antisymmetric part of the electric tidal tensor), and
to incorrectly conclude e.g. that the electromagnetic field
cannot torque a spherical body—which is known, from basic
electromagnetism [83–85], to be false, and would be at odds
with the variation of the particle’smass discussed in Secs. II E
and IV (which, for a rigid body, is essentially a variation of
rotational kinetic energy, cf. Sec. VI A 3).
As a future direction, we plan an investigation of the

gravitoelectromagnetic analogies in the equations of
motion for spinning particles to quadrupole and higher
orders in the multipole expansion.
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APPENDIX A: THE EQUATIONS OF MOTION
FOR SPINNING PARTICLES IN THE

LITERATURE

It is perhaps surprising that the problem of the covariant
equations describing the motion of spinning particles
subject to gravitational and electromagnetic fields is still
not generally well understood, with different methods
and derivations leading to different versions of the equations,
whose relation is not always clear. Curiously, it is the
electromagnetic field that has been posing more problems
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(some authors [113,114] have even concluded that such
covariant description is not possible). The equations of
motion for pole-dipole particles in electromagnetic fields
are derived in unambiguous forms in [28], for special
relativity, and in [34] in the context of general relativity.
Rigorous derivations are also given in [20,30,36]; in this
case, however, one must be aware of the subtleties involved
in their interpretation. These equations (unlike the ones in
[28,34,38]) are symmetric with respect to electric and
magnetic dipoles; this is actually the most common form
of the equations, appearing in many other works, e.g.
[27,79,80,115,116]. If not properly interpreted, that would
lead to physically inconsistent predictions (given the differ-
ent nature of the two dipole models), as we shall see below
and in Appendix B. Moreover, if one takes the “angular
momentum” tensor defined in [30,36] as the physical one,
the torque equations therein would, at quadrupole order,
seemingly contradict well-known results from elementary
electromagnetism (and experimental evidence), as discussed
in Sec. VI A. Herein we will dissect these issues and explain
how the different versions of the equations relate to each
other, and to the ones used in this paper.

1. Relation with the equations used in this paper

Equations (11) and (12) correspond to Dixon’s equa-
tions (6.31) and (6.32) of [34] [cf. also (3.1) and (3.2) of
[38]], with the following simplifications in the definitions
of the moments:
(1) instead of the bitensors in [34], we use (following

[31]) the exponential map to define the moments in
curved spacetime [which amounts to using Riemann
normal coordinates fxα̂g in the integrals (4)–(8)].
The bitensor −σ;α of [34], which is the vector at zα

tangent to the geodesic connecting zα to the point of
integration xα, and whose length equals that of the
geodesic, has, in the system fxα̂g, coordinates given
simply by −σ;α̂ ¼ xα̂. The bitensor of geodesic
displacement ḡκα of [34] reads, in the system
fxα̂g, ḡκ̂ α̂ ¼ δκ̂α̂ þOðx2Þ (see Appendix of [33]);
thus to dipole order (which is linear in x), ḡκ̂ α̂ ≃ δκ̂α̂,
and indeed our definitions of Pα, Sαβ (≡Jαβ in [34]),
and dα (≡qα in [34]) agree with [34].

(2) The vector wγ involved in the definition of μαβ
(≡mαβ in [34]) via the moment jαβ therein, which is
a vector such that displacement of every point by
wγdτ maps ΣðτÞ into Σðτ þ dτÞ, can, to pole-dipole
order, be taken as wγ ≃ nγ . That is, wγdΣγ ≃ dΣ,
cf. Eq. (9). This is easily seen in the case of flat
spacetime22 [30,117], where we have [for ΣðUÞ
orthogonal to Uα, and noting that nα̂ ¼ Uα̂]

wγ̂ ¼ nγ̂
�
1 −

xα̂
nβ̂n

β̂

Dnα̂

dτ

�
¼ nγ̂ð1þ xα̂aα̂Þ: ðA1Þ

Hence jα̂ β̂ ≡ R
Σðτ;UÞ x

α̂jβ̂wγ̂dΣγ̂ , Eq. (6.8) of [34],
reads

jα̂ β̂ ¼
Z
Σðτ;UÞ

xα̂jβ̂dΣ − aσ̂

Z
Σðτ;UÞ

xσ̂xα̂jβ̂dΣ;

the second term being negligible to pole-di-
pole order.

(3) The 1-form nα normal to Σðτ; UÞ reads, in the
coordinates fxα̂g, nα̂ ¼ ð−1; 0; 0; 0Þð−g0̂ 0̂Þ−1=2.
Since g0̂ 0̂ ¼ −1þOðx2Þ (see e.g. [23]), and, at
the reference worldline zα, nα̂ ¼ ð−1; 0; 0; 0Þ ¼
Uα̂, we have

nα̂ ¼ Uα̂ þOðx2Þ; ðA2Þ

hence, to dipole order, we may take (when of
interest) dΣδ̂ ≡ −nδ̂dΣ≃ −Uδ̂dΣ. It follows that
−jαβUβ ¼ dα, cf. Eq. (7), and therefore the magnetic
dipole tensor mαβ defined in [34] as mαβ ¼ j½αβ� −
d½αUβ� matches ours: mαβ ¼ ðhUÞαγðhUÞβδj½γδ� ¼
μαβ, cf. Eqs. (10) and (8).

(4) The moments are defined relative to an hypersurface
of integration Σðτ; UÞ normal to Uα at zα, as done in
[28,30], whereas in e.g. [27,34,36] hypersurfaces
Σðτ; PÞ orthogonal to Pα are used. That does not
change the shape of the equations to dipole order,
as one can check23 comparing the equations in
[27,34,36] with the ones in [30] (identifying the
appropriate quantities, as explained in Sec. A 2
below), or in the independent derivation in [28].

2. Dixon’s “symmetric” equations

In later works by Dixon [27,30,36] the equations of
motion for spinning particles are presented in a different
form, e.g. Eqs. (1.33) and (1.34) of [36], symmetric with
respect to the electric and magnetic dipoles. Taking into
account the different signature and conventions, they read,
to dipole order,

DPα
Dix

dτ
¼ qFαβUβ þ

1

2
Fμν;αQμν −

1

2
Rα

βμνSμνUβ; ðA3Þ

DSαβcan
dτ

¼ 2P½α
DixU

β� þ 2Qθ½βFα�
θ; ðA4Þ

22It suffices for this purpose to work in flat spacetime; a
generalization of wα to curved spacetime only amounts to small
corrections to something already negligible in special relativity.

