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We study the shadows cast by the different types of rotating regular black holes viz. Ayón-Beato-García
(ABG),Hayward, andBardeen. These black holes have in addition to the totalmass (M) and rotation parameter
(a), different parameters as electric charge (Q), deviation parameter (g), andmagnetic charge (g�). Interestingly,
the size of the shadow is affected by these parameters in addition to the rotation parameter. We found that
the radius of the shadow in each case decreases monotonically, and the distortion parameter increases
when thevalues of these parameters increase.A comparisonwith the standardKerr case is also investigated.We
have also studied the influence of the plasma environment around regular black holes to discuss its shadow.
The presence of the plasma affects the apparent size of the regular black hole’s shadow to be increased due to
two effects: (i) gravitational redshift of the photons and (ii) radial dependence of plasma density.
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I. INTRODUCTION

As we know, black holes are not visible objects; hence, it
is interesting to study the null geodesics around them. The
photons can be considered to extract the information from
the black holes. This occurs by gravitational lensing by the
black holes, which has been demonstrated for the last few
decades by several authors. Both the deflection of light and
the change in apparent brightness of the radiating source by
a gravitational field are known as gravitational lenses. In
many cases the lensing in the weak gravitational field
approximation describes the scenario fully. However, in the
case of ultracompact hypothetical objects like boson stars,
the occurrence of the light rings are due to strong
gravitational lensing (see, e.g., [1]). Various authors have
studied gravitational lenses with a rotating black hole as a
deflector [2] and focused only on the null geodesics motion
at the equatorial plane. For example, the gravitational
lensing by the Kerr black hole is discussed in [3–8]. The
apparent shape of the nonrotating black holes is a perfect
circle, while it is deformed for the rotating black holes due
to the presence of spin [9,10]. The topic of gravitational
lensing has been discussed by several authors with the
expectation that the direct observation of black hole
horizons will be possible in the near future [11–13].
To resolve the invisibility of the black hole, there is the

Event Horizon Telescope (EHT)1 to achieve the angular
resolution comparable to a black hole shadow. A black hole

casts a shadow if it is in front of a distant bright object.
The investigation of observing the black hole shadow is
very interesting and a useful tool for measuring the nature
of astrophysical black holes. The observation of the shadow
also provides a tentative way to find the parameters of the
black hole.
The shadow cast by the Schwarzschild black hole is first

discussed by Synge [14] and Luminet [15]. Synge gave a
formula to calculate the angular radius of the shadow.
Bardeen [9] was the first to study the appearance of the
shadow cast by the Kerr black hole; the result can be seen in
Chandrasekhar’s book [10] and in [16]. It can be seen that
for Kerr black hole the shadow is no longer circular. The
shadow of the Kerr black hole or a Kerr naked singularity
by constructing two observables has been discussed by
Hioki and Maeda [17]. Recently, some authors of this paper
have developed new coordinate-independent formalism to
describe the shadow of the black holes [18]. This subject
for other black holes has been discussed by several authors,
e.g., the Kerr-Newman black hole [16,19], Einstein-
Maxwell-Dilaton-Axion black hole [20], Kerr-Taub-NUT
black hole [21], rotating braneworld black hole [22],
Kaluza-Klein rotating dilaton black hole [23], rotating
non-Kerr black hole [24], and Kerr-Newman-NUT black
holes with a cosmological constant [25]. The subject of
getting a shadow has also been extended for the 5D rotating
Myers-Perry black hole [26]. An example of a single black
hole solution of general relativity with multiple shadows
has been shown, for the first time, in [1]. The constraining
the black holes and other compact objects parameters are
wide discussed in the Refs. [27].
Falcke et al. [28] have initiated that very long baseline

interferometry radio interferometers with advanced high
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spatial resolution would be able to resolve the supermassive
black hole event horizon located at the center of either
the Milky Way or the M87 galaxy in the submillimeter
wavelength diapason (see, for the further details, [29–31]).
In this paper our aim is to extend the discussion of the

