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We present a new hybrid Cauchy-characteristic evolution scheme that is particularly suited to study
gravitational collapse in spherically symmetric asymptotically (global) anti-de Sitter (AdS) spacetimes.
The Cauchy evolution allows us to track the scalar field through the different round trips to the AdS
boundary, while the characteristic method can bring us very close to the point of formation of an apparent
horizon. We describe all the details of the method, including the transition between the two evolution
schemes and the details of the numerical implementation for the case of massless scalar fields. We use this
scheme to provide more numerical evidence for a recent conjecture on the power law scaling of the
apparent horizon mass resulting from the collapse of subcritical configurations. We also compute the
critical exponents and echoing periods for a number of critical points and confirm the expectation that their
values should be the same as in the asymptotically flat case.
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I. INTRODUCTION

One of the main results in general relativity (GR) is the
discovery of critical phenomena in gravitational collapse by
Choptuik [1] (see also [2,3]). The evolution of a massless
scalar field in spherically symmetric asymptotically flat
spacetime has two possible final states: (i) formation of a
(Schwarzschild) black hole (BH) and (ii) dispersion of the
scalar field with Minkowski (Mink) spacetime as the final
state. Choptuik found [1] that near the threshold between
these two possibilities, but within BH formation, the
behavior of the system exhibits critical phenomena with
the BH mass depending on the deviations of a single initial
data parameter from a critical value in a universal way (the
same for any family of initial configurations and any initial
data parameter).
Collapse in Anti-de Sitter (AdS) and asymptotically AdS

(AAdS) spacetimes has received significant attention dur-
ing the last years. A natural question that arises is the
stability of the (global) AdS spacetime. Recent abundant
activity on this subject has shown an instability in AAdS
spacetimes endowed with a real massless scalar field [4,5].
What has been shown is that certain families of initial
configurations lead to the formation of an apparent horizon
(AH) independently of their total energy. This is due to the
AdS causal structure that allows lightlike signals to reach
the AdS boundary in a finite time. Then, a scalar field
packet, no matter how small its energy, can bounce
repeatedly off the AdS boundary, while the nonlinearity
of Einstein’s equations transfers power from long wave-
length components to short wavelength ones until the scalar
field packet gets compact enough to form an AH. This
instability, in reference to the cascade towards shortwave
modes typical in fluids, is called the turbulent instability of

AdS [4]. In this sense, the AdS boundary provides a boxlike
structure to space that is fundamental for the instability.
Indeed, studies [6–11] in asymptotically flat spacetimes
with an artificial boundary at a finite distance find the same
type of instability. A previous study of gravitational
collapse in AdS [12] showed that the cosmological constant
does not change the properties of the collapse with respect
to the asymptotically flat case; in particular, the critical
exponent for direct collapse does not change. However, the
turbulent instability was not identified.
In this paper, we looking at the details of collapse in

AAdS spacetimes, i.e., we look at the dynamics of AH
formation. This is motivated by the fact that the landscape
of gravitational collapse in AAdS spacetimes is much
richer than in the case of asymptotically flat spacetimes
[4]. This problem is quite challenging from the numerical
point of view because the scalar field keeps bouncing
between the origin and the AdS boundary, while it develops
sharper and sharper profiles until an AH is finally formed.
This leads to an infinite series of critical points associated
with the number of times that the scalar field has traveled to
the AdS boundary before collapsing. Most of the numerical
computations done until now to evolve a massless scalar
field in spherically symmetric AAdS spacetimes use a
Cauchy-type evolution like in Choptuik’s work [1], which
allows us to follow the different bounces off the AdS
boundary. In contrast, a characteristic approach like the one
proposed by Goldwirth and Piran [13], although it can
potentially get much closer to the formation of an AH than
a Cauchy scheme, cannot follow the bounces because the
grid covers only a part of the spacetime. In this paper, we
combine the best of these two worlds into a new scheme
that has three essential ingredients: (i) a Cauchy-based
evolution scheme numerically implemented using
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pseudospectral methods and a compactified radial coor-
dinate in order to follow the scalar field through all the
bounces off the AdS boundary, (ii) construction of initial
data on a null slice for the characteristic evolution from the
results of the Cauchy evolution, and (iii) a characteristic
evolution scheme to follow the scalar field all the way to
AH formation. This scheme has already been successfully
used in [14], where it was found that in AdS spacetime the
AH mass of BHs formed following the evolution of
subcritical solutions associated with the nth critical point
(n ¼ 0; 1;…) follow a power law of the form

MAH −Mnþ1
g ∝ ðpn − pÞξ; ð1Þ

where pn is the critical value of the initial data parameter p
for the nth branch, Mnþ1

g is the corresponding mass gap
(minimum mass from subcritical configurations), and ξ≃
0.7 is the exponent. Moreover, ξ appears to be universal,
independent of the initial data family and initial data
parameter and the same for all the critical points. In this
paper, we give all the details about this hybrid Cauchy-
characteristic scheme and its numerical implementation
(including validation, convergence properties, and other
details about evolution in AAdS spacetimes) and provide
new results that make the findings of [14] more robust.
Mass gaps also appear in type I critical phenomena [15,16],
although in this case there is no an equivalent scaling law.
In addition, we compute the scaling exponents of the
supercritical configurations confirming the expected result
[4] that they are the same as in the asymptotically flat case,
i.e., γ ≃ 0.374.
The plan of this paper is as follows. In Sec. II, we

introduce the Einstein-Klein-Gordon (EKG) system of
equations, and for the spherical-symmetric case, we adapt
them to a Cauchy-type formulation in Sec. II A and to a
characteristic formulation in Sec. II B. In Sec. II C, we
describe the transition from the Cauchy-type evolution to
the characteristic one. In Sec. III, we describe the ingre-
dients of the numerical implementation. In Sec. IV, we
show numerical results for the validation of the code,
including convergence and some special features arising in
AAdS spacetimes. Finally, in Sec. V, using this hybrid
Cauchy-characteristic code, we present new numerical
results on the dynamics of AH formation.
We use units in which c ¼ 1 and 8πGd ¼ d − 1, where

Gd is the (dþ 1)-dimensional Newton’s gravitational con-
stant and d is the number of spatial dimensions. A
semicolon denotes covariant differentiation with respect
to the canonical connection, a dot denotes differentiation
with respect to the time coordinate t, _ϕ≡ ∂ϕ=∂t, and
differentiation with respect to the compactified radial
coordinate x is denoted by a prime, ϕ0 ≡ ∂ϕ=∂x. For other
partial derivatives, we use the notation ∂yf ≡ ∂f=∂y≡ f;y.
We use small-case Greek letters α; β;… ¼ 0;…; d for
spacetime indices.

II. FIELD EQUATIONS

The field equations for a self-gravitating, real massless
scalar field in an AAdS spacetime are the EKG equations
for the metric gμν and scalar field ϕ,

Gμν þ Λgμν ¼ ðd − 1Þ
�
ϕ;μϕ;ν −

1

2
gμνϕ;αϕ

;α

�
; ð2Þ

gμνϕ;μν ¼ 0; ð3Þ

whereGμν is the (dþ 1)-dimensional Einstein tensor and Λ
is the (negative) cosmological constant.
We restrict our study to spherically symmetric configu-

rations. This assumption simplifies the structure of the
spacetime metric and the field equations. Spherically sym-
metric spacetimes have a warped geometry, which means
that their metric tensor can be written in the form ds2 ¼
gABðxCÞdxAdxB þ r2ðxCÞγabdxadxb (A;B;… ¼ 0; 1 and
a; b;… ¼ 2;…; d), where gAB is a Lorentzian metric (with
associated manifoldM2), γab is the unit curvature metric on
the (d − 1)-sphere (with associated manifold Sd−1), and r ¼
rðxAÞ is the radial area coordinate. The fact that r2ðxCÞγab is
not a true metric on Sd−1 is what prevents the spacetime
manifold Mdþ1 from being a true product of the two
manifoldsM2 and Sd−1. Instead, it is said that the spacetime
manifold is the warped product of M2 and Sd−1, and this is
sometimes denoted in the literature asMdþ1 ¼ M2 ×r Sd−1.
We can freely choose the coordinates in the Lorentzian

manifold M2. In this work, we consider two different
choices according to the type of spacetime slicing that they
induce. (i) Timelike slicing: We consider coordinates
ðxAÞ ¼ ðt; xÞ so that the spacetime is sliced in spacelike
(with timelike normal) hypersurfaces ft ¼ constg. In addi-
tion, we take x to be a radial coordinate that compactifies
the radial direction so that it is in the range of x ∈ ½0; π=2�,
where x ¼ 0 corresponds to the center of the radial
coordinate system and x ¼ π=2 corresponds to the AdS
boundary. Using these coordinates, we can set up a
Cauchy-type system of evolution equations with some
constraints. Given the causal structure of AAdS spacetimes,
the scalar field can propagate to reach the AdS boundary in
a finite time. Previous works on this problem (see, e.g.,
[4,17]) showed that we can expect the field to bounce off
the AdS boundary a number of times and eventually
collapse near the center x ¼ 0. It is for this reason that
we use the compactified coordinate x in order to track the
field up to the AdS boundary. The equations are given in
Sec. II A. (ii) Lightlike slicing: We consider coordinates
ðxAÞ ¼ ðu; rÞ so that the spacetime is foliated by outgoing
null slices (composed by outgoing null rays) fu ¼ constg.
The radial coordinate r is not a compactified radial
coordinate as in the previous case in the sense that the
AdS boundary is located at r → ∞. This system of
coordinates allows us to set up a characteristic-type system
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of evolution of equations. In contrast to the coordinates
ðt; xÞ, the coordinates ðu; rÞ do not allow us to follow the
field up to the AdS boundary. Instead, we want to use them
in order to track the evolution of the field near collapse, that
is, near the center r ¼ x ¼ 0. The fact that the fu ¼ constg
slices are outgoing means that as we evolve in u we
approach the collapse faster than in the case of the Cauchy
evolution. As we will see, the characteristic evolution
allows us to get much closer to the formation of an AH
than the Cauchy evolution. The equations for this case are
given in Sec. II B.