23In the purely gravitational case (Fαβ ¼ 0), the integrals (4)
and (5), defined at zαðτÞ over an hypersurface Σðτ; uÞ orthogonal
to uα, are actually, to pole-dipole order, independent of uα,
see [33].
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where Qαβ is the electromagnetic dipole moment tensor
about zαðτÞ [Eq. (5.62) of [35], or, for flat spacetime,
Eq. (3.44) of [30]], which reads, in the system fxα̂g,

Qα̂ β̂ ≡
Z
Σðτ;UÞ

x½α̂jβ̂�dΣþ U½β̂
Z
Σðτ;UÞ

xα̂�jγ̂dΣγ̂: ðA5Þ

Since dΣδ̂ ≃ −Uδ̂dΣ, cf. Eq. (A2), this tensor embodies
the intrinsic electric and magnetic dipoles dα and μαβ,
Eqs. (7)–(10), as its time and space projections with respect
to Uα,

dα ¼ −QαβUβ; μαβ ¼ ðhUÞαγðhUÞβδQγδ; ðA6Þ

in terms of which it has the decomposition

Qαβ ¼ 2d½αUβ� þ ϵαβγδμγUδ:

It must be noted that Pα
Dix and Sαβcan (Pα, Sαβ in the notation

of [27,30,35,36]) are not the physical momentum and
angular momentum given by Eqs. (4) and (5) above,
but instead contain additional electromagnetic terms,
cf. [27,30]. In our framework, they can be written as

Pα
Dix ¼ Pα þ P0α; P0α̂ ≡

Z
Σðz;UÞ

Ψα̂jβ̂dΣβ̂; ðA7Þ

Sαβcan ¼ Sαβ þ S0αβ; S0αβ ≡ 2

Z
Σðz;UÞ

x½α̂Φβ̂�jγ̂dΣγ̂; ðA8Þ

with

Ψα̂ðz; xÞ≡ −
Z

1

0

Fα̂
β̂ðuÞxβ̂du; ðA9Þ

Φα̂ðz; xÞ≡ −
Z

1

0

uFα̂
β̂ðuÞxβ̂du: ðA10Þ

Equations (A9) and (A10) are integrals along the geodesic
ηαðuÞ connecting zα and xα, parametrized by u so that
ηαð0Þ ¼ zα, ηαð1Þ ¼ xα. In flat spacetime, these expres-
sions are exactly24 Eqs. (7.1), (7.2), (7.6) and (7.7) of [30].
In curved spacetime, they match, to the accuracy at hand,
Eqs. (3.14), (3.15), (5.1) and (5.2) of [27] [corrections due
to the bitensors therein are of order Oða3Þ for P0α, and
Oða4Þ for S0αβ, where a≡ size of the body, hence both
negligible to quadrupole order, Oða2Þ].

The lowest order approximation to these integrals is to
take only the zeroth order term in the expansion of Fαβ

around zα, i.e., to take Fαβ ≈ constant along the body;
this is sufficient for our purposes, as higher terms in the
expansion of Fαβ lead to contributions of higher multipole
moments to P0α and S0αβ. We obtain

P0α ¼ −Fα
γdγ; ðiÞ S0αβ ¼ F½α

σqβ�σ; ðiiÞ; ðA11Þ

where dα and qαβ are the charge dipole and quadrupole
moments, Eqs. (7) and (102). As such, S0αβ is negligible to
pole-dipole order, but it is of crucial importance in Sec. VI,
where terms up to quadrupole order are kept.
Note now the following: substituting (A3), (A4), and

(A11) into Eqs. (A3) and (A4) (and noting that, to dipole
order, Sαβ ≃ Sαβcan), we obtain Eqs. (11) and (12); hence
indeed the two sets of equations are equivalent.
As shown in [107], Pα

Dix þ qAα ≡ Pα
can and Sαβcan have the

interpretation of canonical momenta associated to the
Lagrangian of the system. Pα

can is the quantity conserved in
collisions [118], and its time component P0

can ¼ −Pcan · ∂0 is
the scalar conserved under stationary fields in flat spacetime,
cf. Eq. (B9) below.ThequantitySαβcan generalizes the canonical
angular momentum of some nonrelativistic treatments
[83–85]; in [85], a canonical angular momentum vector,

Eq. (31) therein, is obtained differentiating ∂L=∂ ~Ω (L≡
Lagrangian of the system, ~Ω≡angular velocity of the body).
Such 3-vector is but a noncovariant form for the spatial25

vector Sγcan ≡ ϵγμαβS
αβ
canUμ=2, as can be easily shown. From

(A8), Sγcan ¼ Sγ þ S0γ , with

S0γ ≡ 1

2
ϵγμαβUμS0αβ ¼ Bα

2
½δγαqσσ − qγα�; ðA12Þ

where we used Eq. (1) and the orthogonality condition
qαβUα ¼ qαβUβ ¼ 0. If the body has uniform mass and
energy density, S0γ ¼ ðq=2mÞBαIαγ , where Iαβ is the mo-
ment of inertia (see footnote 18). In this case we have, in the

particle’s CM frame (where Ui ¼ 0), Sγcan ¼ ð0; ~ScanÞ, with
~Scan ¼ ~Sþ ~S0 matching expression (31) of [85].
The distinction between Pα

Dix in Eqs. (A3) and (A4) and
the physical momentum Pα should not be overlooked when
the particle possesses electric dipole moment. Since those
equations are essentially symmetric with respect to dα and
μα, failing to make that distinction would lead one to
believe that the two dipoles are dynamically similar. Given
their different nature, as defined by Eqs. (7) and (8) (the
magnetic dipole is modeled by a current loop, the electric

24Therein Cartesian coordinates are used, and Fαβ has argu-
ment Fαβðzþ urÞ, where rα ¼ xα − zα is the vector connecting
the reference worldline to the point xα. Since ηαðuÞ is in this case
a straightline, indeed ηαðuÞ ¼ zα þ urα. Noting moreover that
zα̂ ¼ 0, rα̂ ¼ xα̂ in the system fxα̂g, one obtains (A7)–(A10).

25The definition of Sγcan is not a dualization of Sαβcan, as neither
Sαβcan nor S0αβ are spatial with respect to Uα under the Mathisson-
Pirani condition SαβUβ ¼ 0. Hence S0γ and Sγcan do not contain
the same information as Sαβcan and S0αβ (only their spatial part).
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dipole by a pair of opposite charges), that would
be physically inconsistent: (i) the electric dipole would
have a hidden momentum (just like a magnetic dipole),
cf. Eq. (B4), which would violate the conservation equa-
tions; (ii) a static electric field would do no work on the
dipole (regardless of its motion), which is well known to be
false; (iii) the particle’s proper mass m would vary in a way
consistent with a dipole arising from a current of magnetic
monopoles, not a pair of charges; (iv) the spatial part of the
force would not be consistent with the results known from
classical electromagnetism. A detailed account of these
issues is given in the next section.
At quadrupole order, it is also crucial to not confuse Sαβcan

with the physical angular momentum Sαβ (the one which is
proportional to the angular velocity in the case of a rigid
body). Otherwise, as discussed in Sec. VI A, one would
erroneously conclude that in vacuum the electromagnetic
field does not couple to the trace of qαβ, implying e.g. that

no torque (besides the dipole torque ~τ ¼ ~μ × ~B, if it spins)
could be exerted on a spherical charged body, which is well
known, both from elementary electromagnetism and from
experiment, to be false.

