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We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave
perturbations. This analysis is done in dimension D ¼ 9, which is the lowest dimension that allows the
existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the
Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations
and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative
analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-
order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows
with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the
time of the perturbation is the largest in general relativity and it decreases with the number of curvatures
involved in the Lagrangian.
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I. INTRODUCTION

Gravity in dimensions greater than four has provided an
interesting setup to explore whether or not many of the
properties that black holes have in four dimensions are
intrinsic to these kinds of spacetimes. According to string
theory, which provides a quantum theory containing a
massless, spin-2 field, the introduction of higher dimen-
sions is actually a necessity and in a perturbative approach,
Einstein-Hilbert action acquires corrections with terms that
contain higher powers in the curvature that modify the short
distance dynamic of the theory. Even more, Maldacena’s
conjecture [1], which was stated in the realm of string
theory and applies to the more general setup of gauge/
gravity duality, states that gravity in asymptotically anti–de
Sitter spacetimes in D dimensions is equivalent to a
conformal field theory living in dimension D − 1. These
reasons have led in the last decades to a vast exploration of
gravity in higher dimensions and in particular to the study
of black holes in such scenarios (for a review, see [2]).
A family of configurations that are intrinsic to dimensions

greater than four are the asymptotically flat, homogeneous
black strings in general relativity. Given the fact that the
direct product of Ricci-flat manifolds is still Ricci-flat, one
can add to the line element of the Schwarzschild-Tangherlini
spacetime in d dimensions [3], the line element of a locally
flat space, obtaining black holes with horizon topologies
given by Sd−2 ×Rp in dþ p dimensions, which receive the
name of black strings in the case p ¼ 1 and black p-branes
in general. Without a cosmological constant, there are no

black holes in general relativity in three dimensions (d ¼ 3);
therefore the black p-brane solutions exist only in dimen-
sions greater than or equal to five, and they have to be added
to the now vast zoo of solutions of gravity in vacuum in
higher dimensions that contains black rings [4], black
Saturns [5], and other configurations. Since these extended
black objects do Hawking radiate, it is natural to compare
their entropy to determine which of the phases of gravity in
higher dimensions dominates for a given mass. This com-
parison shows that there is a critical mass above which the
black strings have more entropy than the corresponding
spherical black hole and below which the black hole is
the one possessing a larger entropy [6]. This led Gregory
and Laflamme to look for the existence of a perturbative
instability of the black strings [6]. They showed that indeed,
these configurations are linearly unstable against long
wavelength perturbations traveling along the black strings
and p-branes.1 Since this is a linearized, perturbative
instability, no dynamical information can be extracted from
the analysis to state which is the final stage configuration. In
order to form a set of black holes from the black string the
event horizon must pinch off, giving access to an external
observer, to the singularity. Horowitz andMaeda [7] proved
that such a pinch off cannot occur in a finite affine parameter
along the horizon generator and therefore conjecture the
existence of nonhomogeneous black strings as possible end
points of the Gregory-Laflamme instability. These configu-
rations were constructed perturbatively [8] and numerically
[9], but all of those happen to have less entropy than the
homogeneous black string, and therefore cannot be the
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1These unstable modes disappear if one compactifies the
extended direction to a size smaller than the minimum wave-
length that triggers the instability, but it reappears as soon as one
reduces the mass of the black hole in the transverse section.

PHYSICAL REVIEW D 93, 104005 (2016)

2470-0010=2016=93(10)=104005(10) 104005-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.104005
http://dx.doi.org/10.1103/PhysRevD.93.104005
http://dx.doi.org/10.1103/PhysRevD.93.104005
http://dx.doi.org/10.1103/PhysRevD.93.104005