A. Cauchy-type evolution of the EKG system

Following [4,5] and our previous discussion, the metric
of an spherically symmetric AAdS spacetime in dþ 1
dimensions can be written as

ds2 ¼ l2

cos2x

�
−Ae−2δdt2 þ dx2

A
þ sin2x dΩ2

d−1

�
; ð4Þ

where dΩ2
d−1 is the metric of the unit (d − 1)-sphere (Sd−1),

A and δ are the two metric functions that completely
determine the metric and depend only on (t, x), and l is the
AdS length scale, which is related to the cosmological
constant Λ by the expression l2 ¼ −dðd − 1Þ=2Λ. The
time coordinate t has an infinite range, i.e., t ∈ ð−∞;∞Þ,
where x is a radial compactified coordinate that goes from
x ¼ 0 (center) to π=2 (AdS boundary). We can recover AdS
spacetime by setting A ¼ 1 and δ ¼ 0.
From the field Eqs. (2) and (3), we can derive partial

differential equations (PDEs) for A, δ, and ψ (see, e.g., [4]).
Since we use a pseudospectral multidomain method (see
Appendix B for a summary of the main ingredients) for the
Cauchy evolution, we are interested in a first-order for-
mulation of the equations based on the characteristic
variables associated with our dynamics (see [18] for a
definition of the characteristic variables of a hyperbolic
system of PDEs and Appendix A for a derivation of the
hyperbolic structure of our equations). In our case, the only
true hyperbolic sector is the one corresponding to the
Klein-Gordon Eq. (3). The characteristic variables of our
system, U and V [see Eq. (A15)], are such that U
corresponds to the scalar field mode that propagates always
with positive velocity and V to the mode with negative
velocity (see Fig. 1). Their expressions in terms of the
scalar field are

U ¼ 1

cosd−2x

�
ϕ0 −

eδ

A
_ϕ

�
; ð5Þ

V ¼ 1

cosd−2x

�
ϕ0 þ eδ

A
_ϕ

�
: ð6Þ

It is convenient to introduce the following normalized
variable associated with the scalar field,

ψ ¼ ϕ

cosd−1x
: ð7Þ

Then, from the field Eqs. (2) and (3), we derive the PDEs
for ðψ ; U; V; A; δÞ. (i) Evolution equations:

_ψ ¼ Ae−δ

2 cos x
ðV − UÞ; ð8Þ

_U¼−Ae−δU;x−
ðd− 2cos2xÞ
sinx cosx

Ue−δð1−AÞ

−
1

2

ðd− 1ÞAe−δ
sinx cosx

ðUþVÞþ ðd− 2Þ sinx
cosx

UAe−δ; ð9Þ

_V ¼ Ae−δV;xþ
ðd− 2cos2xÞ
sinx cosx

Ve−δð1−AÞ

þ 1

2

ðd− 1ÞAe−δ
sinx cosx

ðUþVÞ− ðd− 2Þ sinx
cosx

VAe−δ; ð10Þ

_A ¼ −
1

2
A2e−δ sin x cos2d−3xðV2 − U2Þ; ð11Þ

(ii) Constraint equations1:

A0 ¼ d − 2þ 2sin2x
sin x cos x

ð1 − AÞ

−
A
2
sin x cos2d−3xðV2 þ U2Þ; ð12Þ

δ0 ¼ −
1

2
sin x cos2d−3xðV2 þ U2Þ: ð13Þ

It is interesting to note that we have an evolution and a
constraint equation for A. As we have already indicated,
only the scalar field sector has a hyperbolic structure,
Eqs. (9) and (10), while the evolution of A does not contain
any gradients of the variables. In practice, we can solve for

FIG. 1. Diagram of the multidomain structure. The evolution
variables need to be communicated between domains using the
characteristic variables, U and V, which have a well-defined
direction of propagation. The communication is done by copying
the boundary values in the direction indicated by the arrows.

1The distinction between evolution and constraint equations
we make here is not in correspondence with the evolution and
constraint equations of the 3þ 1 ADM formalism [19].
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A either by evolving it using Eq. (11) or by solving the
elliptic Eq. (12). On the other hand, from the definition ofU
and V, Eqs. (5) and (6), we can find a constraint equation
for the scalar field ϕ,

ϕ0 ¼ 1

2
cosd−2xðU þ VÞ; ð14Þ

and therefore also for the normalized scalar field ψ ,

ψ 0 ¼ ψ
sin x
cos x

ðd − 1Þ þ 1

2

U þ V
cos x

: ð15Þ

Then, like in the case of A, we can solve for ψ either by
evolving Eq. (8) or by solving this constraint equation.
To solve these equations, we need boundary conditions

at the center x ¼ 0 and at the AdS boundary x ¼ π=2. Near
x ¼ 0, we find that the scalar field variables have the
following power expansion:

ψ ¼ ψ0 þ ψ2x2 þOðx4Þ; ð16Þ

U ¼ U0 þU1xþ U2x2 þOðx3Þ; ð17Þ

V ¼ −U0 þ U1x − U2x2 þOðx3Þ; ð18Þ

and the metric functions have the following expansions:

A ¼ 1þ A2x2 þOðx4Þ; ð19Þ

δ ¼ δ0 þ δ2x2 þOðx4Þ; ð20Þ

where δ0 is a time-dependent quantity always greater
than zero.
We can also obtain a power expansion near the AdS

boundary by just introducing a coordinate change in the
radial direction ρ ¼ π=2 − x. Then, the expansions for the
normalized scalar field ψ and the characteristic variables U
and V are

ψ ¼ ψ1ρþOðρ3Þ; ð21Þ

U ¼ U1ρþU2ρ
2 þOðρ3Þ; ð22Þ

V ¼ U1ρ −U2ρ
2 þOðρ3Þ; ð23Þ

and for the metric functions A and δ are

A ¼ 1þOðρdÞ; ð24Þ

δ ¼ Oðρ2dÞ: ð25Þ

B. Characteristic-type evolution of the EKG system

For the characteristic evolution, we adapt the scheme
used in [13,20] to the case of AAdS spacetimes with
spherical symmetry. The form of the metric is

ds2 ¼ −gḡ du2 − 2g dudrþ r2dΩ2
d−1; ð26Þ

where u is an outgoing null coordinate (u ¼ const. is an
outgoing null geodesic) and r is the radial area coordinate.
The coordinate range for ðu; rÞ is u ∈ ð−∞;∞Þ and r ∈
ð0;þ∞Þ (although the range of r depends on whether and
where gravitational collapse takes place). The AdS boun-
dary corresponds to r → ∞. The functions g ¼ gðu; rÞ and
ḡ ¼ ḡðu; rÞ are always greater than some normalization
value at the origin that we choose to be unity. The AdS limit
is g → 1 and ḡ → 1þ r2=l2. The coordinates ðu; rÞ have
dimensions of length, and throughout this paper, the
numerical values that we quote are in units of the length
scale l.
To write the field Eqs. (2) and (3) in the coordinates of

Eq. (26), we introduce two variables associated with the
scalar field ϕ,

h̄ ¼ ϕ; ð27Þ

and

d − 1

2
r
d−3
2 h ¼ ðrd−12 h̄Þ;r: ð28Þ

Then, we can recover h̄ from h by integration as follows:

h̄ðu; rÞ ¼ d − 1

2
r
1−d
2

Z
r

0

r0d−32 hðu; r0Þdr0: ð29Þ

Moreover, from the ðr; rÞ and ðu; rÞ components of the
Einstein Eq. (2) for the metric of Eq. (26), we get

g;r ¼ rgðh̄;rÞ2; ð30Þ

ðrd−2ḡÞ;r ¼
�
d − 2þ d

r2

l2

�
rd−3g; ð31Þ

and from here, we can solve for the metric variables ðg; ḡÞ
in terms of the scalar field variables ðh; h̄Þ as

gðu; rÞ ¼ exp

�ðd − 1Þ2
4

Z
r

0

dr0
ðhðu; r0Þ − h̄ðu; r0ÞÞ2

r0

�
;

ð32Þ

ḡðu; rÞ ¼ 1

rd−2

Z
r

0

dr0
�
d − 2þ d

r02

l2

�
r0d−3gðu; r0Þ: ð33Þ

That is, as expected, we can find all the variables of the
problem from h. An important observation about Eq. (33) is
that both the numerator and denominator of the right-hand
side go to zero as we approach the origin r ¼ 0, although
they do it in a way that the limit is well defined and finite.
However, this can problematic from the point of view of the
convergence of a numerical algorithm. Then, following
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[21] and [22], we can get an alternative form for this
equation by using integration by parts. The result is

ḡðu; rÞ ¼
�
1þ r2

l2

�
gðu; rÞ

−
ðd − 1Þ2
4rd−2

Z
r

0

dr0r0d−3
�
1þ r02

l2

�

× ðhðu; r0Þ − h̄ðu; r0ÞÞ2gðu; r0Þ; ð34Þ

where we have used the boundary conditions at the origin
and the equation for gðu; rÞ [Eq. (32)]. Now, the second
term in this equation goes to zero as we approach the origin,
and hence, it is more amenable for numerical computations.
The only remaining equation is the one for h, which can be
obtained from the Klein-Gordon Eq. (3),

∂2h̄
∂u∂r −

1

2

∂
∂r

�
ḡ
∂h̄
∂r

�
þ d − 1

2r

�∂h̄
∂u − ḡ

∂h̄
∂r

�
¼ 0: ð35Þ

Using Eq. (28), the equation for h is

∂h
∂u−

1

2
ḡ
∂h
∂r ¼

h− h̄
2r

��
d− 2þd

r2

l2

�
g−

d− 1

2
ḡ

�
: ð36Þ

In this work, we use the characteristic initial value
problem in the traditional way, integrating the hyperbolic
equations along their associated characteristic lines (see,
e.g., [18,23]). Then, we set up initial data on an initial
outgoing null slice fu ¼ uo ¼ constg and evolve that data
onto the next slice fu ¼ uo þ Δu ¼ constg through the
ingoing null geodesics (the purple lines in Fig. 2), which
are given by

dr
du

¼ −
1

2
ḡ: ð37Þ

Integrating along the ingoing null geodesics allows us to
exchange partial derivatives of our variables by total
derivatives with respect to u. For instance, in the case of
the field variable h, we have

dhðu; rðuÞÞ
du

¼
�∂h
∂u

�
r¼rðuÞ

þ
�∂h
∂r

�
r¼rðuÞ

drðuÞ
du

; ð38Þ

where rðuÞ is an ingoing null geodesic, solution of Eq. (37).
In this way, we can replace Eq. (36) by ordinary differential
equations, one for the variable h,

dh
du

¼ h − h̄
2r

��
d − 2þ d

r2

l2

�
g −

d − 1

2
ḡ

�
; ð39Þ

and another one for rðuÞ, namely, Eq. (37). The first one,
Eq. (39), tells us how to evolve h from a fu ¼ constg slice
to the next one. The second one tells us that the coordinate r

of a point in a fu ¼ constg slice changes following its own
ingoing null radial geodesic.
Some of the previous expressions can be problematic at

r ¼ 0. To evaluate them there, we need to understand the
behavior of our variables around r ¼ 0. Assuming the
following expansion for the scalar field ϕ ¼ h̄,

h̄ ¼ ϕ0 þ ϕ1rþ ϕ2r2 þOðr3Þ; ð40Þ

we obtain the following expansions for the rest of variables:

h ¼ ϕ0 þ
dþ 1

d − 1
ϕ1rþ

dþ 3

d − 1
ϕ2r2 þOðr3Þ; ð41Þ

g ¼ 1þ 1

2
ϕ2
1r

2 þOðr3Þ; ð42Þ

ḡ ¼ 1þOðr2Þ: ð43Þ

C. Transition from the Cauchy evolution to the
characteristic evolution

During the Cauchy evolution, we can monitor our
variables to see when we approach the collapse. Then, at
that point, we can make the transition from the Cauchy