APPENDIX B: THE ELECTRIC DIPOLE

In order to better understand some key issues in this
work—the physical meaning of the time projection of the
force on a magnetic dipole, the variation of its proper mass,
the work done on it by the external fields, and the hidden
momentum—it is useful to make the contrast with the case
of an electric dipole.
It is clear from Eqs. (11) and (12) that both the force and

the spin evolution equations are different for electric and
magnetic dipoles. This is due to the intrinsic differences of
the two types of dipole: dα, Eq. (7), is the dipole moment of
the charge density, which can be modeled by a pair of two
(close) opposite charges; μα, Eq. (8), is the dipole moment
of the spatial current, modeled by a (small) current loop.
For a particle possessing only electric dipole moment
(μαβ ¼ 0, q ¼ 0) in flat spacetime, Eqs. (11) and (12) read

DPα

dτ
≡ Fα

el ¼ Eα
βdβ þ Fα

β
Ddβ

dτ
; ðB1Þ

DSαβ

dτ
¼ 2P½αUβ� þ 2d½αFβ�

γUγ; ðB2Þ

where Eαβ ≡ Fαγ;βUγ is the electric tidal tensor [7].
First we note that, unlike its magnetic counterpart

Eq. (I.1a) of Table I, the force on an electric dipole is
not (generically) given by a contraction of a tidal tensor
with the dipole vector (only if Ddα=dτ ¼ 0). Indeed, it is
not entirely a tidal effect, due to the extra term Fα

βDdβ=dτ
(overlooked in most literature), which does not involve

derivatives of Fαβ. This term is physically interpreted as
follows. From Eq. (3.23a) of [30] we have

Ddγ

dτ
¼ J γ −Uγq;

where J α̂ ≡ R
ΣðU;τÞ j

α̂wγ̂dΣγ̂ . q is the particle’s total
charge, and J α is roughly its total current. Then J γ −
Uγq is essentially the particle’s spatial current with respect
to Uα. For an electric dipole (q ¼ 0), Eq. (B1) can be
rewritten as

Fα
el ¼ Eα

βdβ þ Fα
βJ β: ðB3Þ

The term Fα
γJ γ has a straightforward interpretation: if the

dipole vector dα varies with τ (e.g., if the dipole rotates)
then it generates a net electric current in the CM frame;
therefore, a magnetic force Fα

γJ γ is exerted on it, in
addition to the tidal force Eα

βdβ. As a simple example,
consider a rotating electric dipole under a uniform magnetic
field; a net force arises from the magnetic forces (with the
same direction) that act on each of its charge poles, due to
their circular motion about the CM.
Second, we note that in the term Eαβdβ the indices of the

tidal tensor are reversed as compared to the force on the
magnetic dipole, Eq. (I.1a). In Secs. B 2 and B 3 below we
shall see some consequences.
For an electric dipole at rest in an inertial frame (where

Eij ¼ ∇jEi), the space part of (B1) reads ~Fel ¼
ð~d · ∇Þ~E − ~B ×D~d=dτ, matching the result from classical

treatments, e.g. [72]. Note also that D~PDix=dτ ¼ ∇ð~E · ~dÞ
[analogous to the force on a magnetic dipole, ~FEM ¼
∇ð~B · ~μÞ], which differs from the physical force ~Fel ¼
D~P=dτ.

1. No hidden momentum for electric dipole

Unlike the current loop, the two-charge type of dipole
cannot store hidden momentum of electromagnetic origin,
see e.g. [72]. The expression for the momentum of an
electric dipole is obtained contracting Eq. (B2) with Uβ,
leading to (using Uαdα ¼ 0) Pα ¼ mUα þ Sαβaβ, showing
that the only hidden momentum present is the pure gauge
term Pα

hidI ¼ Sαβaβ arising from the spin condition (which
exists regardless of the electromagnetic multipole structure
of the particle). This was expected from conservation
arguments. Unlike its magnetic counterpart, the electric
dipole does not generate electromagnetic field momentum
(cross momentum Pα

×, see [26]) when placed in an
electromagnetic field [119]. Now consider a stationary
configuration; in this case the conservation equations
ðT totÞαβ;β ¼ 0 imply that the total spatial momentum van-

ishes, ~Ptot ¼ 0; if the dipole were to have any hidden
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momentum, it would not be canceled out by the field
momentum, violating the conservation equations.
This shows the importance of distinguishing between the

physical momentum Pα and Dixon’s momentum Pα
Dix ¼

Pα þ P0α of Eqs. (A3) and (A4); as can be seen from (A7)
and (A11), Pα

Dix includes a term −ϵαθμσdθBμUσ, analogous
to the hidden momentum Pα

hidEM ¼ ϵαθμσμ
θEμUσ of the

magnetic dipole (but of opposite sign):

Pα
Dix ¼ Pα − EβdβUα − ϵαθμσdθBμUσ: ðB4Þ

Thus, confusing Pα
Dix with Pα would lead one to believe

that the electric dipole has a hidden momentum just like a
magnetic dipole, which not only would make no sense for
the dipole model at stake, as it would violate the con-
servation equations.

2. Proper mass and time projection of the force
in the CM frame

Contracting (B1) with Uα one obtains

Fα
elUα ¼ −Eγ

Ddγ

dτ
¼ −EγJ γ; ðB5Þ

where Eα ≡ FαβUβ is the electric field as measured by the
test particle. Hence, like the force on a magnetic dipole
(Fα

EM), F
α
el has in general a (time) projection along the

particle’s worldline. They are very different, however. As
noticed above, the order of the indices in the tidal tensor of
(B1) is reversed compared to Fα

EM ¼ Bβαμβ; since Eαβ and
Bαβ are spatial relative toUα in the first, but not in the second
index, then, by contrast with Fα

EM, the projection of the tidal
force Eαβdβ along Uα is zero. This means that, as measured
in the particle’s CM frame, the tidal force does no work.
Thus Fα

elUα reduces to the projection of the second term of
(B1), arising from the variation of the dipole vector dα along
the particle’s worldline. This contrasts with its magnetic
counterpart Fα

EMUα ¼ UβμγD⋆Fγβ=dτ, cf. Eq. (I.1a) of
Table I, which comes from the variation of the field.
Equation (B5) makes sense: J γ is essentially the total

current as measured in the dipole’s frame; when it is
nonvanishing (for instance, due to a rotation of the dipole),
a nonvanishing work, in this frame, is done on the dipole by
the electric field. Noting from (34) that Pαaα ¼ 0, we have

dm
dτ

¼ −Fα
elUα ¼ Eγ

Ddγ

dτ
: ðB6Þ

Hence, if Ddα=dτ ¼ 0, the particle’s proper mass is
constant, which contrasts with the situation for a magnetic
dipole, where dm=dτ is zero only if DBα=dτ ¼ 0 (not
Dμα=dτ ¼ 0), cf. Eq. (39).
Consider now the special case of a rigid dipole which is

allowed to rotate: DFdα=dτ ¼ Ωα
βdβ, with Ωαβ defined by

Eqs. (115). In this case, using (17),

dm
dτ

¼ −Fα
elUα ¼ ϵγβμνUνEγΩβdμ ¼ τβΩβ; ðB7Þ

this is the rate of work done by the torque τβ ¼
ϵβμγνUνdμEγ exerted on the dipole by virtue of Eqs. (B2)
and (106). The torque τβ causes an accelerated rotation of
the dipole; the corresponding variation of rotational kinetic
energy reflects itself in a variation of m.
Note that Eqs. (B6) and (B7) yield, e.g., the well-known

work done on an electric dipole whose CM is at rest in a
static, uniform electric field, from the point of view of the
rest frame. Thus again we see the importance of not
confusing Pα

Dix in Eqs. (A3) and (A4) with the physical
momentum Pα: overlooking the distinction would lead to
the conclusion that, just like for a magnetic dipole, a static
field does no work on a rotating electric dipole, which we
know from basic electromagnetism to be false.