end point of the instability. For weakly nonhomogeneous
solutions it was shown that there is a critical dimension
D� ¼ 13 below which the homogeneous string carries more
entropy and above which the nonhomogeneous one has a
larger entropy [10] (later it was shown that by boosting the
black string one can modify this critical dimension [11]).
The question of the final stage of the Gregory-Laflamme
(GL) instability was open, until the series of works [12,13],
which culminate in the work by Lehner and Pretorius [14].
After an outstanding numerical effort, these works showed
that the perturbed five-dimensional black string evolve
towards a set of spherical black holes connected by black
strings and even more, for a finite time for an asymptotic
observer, the radius of the cylinders may shrink to zero and
the system may than develop a null naked singularity,
providing a counterexample to cosmic censorship in five
dimensions without fine-tuning on the initial data.2 No
further study of the final point of theGL instability was done
in a different setup until recently, when the large D
expansion [16] was used to show that, at leading order in
1=D, the black string instability leads to a nonhomogeneous
black string as a final stage [17], which is consistent with the
existence of a finite critical dimension D�.
One expects that when the radius of the horizon

decreases enough, higher curvature terms might play a
role in the evolution of the perturbation and therefore it
would be interesting to explore the effect of higher
curvature terms in the existence and evolution of black
strings. From all the possible higher curvature terms, there
is a particular family that is singled out by requiring
second-order field equations as well as diffeomorphism
invariance. These terms are known as Lovelock terms [18]
and are labeled by the order n of the curvature. The
cosmological and the Einstein-Hilbert terms are the first
two in the Lovelock family and correspond to n ¼ 0 and
n ¼ 1, respectively. The first nontrivial member of the
Lovelock family is quadratic in the curvature (n ¼ 2), is
known as the Gauss-Bonnet term, and it contributes to the
field equations only in dimensions D ≥ 5. Something
similar occurs for the remaining terms of order n, which
produce nontrivial field equations only for dimension
D ≥ 2nþ 1. Since these terms have second-order field
equations, they are devoid of Ostrogradsky instabilities,
and therefore it is natural to explore their effect on the
perturbative black string instability even in regimes
where they may completely dominate the dynamics. In
the Gauss-Bonnet case different aspects of this problem
have been studied. Approximate black string solutions were
constructed numerically in [19–23]. In particular in [20]
weakly nonhomogeneous, static black strings were con-
structed for Einstein-Gauss-Bonnet theory and the authors
provided evidence for the relation between perturbative

and thermal instability in this scenario.3 For the theory
containing only the Gauss-Bonnet term, one can construct
black strings and p-branes by simply adding flat directions
to the black holes found in [24]. This was done simulta-
neously in Refs. [25] and [26] where it was shown as well
that by comparing entropies one must expect a GL
instability for the black strings and p-branes of sufficiently
low ADM mass. Since perturbation theory in higher
curvature gravity presents subtleties (see, for example,
[27–33] for studies of black hole perturbations), the
perturbative search for the GL instability of the solutions
constructed in [25–26] has been only recently carried out in
[34]. There, it was shown that the black string in Gauss-
Bonnet theory (no Einstein term), in seven dimensions, was
unstable under s-wave modes and that the instability is
present above a certain critical wavelength, in a similar
fashion to general relativity.
Less is known for third-order Lovelock theory.4 The

spherically symmetric black hole solution can be extracted
from Wheeler’s polynomial in [36], which turns out to be
the unique spherically symmetric solution for generic
values of the coupling constants as shown by Birkhoff’s
theorem [37]. Some early papers also explored the com-
pactifications of the cubic Lovelock terms [38,39], as well
as some more recent papers constructing wormholes
[40,41] or exploring the thermodynamics of asymptotically
AdS solutions in vacuum or with different types of matter
fields [42] (see also [43] for a thorough analysis of
Wheeler’s polynomial and some holographic considera-
tions of third-order Lovelock theories).
The existence of a perturbative black string instability for

third-order Lovelock gravity has not been explored at all, and
it is the purpose of this paper to partially contribute to that
gap.Asmentioned above, in order to construct homogeneous
black strings by simply adding a line to a given black hole,
one can consider the Lovelock terms separately. To simplify
the problem we consider the third-order Lovelock theory in
nine dimensions, which is the lowest dimension inwhich this
can be done for n ¼ 3. The analysis of [25–26] provided an
entropic argument for the instability of black strings with
mass below a certain critical mass, and here we show that
such black strings are indeed perturbatively unstable against
long wavelength perturbations and that the dispersion
relation for the instability is qualitatively similar to the
Gregory-Laflamme instability in general relativity. Even
more, for a given black hole radius in the transverse section
of the black string, we compare the maximum exponential
growths and the critical wavelengths of the instabilities of the
solutions of general relativity, Gauss-Bonnet, and third-order

2See [15] for a recent similar analysis and result in the case of
the black ring.