FIG. 2. Characteristic evolution. The green (mostly horizontal)
lines represent the energy density as computed using the Cauchy
evolution at different times (evolution goes in the vertical time
direction). Blue dashed lines are characteristics (outgoing null
geodesics) computed through the Cauchy data. Purple lines
represent the null surfaces we have evolved using the character-
istic scheme, with the thickest purple line being the initial one.
The characteristic grid moves according to Eq. (37), and there-
fore, the range in r covered decreases over time.
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evolution of Sec. II A to the characteristic evolution of
Sec. II B in order to follow better the dynamics near
collapse. This transition consists in constructing initial
data on an initial null slice fu ¼ uo ¼ constg from the
outcome of the Cauchy evolution. It is important to cover a
portion of the spacetime that guarantees that the character-
istic evolution will cover the formation of the AH. This is
illustrated in Fig. 2, where the first purple line (a null
outgoing geodesic) indicates the initial slice that we choose
for the characteristic evolution. As we can see, the initial
data on that slice uses the information from the Cauchy
evolution corresponding to an evolution time of
tf − ti ≈ π=2, so that AH formation is covered.
This transition requires us to find the relations between

different objects of the Cauchy and characteristic evolu-
tions. First, we need to find the relation between the
coordinates ðt; xÞ, used for the Cauchy evolution and the
coordinates ðu; rÞ of the characteristic one. The relation
between the radial coordinates x and r is quite straightfor-
ward considering the factor in front of the metric of the unit
(d − 1)-sphere in Eqs. (4) and (26), from where we get

r ¼ l tan x: ð44Þ

The second important ingredient is the construction of
the initial null slice for the characteristic evolution from the
information extracted from the Cauchy evolution. This can
be done by finding the outgoing null geodesics from the
Cauchy evolution. From the expression of the metric in
Eq. (4), the outgoing null geodesics are given by

dx
dt

¼ þAe−δ ≡ vðt; xÞ; ð45Þ

where the plus sign denotes that these radial null geodesics
are outgoing (a minus sign corresponds to ingoing null
geodesics). To integrate this ODE, we need the values of the
metric functions Aðt; xÞ and δðt; xÞ, from the Cauchy
evolution over the spacetime region that includes the null
geodesics of interest. Some of these geodesics are shown in
the t − x diagram in Fig. 2.
The next important ingredient is the construction of

initial data for the characteristic evolution on one of the null
outgoing geodesics that constitute the slicing fu ¼ constg.
To begin with, let us apply the coordinate transformation of
Eq. (44), adding the transformation τ ¼ lt to the metric in
Eq. (4). This brings this metric to a more familiar form,

ds2 ¼ −Ae−2δ
�
1þ r2

l2

�
dτ2 þ dr2

Að1þ r2

l2Þ
þ r2dΩ2

d−1:

ð46Þ

The AdS limit A → 1 and δ → 0 gives us the well-known
form of the AdS spacetime metric. With this in mind, let us
perform a general coordinate transformation from the

Cauchy formulation metric to the characteristic formulation
metric

τ ¼ F ðu; rÞ; ð47Þ
which transforms the metric in Eq. (46) into the metric

ds2 ¼ −Ae−2δ
�
1þ r2

l2

�
F 2

udu2

− 2Ae−2δ
�
1þ r2

l2

�
F uF rdudr

þ
�
1 − A2e−2δ

�
1þ r2

l2

�
2

F 2
r

�
dr2

Að1þ r2

l2Þ
þ r2dΩ2

d−1; ð48Þ

whereF u ≡ ∂F=∂u and F r ≡ ∂F=∂r. Now, let us impose
two conditions on the general coordinate transformation of
Eq. (47). The first one comes from the comparison of this
general metric to the characteristic metric of Eq. (26) and
the fact that the vector ∂=∂r is a null vector for the second
metric. This imposes the following condition on the general
metric of Eq. (48): grr ¼ 0. Also, this translates into the
following condition on F :

F r ¼
1

ð1þ r2

l2ÞAe−δ
: ð49Þ

Here, we have made a sign choice. In the case of ingoing
null geodesics, we would have chosen the opposite sign for
F r. The second condition that we impose on the coordinate
change has to do with the freedom in rescaling the
coordinate u, which is a freedom in the choice of the
quantity F u. Our choice, motivated by the implementation
of the Cauchy-characteristic transition, is

F u ¼ eδ0 ; ð50Þ
where δ0 is the value of the metric function δ at x ¼ 0 ¼ r.
Now, by comparing the line element in Eq. (48) with the
one for the characteristic formulation in Eq. (26) and using
the conditions on the function F given in Eqs. (49) and
(50), we find the following relations between ðA; δÞ and
ðḡ; gÞ:

g ¼ eδ0−δ; ð51Þ

ḡ ¼ Aeδ0−δ
1

cos2x
; ð52Þ

A ¼ ḡ

gð1þ r2

l2Þ
: ð53Þ

These are key relations for the construction of the initial
slice and for the initial data on that slice. Given that AH
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formation in the Cauchy evolution is given by the limit
A → 0, from Eq. (53), we have that in the characteristic
evolution we can track AH formation by monitoring the
right-hand side of this equation using the values of ðr; g; ḡÞ.
On the other hand, from our particular coordinate

change, Eqs. (47), (49), and (50), we have the following
relation between τ and u (and r):

τ ¼ uþ l
Z

x

0

dx0

vðtþðx0Þ; x0Þ
¼ uþ

Z
r

0

dr0

ð1þ r02
l2Þvðtþðr0Þ; r0Þ

; ð54Þ

where tþðxÞ denotes the solution for the outgoing null
geodesics, Eq. (45), and v is the function of ðt; xÞ
defined there.
Finally, we give the relations between the metric and

scalar field variables in both formulations. First, ψ and h̄
are, by definition, directly related with the scalar field

h̄ ¼ ϕ ¼ cosd−1xψ : ð55Þ

The scalar field variable h can be constructed along the
outgoing null geodesics in term of the Cauchy variables as
follows:

h ¼ h̄þ 2

d − 1
rh̄;r

¼ ϕþ 2

d − 1
rðxÞ

�∂x
∂r ∂xþ

∂t
∂r ∂t

�
ϕ

¼ cosd−1x

�
ψ þ 2

d − 1
sin xV

�
; ð56Þ

where we have used Eqs. (6), (28), (44), and (54). It is
important to notice that h depends on the scalar field itself,
through the variable ψ and the ingoing (negative speed)
characteristic variable V [see Eq. (6)] but not on the
outgoing (positive speed) characteristic variable U [see
Eq. (5)]. The reason for this is that we are doing the
characteristic evolution using null slices made out of
outgoing null geodesics, and hence, the evolution of h
from one slice to the next one takes place along ingoing null
geodesics [see Eq. (37)].
In summary, Eqs. (51)–(56) contain all the information

we need to construct the initial null slice during the Cauchy
evolution, the associated coordinate change, and the initial
data to initiate the characteristic evolution. This completes
the procedure to perform the transition from the Cauchy
evolution to the characteristic one.

III. BASICS OF THE NUMERICAL
IMPLEMENTATION

In this section, we describe the basic ingredients for the
numerical implementation of the two evolution schemes
and the transition between them. In the case of the Cauchy
evolution, we use pseudospectral collocation methods with
multiple domains, building on previous works that have
developed this type of technique for the computation of the
self-force in black hole spacetimes [24–26]. For the
characteristic evolution, we use the method introduced in
[13], consisting of using a null foliation where the points of
each slice follow ingoing null geodesics (the characteristic
lines). Finally, we describe how we store the information
from several Cauchy slices in order to construct the initial
null slice and initial data for the characteristic evolution.

A. Numerical implementation of the Cauchy evolution

In order to have a precise numerical evolution, we are
going to use the pseudospectral collocation (PSC) method
(see, e.g., [27–29]) for the space discretization, which in
our case means in the radial direction, in the compactified
radial coordinate x, to be more precise. The main tools of
the PSC method used in this paper are briefly described in
Appendix B. In a standard spectral method, the outcome of
the spatial discretization of a set of hyperbolic PDEs is a
(much larger) set of ODEs for the time-dependent spectral
coefficients. Instead, in the PSC method, we obtain a set of
ODEs for the time-dependent values of our variables, U ¼
ðU;V;…Þ (which variables are evolved in time depends on
the choice of equations since some variables, like A and ψ ,
can be obtained either by time evolution or by radial
integration) at the collocation points, fUiðtÞ≡ Uðt; xiÞg,
where the equations are forced to be satisfied exactly. The
number of ODEs that we obtain is equal to the total number
of variables (Nv) times the number of collocation points
(N), i.e., N × Nv. The numerical evolution of the resulting
ODEs for the collocation values fUiðtÞg is performed using
a standard Runge-Kutta 4 (RK4) algorithm (see,
e.g., [30,31]).
The great advantage of the PSC method is that for

smooth solutions it provides exponential convergence, i.e.,
the truncation error of the spectral series, which can be
approximated as the last spectral coefficient, aN , decays as
e−N . In contrast, the cost of most operations, like deriv-
atives, computation of nonlinear terms, etc., increases asN2

with the number of collocation points, unless we use a fast
Fourier algorithm to transform from the physical space (the
collocation values of our variables) to the spectral space
(the coefficients of the spectral series for our variables), in
which case the cost increases only as N logN. In addition,
the Courant-Friedrichs-Lewy (CFL) condition for the
stability of the evolution of the PDEs (see, e.g., [32]), in
the case of the PSC method, is of the form Δt < CN−2

(where C is a certain constant), in contrast with the typical
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form of standard finite difference schemes for PDEs, where
Δt < C0N−1 and C0 is another constant. This is due to the
structure of the Lobatto-Chebyshev grid that we use (see
details in Appendix B), where the points cluster near the
boundaries of the domain. As a consequence, the evolution
in the PSC method can be significantly more expensive
than in the case of finite difference schemes. A way to
alleviate this is to use refinement via a multidomain PSC
method. The idea is to adapt the size and number of the
domains so that different regions in the radial direction with
different resolution requirements are covered by an
adequate number of collocation points. We can change
the number and size of the different domains along the
evolution, following the resolution needs of the problem.
The practical implementation of the AMR is described in
Sec. III B. Most computations are done at each domain in
an independent way. The different domains are connected
via the corresponding matching conditions, which depend
on the type of equation that each variable satisfies.
The Cauchy evolution allows us to follow the system

from its initial conditions to the latest stages, just before the
collapse. As we have already mentioned, we can expect the
scalar field to travel to the AdS boundary (x ¼ π=2) several
times, and in this sense, using the compactified radial
coordinate x gives us control over the whole space. On the
other hand, when the scalar field is close to collapse, large
gradients will be generated in our variables, and the AMR
is crucial in order to guarantee the high-resolution require-
ments needed to resolve the dynamics.
In Sec. II A, we presented the equations we obtained

from Einstein’s field equations and from the energy
momentum conservation in terms of the Cauchy-type
variables, namely, ðψ ; U; V; A; δÞ. Some variables have
two equations. For instance, the metric function A can
be obtained either by evolving Eq. (11) or by integrating
Eq. (12), and the same happens with the scalar field
variable ψ [see Eqs. (8) and (15)]. We have numerically
implemented several combinations of equations; however,
in general, we have obtained the best results and efficiency
by evolving in time U and V [with Eqs. (9) and (10)] and
then obtaining ψ , A, and δ from radial integration [with
Eqs. (15), (12), and (13), respectively].
From Eqs. (12) and (13), we can find an integral

expression for the metric functions A and δ,

Aðt;xÞ−1¼−
cosdxeδ

2sind−2x

Z
x

0

dye−δsind−1ycosd−3yðU2þV2Þ;