black hole shadow for rotating regular black holes (e.g.,
Ayón-Beato-García, Hayward, and Bardeen) and to see the
effect of the parameters on the size of a shadow and on the
distortion of a shadow. We also plan to study the influence
of the plasma on the optical properties of regular black
holes. Our recent paper has been devoted to studying the
optical properties of the Kerr black hole [32]. We have
recently studied the particle motion as well as Penrose
process around rotating regular black holes [33]. The
influence of plasma to the shadow of static black holes
has been considered in [34]. Optical phenomena in the field
of the braneworld Kerr black hole has been studied in [35].
The analyzation of the circular geodesics around some
regular black holes have been presented in [36]. Optical and
other properties of Kerr superspinars have been considered
in [37–39]. Gravitational lensing effects have been widely
studied in the literature [34,40–44].
The paper is organized as follows. In Sec. II, we study the

apparent shape of the shadow of the rotating Ayón-Beato-
García (ABG) black hole and calculate the corresponding
observable.We discuss the energy emission rate of the ABG
black hole in a subsection of Sec. II. In Sec. III, we study the
apparent shape of the shadow cast by the rotating Hayward
and Bardeen black holes and also see the behavior of the
observable, and in the subsection we study the energy
emission rate for the rotating Hayward and Bardeen black
holes. Section IVis devoted to studying the plasma influence
on the shadow of regular black holes. We conclude our
results in Sec. V. We have fixed units such that G ¼ c ¼ 1.

II. ROTATING AYÓN-BEATO-GARCÍA
BLACK HOLE

We start with the rotating Ayón-Beato-García (ABG)
spacetime, which is a nonsingular exact black hole solution
of Einstein field equations coupled to a nonlinear electro-
dynamics that satisfies the weak energy condition. This
spacetime class was introduce byAyón-Beato et al. [45–47],
and the rotating one is discussed byToshmatov et al. [48,49].
The background metric of a rotating ABG spacetime in the
Boyer-Lindquist coordinates (t, r, θ, ϕ) reads

ds2 ¼ −fðr; θÞdt2 þ Σ
Δ
dr2

− 2asin2θð1 − fðr; θÞÞdϕdtþ Σdθ2

þ sin2θ½Σ − a2ðfðr; θÞ − 2Þsin2θ�dϕ2; ð1Þ
where the metric function fðr; θÞ is given by

fðr; θÞ ¼ 1 −
2Mr

ffiffiffi
Σ

p

ðΣþQ2Þ3=2 þ
Q2Σ

ðΣþQ2Þ2 ; ð2Þ

with

Δ ¼ Σfðr; θÞ þ a2sin2θ; Σ ¼ r2 þ a2cos2θ; ð3Þ

where M is the mass, a is rotation parameter, and Q is the
electric charge of the black hole. The stationary and axial-
symmetric metric (1) contains four constants of motion,
which are the Lagrangian (L), energy (E), z-component of
angular momentum (Lz), and Carter constant (K).
In order to discuss the black hole shadow, we need to

calculate the geodesic equations of the photons for the
metric (1). It is very difficult to separate the constants when
we apply the Hamilton-Jacobi formulation for the rotating
ABG spacetime because the function fðr; θÞ has a very
complicated form. Therefore, to resolve this problem, we
consider an approximation in θ, such that θ ≈ π=2þ ϵ,
where ϵ is small angle. Note that here we consider the near-
equatorial plane orbits of the photons; however, unstable
photon circular orbits are not restricted necessarily to the
equatorial plane. This fact does not render the calculations
below since in this paper our main aim is calculating the
shadow of the black hole by the observer at infinity, which
can indeed be obtained using the above-mentioned approxi-
mation. Furthermore, as the observer is situated far away
from the black hole, the photons will arrive near the
equatorial plane (see for details Sec. IIA). In this case
the trigonometric functions take the form of sin θ ¼ 1 and
cos θ ¼ ϵ, and the function fðrÞ is given in simple form:

fðrÞ ¼ 1 −
2Mr2

ðr2 þQ2Þ3=2 þ
Q2r2

ðr2 þQ2Þ2 : ð4Þ

We can easily get the following geodesic equations by
solving equations E ¼ −pt ¼ −∂L=∂_t and Lz ¼ pϕ ¼
∂L=∂ _ϕ, simultaneously