3The existence of a possible critical dimension for the
transition between these configurations and the homogeneous
black strings, along the lines of the work by Sorkin [10], is still an
open problem.

4See [35] for a recent analysis on the effects on boosted black
strings coming from fourth-order corrections in M theory.
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Lovelock theory in nine dimensions. We find that the
maximum critical wave number at which the instability is
triggered decreases with the order of the Lovelock theory as
well as the maximum exponential growth. This comparison
is done for a fixed radius of the horizon instead than for a
fixed mass since the former is a geometric quantity that can
be defined independently of the dynamics that governs
gravity and is therefore suitable for comparing “decay”
processes in different theories.
Section II is devoted to the presentation of third-order

Lovelock theory, its black holes and the black strings, as
well as some considerations on the thermodynamics.
In Sec. III we present the perturbative analysis for an

s-wave on the nine-dimensional black string for third-order
Lovelock theory, and show that the string is unstable under
longwavelength perturbations. Using some scalar invariants,
we show as well that the unstable modes are physical and
cannot be removed by gauge transformations. In Sec. IV we
provide a comparative analysis of the dispersion relations for
the instabilities of the black strings of Einstein, Gauss-
Bonnet, and third-order Lovelock theory in nine dimensions.
Section VI is devoted to some comments and conclusions.

II. LOVELOCK THEORIES

Lovelock gravity is the most general theory in
higher dimensions (compatible with conservation of the

stress-tensor) that leads to second-order field equations.
The action of this theory is a sum of ½D=2� terms of the form

IðnÞ ¼
1

2κ2D

Z
dDx

ffiffiffiffiffiffi
−g

p
αnLðnÞ; ð1Þ

where κD and αn are arbitrary constants which represent the
coupling of the terms in the Lagrangian density given by

LðnÞ ¼
1

2n
δμ1…μnν1…νn
ρ1…ρnσ1…σnRμ1ν1

ρ1σ1…Rμnνn
ρnσn : ð2Þ

From this, we can see that the first terms in LðnÞ correspond
to the

(i) Cosmological term

Lð0Þ ¼ 1;

(ii) Einstein-Hilbert term

Lð1Þ ¼ R;

(iii) Gauss-Bonnet term

Lð2Þ ¼ R2 − 4RμνRμν þ RμνρλRμνρλ;

(iv) Third-order Lovelock term

Lð3Þ ¼ R3 − 12RRμνRμν þ 16RμνRμ
ρRνρ þ 24RμνRρσRμρνσ þ 3RRμνρσRμνρσ

− 24RμνRμ
ρσκRνρσκ þ 4RμνρσRμνηξRρσ

ηξ − 8RμρνσRμ
η
ν
ξR

ρησξ:

The field equations for an arbitrary linear combination of the terms IðnÞ are

Eμν ¼
X½D=2�

n¼0

αðnÞE
ðnÞ
μν ¼ 0; ð3Þ

where

EμðnÞ
ν ¼ −

1

2nþ1
δμη1…ηnξ1…ξn
νρ1…ρnσ1…σnRη1ξ1

ρ1σ1…Rηnξn
ρnσn : ð4Þ

Again, we have that the first terms in (4) are

Eð0Þ
μν ¼ −

1

2
gμν;

Eð1Þ
μν ¼ Rμν −

1

2
Rgμν;

Eð2Þ
μν ¼ 2ðRRμν − 2RμρRρ

ν − 2RρσRμρνσ þ Rμ
ρσγRνρσγÞ −

1

2
gμνLð2Þ;

Eð3Þ
μν ¼ 3ðR2Rμν − 4RRρμRρ

ν − 4RρσRρσRμν þ 8RρσRρμRσν − 4RRρσRρμσν

þ 8RρκRσ
κRρμσν − 16RρσRκðμRjκσρjνÞ þ 2RRρσκ

μRρσκν þ RμνRρσκηRρσκη

− 8RρðμRσκηjρjRjσκηjνÞ − 4RρσRκη
ρμRκησν þ 8RρσRρκσηRκμην − 8RρσRρκη

μRσ
κην

þ 4RρσκηRρσξμRκη
ξ
ν − 8RρκσηRξ

ρσμRξκην − 4Rρσκ
ηRρσκξRη

μ
ξ
νÞ −

1

2
gμνLð3Þ:
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In what follows, we will consider theories with only
one term in the action, namely, pure Lovelock theories,
with n ≥ 1, since in those theories it is possible to
construct homogeneous black strings and black p-branes
analytically [26].