ð57Þ

δðt; xÞ ¼ 1

2

Z π
2

x
dy sin ycos2d−3yðU2 þ V2Þ; ð58Þ

and using Eq. (15) for the scalar field,

ψðt; xÞ ¼ −
1

cosd−1x

Z
π=2

x
dy cosd−2yðU2 þ V2Þ: ð59Þ

On the other hand, we can introduce the energy density

Eðt; xÞ ¼ e−δsind−1y cosd−3y

�
U2 þ V2

2

�
; ð60Þ

and from it we can compute the energy contained inside a
sphere of a given radius x, which we call the mass function,

Mðt; xÞ ¼ eδ
Z

x

0

dy Eðt; yÞ; ð61Þ

which is related to the metric function A by

Aðt; xÞ ¼ 1 −
cosdx
sind−2x

Mðt; xÞ: ð62Þ

Then, the ADM mass is just the limit MADM ¼
limx→π=2Mðt; xÞ. The ADM mass is a constant, that does
not depend on time, that we can use in our simulations to
check the numerical accuracy. In addition, we can define
the following quantity:

xcm ¼ 1

MADM

Z
x

0

dy yEðt; yÞ; ð63Þ

which plays the role of a radial center of mass in the sense
that we can use it to track where the energy is concentrated,
which is specially useful when evolving localized scalar
field configurations, for instance, those corresponding to
the initial conditions given in Eq. (72). There are other
possible definitions of a radial center of mass; for instance,
we can use the radial position of the minimum of the metric
function A, i.e., xmin, such that AðxminÞ ¼ minðAðxÞÞ≡
Amin. We compare these two definitions of radial center of
mass, xcm and xmin, in Fig. 3, where their evolution is
compared with the evolution of Amin for two different sets
of initial data, the one given in Eq. (72), which collapses
after five round trips to the AdS boundary, and the one
given in Eq. (79). As we can see in Fig. 3, for the initial
profiles in Eq. (72) (left panel), the differences between
xmin and xcm are quite small, although xmin presents some
small abrupt features. These features are more prominent
for the more complex initial profile of Eq. (79) (right
panel), where the evolution of both xcm and xmin is more
complex, but xcm appears to be a much smoother indicator
to track the evolution of the scalar field profile.
Finally, regarding more technical details of the numerical

implementation, it is important to mention that all the
operations involving the spatial radial direction, including
the integrals, are performed within the framework of the
PSC method as briefly described in Appendix B. Another
important ingredient of the numerical implementation is
how to deal with the multiple domains. In our scheme, the
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boundaries of each domain have duplicated information
because the boundary points of one domain are identified,
with the exception of the global boundaries (x ¼ 0 and
x ¼ π=2), with the boundary points of the contiguous
domains. Although most operations are done locally, at
each domain, we need to communicate the different
domains through these boundary points. This is the main
reason why we have introduced the characteristic variables
U and V. These variables have always a well-defined
direction of propagation (see Appendix A), which is crucial
in order to establish the communication between domains.
The characteristic variable U always propagates with
positive speed (in direction to the AdS boundary), and
the characteristic variable V always travels with negative
speed (towards the origin). Then, the way to communicate
two given contiguous domains during the Cauchy evolution
is to take the value of the variable U from the right
boundary of the domain to the left and to copy it into
the U value of the left boundary of the domain to the right
(see Fig. 1) and the equivalent procedure for V. We take the
value of the variable V from the left boundary of the
domain to the right and copy it into the V value of the right
boundary of the domain to the left. This way of commu-
nicating the characteristic variables ensures that we will not
find discontinuities in our variables across the boundaries
during the numerical evolution. In other words, we perform
the communication between domains according to the
directions of propagation of the information.

B. Adaptive mesh refinement for the Cauchy evolution

The typical scalar field configurations that we consider
in this work, which are localized in the radial direction,
follow the same evolutionary pattern, already described in
Sec. II A. The scalar field attempts to collapse near the
origin, but if the initial amplitude is below some threshold,

the scalar field disperses towards the AdS boundary. Then,
it bounces off the AdS boundary and travels again towards
the origin. This sequence is repeated until the scalar field
distribution is compact enough to collapse and form an AH.
This means that we need to simulate a compact scalar field
distribution back and forth, and some of the scalar field
variables exhibit growing gradients as the evolution pro-
ceeds. In order to track the pronounced features of the
scalar field during the evolution in an efficient way, we
resort to AMR techniques based on our multidomain PSC
approach. The aim is to design a method in which the
resolution follows the field during the round trips to the
AdS boundary with a minimal loss of precision and without
slowing the evolution much. In this sense, it is important to
mention that although we know the evolutionary pattern the
details can vary significantly as we change the initial
conditions. To illustrate this, in Fig. 4, we show the profile
of the scalar field variable U at a similar time for two
different simulations where collapse happens after one
bounce. We see that the shapes are quite different and
require different grids in order to resolve them. In Fig. 5, we
show the profile ofU at three different times of a simulation
where collapse takes place after three bounces. The snap-
shots of these figures are taken when the field is traveling
towards the boundary, so most of the energy is concentrated
in the U mode (the one propagating to the right as shown in
Fig. 1). They illustrate the need for AMR in our simu-
lations. We have developed two AMR methods for our
simulations.

1. First approach: Gradient density estimator

The first AMR method for our spectral multidomain grid
is based on a functional that we call the gradient density
functional, defined at each domain as

π

π

π

π

π

π

π

π

π

π

π

π

π

π

π

π

FIG. 3. Center of mass evolution. In the left plot, we show the evolution of Amin, xmin, and xcm for initial conditions in Eq. (72) that
collapse after five bounces. In the right plot, we use an initial profile from Eq. (79).
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ρD ¼ 1

N

Z
D
dxjV;xj ≥ 0; ð64Þ

where D denotes one of the domains. This indicator is
based on the characteristic variable V, and the main idea is
to distribute the domain nodes to minimize the gradient
density functional. In our numerical experiments, we find a
threshold for ρD above which the evolution is no longer
valid because of the appearance of high-frequency numeri-
cal noise. Then, during the simulations, we modify the

domain structure to keep ρD below that threshold, adding
more domains if needed.
This method works reasonably well for capturing the

gradients generated during the collapse, but it has several
caveats. In particular, it can generate numerical noise far
from the region where the scalar field is localized if we do
not allow for a minimum resolution there. It can also give
problems when the scalar field presents very sharp features
that have to be propagated to the AdS boundary and back,
which are precisely the most relevant cases for the study of
the mass gap in [14].

2. Second approach: Domains over a curve in
configuration space

We have developed an alternative method that appears to
be more robust for dealing with the most extreme cases
where the gradients of variables likeU and V, despite being
smooth functions, are very large. The starting point is to
consider a combination of our Cauchy variables that
reflects in a very clear way the regions where more
refinement is needed, that is, where we find the largest
variations in our variables, let us call it γðA; δ;ψ ; U; VÞ.
The length of the curve defined in the plane ½x; γðxÞ�, when
large gradients in our variables appear, has a large con-
tribution from the relatively small x interval where gra-
dients occur. Then, let us consider the length of this curve
from the origin to a certain radial location x,

LðxÞ ¼
Z

x

0

d~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ0ð~xÞ2

q
; ð65Þ

where γ0 ¼ ð∂γ=∂AÞA0 þ � � �. The key idea of this refine-
ment method is to distribute the nodes of our domains so
that they cover the same length of the curve ½x; γðxÞ�, in
contrast with the traditional choice of taking them equally
distributed over the x direction. That is, we select the
nodes of our domains, fx̄ig, as Lðx̄iÞ ¼ iLðπ=2Þ=D
(i ¼ 0;…; D), where D is the total number of domains.
In our simulations, we have seen that this method does

not require us to establish any threshold, instead we just
have to change the multidomain structure after a certain
number of time steps to adapt to the changes in the variables
in a smooth way. Every time we change the domain
structure, we have to interpolate the variables into the
new grid. The interpolation between the old and new grids
is performed via the pseudospectral representation (see
Appendix B for details), and in this way, the numerical
error introduced is relatively small.
The specific choice of the function γ is the key ingredient

of this method and is quite flexible in the sense that we can
tune this choice to the type of initial scalar field profiles or
even to the particular state of the numerical evolution. For
not very demanding simulations, in terms of gradients of
our variables, we can choose γ to be just A, and this
provides a very good performance. For more demanding

FIG. 5. Cauchy refinement. Comparison between U profiles
from the same simulation at different times. This configuration
collapses after three bounces. The snapshots are taken at the same
position during the trip to the AdS boundary.

FIG. 4. Cauchy refinement. Comparison between the U profile
in two different simulations at a similar time. Both of them are
supposed to collapse after one bounce, but the resolution require-
ments to follow them are very different.
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simulations, a better choice is the scalar field characteristic
variableU, when the field is traveling to the AdS boundary,
and V, when it is traveling towards the origin. This is
motivated by the character of these variables (see
Sec. III A). Here, U is the eigenfunction that captures
the movement with positive velocity, and V is the one that
captures the movement with negative velocity. In practice,
we have seen that these simple choices work quite well and
allow us to resolve the large changes in these variables that
appear during the collapse in the most extreme cases.

C. Numerical implementation of the
characteristic evolution

The characteristic evolution described in Sec. II B is
completely different from the Cauchy one. We need to set a
grid on the initial null slice in terms of the radial coordinate
r. When we evolve to the next null slice, the r values of
each grid point change following the ingoing null geodesics
[see Eq. (37)]. This has two main effects. First, our last grid
point (largest value of r, rmax) evolves making our physical
computational domain shrink, as we show in Fig. 2.
Second, the points near the origin are swallowed because
according to the equation for ingoing null geodesics these
points should evolve to negative values of r, which do not
have a well-defined physical meaning. This means that we
need to control the size of our grid and be careful with
the computations near the origin, but other than that, the
characteristic evolution is not problematic. Actually, the
reduction of the grid as we proceed with the evolution helps
to focus our numerical resolution around the region where
the collapse takes place so that we do not need mesh
refinement methods in this case. In the cases where the
collapse does not occur, we see that the field gets scattered
towards infinity as it would do in the asymptotically flat
case [13,20]. However, since we are considering AAdS
spacetimes, the scalar field has to reach the AdS boundary
in a finite time, but the region around the AdS boundary is
not covered by our characteristic grid. This means that we
have made the transition from the Cauchy to the character-
istic evolution too early, and therefore, we need to continue
the Cauchy evolution until we can construct an initial null
slice whose evolution covers the collapse.
To set up our initial characteristic grid, it is very important

to establish its coordinate size, determined by rmax, which is
the r coordinate of the last grid point. Once this is done, we
can freely distribute the other points. A uniform distribution
of the grid points in the radial coordinate r is not a good
choice because of the CFL condition. For the characteristic
evolution, the CFL condition implies

Δu <
1

2
min

�
ri − ri−1

ḡi

�
; ð66Þ

where ri and ri−1 are two contiguous grid points and
ḡi ¼ ḡðriÞ. If we have a uniform grid, ri − ri−1 ¼ Δr is
the same for any i. But when we go to large values of r, we

have that the metric function ḡ behaves as in pure AdS
spacetime (because the field is mostly concentrated near
r ¼ 0), that is, ḡ ∼ r2. This means that the CFL condition in
this case is controlled by the outer grid points, the ones with
largest r, where Δu should be too small. But on physical
grounds, it should be the opposite; the CFL condition should
be dominated by the points where we need more resolution,
around the region where the AH forms. What we do is
construct a grid where the grid point separation is constant
with respect to the radial coordinate x instead of r; thus, the
outer points are well separated in r. From the Cauchy
evolution, we extract the values of the scalar field variable h
at the different grid points, and from the values of h, we find
the other variables, h̄, g, and ḡ, by integration [using
Eqs. (29)–(33) or Eq. (34)]. The first grid point for
integration is the origin, where we need to prescribe the
boundary conditions

h̄ðr¼ 0Þ ¼ hðr¼ 0Þ; ḡðr¼ 0Þ ¼ gðr¼ 0Þ ¼ 1: ð67Þ

The integration proceeds to the next grid points by using
Simpson’s rule,

Ii ≡
Z

ri

0

dr fðrÞ

¼ Ii−1 þ
ri − ri−1

6
½fðri−1Þ þ 4fðrMÞ þ fðriÞ�; ð68Þ

where rM ≡ ðri þ ri−1Þ=2 is the r coordinate of themidpoint
between ri and ri−1, where the value of the integrand is
evaluated using spline interpolation [33].
Each grid point evolves according to the ODE system of

Eqs. (39) and (37). To that end, we use again a standard
RK4 algorithm (see Refs. [30,31]).