3. Time component of the force as measured
by generic observers

With respect to a congruence of observers OðuÞ of
4-velocity uα, the time projection of the force exerted on the
electric dipole is

−Fα
eluα ¼ γðEuÞβγdγvβ þ ðEuÞα

Ddα

dτ
; ðB8Þ

where ðEuÞα ≡ Fαβuβ and ðEuÞβγ ≡ Fβμ;γuμ are, respec-
tively, the electric field and electric tidal tensor measured by
OðuÞ, and vα [the particle’s velocity relative toOðuÞ] and γ
are defined in Eqs. (67). As discussed in Sec. IV, this is the
rate of work done by the force as measured by OðuÞ. The
first term is a natural result: in a nonuniform electric field
[ðEuÞαβ ≠ 0], a force is in general exerted on an electric
dipole; if it is allowed to move (vα ≠ 0) that force does
work. The second term contributes when Ddα=dτ ≠ 0, and
is nonzero even if the fields are uniform. It is the work done
by the electric field when the dipole rotates or oscillates,
discussed in the previous section.
The power −Fα

eluα differs significantly from its magnetic
counterpart Eq. (76). Consider (when they exist) observers
along whose worldlines the field is covariantly constant,
Fαβ

;γuγ ¼ 0 (e.g. the static observers of Sec. IV B 1, cf. foot-
note 8); as we have seen in Sec. IV B, relative to such
observers, the field does no work on a magnetic dipole,
Fα
EMuα ¼ 0, cf. Eq. (77). But it does work on an electric

dipole, both terms of (B1) contributing to it (regarding the
tidal term, the reason why Eα

βdβ does work, Eα
βdβuα ≠ 0,

whereas Fα
EM ¼ Bβ

αμβ does not, is again due to the order of
the indices in the tidal tensor). This was to be expected
given the different nature of the dipoles: in the magnetic
case, the total work is zero due to (in the simplest case when
there is no hidden momentum) a cancellation between the
variation of translational kinetic energy and the work done
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on the current loop by the electric field induced in it; the
latter has no counterpart in the electric dipole, since it does
not consist of a current of magnetic monopoles; therefore
such cancellation does not occur.

4. Conserved quantities, proper mass and work
done by the fields

In order to better elucidate the relationship between the
work done by the fields and the variation of the proper
mass, we will compare, in a static electromagnetic field,
three different test particles: a point monopole charge,
an electric dipole, and a magnetic dipole. Let uα be the
4-velocity of the inertial frame OðuÞ relative to which the
fields are static. Then uα preserves the electromagnetic
field, LuFαβ ¼ 0, and, therefore, from the constancy of
expressions (5.3) of [27], or (29) of [20], we have

Pα
Dixuα þ qAαuα ¼ Pαuα þ ðEuÞαdα − qϕ ¼ constant;

ðB9Þ

where ϕ≡ −Aαuα is the electric potential measured in
OðuÞ. Using Eq. (30), it is useful to rewrite (B9) as

mþ T þ V þ Ehid ¼ constant; ðB10Þ
where V ¼ −ðEuÞαdα þ qϕ is the potential energy of the
particle under the field, T ≡ ðγ − 1Þm is the kinetic energy
associated to the translation of its center of mass,
γ ≡ −Uαuα, and Ehid ¼ −Pα

hiduα the hidden energy [i.e.,
the time component of the hidden momentum relative to
OðuÞ, see Sec. IV B]. In this section we shall ignore the
inertial hidden momentum Pβ

hidI, as in the applications
below it either vanishes or is made negligible by appro-
priate choices of the reference worldline (e.g. Tulczyjew-
Dixon, or Mathisson-Pirani nonhelical centroids). Thus,
Pβ
hid ¼ Pβ

hidEM herein.
Point monopole charge (dα ¼ Pα

hid ¼ 0).—In this case,
condition (B10) readsmþ T þ qϕ ¼ constant. There is no
exchange of energy with the proper mass of the particle,
which is a constant:

dm
dτ

¼ −
DPα

dτ
Uα ¼ −qFαβUαUβ ¼ 0:

This just tells us that, in a stationary electromagnetic field,
the “total mechanical energy” of the particle—kinetic
energy T, plus electric potential energy V ¼ qϕ—is a
constant of the motion, as is well known. Every gain in
T must come from the potential energy V, so there is no
doubt that the field doing work, at a rate given by the time
projection of the Lorentz force Fα

L ¼ qFαβUβ relative to
OðuÞ, cf. Eq. (68):

dE
dτ

¼ −Fα
Luα ¼ qγðEuÞαvα ¼ −

dV
dτ

¼ Fα
Lvα:

In vector notation, dE=dτ ¼ qγ ~EðuÞ · ~v, with ~EðuÞ ¼
−∇ϕ ¼ −∇V=q.
Electric dipole (q ¼ Pα

hid ¼ 0).—Condition (B10) reads
mþ T − ðEuÞαdα ¼ constant. From Eq. (B6), the proper
massm is not constant; this means that energy is exchanged
between the three forms: potential energy V ¼ −ðEuÞαdα,
translational kinetic energy T, and m. Two special subcases
are particularly enlightening:
(1) Dipole vector covariantly constant, Ddα=dτ ¼ 0,

implying dm=dτ ¼ 0. In this case the energy ex-
change is similar to the monopole charge: every gain
in translational kinetic energy comes from the
potential energy V. It is clear that the electric tidal
field is doing work, at a rate [cf. Eq. (B8)]

dE
dτ

¼ −Fα
eluα ¼ γðEuÞβγdγvβ ¼ −

dV
dτ

¼ Fα
elvα:

(2) Dipole’s CM at rest (Uα ¼ uα, vα ¼ 0), i.e., T ¼ 0.
In this case, m − Eαdα ¼ constant, and the energy
exchange occurs between the potential energy V ¼
−Eαdα and proper mass m (which includes rota-
tional kinetic energy of the particle). The work of the
field thus equals the mass variation,

dE
dτ

¼ −Fα
eluα ¼

dm
dτ

¼ −
dV
dτ

:

Magnetic dipole (q ¼ dα ¼ 0).—Condition (B10)
means in this case mþ T þ Ehid ¼ constant; if we take
μα ¼ σSα, from Eq. (41) we havem ¼ m0 − μαBα, and thus
the condition becomes T − μαBα þ Ehid ¼ constant. The
energy exchange is between translational kinetic energy,
proper mass and Ehid. There is no potential energy involved
(cf. [82–85]), which is consistent with the fact that the
static field does no work on the magnetic dipole:
dE=dτ ¼ −Fα

EMuα ¼ 0, cf. Eq. (77). A case of interest
in the context of this work is the one depicted in Fig. 3(b), a
magnetic dipole falling towards a magnet along the field’s
axis of symmetry. In this case Pα

hid ¼ Ehid ¼ 0, implying
T þm ¼ constant. The energy exchange is only between
translational kinetic energy and proper mass; every gain in
the former comes at the expense of latter (which, for a rigid
body, consists essentially of a variation of rotational kinetic
energy, cf. Sec. VI A 3 and [82–85]). Hence what the field
does is to interconvert translational kinetic energy into
rotational or other forms of internal energy.

APPENDIX C: COMPARISON OF THE
DIFFERENT SPIN CONDITIONS

In this paper we have so far been using equations of
motion supplemented by the Mathisson-Pirani (MP) spin
condition, as it is the one that makes explicit the analogies
used. As we shall see below, it is also the one that leads to
the simplest description of the force/center of mass motion
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in the applications in Secs. III and IV B. However, other
spin conditions (14) can be used; as explained in Sec. II A,
the (infinite) possible choices of uα correspond to differ-
ent, but equivalent, ways of describing the motion of a
spinning body, they differ just in the choice of its
representative point. Below we compare some best known
spin conditions in the applications in this paper, and
explore the gravitoelectromagnetic analogies that emerge
using them.

1. Comparison of the spin conditions in the
applications in this paper

We start with the problem of the falling motion along the
symmetry axis (θ ¼ 0 in Boyer-Lindquist coordinates,
hereafter the “z-axis”) of a gyroscope in a Kerr spacetime,
discussed in Sec. IV B. Setting its initial position, velocity
~U and spin ~S all along the axis, one expects, at first sight,
from symmetry arguments, an axial fall. It turns out,
however, that such naive prescription of initial conditions
does not completely determine the problem, nor does it
ensure its axial symmetry. One needs also to prescribe
the field of unit timelike vectors uα relative to which the
CM is computed (i.e., the field entering the spin condition
Sαβuβ ¼ 0), which, for an arbitrary choice, breaks the axial
symmetry. The momentum-velocity relation also depends

on this choice, cf. Eq. (29), implying that ~U will not in
general be parallel to ~P (hidden momentum), so that they
do not both lie along the z-axis. Note that, as explained in
Sec. II D, the acceleration of the CM does not originate
solely from the force, but also from the variation of field uα

along the CM worldline.
In order to prescribe an axisymmetric problem, we

start by demanding, as initial conditions, ~Uin ¼ Uz~ez (~ez≡
~er ¼ ∂=∂r in Boyer-Lindquist coordinates, for θ ¼ 0),
~u ¼ uz~ez, and an initial CM position zαin ¼ xαCMðuÞjin also
along the z-axis. The MP condition, uα ¼ Uα, clearly
allows for these initial conditions, so let us start with it.
The momentum reads, cf. Eq. (34),

Pα ¼ mUα − ϵαβγδSβaγUδ; ðC1Þ

and the spatial part of the equation of motion Fβ
G ≡

DPβ=dτ ¼ −HαβSα [cf. Eq. (I.1b)] reads

m~a −
Dð~S ×U ~aÞ

dτ
¼ ~FG ¼ −HiαSα~ei; ðC2Þ

where ~S ×U ~a denotes the space components of
ϵαβγδSβaγUδ. Initially, with ~Uin ¼ Uz~ez, one obtains
~FGjin ¼ −HzαSα~ez (it is straightforward to check that along
the axis we have Hiα ¼ 0 if i ≠ z); thus the force is along z,
as expected from symmetry arguments, given the axial
symmetry of the initial setup and the fact that Hαβ ≡
⋆RαμβνUμUν depends only on Uα. It is clear from the

equation above that one26 of the possible solutions of (C2)
is the most natural result, namely motion along the z-axis,
with the body accelerating in the direction of the force (and

of ~S): ~a ¼ az~ez ⇒ ~S ×U ~a ¼ 0, implying Pα ¼ mUα, and
Fα
G ¼ maα. It is a nonhelical solution (since it is a

straightline), and therefore the description we seek. Hence
we have solved the axial fall problem, and a unique relation
between Pα and Uα was naturally established (for this
solution) in the course of the analysis.
Now let us compare with the equivalent descriptions for

this problem given by other spin conditions. For a generic
field uα with ~u not lying along the z-axis, we no longer have
axial symmetry, therefore we should not expect to obtain a
centroid moving in straightline along the axis; what we
expect, in general, is a different (possibly exotic) but
equivalent description of the same physical motion, using
a different representative worldline. The problem, however,
is how to prescribe its initial conditions. If one naively sets
up an initial position zαin ¼ xαCMðuÞjin lying on the z-axis,

and then ~P or ~U [there is an ambiguity on this choice, as
they are not parallel in general, cf. Eq. (29)] also along the
z-axis, the solution in general will not be an axial fall; in
fact, it will not even be a different description for it, but a
different physical motion.
So first we must establish how we make sure that we are

dealing with the same particle. A pole-dipole particle is
characterized by its two moments: Pα and Sαβ. These are
defined with respect to a reference worldline zαðτÞ and a
hypersurface of integration Σðτ; uÞ, cf. Eqs. (4) and (5);
different representations of the same particle must yield the
samemoments with respect to the same point andΣðτ; uÞ. To
dipoleorder,Pα is independentof thespincondition(see [33]),
butSαβ ≡ SαβðzÞ depends on it. LetSαβ and S̄αβ be the angular
momentum taken about, respectively, the centroids zα ¼
xαCMðuÞ and z̄α ¼ xαCMðūÞ; i.e., Sαβuβ ¼ 0, and S̄αβūβ ¼ 0,

cf. Sec. II A. The integral expressions for Sα̂ β̂ and S̄α̂ β̂, in
normal coordinates fxα̂g originating at zα, aregiven, to dipole
order,27 by Eq. (5) (in the case of S̄α̂ β̂, replacing therein xα̂ by
xα̂ − z̄α̂, so that it is taken about the point z̄α̂). We obtain

26Other solutions are possible, because the set of initial
conditions fzα; Sαβ; Uα; mgjin is not sufficient to uniquely specify
a solution under the MP condition, see [33]. Note however that,
sinceUα

in is fixed, such solutions correspond to different values of
Pα
in, therefore they are not representations of the same physical

motion (i.e., those will be “helical” representations but of
different motions).