A. Black hole solutions in pure Lovelock theories

According to [24], the spherically symmetric black hole
solutions of Lovelock theories in d dimensions with only
the nth-order term in the action are of the form

ds2BH ¼ −
�
1 −

�
rþ
r

�d−2n−1
n

�
dt2 þ dr2

1 − ðrþr Þ
d−2n−1

n

þ r2dΩ2
d−2;

ð5Þ
where dΩ2

d−2 is the line element of a (d − 2)-sphere and rþ
corresponds to the radius of the event horizon which is
related to the mass m of the black hole by

rd−2n−1þ ¼ 2mκ2dðd − 2n − 1Þ!
αnΩd−2ðd − 2Þðd − 3Þ! : ð6Þ

Below we will be interested in analyzing the evolution of
perturbations on black strings that are obtained by oxidat-
ing these black holes. Given the fact that a t ¼ const surface
intersects the horizon at the bifurcation surface rather than
at the future horizon it is useful to consider Kruskal-like
coordinates, where the T ¼ const surfaces do indeed
intersect the future horizon, which will allow us to properly
define the evolution of the perturbation. Near to the
horizon, the generalized tortoise coordinate r� for this
family of black holes has the form

r� ∼
nrþ

d − 2n − 1
ln ðr − rþÞ: ð7Þ

Then we define the Kruskal null coordinates as

U ¼ − exp

�
−
d − 2n − 1

2nrþ
ðt − r�Þ

�
;

V ¼ exp
�
d − 2n − 1

2nrþ
ðtþ r�Þ

�
:

And finally, we set

R ¼ V − U; T ¼ V þ U:

In terms of these coordinates, the metric (5) is regular at the
horizon, taking the form

ds2BH ∼ f0ðrþÞ
�

nrþ
d − 2n − 1

�
2

ð−dT2 þ dR2Þ þ r2dΩ2
d−2;

ð8Þ

and we call (T, R) the generalized Kruskal coordinates for
this solution.

B. Homogeneous black string solutions

It is known that is possible to construct homogeneous
black string and p-brane solutions in pure Lovelock
theories with D ¼ dþ p, starting with the black hole
solutions given by (5), making

ds2 ¼ ds2BH þ
Xp
i¼1

dx2i ;

where the second term corresponds to a flat metric. In
particular, for p ¼ 1 we have the black string solution.

C. Comparing entropies

The entropies of the D-dimensional black hole and the
(compactified) black string, in terms of the mass, have the
following behavior:

SBH ∼m
D−2n

D−2n−1; ð9Þ

SBS ∼m
D−2n−1
D−2n−2: ð10Þ

Then, given a theory we see that these entropies cross
at a given critical mass mc. For masses below mc, the black
hole solution is thermally favored. The existence of the
transition between the thermally favored solutions must
be attached to a perturbative instability, according to the
Gubser-Mitra conjecture [44].

D. The s-wave perturbation

As mentioned in the Introduction, the black strings in
general relativity and Gauss-Bonnet theory, [6] and [34],
respectively, were proved to be unstable. In particular, the
unstable mode in both cases corresponds to an s-wave
mode, and therefore, inspired by this, we will consider the
same family of perturbations in third-order Lovelock
theories. Such a perturbation is defined by

HμνðxαÞ ¼ eΩtþikzhμνðrÞ; ð11Þ
where

hμνðrÞ ¼

0
BBBBB@

httðrÞ htrðrÞ 0 0

htrðrÞ hrrðrÞ 0 0

0 0 hðrÞσðSd−2Þ 0

0 0 0 0

1
CCCCCA
:

In the next section we will show that the black strings for
third-order Lovelock theory in nine dimensions are unsta-
ble under (11).