IV. CODE VALIDATION

In this section, we show the performance of the different
pieces of the numerical code that we have developed to
implement the Cauchy-characteristic scheme described in
the previous sections to study gravitational collapse in
spherically symmetric AAdS spacetimes.

A. Convergence analysis for the Cauchy evolution

The Cauchy evolution uses a PSC discretization method
for the radial direction with multiple domains. At each
domain, we use a Chebyshev-Lobatto grid (with linear
mapping to the physical radial space; see Appendix B for
details). The PSC method provides two representations for
each variable, the spectral representation typical of general
spectral methods and the physical representation, where the
values of our variables at the collocation points are the
unknowns to be found numerically. The truncation error,
the difference between the true values of our variables and
their numerical approximation, is given by the terms of the
spectral series that we neglect by truncating it. We can
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estimate the truncation error by the absolute value of the
last spectral coefficient, jaN j (see, e.g., [27]). For smooth
functions, the convergence rate of the Chebyshev series is
exponential [27] (spectral convergence), i.e., the truncation
error drops exponentially with the number of collocation
points. We check convergence for our Cauchy evolution
code by performing a series of runs with the same number
of domains (D ¼ 50), uniformly distributed in the radial
coordinate x, and with no refinement. We set the same
initial conditions for all of them, from the family of
configurations in Eq. (72), and evolve it for a fixed interval
of time (tf ≈ 2, i.e., after a bounce off the AdS boundary).
Then, we look at the last spectral coefficients for the
characteristic variables U and V. Here, we only show
results from the domain where these variables present more
features, which is, in principle, the most challenging one
from the numerical point of view, and we have checked that
we obtain equivalent results for the other domains. In
Fig. 6, at the upper and middle panels, we show the spectral

convergence for these two variables in a logarithmic plot of
the absolute value of the last spectral coefficient versus the
number of collocation points. As we can see, the linear
scaling in the logarithmic plot stops at some point, followed
by an almost flat profile, indicating that we have reached
the round-off error of the computer, and hence, we cannot
expect to improve the truncation error any further. In the
bottom panel of Fig. 6, we show the variations in the ADM
mass, MADM, with respect to its initial value, MADMðt0Þ,
due to numerical inaccuracies during the Cauchy evolution
(in an ideal situation, this quantity should vanish for all
times). Actually, what we show in this figure is the
normalized quantity,

ΔMADMðtÞ ¼
jMADMðtÞ −MADMðt0Þj

MADMðt0Þ
: ð69Þ

In Fig. 6, we see exponential convergence of the deviations
from the ADM mass [ΔMADMðtfÞ, with t0 ¼ 0] that
saturate at a value around 10−10 for our particular test runs.

B. Convergence analysis for the characteristic evolution

In the characteristic scheme, we have a nonuniform
discretization in the radial coordinate r in the initial grid,
and it turns out that the evolution of the r coordinate of the
grid points [according to the ingoing null geodesic
Eq. (37)] makes our grid even more unequally spaced.
Despite of this, the resolution increases with the number of
grid points, and we can study how the results converge as
we increase this number. To that end, we run simulations
with different initial numbers of grid points (the number of
grid points changes along the evolution because we lose
points through the origin) but with the same initial scalar
field profile [see Eq. (76)]. These initial conditions form an
AH, and the point of the evolution that we take to analyze
the convergence is just before the formation of the AH,
when A ¼ 10−8 [A is estimated via Eq. (53)]. That is, we
monitor how the location of AH formation changes with the
number of grid points, N. We use the following indicator:

p ¼ log2

�jrN=4
AH − rN=2

AH j
jrN=2

AH − rNAHj

�
: ð70Þ

For N ¼ 120; 000, we obtain p ≈ 3.0034. This value
means that the convergence of our code is third order, in
agreement with the convergence rate of the Simpson
integration rule that we use.

C. Comparison between the Cauchy
and characteristic evolutions

The main reason for implementing a hybrid Cauchy-
characteristic evolution scheme is to bring together the best
of these two methods of evolution in order to tackle
interesting questions about gravitational collapse in

FIG. 6. The upper and middle plots show the truncation error
for the variables U and V, jaðUÞ

N j and jaðVÞN j, respectively, as a
function of the number of collocation points per domain, N. From
all the truncation errors, one at each domain, we take the one
where the variables reach their maximum values. The linear
fitting with the logarithmic scale in the vertical axis shows the
expected exponential convergence (see Sec. IVA). The plot in
the bottom shows that deviations in the ADM mass during
the evolution also decrease exponentially with the number of
collocation points per domain until saturation due to
round-off error.
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AAdS spacetimes, taking into account that the Cauchy
evolution based on the PSC method allows us to follow the
possible different bounces of the matter fields (a scalar field
in our case) off the AdS boundary with high precision,
whereas the characteristic evolution allows us to get very
close to the point of formation of an AH. Then, although the
two evolution schemes are used in different stages of the
evolution, it is interesting to see how they compare when
they are applied to the final moments of the collapse, when
an AH forms. This comparison is also a justification for the
introduction of our hybrid scheme, which on top of the two
evolution methods requires a nontrivial transition between
them. Then, we have evolved the same scalar field
configurations with both evolution schemes to as close
as possible to the point of AH formation, which is
monitored using the metric function A, which in the
characteristic scheme can be computed using Eq. (53).
We show the results of this comparison in Fig. 7, where we
include a zoom-in plot of the relevant region for AH
formation. In the left zoom-in plot, we show the metric
function A for a Cauchy evolution until the numerical code
is not stable anymore without adding more domains and
such that if we keep adding resolution the evolution would
essentially freeze because of the tiny time step allowed by
the CFL condition. For the right zoom-in plot, we initiated
the evolution also with the Cauchy evolution scheme (in
order to guarantee that we are comparing the same physical
configuration) and then changed to the characteristic
scheme until the point where the numerical noise becomes
significant or the evolution effectively stops due to a too

small Δu step. As we can see, with the characteristic
evolution, we can get many orders of magnitude closer to
the AH formation than with the Cauchy scheme, as
measured in terms of the metric function A. This clearly
illustrates the power of our hybrid scheme to study the
collapse near AH formation.

D. Ingoing null geodesics

In order to understand better the magnitude of the
numerical challenge posed by the study of gravitational
collapse in AAdS spacetimes, it is interesting to analyze the
ingoing null geodesics in the characteristic evolution of
AAdS spacetimes and compare them with the ingoing null
geodesic in asymptotically flat spacetimes. To begin with,
let us look at the difference between the ingoing null
geodesics in AdS spacetime, Eq. (26), and in Mink
spacetime, in the equivalent coordinate system where the
metric has the same form as in Eq. (26). The equation for
the ingoing null geodesics has also the same form in both
cases, i.e., Eq. (37), but the form of the metric function ḡ is
different. In AdS spacetime, we have ḡAdSðrÞ ¼ 1þ r2=l2,
whereas in Mink we have ḡMinkðrÞ ¼ 1. Therefore, by
solving the ingoing null geodesic equation, Eq. (37), we get
the following expressions for the ingoing null geodesics:

uMinkðrÞ ¼ 2ðr0 − rÞ;
uAdSðrÞ ¼ 2ðarctanðr0Þ − arctanðrÞÞ: ð71Þ

These geodesics have been plotted in Fig. 8. This illustrates
what can happen with our characteristic grid in AAdS
evolutions in comparison with the asymptotically flat case.
As shown in Fig. 8, the grid points of an initial null slice

FIG. 7. Comparison of the Cauchy and characteristic evolution
methods. We show a snapshot of the function A just before
collapse for both cases. The differences are due to the fact that in
the first case A is plotted from a t ¼ const slice, while in the
second case comes from a u ¼ const slice. The plots coincide
around r ¼ rAH. The zoom-in plot shows, by using a logarithmic
scale, how close to the AH formation (A → 0) we can get with
each evolution scheme.

FIG. 8. Comparison of ingoing null geodesics in Mink (dashed
purple lines) and AdS (green continuous lines) spacetimes. We
see the strong effect that the cosmological constant term has in the
geodesics. In AdS spacetime, they reach the region near the origin
much faster than in Mink, as measured by the time u.
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(u ¼ 0) move towards the origin much faster in AdS
spacetime than in Mink spacetime. The conclusion of this
for our simulations is that we must be very careful in
choosing the initial null slice, in particular, its size, because
the grid points in AdS travel very fast towards the region
near the origin, which means that our grid shrinks very fast,
and we may miss the interesting phenomena, in particular,
the formation of an AH.
On the other hand, in Fig. 9, we show the comparison

between ingoing null geodesics in AdS spacetime and the
ones of an AAdS spacetime, where the scalar field collapses
forming anAH.We compute these geodesics numerically as
the solution of Eq. (37). As soon as the geodesics approach
the spacetime point in the ðu; rÞ plane where the AH forms,
all the ingoing null geodesics with r > rAH focus at that
point as it can be seen in the zoom-in area of this figure,
while those with r < rAH follow a different path.

V. RESULTS FROM THE NUMERICAL
EVOLUTION

In this section, we present results of our evolutions of the
EKG system, Eqs. (2) and (3), in spherically symmetric
AAdS spacetimes. The families of the initial configurations
that we use for our evolutions are shown below.
Equations (72) and (79) are initial data for Cauchy-only
and Cauchy-characteristic evolutions, whereas Eq. (76)
shows initial data used for characteristic-only evolutions.
The landscape of the gravitational collapse that emerged

after the pioneer work of Ref. [4] can be summarized by

saying that initially compact scalar field configurations will
sooner or later form an AH. The time required to form the
AH depends on how many round trips to the AdS boundary
are needed for the AdS turbulent instability to convert long-
wavelength modes into short-wavelength ones so that the
scalar field profile gets compressed enough to form a BH.
This is illustrated in Fig. 10, where we show the AH radius,
rAH, obtained by evolving a number of initial configura-
tions from the family of Eq. (72) with our Cauchy-
characteristic evolution scheme. This three-dimensional
plot has been obtained by varying both the amplitude, ε,
and the width, σ, of the initial configurations. It shows the
different branches that appear and that represent configu-
rations that have bounced off the AdS boundary a fixed
number of times (indicated by the color and branch number
in Fig. 10) before collapsing and forming an AH. This is in
contrast with the asymptotically flat case where we have a
single branch. The branches are clearly seen in the direction
of the amplitude, ε, where we have a high number of points,
but it can be seen that it also happens in the direction of the
width, σ. The same should happen if we look to any
direction in the plane ðε; σÞ.
In what follows, we describe new results regarding the

critical collapse, that is, analyzing the configurations in
Fig. 10 near the plane rAH ¼ 0, and we also describe results
about the mass gap between branches and the power law
scaling found in our recent study [14] for the AH mass of
the near subcritical configurations. These results consoli-
date further the conclusions reached in [14].