27This is because both the dependence of Sαβ on the argument
uα of Σ (see [33]), and the nonlinearity, due to the curvature, of
the transformation between normal coordinates originating at zα

and z̄α (denote the latter by fx ~αg), are negligible to dipole order:
x ~α ¼ xα̂ − z̄α̂ þOð‖xα̂ − z̄α̂‖2ΔxÞ, cf. e.g. Eq. (11.12) of [120];
hence, in the computation of S̄αβ, one can use x ~α ≃ xα̂ − z̄α̂, as the
correction is of order Oða4Þ, whereas to dipole order only terms
of OðaÞ are kept (a≡ size of the body).
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S̄α̂ β̂ ¼ Sα̂ β̂ þ 2P½α̂Δxβ̂�; ðC3Þ
where Δxα̂ ¼ z̄α̂ − zα̂ ¼ z̄α̂; this is similar to the flat
spacetime transformation (e.g. [21,23]). Hence, to obtain
a solution corresponding to the same physical motion
above, we must prescribe the same momentum
~P ¼ Pz~ez, and correct the spin tensor and initial position
of the centroid using Eq. (C3). As can be seen contracting
(C3) with ūβ̂ (taking uα ¼ Uα), the condition S̄αβūβ ¼ 0

yields, in general, a centroid z̄α ¼ xαCMðūÞ at a different
point compared to the MP centroid zα ¼ xαCMðUÞ, not on
the z-axis, manifesting that the problem is no longer
axisymmetric. Since, in general, Uα∦Pα, cf. Eq. (29),
the centroid z̄α does not even move parallel to the axis.
Writing S̄αβ ¼ ϵαβμνS̄μūν, where S̄α denotes the new spin
vector, the force now reads

DPα

dτ
¼ −

1

2
Rα

μνλUμS̄νλ ¼ −⋆Rστα
μUμūτS̄σ; ðC4Þ

which depends both onUα and ūα, and, in general, will also
not be parallel to the axis. This clearly leads to a more
complicated description of the same problem.
The case of the Tulczyjew-Dixon (TD) condition,

ūα ¼ Pα=M, exemplifies some of these difficulties. First,
we face the complicated equation relating Pα and Uα

[19,108,121,122],

Uα ¼ m
M2

�
Pα þ 2S̄ανRντκλS̄κλPτ

4M2 þ RαβγδS̄αβS̄γδ

�
; ðC5Þ

which in general are not parallel; and to obtain the force,
given by Eq. (C4), one needs to know both (not just Uα, as
with the MP condition). Based only on these equations, it
would not be clear that an axial fall (of the physical body) is
possible, what kind of solution represents it in this gauge,
and how to set up its initial conditions. Using the knowl-
edge of the MP solution (which is an axial fall), we know
that, for this problem, ~P is parallel to ~ez; then, tentatively
setting S̄ ¼ S̄0e0 þ S̄zez, and z̄α along the z-axis, it can
eventually be shown from (C5) (see e.g. [123]) that, for
such a setup, Pα ¼ mUα, and therefore the solution
coincides with the one obtained using the MP condition.
We thus end up (in this case) with the same solution, but
taking a more complicated route.
In Sec. III B 3 we concluded that in the equatorial plane

of Kerr-dS, for suitable r and ~v, spinning particles move in
prograde circular geodesics; we were able to do it only
because we used the MP condition. With this condition, the
force is given by a contraction ofHαβ with Sα, cf. Eq. (I.1b).
From the curvature invariants, we deduced that in the
equatorial plane there is a velocity field for which Hαβ ¼ 0,
Eq. (60); for certain r ¼ rgeo [solution of Eq. (66)], it
matches the velocity of a circular geodesic. Along such a
circle, the equation of motion reduces to

DPα

dτ
¼ 0 ⇔ maα − ϵαβγδUδ DðSβaγÞ

dτ
¼ 0; ðC6Þ

admitting aα ¼ 0 as trivial solution (obviously a nonhelical
one); the spinning particle will thus move along the circular
geodesic. We would not be able to reach this conclusion
using other spin conditions: for ūα ≠ Uα, the force is no
longer governed by the magnetic part of the Riemann tensor
Hαβ [but instead by a tensor Hαβ ¼ ⋆RαμβνūμUν involving
both ūβ and Uβ, cf. Eq. (C4)], and therefore a similar
analysis in terms of curvature invariants is not possible. In
particular, in the framework of the TD condition
ūα ¼ Pα=M, we doubt that it would ever be possible to
notice this effect using the system formed by Eqs. (C4) and
(12), coupled with the momentum-velocity relation (C5).
As for the application in Sec. III A, the motion in the

Schwarzschild spacetime of a particle with radial initial
velocity, first notice that, for a particle with generic spin
Sα, the problem does not have spherical symmetry
[regardless of the spin condition; indeed, a force orthogo-
nal to ~er arises in the analogous electromagnetic setup,
cf. Eq. (52)]. Using the MP condition, setting ~U ¼ Ur~er,
we have, cf. Eqs. (50), Hαβ ¼ 0 ⇒ DPα=dτ ¼ 0. Hence
we have (C6) as the equation of motion, with trivial
solution aα ¼ 0 ⇒ Pα ¼ mUα, i.e., the gyroscope moves
along a radial geodesic. In the case of the TD condition,
again we face the complicated Eqs. (C4) and (C5),
not being transparent what occurs if one sets initially
~Ujin ¼ Ur~er, or if the solution thereby obtained corre-
sponds to the same physical motion above (a radial fall; in
this framework it is not even obvious that it occurs). From
the analysis with the MP condition, we know that, in order
to represent the same problem, ~P ¼ Pz~ez ¼ constant. It is
useful to rewrite Eq. (C5) in terms of tidal tensors,

Uα ¼ m
M2

�
Pα þ ϵαγτδS̄τPδðHPÞσγS̄σ

M2 þ ðFPÞλσS̄λS̄σ

�
; ðC7Þ

where ðHPÞαγ ≡ ⋆RαβγδPβPδ=M2 and ðFPÞαγ ≡
⋆R⋆αβγδPβPδ=M2 are, respectively, the gravitomagnetic
tidal tensor and the “F tensor” [14,124] measured by an
observer of 4-velocity ūα ¼ Pα=M. Noting, from Eq. (50),
that, for radial ~P, ðHPÞαβ ¼ 0, Eq. (C7) yields Pα ¼ mUα,
and Eq. (C4) gives DPα=dτ ¼ 0; i.e., we end up with the
same solution obtained with the MP condition. Other spin
conditions, in general, will lead to DPα=dτ ≠ 0, and
Uα∦Pα (see Figs. 6(c) and 6(d) of [33]), thus more
complicated descriptions for this motion.
In the case of the analogous electromagnetic problem, a

magnetic dipole with initial radial velocity in the Coulomb
field, first we note that, due to the electromagnetic hidden
momentum Pα

hidEM, in general Pα cannot be parallel to Uα.
Furthermore, since Fα

EM ≠ 0 and aα ≠ 0, it is not trivial
to (exactly) prescribe the initial conditions for the MP
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nonhelical solution (which in the previous examples was
ensured by aα ¼ 0). To first order in S, we can impose it by
taking Sαβaβ ≈ 0, see [26]. With the TD condition, we face
again a complicated equation relating Pα with Uα (and
therefore Fα