III. BLACK STRINGS IN THIRD-ORDER
LOVELOCK THEORIES ARE UNSTABLE

We consider a homogeneous black string in D ¼ 9, the
minimum dimension in which it is possible to construct this
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kind of solution in third-order Lovelock theory, and it is
obtained from the oxidation of a black hole in d ¼ 8
where the gravitational potential is fðrÞ ¼ 1 − ðrþr Þ1=3. For

convenience, we use a new radial coordinate p ¼
1 − ðrþr Þ1=3 which maps the region outside the horizon r ∈
½rþ;þ∞½ to p ∈ ½0; 1½. In terms of p the metric looks like

ds2 ¼ −pdt2 þ 9r6þ
pð1 − pÞ8 dp

2 þ r6þ
ð1 − pÞ6 dΩ

2
ð6Þ þ dz2: ð12Þ

A. Linearized field equations

From the linearized field equations of the perturbed metric we obtain the following expressions for the components htt,
hpp, and h of hμν only in terms of htp,

httðpÞ ¼
1

9

p2ðp − 1Þ8
Ωr2þ

dhtp
dp

þ 1

9

pðp − 1Þ8
Ωr2þ

htp;

hppðpÞ ¼ −
p
Ω
d2htp
dp2

− 2
5p − 1

Ωðp − 1Þ
dhtp
dp

þ ð−8p8 þ 56p7 − 168p6 þ 280p5 − 280p4 þ 168p3 − 56p2 þ 2½3k2r2þ þ 4�pþ 9Ω2r2þÞ
pðp − 1Þ8Ω htp;

hðpÞ ¼ p2ðp − 1Þ2
12Ω

d2htp
dp2

þ pðp − 1Þð11p − 3Þ
12Ω

dhtp
dp

þ 1

12ðp − 1Þ6Ω ð9p8 − 64p7 þ 196p6

− 336p5 þ 350p4 − 224p3 þ 84p2 − 2½3k2r2þ þ 8�p − 9Ω2r2þ þ 1Þhtp;

and where the htpðpÞ component satisfies the following second-order master equation,

AðpÞ d
2htp
dp2

ðpÞ þ BðpÞ dhtp
dp

ðpÞ þ CðpÞhtpðpÞ ¼ 0; ð13Þ

with

AðpÞ ¼ p2ðp − 1Þ8ðp8 − 8p7 þ 28p6 − 56p5 þ 70p4 − 56p3 þ 28p2 − 8½3k2r2þ þ 1�p − 36Ω2r2þ þ 1Þ;
BðpÞ ¼ 3pðp − 1Þ7ðp9 þ 36Ω2r2þ − 9p8 þ 36p7 − 84p6 þ 126p5 − 126p4 þ 84p3 − 4½20k2r2þ þ 9�p2

− ½132Ω2r2þ − 16k2r2þ − 9�p − 1Þ;
CðpÞ ¼ p16 − 16p15 þ 120p14 − 560p13 þ 1820p12 − 4368p11 þ 8008p10 − 2½57k2r2þ þ 5720�p9

þ 9½88k2r2þ − 53Ω2r2þ þ 1430�p8 þ 8½423Ω2r2þ − 294k2r2þ − 1430�p7

þ 28½138k2r2þ − 369Ω2r2þ þ 286�p6 þ 84½210Ω2r2þ − 45k2r2þ − 52�p5

þ 14½156k2r2þ − 1305Ω2r2þ þ 130�p4 þ 56½207Ω2r2þ − 12k2r2þ − 10�p3

þ 12½6k2r2þ − 357Ω2r2þ þ 12k4r4þ þ 10�p2 þ 2½216Ω2k2r4þ þ 396Ω2r2þ þ 3k2r2þ − 8�p
þ 324Ω4r4þ − 45Ω2r2þ þ 1:

Because an analytical solution of the master equation cannot be obtained, it is necessary first to analyze the asymptotic
behavior of its solutions. Since Eq. (13) is a second-order equation, there are two possible asymptotic behaviors near the
horizon (p ¼ 0 or r ¼ rþ), and with hindsight, the one that leads to a normalizable mode is given by

htp ¼ p3m3Ω−1ð1þOðpÞÞ ∼ ðr − rþÞ3m2Ω−1; ð14aÞ

htt ¼
1

3m3
p3m3Ωð1þOðpÞÞ ∼ ðr − rþÞ3m2Ω; ð14bÞ
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hpp ¼ 3m3p3m3Ω−2ð1þOðpÞÞ ∼ ðr − rþÞ3m2Ω−2; ð14cÞ

h ¼ −
m3

2Ω
ðk2m3 þ 4Ωþ 12Ω2m3Þp3m3Ω

× ð1þOðpÞÞ ∼ ðr − rþÞ3m2Ω: ð14dÞ

As in general relativity [6] and Gauss-Bonnet theory [34],
the two possible behaviors at infinity are given by an
exponential function of the radial coordinate. For a given
wavelength of the perturbation along the extended direc-
tion, λ ¼ k−1, we have to look for the values ofΩ that allow
us to smoothly connect the asymptotic behavior (14a) with
an exponential decay at infinity. If it is possible to do so for
some positive values of Ω, we will say that the black string
is unstable. Figure 1 shows that this is indeed the case. The
details of the method and convergence considerations used
to obtain these results are given in Appendix A.

B. Regularity conditions and gauge considerations

FromFig. 1, it can be seen that the allowed values ofΩ are
such that htp diverges at the horizon [see Eq. (14a)]. This
happens as well for black strings in general relativity, and it
led the authors of [45] to state that there are no normalizable
unstable modes in the case of an s-wave perturbation.
Nevertheless, as explained in detail in [46] (see also
Chapter 2 of [2]), given the fact that Schwarzschild
coordinates do not cover the future horizon, it is necessary
to write the perturbation in Kruskal coordinates, (T, R).
Using the equations provided in Sec. II A, one can show that

hTR ∼ ðT − RÞ3m3Ω:

Since the future horizon is located at the surface R ¼ T
with T > 0, we have proved that the unstable modes (with
Ω > 0) are indeed finite on the domain of outer commu-
nications including the future horizon. The same occurs for
the components hRRðT; RÞ, hTTðT; RÞ, and hðT; RÞ.
It is interesting to see that the previous analysis has

been done without imposing any gauge-fixing condition.

Therefore, it is necessary to analyze whether or not the
unstable modes we have found are physical. As was done
for black strings in Gauss-Bonnet in seven dimensions [34],
this can be done easily by considering the following scalar
invariant:

I ¼ 709RμνλρRλρ
στRστμν þ 890Rμν

λρRλσ
ντRρτ

μσ: ð15Þ

This scalar identically vanishes on the unperturbed black
string (12). Nevertheless (15) is on-shell nonvanishing, on
the perturbed black string5 for k > 0. Therefore we have
proved that black strings in third-order Lovelock theories
are unstable under long wavelength perturbations.

IV. COMPARING THE BLACK STRING
INSTABILITIES IN DIFFERENT THEORIES

We have proved that for the first three homogeneous
terms on Lovelock theories, it is possible to construct
homogeneous black strings that are unstable under
gravitational perturbations on each theory. Given the
wavelength of the perturbation as well as the rate of
the exponential growth of the corresponding instability,
for a given radius of the black hole in the transverse
section of the string, one could wonder if it is possible to
determine which is the dynamics that drove the instability.
Such comparison makes sense only if kinematical quan-
tities are involved, since the strength of the gravitational
interaction on each theory depends on the value of the
gravitational coupling, which might be different in each
case. The radius of the horizon, being a purely geometrical
quantity, provides us with a good parameter to perform
the mentioned comparison. Now we present some
details of the computations that allow one to determine
which gravity theory destabilizes a black string of radius
rþ ¼ 1 faster.
In order to fix the ideas, let us again consider a black

string in D ¼ 9, for n ¼ 1, 2, and 3, i.e., for pure Einstein,
Gauss-Bonnet, and third-order Lovelock theory, respec-
tively. As mentioned above, the line elements for the
unperturbed black strings can be obtained by oxidating
the black holes given in Eq. (5). If we focus on the s-wave
perturbations defined by (11), one can find a master
equation that, of course, takes the following form,

AnðrÞ
d2hðnÞtr

dr2
þ BnðrÞ

dhðnÞtr

dr
þ CnðrÞhðnÞtr ¼ 0; ð16Þ

for n ¼ 1, 2, 3. The explicit expressions for each of the
functions are given in Appendix B. Here r is the
Schwarzschild areal coordinate. Equation (16), at infinity,
admits two possible asymptotic behaviors, one of which
might provide a normalizable mode, since it decays

FIG. 1. Unstable modes of the black string in third-order
Lovelock theory in D ¼ 9.