r2
dt
dσ

¼ aðLz − aEÞ þ r2 þ a2

Δ
½ðr2 þ a2ÞE − aLz�; ð5Þ

r2
dϕ
dσ

¼ ðLz − aEÞ þ a
Δ
½ðr2 þ a2ÞE − aLz� ð6Þ

where σ is an affine parameter along the geodesics. Now,
we can easily find out the remaining geodesic equations by
using the Hamilton-Jacobi formulation. The corresponding
Hamilton-Jacobi equation has the following form:

∂S
∂σ ¼ −

1

2
gμν

∂S
∂xμ

∂S
∂xν ; ð7Þ

where S is Jacobi action. If we have a separable solution,
then it takes the following form:

S ¼ 1

2
m2

0σ − Etþ Lzϕþ SrðrÞ þ SϵðϵÞ; ð8Þ
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where SrðrÞ and SϵðϵÞ are functions of r and ϵ, respectively.
Inserting Eq. (8) into Eq. (7) and separating out the
coefficients of r and ϵ being equal to the Carter constant,
then we can easily get the geodesic equations in the
following form:

r2
dr
dσ

¼ �
ffiffiffiffiffi
R

p
; ð9Þ

r2
dϵ
dσ

¼ �
ffiffiffiffi
Θ

p
; ð10Þ

where

R ¼ ½ðr2 þ a2ÞE − aLz�2 − Δ½Kþ ðLz − aEÞ2�; ð11Þ

Θ ¼ K; ð12Þ

where “þ” and “−” signs in Eq. (9) correspond to the
outgoing and ingoing photons in radial direction and in
Eq. (10) correspond to the photons moving to the north
(θ ¼ 0) and south (θ ¼ π) poles, respectively. The above
geodesic equations indicate the propagation of light in the
rotating ABG spacetime. To determine the unstable circular
orbits, we introduce ξ ¼ Lz=E and η ¼ K=E2. The con-
dition for the unstable circular orbits is given by RðrÞ ¼ 0
and dRðrÞ=dr ¼ 0. Hence, from Eq. (11),

ðr2 þ a2 − aξÞ2 − ½ηþ ðξ − aÞ2�ðr2fðrÞ þ a2Þ ¼ 0; ð13Þ

− ½ηþ ðξ − aÞ2�ð2rfðrÞ þ r2f0ðrÞÞ
þ 4rðr2 þ a2 − aξÞ ¼ 0: ð14Þ

Now we can easily obtain the expressions for the param-
eters ξ and η from Eqs. (13) and (14). These parameters take
the following simple form:

ξ ¼ ðr2 þ a2Þðrf0ðrÞ þ 2fðrÞÞ − 4ðr2fðrÞ þ a2Þ
aðrf0ðrÞ þ 2fðrÞÞ ; ð15Þ

η ¼ r3½8a2f0ðrÞ − rðrf0ðrÞ − 2fðrÞÞ2�
a2ðrf0ðrÞ þ 2fðrÞÞ2 ; ð16Þ

where r is the radius of the unstable circular orbits and

f0ðrÞ ¼ −
4Q2r3

ðQ2 þ r2Þ3 þ
6Mr3

ðQ2 þ r2Þ5=2 þ
2Q2r

ðQ2 þ r2Þ2

−
4Mr

ðQ2 þ r2Þ3=2 : ð17Þ

These two equations determine the contour of the shadow
in the (ξ, η) plane. Furthermore, the parameters ξ and η
satisfy the following relation:

ξ2 þ η ¼ 2r20 þ a2 þ 16ðr20fðr0Þ þ a2Þ
ðr0f0ðr0Þ þ 2fðr0ÞÞ2

−
8ðr20fðr0Þ þ a2Þ
r0f0ðr0Þ þ 2fðr0Þ

: ð18Þ

If we assume that a ¼ 0 and Q ¼ 0, then it corresponds to
the Schwarzschild black hole, and the above relation
reduces to

ξ2 þ η ¼ 2r20ðr20 − 3Þ
ðr0 − 1Þ2 : ð19Þ

The shape of the critical curve for the Schwarzschild black
hole is well known since for this case we have r0 ¼ 3;
therefore, η ¼ 27 − ξ2.