A. Critical phenomena in AAdS gravitational collapse

In [4], it was concluded that at the critical points
separating the branches, the supercritical configurations
form an AH with mass going to zero with the same scaling

FIG. 9. Comparison between ingoing null geodesics in pure
AdS spacetime (green color) and in an AAdS spacetime describ-
ing gravitational collapse of a scalar field (fuchsia color). The
geodesics focus around the location of AH formation. The small
plot is a zoom of the region inside the red circle, where it can be
seen how the geodesics behave around rAH. This size of the
zoom-in plot is Δr≃ 10−4 around r≃ 0.03952 and Δu≃ 10−13

around u≃ 0.224673828858275.

εσ

FIG. 10. AH location in a two-parameter phase space. We show
the radial location of the AH formed from initial configurations
belonging to the family in Eq. (72) for different values of the
amplitude, ε, and the width, σ.
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as in the case of asymptotically flat spacetimes [1]; that is,
rAH ∼ ðp − pnÞγ, where p is an arbitrary parameter of the
family of initial configurations, pn is the nth critical value
at which the AH mass goes to zero, and γ is an universal
exponent that in d ¼ 3 has the expected value γ ≃ 0.374.
This conclusion was confirmed in [14] for branch 0 in
Fig. 10 by fitting a large number of simulations near the
critical point. In the present work, we extend this result for
the next five branches (up to branch 5) using the same
family of initial data (similar to the one used in [4]):

Uðto; xÞ ¼ ε exp

�
−
4tan2x
π2σ2

�
; Vðto; xÞ ¼ −Uðto; xÞ;

ð72Þ

that represents a profile centered around the origin at the
initial time and characterized by the amplitude, ε, and the
width, σ. This particular choice, and any that fulfils
the condition Vðto; xÞ ¼ −Uðto; xÞ, directly implies
ð∂xϕÞðto; xÞ ¼ 0.
To obtain the scaling of the AH mass near the critical

points of the different branches, we have used the method
introduced in [34], which consists of following the evolu-
tion of subcritical configurations very near the critical point
and tracking the behavior of the curvature scalar, R, at the
origin (x ¼ 0). The subcritical character of these evolutions
allows us to perform accurate computations using only the
Cauchy evolution. The curvature scalar R at x ¼ 0, as well
as other curvature scalars, starts to grow when the scalar
field attempts to form an AH. It reaches a maximum value
(in absolute value), and then it disperses towards the AdS
boundary. The maximum value of R is higher the closer we
approach the critical point, pn, being infinite at that point.
Actually, it follows a scaling law of the form [34]

Rmaxjx¼0 ∼ ðpn − pÞ−2γ: ð73Þ

The scalar field near the critical point exhibits discrete self-
similarity (type II critical behavior) with an echoing period
Δ that for the same reasons we have mentioned for the case
of γ should be the same as in the asymptotically flat
case, Δ ≈ 3.44.
In [35] and [36], it was shown that on top of the scaling

of Eq. (73), a finer structure can be seen as oscillations of
the form

lnRmaxjx¼0 ¼ ð−2γÞ lnðpn − pÞ þ b0 þ Fðlnðpn − pÞÞ;
ð74Þ

where F is a periodic function with period equal to Δ=2γ.
In terms of the Cauchy evolution variables, the scalar of
curvature at the origin can be computed using the following
expression:

Rjx¼0 ¼ −
12

l2
−

1

2l2
ðV − UÞ2: ð75Þ

We have carried out a series of Cauchy evolutions of
initial configurations of the family in Eq. (72) with fixed
width, σ ¼ 0.05, and amplitudes chosen in such a way that
the configurations are subcritical with respect to any of the
first six critical points (see Fig. 10). The results of these
simulations are shown in Fig. 11 with the corresponding
fittings. The values of the critical amplitudes, εn, the critical
exponents, γ, and the echoing periods, Δ, are presented in
Table I. We can see that the values obtained for γ and Δ are
consistent with the known values for the collapse of
massless scalar fields in asymptotically flat spacetimes
[1,35]. This was already shown for the first branch in [12]
and checked in [14].
We have already mentioned that the characteristic

method of Sec. II B cannot be used to follow the full
evolution of the scalar field because the characteristic grid
shrinks with time, and hence, we cannot track bounces of
the scalar field off the AdS boundary. However, we can, in
principle, use the characteristic evolution for the particular
cases in which the scalar field collapses directly, or in other
words, we can, in principle, study branch 0 with the
characteristic evolution. Actually, this was already done

FIG. 11. Critical exponents for fixed width (σ ¼ 0.05). Scaling
of the scalar of curvature, R, for subcritical configuration near the
critical point for different branches and from the branch of direct
collapse (b ¼ 0, bottom) to the branch with five bounces (b ¼ 5,
top). An offset, ob, has been added to the y axis to make the plot
more clear. The values of the offset are ob ¼ −2, −1, 0, þ1, þ2,
þ3, starting from b ¼ 0. The results from the fittings are given in
Table I.
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in [12] using a double-null characteristic scheme. Here, we
repeat this analysis to confirm this result and, at the same
time, to test further our characteristic evolution method. To
that end, we have to prescribe initial data on a null slice
u ¼ const for the scalar field variable h. We choose the
following family of initial conditions:

ϕðrÞ ¼ h̄ðrÞ ¼ ε
r2

l2
exp

�
−
ðr − r0Þ2
l2σ2

�
; ð76Þ

which has three parameters: amplitude, ε, width, σ, and
center of the profile, r0, which we always fix to the value
r0 ¼ 0.1l. We have performed a series of characteristic
evolutions varying the amplitude ε for three (fixed) values
of the width σ ¼ 0.01, 0.05, and 0.10. We compute the
critical exponent, γ, and echoing period, Δ, from the AH
mass, which in AAdS spacetimes with the coordinates of
Eq. (26) is given by MAH ¼ rAHð1þ r2AH=l

2Þ=2 (the
values of this mass that we quote in this paper are in units
of l); that is, we fit our characteristic-only simulations to
the formula

lnMAH ¼ γ lnðp − pnÞ þ b0 þ Fðlnðp − pnÞÞ; ð77Þ
where F is again a periodic function with period Δ=2γ
[34,35]. The results obtained from these simulations are
shown in Fig. 12 with the fittings to Eq. (77). The critical
values of the amplitude, ε0, the critical exponent, γ, and the
echoing period, Δ, are given in Table I. Again, the results
are consistent with the predictions for the asymptotically
flat case.

B. Power law behavior near the mass gaps

The second application of our Cauchy-characteristic
evolution scheme is to study the mass gap between the
branches of collapsed scalar field configurations (see
Fig. 10). In a previous work [14], using this evolution
scheme, we found that the subcritical solutions that are very
close to the critical points form BHs with an AH whose
mass obeys a scaling law of the form

MAH −Mnþ1
g ∝ ðpn − pÞξ; ð78Þ

where pn denotes the critical value of the initial data
parameter, p, for the nth branch; Mnþ1

g is the mass of the

(nþ 1)th gap, between the branches n and nþ 1, corre-
sponding to the minimum mass of the AH formed by
subcritical configurations; and ξ is the power law exponent.
In [14], we found that the exponent ξ has a value of
ξ≃ 0.70, and it was conjectured that this value is universal,
the same for all families of initial configurations and for all
branches/critical points. The numerical support for this
conjecture given in [14] came from the evolution of two
different one-parameter families of initial configurations
and for the first two mass gaps, one between branches 0 and
1 and the other between branches 1 and 2. The two one-
parameter families of initial configurations both came from
the same larger family of initial conditions given in
Eq. (72), one by fixing the width σ and the other one by
fixing the amplitude ε.
In this work, we give new evidence for this conjecture.

We do this by first considering a completely new different

TABLE I. Critical exponents for fixed width (σ ¼ 0.05). Fitting values of the critical exponents obtained in Sec. VA correspond to the
critical parameters for the six first branches (see Fig. 11).

Branch Critical value (εn) Critical exponent (γ) Echoing period (Δ)

n ¼ 0 335.572231� 0.000005 0.374� 0.006 3.33� 0.15
n ¼ 1 251.09427729� 0.00000001 0.3746� 0.0008 3.45� 0.02
n ¼ 2 216.208077165� 0.000000001 0.3743� 0.0004 3.45� 0.02
n ¼ 3 193.9755275� 0.0000001 0.377� 0.007 3.43� 0.04
n ¼ 4 178.070915� 0.000001 0.376� 0.007 3.42� 0.06
n ¼ 5 165.946674� 0.000004 0.377� 0.010 3.46� 0.10

ε ε

σ
σ
σ

FIG. 12. Critical exponents for branch 0 using the characteristic
method. We show the results for the AH mass versus initial
amplitude for three different families of initial configurations
with fixed width [see Eq. (76)] of branch 0 (direct collapse). The
values of the critical amplitudes, critical exponent, and echoing
period are given in Table II.
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family of initial configurations, in the sense that it is
functionally different, and second by extending the study to
the third mass gap between branches 2 and 3.
The new family of initial conditions that we consider is

inspired by a proposal in [37] and [38] of setting the initial
profile far from the origin and centered close to the AdS
boundary. The form for the initial values of our Cauchy
variables is given by

Uðto; xÞ ¼ εcosh−1
�
tanðxÞ − tanðx0Þ

σ

�
;

Vðto; xÞ ¼ −Uðto; xÞ: ð79Þ

This family has three parameters, an amplitude, ε, a width,
σ, and the position at which the scalar field profile is
centered, x0, which we always take as a fixed parameter.
These configurations are evolved using the Cauchy-char-
acteristic evolution scheme. It turns out that the simulations
for the configurations within the parameter region of
interest, those that lead to subcritical scalar field collapse,
are numerically more challenging than in the case of the
initial conditions from the family in Eq. (72). The reason
for this is that the energy distribution in the new family of
configurations is not as compact as in the old one. This has
already been illustrated in the evolutions tracking the center
of mass of the scalar field profile shown in Fig. 3. For our
simulations, we set x0 ¼ 1.2 and σ ¼ 0.2. With this choice,
the first critical point is found at ε ¼ ε0 ¼ 1.093435�
0.000001. In Fig. 13, we show, in the plane ε −MAH, the
region near this first critical point. The red circle in the
figure indicates the area from where we have taken the data
to fit the power law of Eq. (78), which is shown in the
zoom-in plot of the this figure. In this case, we find that the
mass gap is

M1
g ¼ ð7.2954� 0.0008Þ × 10−3; ð80Þ

and the power law exponent has a value consistent with the
conjectured universal character,

ξ ¼ 0.68� 0.07: ð81Þ

On the other hand, we have also studied the power law of
Eq. (78) for additional mass gaps, beyond the gaps between
branches 0–1 and 1–2, already studied in [14]. This is a

particularly challenging goal since it involves a number of
simulations in which we have to track the scalar field
through two bounces off the AdS boundary. The difficulty
of this problem lies resolution requirements that the
subcritical configurations pose on our simulations since
we have to evolve the sharp features originated during the
quasicollapse stage to the AdS boundary and back. It is also
challenging from the point of view of computational cost
since each of these simulations takes significantly much
more time than the previous ones. We need to perform
many of them in order to locate the critical point and to
have enough subcritical configurations close to it in order to
extract the values of the mass gap and power law exponent
with a good precision. Again, considering the conjecture
established in [14], we expect to find the same power law
[Eq. (78)] around all the mass gaps. We have analyzed the
situation around the third mass gap, between branches 2
and 3, using the initial configurations in Eq. (72) fixing the

TABLE II. Critical exponents for branch 0 using the characteristic method. Fitting values of the critical exponents obtained in Sec. VA
correspond to the critical parameters for the zero branch using the characteristic method (see Fig. 12).