EM with aα), Eq. (35) of [20]. An interesting
choice for this system is the Corinaldesi-Papapetrou con-
dition [54] S̄αβūβ ¼ 0, where ū ¼ ∂=∂t corresponds to the
static observers. In this case S̄αβDūβ=dτ ¼ 0, thus
Pα
hidI ¼ 0, cf. Eq. (31), leading to Pα ¼ mUα þ Pα

hidEM,
which is the simplest momentum-velocity relation possible
for this problem.
More generally, in arbitrarily curved spacetimes, the

inertial hidden momentum Pα
hidI can always be made to

vanish by choosing a ūα parallel transported along the
reference worldline, cf. Eq. (31). This choice may actually
be cast as a spin supplementary condition [39] (for its
detailed discussion, see [33,39,125]). It is especially
favored for pole-dipole particles in purely gravitational
systems, because it leads to particularly simple equations:
the momentum-velocity relation is simply Pα ¼ mUα, and
S̄αβ is parallel transported, DS̄αβ=dτ ¼ 0, cf. Eq. (12). On
the other hand, in some treatments spin conditions for
which Pα

hid ≠ 0 are preferred; that is the case of the Newton-
Wigner [55,56] condition ūα ∝ Pα=M þ uαlab, where u

α
lab is

the 4-velocity of some “laboratory” observer [58] (it may
thus be cast as a combination of the Tulczyjew-Dixon and
Corinaldesi-Papapetrou conditions). It is of advantage in
some Hamiltonian and effective field theory approaches
[57–63] (see also [126,127]) because it leads to canonical
Dirac brackets (to linear order in the spin, in the case of
curved spacetime [57,61]). The bottom line is that the spin
condition is gauge freedom, and as such one should choose,
in each application, the one that suits it the most. For the
ones in this paper (where we have been exploring exact
analogies that rely on it), it is the MP condition that is of
clear advantage, as explained above.

2. Analogies under other spin conditions

The exact gravitoelectromagnetic analogies studied so
far in this paper were obtained by employing, in the
equations of motion, the Mathisson-Pirani (MP) spin
condition. In this section we will study how the situation
changes by choosing other spin conditions.

a. Analogy based on tidal tensors

For an arbitrary spin condition S̄αβūβ ¼ 0, it is natural to
define, as above, the spin vector S̄μ by S̄αβ ¼ ϵαβμνS̄μūν, in
terms of which the spin-curvature force reads DPα=dτ ¼
−Hγ

αS̄γ, where Hαβ ≡ ⋆RαμβνūμUν, cf. Eq. (C4). Thus the
force is still given by a contraction of a rank 2 tensor Hαβ

with S̄α; this new tensor, however, does not coincide with the
magnetic part of the Riemann tensor ðHuÞαβ ¼ ⋆Rαμβνuμuν

as measured by any observer uα, because it results from a

contraction of ⋆Rαμβν with two different vectors (ūμ andUν).
It does not obey the field equations in Table I, since the trace
and antisymmetric parts of Hαβ no longer yield projections
of the Einstein field equations, nor equations of the type
(I.2b) and (I.3b) of Table I.28 Instead, another analogy can be
drawn here. First note that by choosing, as reference
worldline, the centroid xαCMðūÞ given by the condition
S̄αβūβ ¼ 0, that generates a mass dipole dαG ¼ −S̄αβUβ in
the centroid rest frame, cf. Eq. (13). Decomposing S̄αβ

into its time and space projections relative to the centroid 4-
velocity Uα ¼ dxαCMðūÞ=dτ, we have

S̄αβ ¼ 2d½αGU
β� þ ϵαβμλUλðS̄UÞμ; ðC8Þ

where we used Eq. (4) of [14], and the vector

ðS̄UÞμ ≡ 1

2
ϵμαβγS̄αβUγ ðC9Þ

encodes the components of S̄αβ spatial with respect to Uα,
that is, what one would physically interpret as the classical
angular momentum 3-vector (cf. e.g. [128]) about xαCMðūÞ,
as measured in the centroid frame (i.e., as measured by the
observer of 4-velocity Uα). Substituting Eq. (C8) into the
second member of Eq. (C4) yields

DPα

dτ
¼ −Hβ

αðS̄UÞβ − Eβ
αdβG: ðC10Þ

This resembles the electromagnetic force exerted on a
particle possessing both magnetic and electric dipole mo-
ments (as measured in the centroid frame). Indeed, the
right-hand member of Eq. (C10) is formally analogous to
the second and third terms of Eq. (15); however the last
term of (15) (which is also part of the force on an electric
dipole), has no counterpart in (C10). Since this term is not a
tidal term, it is natural that it has no gravitational counter-
part. An exact analogy exists however between Eq. (C10)
and the canonical electromagnetic force on a particle with
electric and magnetic dipole moments (and zero charge),

DPα
Dix

dτ
¼ Bβ

αμβ þ Eβ
αdβ ðC11Þ

obtained by substituting Eq. (A5) into (A3).
Tulczyjew-Dixon (TD) condition ðūα ¼ Pα=MÞ.—

Noting that Uα ¼ ðPα − Pα
hidÞ=m, we have in this case

28Namely those will not be equations involving only tidal
tensors and sources, by contrast with both their magnetic
counterparts (I.2a) and (I.3a) of Table I, and also with the
gravitoelectric counterparts Eqs. (1.3b) and (1.7b) of Table 1
of [14]. Moreover, the tensorial structure of Hαβ (unlike Hαβ) is
not similar to its gravitoelectric counterpart Eαβ, i.e., it is not
spatial in both indices with respect to the same timelike vector,
nor does it have to be symmetric in vacuum.
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dαG ¼ −S̄αβUβ ¼ S̄αβP
β
hid=m ¼ O, and ðS̄UÞμ ¼ S̄μ þO,

where O is of order OðS2Þ if electromagnetic hidden
momentum is present (Pα

hidEM ≠ 0), or OðS3Þ otherwise.
Therefore, to a good approximation (in particular in a pole-
dipole approximation), Eq. (C10) becomes Fα

G ¼ −Hβ
αS̄β,

and the analogy in Table I holds.
Corinaldesi-Papapetrou (CP) condition (ūα ¼ uαlab).—

This condition was introduced, for the case of
Schwarzschild spacetime, in the noncovariant form
S̄i0 ¼ 0 [54], where it states that the reference worldline
is the centroid as measured by the observers at rest in
Schwarzschild coordinates. It can be generalized [33,39] to
arbitrary coordinate systems in arbitrary spacetimes in the
covariant form S̄αβu