A. Shadow of the rotating ABG black hole

Now we plan to determine the apparent shape of the
rotating ABG black hole shadow. We consider celestial
coordinates α and β to find the location of the shadow for a
better visualization. The coordinate α corresponds to the
apparent perpendicular distance of the shape as seen from
the axis of symmetry, and the coordinate β is the apparent
perpendicular distance of the shape from its projection on
the equatorial plane. The schematic illustration of the
celestial coordinates is presented in Fig. 1. The apparent
shape of the black hole shadow for an observer which is far
away from the black hole can be given by the celestial
coordinates α and β:

α ¼ lim
r0→∞

�
−r20 sin θ0

dϕ
dr

�
; ð20Þ

β ¼ lim
r0→∞

�
r20
dϵ
dr

�
; ð21Þ

x

y, 

z

i i,

Observer

Source

Black hole

Light rays

Celestial plane

FIG. 1. Schematic illustration of the distant observer’s celestial
plane and celestial coordinates.
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where according to the standard procedure r0 is the distance
from the black hole to the far observer; the celestial
coordinates α and β are responsible for the apparent
perpendicular distance between the bright image around
the black hole due to the light rays falling into the event
horizon and (i) the symmetry axis and (ii) its projection on
the equatorial plane, respectively; θ0 is the angle between
the rotation axis of the black hole and the line of sight of the
observer. Furthermore, we calculate dϕ=dr and dϵ=dr and
substitute these values in the above expressions for the limit
r → ∞; then, we have

α ¼ −ξ; ð22Þ
and

β ¼ � ffiffiffi
η

p
: ð23Þ

The silhouette of the shadow cast by the rotating ABG
black hole can be visualized from Fig. 2. We can see from
Fig. 2 that for a nonrotating case (a=M ¼ 0), the silhouette
of the shadow is a perfect circle, and the size of the

silhouette decreases when the charge Q increases.
Furthermore, in a rotating case (a=M ≠ 0), the silhouette
is a deformed circle which is more deformed if a=M takes
an extremal value (cf. Fig. 2).
To analyze the shape of the shadow in detail, we define

two astronomical observables: Rs, which describes the
approximate size of the shadow, and δs, which measures its
deformation. As suggested in Ref. [17] the circle of the
shadow passing through the three points B (αt, βt) top one,
D (αb, βb) bottom one, and A (αr, 0) most right one. The
schematic representation of the above-mentioned defini-
tions is shown in Fig 3. The radius or size of the shadow can
be calculated through

Rs ¼
ðαt − αrÞ2 þ β2t

2∣αt − αr∣ ; ð24Þ

and the distortion parameter is given as

δs ¼
ds
Rs

¼ ~αp − αp
Rs

; ð25Þ

where the points F ( ~αp, 0) and C (αp, 0) cut the horizontal
axis at the opposite side of (αr, 0), and ds is the distance
between the left point of the shadow and the reference
circle (cf. Fig. 3). We can see the behavior of the
observables Rs and δs as a function of charge Q in both
nonrotating and rotating black hole cases from Fig. 4. It can
be observed from Fig. 4 that the presence of charge Q
affects the size of the shadow as well as the distortion
parameter, i.e., the size of the shadow decreases and the
distortion parameter increases with charge Q.