Width (σ) Critical value (ε0) Critical exponent (γ) Echoing period (Δ)

0.01 7.828039� 0.000002 0.376� 0.006 3.2� 0.4
0.05 25.907772996� 0.000000003 0.3748� 0.0004 3.33� 0.10
0.10 23.8595911� 0.0000001 0.375� 0.005 3.45� 0.10

ε

ε ε

FIG. 13. Mass gap 1, between branches 0 and 1. The behavior
near the subcritical solutions marked by the red circle follows
the power law in Eq. (78). The zoom-in plot shows the fitting
of the data. The critical point is located at an amplitude
ε0 ¼ 1.093435� 0.000001. The values for the mass gap, M1

g,
and power law exponent, ξ, are given in Eqs. (80) and (81),
respectively.
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value of the width to σ ¼ 0.05. The critical point associated
with the second branch is located at a value of
ε ¼ ε2 ¼ 216.203� 0.009. Then, from the evolution of
subcritical configurations associated with this critical point,
we obtain the ε −MAH plot shown in Fig. 14. The fit to this
data gives us the value of the mass gap,

M3
g ¼ ð5.44� 0.02Þ × 10−4; ð82Þ

and the power law exponent of Eq. (78) is found to be

ξ ¼ 0.69� 0.04: ð83Þ
This value is also consistent with the values found in [14]
for the first two mass gaps and with the value found here
[see Eq. (81)] for the first mass gap, using a functionally
different family of initial data, namely, the one given by
Eq. (79). Therefore, these results give more numerical
support to the conjecture about the universality of the
power law of Eq. (78), with an exponent of ξ≃ 0.70.

VI. CONCLUSIONS

The collapse of a massless scalar field in a spherically
symmetric AAdS spacetime shows a much richer phenom-
enology than the analogous problem in asymptotically flat
spacetimes as it was realized for the first time in [4] and is
illustrated by our Fig. 10. Both the long-term evolution and

the dynamics of gravitational collapse present distinctive
features that are not yet fully understood. In this work, we
have focussed on the dynamics near collapse, when an AH
is forming. To study this question, we need to resort to
numerical methods, taking into account that we are dealing
with a problem that represents an important challenge for
the design and performance of a numerical code that solves
the PDEs describing the system, despite the fact that we are
dealing with a 1þ 1 problem (spherical symmetry). The
main reason for this lies behind the causal structure of
global AdS, where lightlike signals can reach the AdS
boundary in a finite time. As a consequence, a scalar field
configurations that fails to form an AH in a first attempt
will travel to the AdS in a finite time, bounce, and travel
back towards the origin, where it will have a second chance
to form an AH. This process will be repeated until after a
number of bounces the scalar field will collapse forming an
AH. This is not the whole story as we have evidence of the
existence of stable scalar field configurations, which makes
the whole picture not yet completely understood. The near
subcritical configurations are very challenging since they
are very close to collapse, which induces large gradients in
the field variables that we have to propagate to the AdS
boundary and back. In this sense, AAdS spacetimes
constitute an excellent arena for the development of new
numerical relativity methods and tools.
In this paper, we have presented a new numerical scheme

to study these situations which, in essence, is a hybrid
Cauchy-characteristic evolution scheme. The Cauchy evo-
lution uses a multidomain PSC method for the spatial
discretization, and the characteristic evolution follows the
ingoing null geodesics, which allows us to get much closer
to the point of AH formation than with the Cauchy
evolution. An additional crucial part of this method is
the transition between the two schemes. We have described
in detail all the analytic and numerical ingredients of this
Cauchy-characteristic evolution scheme. In doing so, we
have also analyzed the differences between evolution in
AAdS and asymptotically flat spacetimes, pointing out how
the effect of the cosmological constant makes our simu-
lations more challenging. We have also shown the con-
vergence properties of the different parts of the scheme and
how we implement AMR techniques for the Cauchy-
evolution sector. Given that the scalar field configurations
that we have considered are localized in the radial direction,
in the sense that the energy density is concentrated within a
single radial interval, we have studied how two definitions
of center of mass can track the evolution of the field and
how by using them we can also have a sense of how
compact a certain scalar field configuration is.
With this numerical scheme, we have studied in [14] the

subcritical scalar field configurations near the different
branches that appear depending on the number of times
that the field bounced off the AdS boundary. We found
evidence that these configurations follow the power law

ε ε

FIG. 14. Subcritical solutions associated with the third mass
gap (between branches 2 and 3). The fit of the data to the power
law in Eq. (78) is shown. The critical point is found to be located
at an amplitude ε ¼ ε2 ¼ 216.203� 0.009, and the values for the
mass gap, M3

g, and power law exponent, ξ, are given in Eqs. (82)
and (83), respectively.
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MAH −Mnþ1
g ∝ ðpn − pÞξ, with the mass gap between

branches (separated by the location of the critical point,
pn) given byMnþ1

g and the exponent, ξ, was conjectured to
be universal, independent of the initial data and also the
same for all the mass gaps/branches. The numerical support
provided in [14] comes from the first two mass gaps using
the initial conditions of Eq. (72) varying both the amplitude
and the width. In this paper, we have found further evidence
for this conjecture, first by using a completely different
family of initial conditions, the one in Eq. (79), and second
by looking at the third mass gap. All these results support
our conjecture for the power law at the mass gaps and the
universal character of the exponent, which in all cases has
been found to be consistent with a value of ξ ≈ 0.7. It
would be interesting to have analytical support for this
numerical result, but at a first glance, it appears as a difficult
enterprise. The reason is that the subcritical solutions that
follow this power law correspond to initial conditions that
are very close to those that define the associated critical
solution, but they are separated by a full round trip to the
AdS boundary. Then, any analytical study of this power law
should consider the details of the nonlinear dynamics
during the round trip together with the influence of the
AdS boundary, which in our view seems even more
complicated than the analytical study of the critical solution
itself and hence beyond the scope of this paper.
Another open question is the precise role of the AdS

boundary. In [9], the introduction of an artificial boundary
at a finite distance from the origin in asymptotically flat
spacetime leads to a scaling law for the subcritical solutions
with the same exponent γ as in the supercritical case. The
comparison between their result an ours indicates that there
is a difference between global AdS and the system with an
artificial boundary in asymptotically flat spacetimes. In this
sense, it is interesting to note [39] that our value for the
exponent is quite close to 2γ ≈ 0.74. Apart from this, the
global AdS and the asymptotically flat case with an
artificial boundary do not show differences in the structure
of the AH phase space (see Fig. 10) nor in the scaling for
supercritical configurations. A future interesting study is to
look at the case of AdS with an artificial boundary.
On the other hand, we have also obtained the critical

exponents associated with the multiple critical points that
appear in the case of AAdS spacetimes. By tracking
supercritical configurations using only the Cauchy evolu-
tion, we have been able to find the critical points associated
with branches 0–5. We have confirmed the expected result
[4] that at AH formation the presence of the negative
cosmological constant is irrelevant. Indeed, the critical
exponents and echoing periods that we have found are
consistent with the values of the asymptotically flat case.
In summary, we have introduced a hybrid Cauchy-

characteristic method that is particularly suited to study
the dynamics in spherically symmetric spacetimes near the
point of formation of an AH. This has allowed us to find

new features and understand better gravitational collapse in
AAdS spacetimes. This evolution scheme is quite general,
and it can be applied to other scenarios of physical interest,
including different spacetime dimensions, other matter
fields, or even for a different spacetime causal structure.
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APPENDIX A: HYPERBOLIC STRUCTURE OF
THE SCALAR FIELD EQUATIONS

The PSC method used for the numerical implementation
of the Cauchy evolution requires a first-order hyperbolic
formulation of the scalar field equation, the Klein-Gordon
Eq. (3). This equation, for the metric in Eq. (4), becomes
the following second-order PDE:

ϕ̈ − A2e−2δϕ00 ¼
_A
A
_ϕ − _δ _ϕþAe−2δϕ0A0 − A2e−2δδ0ϕ0

þ ðd − 1Þ A2e−2δ

cos x sin x
ϕ0: ðA1Þ

To reduce the order of the equation, we introduce the
variables

Π ¼ _ϕ; Φ ¼ ϕ0: ðA2Þ
The equations for W ¼ ðϕ;Π;ΦÞ constitute a first-order
system of PDEs that can be derived from these definitions
and from Eq. (A1),

_ϕ ¼ Π; ðA3Þ

_Π − A2e−2δΦ0 ¼
_A
A
Π − _δΠþ Ae−2δA0Φ

− A2e−2δδ0Φþ ðd − 1Þ A2e−2δ

cos x sin x
Φ;

ðA4Þ

_Φ − Π0 ¼ 0: ðA5Þ
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As expected, this is a set of first-order PDEs that admits the
following compact form:

∂tW þA½x;W� · ∂xW ¼ S½x;W�; ðA6Þ
where A is a matrix, and S a vector that depend on the
radial coordinate x and our variables W, but they do not
depend explicitly on the time t. Here, the metric functions δ
and A have to be taken as functionals of our variables W
since they are the result of integrating Eqs. (12) and (13).
From Eqs. (A3)–(A5), the components of the matrix A are

A ¼

0
BB@

0 0 0

0 0 −A2e−2δ

0 −1 0

1
CCA; ðA7Þ

and the components of the vector S are

S ¼

0
BB@

Π
_A
AΠ − _δΠþ Ae−2δA0Φ

−A2e−2δδ0Φþ ðd − 1Þ A2e−2δ
cos x sin xΦ

0

1
CCA: ðA8Þ

The characteristic structure of this hyperbolic system of
first-order PDEs is determined exclusively by the matrix A
(see, e.g., [18] for details), in such a way that the
eigenvectors of A correspond to the different characteristic
fields of the system and the eigenvalues to the characteristic
speeds associated with the eigenvectors. Strongly hyper-
bolic systems are those that have a complete set of
eigenvalues and eigenvectors (see, e.g., [18,23,32] for a
description of PDEs with hyperbolic structure), which is a
key property for showing existence and uniqueness of
solutions and also a condition for the stability of algorithms
to evolve the system. To find out what happens in our case,
we have to solve the eigenvalue problem