5See [47] for a similar argument on nondiffeomorphic Einstein
metrics on groups manifolds and coset spaces.
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exponentially. Near the horizon the asymptotic behaviors
allowed by Eq. (16) are given by6

hð1Þtr ∼ ðr − rþÞ−1�1
5
Ωrþ ;

hð2Þtr ∼ ðr − rþÞ−1�2
3
Ωrþ ;

hð3Þtr ∼ ðr − rþÞ−1�3Ωrþ : ð17Þ
In an analogous manner to what we have discussed in the
previous section, it can be shown that the “plus” branch
on each case provides a normalizable, unstable (Ω > 0),
physical mode, provided one deals with the perturbation
using the Kruskal coordinates presented in Sec. II A.
Figure 2 shows the unstable modes for a fixed radius
simultaneously on the three different Lovelock theories that
allow homogeneous black strings in D ¼ 9.
From the picture we can see that the minimum, critical

wavelength that triggers the Gregory-Laflamme instability

λðnÞc grows with the power of the curvature involved on each
theory. Therefore, for a fixed radius of the black hole in
the transverse section of the string, if we compactify the

z direction to a scale R0 ≲ λð1Þc , no unstable, s-wave mode
will be allowed. Then, if we start increasing R0 the black
strings of general relativity become unstable first. then the

ones in Gauss-Bonnet theory become unstable for R0 ≳ λð2Þc ,
and finally the black strings of third-order Lovelock theory

become unstable for R0 ≳ λð3Þc . The maximum exponential
growth of the instability is obtained in general relativity, and
it decreases with the order of the Lovelock theory.

V. CONCLUSIONS

We have shown that the homogeneous black strings of
third-order Lovelock theory in D ¼ 9 are unstable for long

wavelength perturbations traveling along the string. We
have also provided a comparative analysis of the insta-
bilities of homogeneous black strings in general relativity,
Gauss-Bonnet, and third-order Lovelock theories. By
performing such comparison we have also proved that
Gauss-Bonnet black strings in D ¼ 9 are unstable, extend-
ing our previous result obtained in D ¼ 7 in [34]. It would
be interesting to explore, in an approximate or numerical
solution for an arbitrary linear combination of the three
terms, how the dynamics of the perturbations of black
strings are affected at different scales. These scales will
be defined by the dimensionful coupling constants α3, α2,
and α1. This would be important as well on the nonlinear
evolution of the perturbations, since, as shown in [14] in
GR in D ¼ 5, the nonlinear evolution of a perturbation
on a black string leads to a self-similar structure of black
holes connected by thinner black strings, which ends on
the formation of a null naked singularity. It is expected
that higher curvature terms might play a role before the
formation of such a singularity, which must occur before
any effect of the backreaction of Hawking radiation plays
some role.
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APPENDIX A: NUMERICAL METHOD AND
CONVERGENCE

To obtain the modes that fulfil the master equations for
the perturbations, we have used a power series solution.
The method consists of imposing a solution that is a power
series truncated to a given order N around the horizon
(which is a singular point of the master equation).
Increasing the order N one should obtain a better approxi-
mation of the full solution. When N → ∞ the power series
will certainly converge to the full solution at a given point
r ¼ r0 if there are no other singular points on the complex
plane in the ball centered at r ¼ rþ and with radius
jr0 − rþj. It is useful to work with coordinates x that
map the range r ∈ ½rþ;∞½ to x ∈ ½0; 1½. Then we proceed
as follows: Fix a value for the momentum of the perturba-
tion, k ¼ k1. Compute the power series solution around the
horizon (x ¼ 0) to a given order N. Evaluate the power
series solution at x ¼ 1, set it to zero, and find the real
solutions of Ω. Repeat these steps with the same value of k
but now truncating the series at order N þ 1 and stop the
procedure after at least four significant figures of the

FIG. 2. Comparing unstable black strings for a given radius on
Einstein, Gauss-Bonnet, and Lovelock theories.