B. Energy emission rate of rotating ABG black hole

In the preceding subsection we have discussed possible
visibility of a rotating regular black through its shadow, and
we have mentioned in our previous study [26] that at high
energy the cross section of the absorption of a black
hole slightly modulates near a limiting constant value.
Consequently, the shadow of the black hole is responsible
for high energy absorption cross section by the black hole

6 4 2 0 2 4 6
6

4

2

0

2

4

6

M

M
a M 0, Q 0, 0.5, 0.9

4 2 0 2 4 6
6

4

2

0

2

4

6

M

M

a M 0.3, Q M 0, 0.3, 0.59

4 2 0 2 4 6
6

4

2

0

2

4

6

M

M

a M 0.5, Q M 0, 0.3, 0.51

4 2 0 2 4 6
6

4

2

0

2

4

6

M

M

a M 0.7, Q M 0, 0.25, 0.39

FIG. 2. Plot showing the silhouette of the shadow cast by the rotating ABG black hole for different values of parameters a=M and Q.
The top left panel corresponds to the static black hole where the radius of the black hole decreases with an increase in parameter Q.

rpp t(b)
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FIG. 3. Schematic representation of the black hole shadow and
reference circle; ds is the distance between the left point of the
shadow and the reference circle.
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for the distant observer at infinity. The value of the
mentioned limiting constant value is derived in terms of
geodesics and can be analyzed for wave theories. For a
black hole endowed with a photon sphere, the limiting
constant value is the same as the geometrical cross section
of this photon sphere [50]. Here, the limiting constant value
of the absorption cross section for a spherically symmetric
black hole can be given by [20]

σlim ≈ πR2
s ; ð26Þ

and by using this limiting value, we can easily get the
energy emission rate in the following form:

d2EðωÞ
dωdt

¼ 2π2R2
s

eω=T − 1
ω3; ð27Þ

where ω represents the frequency of the photon, and the
Hawking temperature (T) can be calculated as

T ¼ −
1

4πrþða2 þ r2þÞðQ2 þ r2þÞ3
½2Q6r2þ þ 3Q4r4þ

þQ2r6þ − r8þ þ a2ðQ2 þ r2þÞ2ð4Q2 þ r2þÞ�; ð28Þ

where rþ is the outer event horizon of the rotating ABG
black hole defined as the greater root of the solution for the
condition grr. The plots of d2EðωÞ=dωdt versus ω can be
seen from Fig. 5 for a=M ¼ 0 (left panel) and a=M ¼ 0.9
(right panel).

III. ROTATING HAYWARD AND BARDEEN
BLACK HOLES

The spacetime metric of the rotating Kerr-like black
hole, in the Boyer-Lindquist coordinates [51], is given as

ds2 ¼ −
�
1 −

2mr
Σ

�
dt2 −

4amrsin2θ
Σ

dtdϕþ Σ
Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2a2mrsin2θ

Σ

�
sin2θdϕ2;

ð29Þ
where

Σ¼ r2 þ a2cos2θ; Δ¼ r2 − 2mrþ a2: ð30Þ
The above metric represents Kerr black hole spacetime,
if m → M. In this case, mass m depends on r, which is
given by
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FIG. 4. Plots showing the behavior of Rs vsQ (left plot) and δs vsQ (right plot) of the rotating ABG black hole for the different values
of a=M.
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m → mh ¼ M
r3

r3 þ g3
; ð31Þ

and

m → mb ¼ M

�
r2

r2 þ g2�

�
3=2

; ð32Þ

where black hole masses mh and mb correspond to the
rotating Hayward and rotating Bardeen regular black holes,
respectively. The constants a, g, and g� correspond to the
rotation parameter, deviation parameter, and magnetic
charge due to the nonlinear electromagnetic field, respec-
tively. The corresponding geodesic equations of these black
holes have the same form, and the difference is just due to
the different mass. One can easily find the equations in the
following form:

Σ
dt
dσ

¼ aðLz − aEsin2θÞ þ r2 þ a2

Δ
½ðr2 þ a2ÞE − aLz�;

ð33Þ

Σ
dϕ
dσ

¼
�

Lz

sin2θ
− aE

�
þ a
Δ
½ðr2 þ a2ÞE − aLz�; ð34Þ

Σ
dr
dσ

¼ �
ffiffiffiffiffi
R

p
; ð35Þ

Σ
dθ
dσ

¼ �
ffiffiffiffi
Θ

p
; ð36Þ

where σ is an affine parameter, and

R ¼ ½ðr2 þ a2ÞE − aLz�2 − Δ½Kþ ðLz − aEÞ2�; ð37Þ

Θ ¼ Kþ cos2θ

�
a2E2 −

L2
z

sin2θ

�
: ð38Þ

Note that in this section the equations of motion are not
restricted to be at the equatorial plane (θ ≠ const). With the

help of the condition for the unstable circular orbits of the
particles, i.e., RðrÞ ¼ 0 and dRðrÞ=dr ¼ 0, we have

r4 þ ða2 − ξ2 − ηÞr2 þ 2m½ηþ ðξ − aÞ2�r − a2η ¼ 0;