AE ¼ σE; ðA9Þ
where E is any vector in the space fðϕ;Π;ΦÞg. By
analyzing Eq. (A9), we find that we have a complete set
of real eigenvalues and eigenvectors; so our system is
strongly hyperbolic, as expected for a system of PDEs that
is equivalent to the Klein-Gordon equation. The resulting
set of eigenvalues and eigenvectors for is

σ1 ¼ 0 ⟶ E1 ¼ ð1; 0; 0Þ; ðA10Þ

σ2 ¼ þAe−δ ⟶ E2 ¼ ð0;−Ae−δ; 1Þ; ðA11Þ

σ3 ¼ −Ae−δ ⟶ E3 ¼ ð0;þAe−δ; 1Þ: ðA12Þ

The meaning of the eigenvalues is that they are the
characteristic speeds of the characteristic variables. Then,

we have a quantity, ϕ, that does not propagate (or in other
words, it propagates with zero speed) and two that
propagate with speed �v≡�Ae−δ [this is the same speed
defined in Eq. (45)]. We can diagonalize the matrix A by
the matrix transformation A ¼ K ·DA ·K−1, where DA ¼
diagð0; v;−vÞ and K ¼ ðE1;E2;E3Þ. At this point, we can
define a new set of variables Y as follows: Y ¼ K−1 ·W.
We can see that the principal part of our set of equations
becomes completely decoupled for the variables Y. These
are the characteristic variables. The first one is ϕ, with zero
associated propagation speed (eigenvalue), and the other
two are

Yþ ¼ Φ −
Π
v
; ðA13Þ

Y− ¼ Φþ Π
v
: ðA14Þ

The characteristic variable Yþ propagates with speed v and
Y− with speed −v, respectively. Since v > 0, Yþ is a field
propagating to the right with speed v, and Y− is a field
propagating to the left with the same speed. From these
characteristic variables, we have introduced the variables in
Eqs. (5), (6), and (7), which are also characteristic varia-
bles, as seen from the evolution Eqs. (8)–(10). Actually, we
can see that

U ¼ Yþ
cosd−2x

; V ¼ Y−

cosd−2x
: ðA15Þ

The use of these variables is very important in this work for
several reasons but mainly in order to use the PSC method
with a multidomain grid. The communication between
subdomains becomes very clear in terms of the character-
istic variables.

APPENDIX B: BASIC INGREDIENTS
OF THE PSC METHOD

Broadly speaking, spectral methods can approximate
solutions of PDEs by finite expansions of the variables
using a given basis of functions. The coefficients of the
expansion are determined by imposing an appropriate
criterium that forces this expansion to approach the exact
solution as we increase the number of terms. In the case of
the PSC method, the criterium consists of imposing the
expansion to be exact at a set of collocation points (see,
e.g., [27–29]). Here, we use the Chebyshev polynomials,
fTnðXÞg (X ∈ ½−1; 1�, the spectral domain), as the basis
functions, which can be expressed in the following form:

TnðXÞ ¼ cos ðncos−1ðXÞÞ: ðB1Þ

They are orthogonal in the continuum in the following
sense:
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ðTn;TmÞ ¼
Z

1

−1

dXffiffiffiffiffiffiffiffiffiffiffiffiffi
1−X2

p TnðXÞTmðXÞ ¼
πcn
2

δnm; ðB2Þ

where the coefficients cn are

cn ¼
�
2 for n ¼ 0;

1 otherwise:
ðB3Þ

The set of collocation points that we use are those of a
Lobatto-Chebyshev grid. The spectral coordinates of these
points are the zeros of the polynomial ð1 − X2ÞT 0

NðXÞ ¼ 0,
where the prime here indicates differentiation with respect
to X. The zeros can be written as

Xi ¼ − cos

�
πi
N

�
ði ¼ 0; 1;…; NÞ; ðB4Þ

which means that the boundary points X ¼ �1 are included
in the grid, in contrast with other collocation grids, like for
instance the Gauss-Chebyshev grid (see, e.g., [27]). Taking
into account the properties of the Gauss-Lobatto-
Chebyshev quadratures (see, e.g., [27]), the Chebyshev
polynomials have another orthogonality relation, in the
discrete, in the following sense (n;m ¼ 0;…; N):

½Tn; Tm� ¼
XN
i¼0

wiTnðXiÞTmðXiÞ ¼ ν2nδnm; ðB5Þ

where wi are the weights associated with the Chebyshev-
Lobatto grid, wi ¼ π=ðNc̄iÞ, and where the c̄i’s are nor-
malization coefficients given by

c̄i ¼
�
2 for i ¼ 0; N;

1 otherwise:
ðB6Þ

Finally, the constants νn in Eq. (B5) are given
by ν2n ¼ πc̄n=2.
In general, the computational domain, say ½xL; xR�, does

not coincide with the spectral one, ½−1; 1�, and we need a
one-to-one mapping between them. The simplest choice,
and the one we use, is the linear mapping

x ⟶ XðxÞ ¼ 2x − xL − xR
xR − xL

: ðB7Þ

and the inverse one is

X ⟶ xðXÞ ¼ xR − xL
2

X þ xL þ xR
2

: ðB8Þ

For mesh refinement purposes (see Sec. III B), we use a
multidomain PSC method consisting of the division of the
computational domain, Ω ¼ ½xL; xR�, into D disjoint sub-
domains

Ω ¼ ∪D
a¼1

Ωa; Ωa ¼ ½xa;L; xa;R�; ðB9Þ

where xa;L and xa;R are the left and right boundaries of the
subdomain Ωa (x1;L ¼ xL and xD;R ¼ xR). Since they are
disjoint subdomains, we have xa;L ¼ xa−1;R (a ¼ 1;…; D).
We apply the PSC method to each subdomain, and hence,
our variables have different expansions in Chebyshev
polynomials in each subdomain. Then, each physical
subdomain is mapped to the spectral domain ½−1; 1� using
the linear mappings of Eqs. (B7) and (B8), which we call
xaðXÞ and XaðxÞ. The different expansion for the different
subdomains are then matched by using the appropriate
boundary conditions (see the description in Sec. III A).
Let us now look at the spectral approximation for the

variables of our problem, which we arranged in the vector
Z. At a given subdomain Ωa, in the PSC method, we have
two representations of the approximation for our variables.
First, we have the standard spectral representation of the
approximation to our variables, Ua;Nðt; xÞ,

Ua;Nðt; xÞ ¼
XN
n¼0

aa;nðtÞTnðXaðxÞÞ; ðB10Þ

where the aa;n are (time-dependent) vectors that contain the
spectral coefficients of the expansion of our variables. In
the PSC method, we have also a physical expansion, which
looks as follows:

Ua;Nðt; xÞ ¼
XN
i¼0

Ua;iðtÞCiðXaðxÞÞ; ðB11Þ

where CiðXÞ are the cardinal functions [27] associated with
our choice of basis functions (Chebyshev polynomials) and
set of collocation points (Lobatto-Chebyshev grid). Their
expression is

CiðXÞ ¼
ð1 − X2ÞT 0

NðXÞ
ð1 − X2

i ÞðX − XiÞT 00
NðXiÞ

: ðB12Þ

The cardinal functions have the following remarkable
property:

CiðXjÞ ¼ δij ði; j ¼ 0;…; NÞ; ðB13Þ

so that the time-dependent (vector) coefficients, fUig, of
the expansion in Eq. (B11) are the values of our variables at
the collocation points

Ua;Nðt; xaðXiÞÞ ¼ Ua;iðtÞ: ðB14Þ

These are the unknowns that one looks for in the PSC
method. The spectral and physical representations
[Eqs. (B10) and (B11), respectively] are related via a
matrix transformation [27]. The computations (float-point
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operations) required to change representation using the
matrix transformations increase with the number of collo-
cation points as ∼N2. Nevertheless, we can introduce a new
spectral coordinate via X ¼ cos θ (with θ ∈ ½0; π�) in such a
way that the Chebyshev polynomials become a trigono-
metrical function,

Tnðcos θÞ ¼ cosðnθÞ: ðB15Þ
As a consequence, an spectral expansion in Chebyshev
polynomials like the one in Eq. (B10) can be mapped to a
cosine series. We can then perform the change of repre-
sentation by means of a discrete Fourier transform using a
fast-Fourier transform (FFT) algorithm. In our numerical
codes, we use the routines of the FFTW library [40]. Then,
the number of computations required for a change in
representation increases as ∼N ln N with the number of
collocation points.
Changing between representations is useful in order to

compute derivatives and nonlinear terms. In the case of
derivatives, it is simpler to compute them in the spectral
representation. Then, we can transform from the physical to
the spectral representation, compute derivatives there, and
finally transform back to the physical representation. In the
case of a Chebyshev PSC method, the differentiation
process can be described by the following scheme:

∂x∶ fUig⟶FFT fang⟶
∂x fbng⟶FFT fð∂xUÞig; ðB16Þ

where fbng are the spectral coefficients associated with the
spatial derivative ∂x, and their relation to the spectral
coefficients of the variables, fang, is given by
(see, e.g., [27])

bN ¼ bN−1 ¼ 0; ðB17Þ

bn−1 ¼
1

cn
f2nan þ bnþ1g ðn ¼ N − 1;…; 1Þ; ðB18Þ

where the coefficients cn are given in Eq. (B3).
Another important operation where changing the repre-

sentation is very useful is integration. Let us assume we
want to integrate the function gðXÞ (we assume we have

already changed to the spectral coordinate X) from the
right, that is, fðXÞ ¼ R XN¼1

X dX0gðX0Þ, which assumes that
an integration constant/boundary condition is imposed on
the right boundary, fðXNÞ ¼ fN . Then, we can follow the
scheme

Z
1

X
∶ fUig⟶FFT fang⟶

∂x fbng⟶FFT
��Z

1

X
U

�
i

�
; ðB19Þ

where fbng are the spectral coefficients associated with the
integral from the right, fðXÞ, and their relation to the
spectral coefficients of the function gðXÞ, fang, is given by

bN ¼ aN−1

2N
; ðB20Þ

bn ¼
1

2n
fc̄n−1an−1 − anþ1g ðn ¼ N − 1;…; 1Þ; ðB21Þ

b0 ¼ fN −
XN
n¼1

bn: ðB22Þ

The process to integrate from the left, fðXÞ ¼R
X
X0¼−1 dX

0gðX0Þ, is very similar. In this paper, we use both
since some variables that we obtain via integration with
respect to x require a boundary condition at the origin and
others on the AdS boundary. It is simple to extend these
rules to our multidomain scheme.
Finally, in the PSC method, we find a discretization of

our system of equations in Eqs. (8)–(13) by imposing them
at every collocation point. In practice, this is done by
introducing the expansion (B11) into the Eqs. (8)–(13), and
then we evaluate the result at every collocation point of our
Chebyshev-Lobatto grid (B4). We obtain a system of ODEs
for the variables fUiðtÞg,

_Ui ¼ A · ð∂xUÞi þ B · Ui þ Si; ðB23Þ

where the dot denotes differentiation with respect to the
time coordinate, t, and ð∂xUÞi has to be interpreted
according to the scheme in Eq. (B16).
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