β
lab ¼ 0, where uβlab is the 4-velocity of

the observers at rest in the chosen coordinate system
(the laboratory observers uilab ¼ 0 [20,33]). In this case
dαG¼−S̄αβUβ¼−S̄αβvβðU;ulabÞγðU;ulabÞ, where vβðU; ulabÞ
is the velocity of the centroid relative to the laboratory
observers, cf. decomposition (67). Therefore the second
term of (C10) is of first order in S and cannot in general be
neglected (for instance, in the Schwarzschild spacetime,
the two terms are typically of the same magnitude, see
Sec. 3.4.2 of [33]). So the analogy that holds is between
Eqs. (C10) and (C11) (not the one in Table I, between the
spin curvature and the force on a magnetic dipole).
Newton-Wigner (NW) condition (ūα ∝ uαlab þ Pα=M).—

In this case the reference worldline is chosen as the centroid
xαCMðuNWÞ as measured by observers of 4-velocity
(cf. [57,58,61,125])

uαNW ¼ K

�
uαlab þ

Pα

M

�
; K ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

2ðM þmlabÞ

s
ðC12Þ

(mlab ≡ −uαlabPα), that is, an even-weighted combination of
the 4-velocity of the laboratory and the zero 3-momentum
observers. Due to that, the situation with this spin condition
is essentially similar to with the CP condition; it resembles
more the electromagnetic force on a particle possessing
both electric and magnetic moments (as measured in the
centroid frame), and is closely analogous to the canonical
electromagnetic force on such particle (except that the mass
dipole dαG ¼ −S̄αβUβ is different from the CP one, as S̄αβ is

now a different tensor, obeying S̄αβu
β
NW ¼ 0).

Parallel condition (Dūα=dτ ¼ 0).—This condition
chooses as reference worldline some timelike vector ūα

parallel transported along the reference worldline z̄α. Since
the initial vector ūαin is arbitrary [39], we may choose it as
ūαin ¼ Uα, so that initially one obtains exactly the analogy
in Table I, just like for the MP condition. Since, in general,
the motion is nongeodesic, ūα will progressively diverge
from Uα, so at later instants that analogy will be only
approximate, whilst the analogy between Eqs. (C10)
and (C11) remains exact.

b. Spin precession

The analogy found in Eq. (26) of Sec. II C using the MP
condition holds in an orthonormal frame comoving with the
centroid, for a spin vector Sα which represents the angular
momentum, as measured in the centroid frame, taken about
the centroid xαCMðUÞ measured, again, in is own rest frame.
Other spin conditions S̄αβūβ ¼ 0 correspond to different
angular momentum tensors S̄αβ, taken about the centroids
xαCMðūÞmeasured by the observer of 4-velocity ūα (notUα).
The vector which encodes the angular momentum about
xαCMðūÞ, and as measured in the centroid frame is, as
explained above, ðS̄UÞα, see Eqs. (C8) and (C9). To
compute its evolution equation, one first notes that
ϵαβγδUδDS̄αβ=dτ ¼ 2DðS̄UÞγ=dτ − ϵαβγδaδS̄αβ; then, using
(27) (with Sαβ ¼ S̄αβ) and (C8), we have

DðS̄UÞγ
dτ

¼ ðS̄UÞμaμUγ þ ϵγαβδUδ

�
dβGa

α þ 1

2
ταβ

�
:

In an orthonormal tetrad eα̂ comoving with the centroid,
this equation reads, using (28) (see Sec. II C),

d~̄S
U

dτ
¼ ~̄S

U
× ~Ωþ ~dG × ~Gþ ~μ × ~Bþ ~d × ~E; ðC13Þ

where Gα ¼ −aα is the gravitoelectric field as measured in
the centroid frame, cf Sec. II D. This equation manifests
that, for an arbitrary spin condition, an exact analogy

always exists, with f~̄SU; ~dGg playing a role analogous to

the magnetic and electric dipole moment vectors f~μ; ~dg,
and the inertial fields f ~Ω; ~Gg playing a role analogous to
the electromagnetic fields f~B; ~Eg (all quantities measured
in the centroid frame). As discussed in Sec. II C, if eα̂ is

adapted to a congruence of observers, then ~Ω ¼ ~H=2, and

the analogy deepens. The term ~dG × ~G≡ −~dG × ~a is the
exact version of the “instrumental torque” discussed in
[128]29 in the weak field and slow motion regime. If one

chooses ūα ¼ Uα (MP condition) then ~dG ¼ 0, ~̄S
U ¼ ~S,

and, taking also particles with no electric dipole moment in

the centroid frame (~d ¼ 0), Eq. (C13) reduces to Eq. (26).
Under the TD condition S̄αβPβ ¼ 0 the situation is similar
to a good approximation: as we have seen in Sec. C 2 a, dαG
is of order OðS2Þ if Pα

hidEM ≠ 0, or OðS3Þ otherwise.

29To make the connection with [128], we note that: therein the
CP condition is considered, so dαG ¼ −S̄αβUβ ¼ ϵαγδβUβvδS̄γ
with vγ ≡ vγðU; ulabÞ, reading, in the centroid frame,
~dG ¼ ~̄S × ~v; ~̄S≡ S, ~̄S

U ≡ S0 in their notation; and
~a ¼ ~F=mþOðSÞ.
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Under the CP condition (S̄αβu
β
lab ¼ 0), ~dG is of order

OðSÞ (cf. footnote 29), hence the situation depends on

the type of force applied on the body. If q ¼ ~d ¼ 0,
and only gravitational and electromagnetic forces are

present, ~dG × ~a ∼OðS2Þ, and one recovers, to a good

approximation, the analogy in Eq. (26) (with ~̄S
U
in the

place of ~S). Otherwise, for a generic force (or if q ≠ 0),
~dG × ~a ∼OðSÞ, non-negligible in pole-dipole, nor in
weak-field slow motion approximations [128], thus in
this case it is only the analogy in Eq. (C13) that holds.
With the NW condition, S̄αβu

β
NW ¼ 0, the situation is

very similar, due to the contribution of uαlab to uαNW
in Eq. (C12).

c. Hidden momentum

Under an arbitrary spin condition neither Pα
hidI nor P

α
hidEM

take the forms (33), and there is no longer a close analogy
between the two. For instance, under the parallel condition
Dūα=dτ ¼ 0, one has simply Pα

hidI ¼ 0; moreover Pα
hidEM

[Eq. (32)] takes in general a complicated form, encoding
not only the hidden momentum modeled in e.g. Fig. 9 of
[71] (which is physical), but also a pure gauge part that is
due solely to the choice of centroid, see Sec. 3.5.1 of [33].
An exception is the TD condition, under which Eq. (33) is
still obtained to a good approximation [namely by neglect-
ing terms of order OðS2Þ and OðSdÞ, consistent with a
dipole approximation]; it was actually in such approximate
form that this analogy was first introduced in [20].
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