ð39Þ

4r3 þ 2ða2 − ξ2 − ηÞrþ 2m½ηþ ðξ − aÞ2�
− 2m0½ηþ ðξ − aÞ2�r ¼ 0: ð40Þ

By solving the above equations simultaneously, we can
easily get the parameters ξ and η as

ξ ¼ mða2 − 3r2Þ þ rðr2 þ a2Þðm0 þ 1Þ
a½mþ rðm0 − 1Þ� ; ð41Þ

η ¼ −
r3

a2
½ð1þm02Þr3 þ 2m0ðr2 − 3mrþ 2a2Þr

−mð6r2 − 9mrþ 4a2Þ�½mþ rðm0 − 1Þ�−2; ð42Þ

where m0 represents the derivative of m with respect to r.

A. Shadow of rotating Hayward
and Bardeen black holes

Now we calculate the celestial coordinates for these
black holes which take the following form:

α ¼ −ξ csc θ0; ð43Þ

β ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2cos2θ0 − ξ2cot2θ0

q
; ð44Þ

where θ0 is the angle between the rotation axis of the black
hole and the line of sight of the distant observer. Note that
these expressions are valid for a far away observer by the
definition [see Eqs. (20) and (21)]. If we set the inclination
angle to equatorial plane θ0 ¼ π=2, then the celestial
coordinates have the following simple form:

α ¼ −ξ; ð45Þ
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β ¼ � ffiffiffi
η

p
: ð46Þ

To visualize the shadow cast by the rotating Hayward and
Bardeen black holes, we need to make some plots for the
coordinates α=M and β=M. These plots can be seen from
Figs. 6 and 7 for the fixed values of spin parameter a=M
and different values of parameters g=M and g�=M. We can
easily observe the effect of parameters g=M and g�=M on
the silhouette of a shadow: an increase in the value of g=M
and g�=M deceases the size of the silhouette of the shadow.
The silhouette of the shadow is more deformed for the
extremal value of a=M (c.f. Figs. 6 and 7).
The behavior of the observable Rs and δs introduced in

Sec. II can be seen from Figs. 8 and 9. In both black hole
cases, we observe that the radius of the silhouette of the
shadow decreases and the distortion parameter increases
monotonically.

B. Energy emission rate

Now we discuss the energy emission rate for both
rotating Hayward and Bardeen black holes. It has the
following form [20]:

d2EðωÞ
dωdt

¼ 2π2R2
s

eω=T − 1
ω3; ð47Þ

where for the rotating Hayward black hole, the Hawking
temperature reads

Th ¼
1

4πðr2þ þ a2Þðr3þ þ g3Þ ½2r
2þðr3þ þ g3Þ

− 4rþðr2þ þ a2Þðr3þ þ g3Þ þ 3r2þðr2þ þ a2Þ�; ð48Þ

and for rotating Bardeen black hole, it has the following
form:

Tb ¼ −
1

4πrþðr2þ þ a2Þðr2þ þ g2�Þ
½4ðr2þ þ a2Þðr2þ þ g2�Þ

þ 2r2þðr2þ þ g2�Þ þ 3r2þðr2þ þ a2Þ�: ð49Þ

Next, to see the behavior of the energy emission rate, we
plot d2EðωÞ=dωdt versus ω for both of the black holes. It
can be seen from Fig. 10 that the representation is made for
spin a=M ¼ 0.9 and different values of parameters g=M
and g�=M.
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FIG. 7. Plot showing the silhouette of the shadow cast by the Bardeen black hole for the different values of the rotation parameter a=M.
In all plots the outer red lines correspond to g�=M ¼ 0.
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IV. SHADOW OF REGULAR BLACK HOLE
IN THE PRESENCE OF PLASMA