6Note that the factors that multiply Ωrþ in each case
correspond to the inverse power of the decay in the gravitational
potential of the black hole solution in the transverse section of the
black strings.
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obtained value of Ω are stabilized. Figures 3 and 4 provide
evidence for the convergence of the process for k ¼ 0.1 and
k ¼ 0.5, respectively, in the third-order Lovelock theories.
It can be seen that convergency is achieved more slowly

for smaller values of k.

APPENDIX B: MASTER EQUATION IN
DIFFERENT THEORIES

The explicit expressions for each of the functions in (16)
are given by

(i) General relativity

A1 ¼ r2ðr5 − r5þÞ2ð−4½Ω2 þ k2�r12 þ 4k2r5þr7 þ 25r10þ Þ;
B1 ¼ rðr5 − r5þÞð24½Ω2 þ k2�r17 þ 4½9Ω2 − 2k2�r5þr12 − 16k2r10þ r7 − 450r10þ r5 þ 75r15þ Þ;
C1 ¼ −ð4½Ω2 þ k2�2r24 þ 24½Ω2 þ k2�r22 − ½8Ω2 þ k2�k2r5þr19 − 4½12Ω2 þ 23k2�r5þr17

þ 4k2r10þ r14 þ ½−101Ω2 þ 137k2�r10þ r12 þ 1650r10þ r10 − 69k2r15þ r7 − 1050r15þ r5 þ 25r20þ Þ:

(ii) Gauss-Bonnet theory

A2 ¼−16rð−2½5k2þ 8Ω2�r11− 2½15k2þ 8Ω2�r3þr8þ 9r3þr6þ 9r6þr3þ 2½16Ω2þ 15k2�r32þr192 þ 10k2r
9
2þr

13
2 − 18r

9
2þr

9
2Þ;

B2 ¼ 8rð10½Ω2þ 5k2�r10− 2½32Ω2− 15k2�r3þr7 − 135r3þr5− 54r6þr2 −2½8Ω2þ 45k2�r32þr172 þ 10k2r
9
2þr

11
2 þ 189r

9
2þr

7
2Þ;

C2 ¼ 2rð−2½8Ω2þ 5k2�2r11− 40½5k2þΩ2�r9− 50k4r3þr8þ 5½8Ω2 − 177k2�r3þr6− 720r3þr4− 72r6þr

þ 20½8Ω2þ 5k2�k2r32þr192 þ 80½9k2þ 8Ω2�r32þr152 þ 365k2r
9
2þr

9
2 þ 630r

9
2þr

5
2Þ:

(iii) Third-order Lovelock theory

A3 ¼ −972½Ω2 þ 2k2�r143þr6 þ 27r
14
3þr4 − 324½3Ω2 þ 2k2�r4þk2r203 þ 1944½Ω2 þ k2�r133þr193

þ 648r5þk2r
17
3 − 54r5þr

11
3 þ 27r

16
3þr

10
3 ;

B3 ¼ −108½16k2r144þ þ 3Ω2r
14
3þ�r5 þ 108r

14
3þr3 − 432½3Ω2 þ 2k2�r4þk2r173 þ 540½3Ω2

þ 4k2�r133þr163 þ 432r5þk2r
14
3 − 189r5þr

8
3 þ 81r

16
3þr

7
3;

C3 ¼ 3ð144k4r143þr6 þ 3½338k2 þ 129Ω2�r143þr4 þ 20r
14
3þr2 þ 36½3Ω2 þ 2k2�2r4þr203 − 144½2k2 þ 3Ω2�k2r133þr193

þ 144½3Ω2 þ 2k2�r4þr143 − 72½12Ω2 þ 13k2�r133þr133 − 366r5þk2r
11
3 − 28r5þr

5
3 þ 9r

16
3þr

4
3Þ:

FIG. 3. Convergency of the frequencies obtained by the powers
series solution for k ¼ 0.1.

FIG. 4. Convergency of the frequencies obtained by the powers
series solution for k ¼ 0.5.
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