Now we consider the shadow of the regular black hole in
the presence of the plasma. We use the model of the plasma
with the refraction index to be equal to n ¼ nðxi;ωÞ, where
ω is the photon frequency measured by an observer with
velocity uα. The so-called effective energy of a photon has
the form ℏω ¼ −pαuα. In Ref. [52] the expression for the
refraction index of the plasma has been obtained in the
form:

n2 ¼ 1þ pαpα

ðpβuβÞ2
: ð50Þ

Note that in the case of absence of the plasma one has the
value for the refraction index n ¼ 1. Using the Hamiltonian
for the photon in the form

Hðxα; pαÞ ¼
1

2
½gαβpαpβ þ ðn2 − 1ÞðpβuβÞ2� ¼ 0 ð51Þ

one can obtain the equations of motion for the photons
around regular black holes in the presence of the plasma.
We introduce the two frequencies of electromagnetic
waves; the first one is associated with a timelike Killing

vector ξα, i.e., ωξ ¼ −kαξα, and other one is measured by
an observer having a four-velocity uα, i.e., ω ¼ −kαuα,
where kα is a null wave vector [32].
Hereafter, we use the specific form for the plasma

frequency in the form

n2 ¼ 1 −
ω2
e

ω2
; ð52Þ

where ωe is usually called plasma frequency.
Using the Hamilton-Jacobi method described in Sec. II,

one may easily obtain the equations of motion for the
photons around the Hayward and Bardeen regular black
holes in the presence of plasma as

Σ
dt
dσ

¼ aðLz − n2Easin2θÞ

þ r2 þ a2

Δ
½ðr2 þ a2Þn2E − aLz�; ð53Þ

Σ
dϕ
dσ

¼
�

Lz

sin2θ
− aE

�
þ a
Δ
½ðr2 þ a2ÞE − aLz�; ð54Þ

Σ
dr
dσ

¼ �
ffiffiffiffiffiffiffi
Rp

q
; ð55Þ
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FIG. 9. Plots showing the behavior of Rs vs g�=M (left panel) and δs vs g�=M (right panel) of the rotating Bardeen black hole.
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Σ
dθ
dσ

¼ � ffiffiffiffiffiffi
Θp

p
; ð56Þ

where the functions RpðrÞ and ΘpðθÞ are introduced as

Rp ¼ ½ðr2 þ a2ÞE − aLz�2 þ ðr2 þ a2Þ2ðn2 − 1ÞE2

− Δ½Kþ ðLz − aEÞ2�; ð57Þ

Θp ¼ Kþ cos2θ

�
a2E2 −

Lz
2

sin2θ

�
− ðn2 − 1Þa2E2sin2θ: ð58Þ

For the plasma frequency ωe, we use the expression

ω2
e ¼

4πe2NðrÞ
me

; ð59Þ

where e and me are the electron charge and mass,
respectively, and NðrÞ is the plasma number density. We
consider a radial power-law density [44]

NðrÞ ¼ N0

rh
; ð60Þ

where h ≥ 0, such that

ω2
e ¼

k
rh

: ð61Þ

As an example here we get the value for power h as 1 [44].
The shadow of the black hole in the plasma environment

can be found using the conditions as was done in the
previous sections:

RðrÞ ¼ 0 ¼ ∂RðrÞ=∂r:
Using these equations one can easily find the expressions
for the parameters ξ and η in the form

ξ ¼ B
A

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

A2
−

C
A

s
; ð62Þ

η ¼ ðr2 þ a2 − aξÞ2 þ ðr2 þ a2Þ2ðn2 − 1Þ
Δ

− ðξ − aÞ2; ð63Þ
where we have used the following notations

A ¼ a2

Δ
; ð64Þ

B ¼ a
Δ
ma2 −mr2 þ r3m0 þ a2rm0

m − rþ rm0 ; ð65Þ

FIG. 11. Plot showing the silhouette of the shadow cast by the Hayward and Bardeen regular black holes surrounded by plasma for the
different values of the rotation parameter a=M and the refraction index. The solid lines in the plots correspond to the vacuum case, while
for the dotted and dashed lines we choose the plasma frequency ωe=ωξ ¼ k=r, where ðk=MÞ2 ¼ 0.5 and ðk=MÞ2 ¼ 1.0, respectively.
The inclination angle between the observer and the axis of rotation has been taken to be θ0 ¼ π=2.
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C ¼ n2
ðr2 þ a2Þ2

Δ

þ 2rðr2 þ a2Þn2 − ðr2 þ a2Þ2nn0
m − rþ rm0 ; ð66Þ

and the prime denotes the differentiation with respect to
radial coordinate r. The functionsΔ andm are defined as in
Eqs. (30)–(32).
The expression for the celestial coordinates take the

following form:

α ¼ −
ξ

n sin θ
; ð67Þ

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2 − n2a2sin2θ − ξ2cot2θ

p
n

; ð68Þ

for the case when the black hole is surrounded by plasma.
In Fig. 11 the silhouettes of the shadow of the rotating

Hayward and Bardeen black holes for different values of
the black hole rotation parameter a=M and parameters g=M
and g�=M are presented. In these figures we choose the
plasma frequency in the form ωe=ωξ ¼ k=r. From Fig. 11
one can easily see that the presence of the plasma affects the
apparent size of the shadow to be increased, while we have
shown that the parameters of the regular black holes force
to decrease the shadow size. There is also a tendency to
decrease the distortion of the shadow in the presence of
plasma. Physically, this is similar to an effect of gravita-
tional redshift of the photons in the gravitational field of the
regular black holes: the frequency change due to the
gravitational redshift affects the plasma refraction index.

V. CONCLUSION

In this paper, we have analyzed the shape of the shadow
cast by different types of regular black holes. We have
discussed how the shadow cast by these black holes is
distorted by the presence of the various parameters related
to regular black holes and the environment. In first part of
the paper, we have studied the shadow cast by the rotating
ABG black hole. We have found that the presence of the
electric charge affected the shape of the shadow. We see
that with increasing the value of a=M the shape of the
shadow becomes more and more asymmetric with respect
to the vertical axis. It can be seen that for the fixed value of
spin the size of the shadow monotonically decreases as the
electric charge increases. Furthermore, we calculate the
deformation due to an increase in the spin of the black hole,
which is characterized by the deformation parameter (δs).
One can see that δs increases with an increase in the electric

charge as well as spin. Next, we have discussed the energy
emission rate of the rotating ABG black hole. The energy
emission rate decreases with an increase in the value of Q
as well as in a=M. It can be seen from Fig. 5 that the peak is
sharp for small values of Q.
In the next part of the paper, we have studied the shadow

of the rotating Hayward and Bardeen black holes. The
rotating Hayward black hole contains g=M, which provides
deviation from the Kerr black hole, and the rotating
Bardeen black hole has another parameter g�=M, which
is a magnetic charge due to the nonlinear electromagnetic
field. Furthermore, we see the effect of the parameters g=M
and g�=M on the shape of the black hole shadow. We have
found that the presence of the parameters g=M and g�=M
decreases the size of the silhouette of the shadow for each
fixed value of a=M. There is an increase in δs when a is
increasing, and we get an extremal value for both black
holes. One can also see the behavior of the energy emission
rate versus frequency, which indicates that the energy
emission rate decreases with increasing values of g=M
and g�=M.
In the last part of the paper, we have also studied the

influence of the plasma environment around the Hayward
and Bardeen regular black holes to the change of the size
and shape of the regular black hole’s shadow. It was shown
that the presence of the plasma affects the apparent size of
the shadow to be increased, while we observe the opposite
effect for the magnetic charges of the regular black holes.
There is also a tendency to decrease the distortion of the
shadow in the presence of plasma. Physically, this is similar
to an effect of gravitational redshift of the photons in the
gravitational field of the regular black holes: the frequency
change due to the gravitational redshift affects the plasma
refraction index.
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