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Apart from the known weak gravitational lensing effect, the cosmic magnification acquires relativistic
corrections owing to Doppler, integrated Sachs-Wolfe, time-delay and other (local) gravitational potential
effects, respectively. These corrections grow on very large scales and high redshifts z, which will be
the reach of forthcoming surveys. In this work, these relativistic corrections are investigated in the
magnification angular power spectrum, using both (standard) noninteracting dark energy (DE), and
interacting DE (IDE). It is found that for noninteracting DE, the relativistic corrections can boost the
magnification large-scale power by ∼40% at z ¼ 3, and increases at lower z. It is also found that the IDE
effect is sensitive to the relativistic corrections in the magnification power spectrum, particularly at low
z—which will be crucial for constraints on IDE. Moreover, the results show that if relativistic corrections
are not taken into account, this may lead to an incorrect estimate of the large-scale imprint of IDE in the
cosmic magnification; including the relativistic corrections can enhance the true potential of the cosmic
magnification as a cosmological probe.

DOI: 10.1103/PhysRevD.93.103538

I. INTRODUCTION

The cosmic magnification [1–59] will be crucial in
interpreting the data from future surveys that depend on
the apparent flux and/or angular size of the sources, such as
surveys of the 21 cm emission line of neutral hydrogen
of the SKA [60,61], and the baryon acoustic oscillation
surveys of BOSS [62,63]. It will be key to understanding
cosmic distances, and the nature of large-scale structure
in the Universe. However, the fact that we observe on the
light cone, and not on a spatial hypersurface, leads to the
deformation of the survey area—given that the observation
angles are distorted, owing to weak (gravitational) lensing
[1–5]. This is the standard source of cosmic magnification
in an inhomogeneous universe. However, apart from weak
lensing, the area distortion is also sourced by time-delay
effects [64].
Moreover, by observing on the past light cone, the

observed redshift is perturbed, by Doppler effect, which
is owing to the motion of the galaxies relative to the
observer, and by the gravitational potential, both local at the
galaxies (i.e. local potential effects) and also integrated
along the line of sight [i.e. integrated Sachs-Wolfe (ISW)
effect]. These effects surface in the cosmic magnification in
redshift space—via the redshift perturbation—and together
with the time-delay effect, are otherwise known as general
relativistic (GR) effects. These effects are mostly known
to become significant at high redshifts z≳ 1, on very
large scales. (For a range of work on GR effects in general,
see [6–8,64–106].)
Forthcoming optical and radio surveys will probe

increasingly large distance scales of the order of the

Hubble horizon and larger, at the survey redshifts. On
these cosmological scales, surveys can in principle provide
the best constraints on dark energy (DE) and modified
gravity models—and will be able to test general relativity
itself. It is on these same scales and redshifts that the
GR effects become substantial. Hence understanding the
imprint of the GR effects on cosmological scales will be
crucial for analyzing the forthcoming data.
In this paper, the GR effects are investigated in the

magnification (radial) angular power spectrum—for
(standard) noninteracting DE, and for interacting DE (IDE),
where DE and dark matter (DM) exchange energy and
momentum, in a reciprocal manner. We start by rederiving
the standard GR magnification overdensity [6,7] (in first
order perturbations) in Sec. II. In Sec. III we describe a
scheme for measuring the cosmic magnification (leaving
out the experimental details), while in Sec. IV we discuss
the magnification angular power spectrum with non-IDE.
We discuss, in Sec. V, the magnification angular power
spectrum with IDE—with DM losing energy and momen-
tum to DE. We conclude in Sec. VI.

II. THE RELATIVISTIC MAGNIFICATION
OVERDENSITY

In fixed-volume surveys (with volume-limited samples),
where a fixed patch of the sky is observed, the physical
number of sources Nðn; zÞ—observed in a direction −n, at
a given redshift z away—depends mainly on the source
apparent flux Fðn; zÞ (or luminosity), i.e. Nðn; zÞ ¼
NðFðn; zÞÞ. The dependence on flux invariably leads to
the (de)magnification of the observed sources, given that
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their apparent fluxes are inherently (de)amplified in a
perturbed universe. Thus a sky patch of redshift bin dz
and solid angle interval dΩn will contain dNðn; zÞ number
of magnified galaxies:

dN ¼ ~nFdF≡ ~N gdzdΩn; ð1Þ

where ~nF is the galaxy number per unit flux, measured in

redshift space; ~N g ¼ ~nF ~F is the number of the (magnified)

galaxies per unit solid angle per redshift bin, with ~F being
the corresponding flux per unit solid angle per redshift bin.
Moreover, we note that ~F ðn; zÞ depends on the underlying
magnification density ~Mðn; zÞ—i.e. per unit solid angle
per redshift bin. Hereafter, overbars denote background
quantities, and δ ~X ¼ ~X − X̄ is the perturbation in the given
quantity ~X, with jδ ~Xj ≪ 1.
Thus the true (observed) overdensity of magnified

sources is given by [7]

�
δ ~N

N̄

�
magnified sources

¼ Q
�
δ ~M

M̄

�
magnification

; ð2Þ

where we have used that δ ~N g ¼ ð∂N̄ g=∂F̄ Þδ ~F , and by
using that for magnified sources we have F̄ ∝ M̄, i.e. the
background flux per unit solid angle per redshift bin is
proportional to the associated observed magnification
density, it follows that ∂ ln F̄ ¼ ∂ lnM̄; consequently
δ ~F=F̄ ¼ δ ~M=M̄. The quantity Q is the magnification
bias [3,6,7,9–16,65], given by

Q≡ ∂ ln N̄ g

∂ ln F̄
����
z̄
; ð3Þ

where N̄ g ¼ n̄FF̄ . [Alternatively, (2) may be obtained

directly by δ ~N g ¼ ð∂N̄ g=∂M̄Þδ ~M; Q≡ ∂ ln N̄ g=∂ lnM̄
[6,7]—we then proceed using F̄ ∝ M̄.] Thus we get

Q ¼ 1 −
5

2

∂
∂m̄ log10n̄F ≡ 1 − ŝ; ð4Þ

with an effective slope: ŝ ¼ −∂ ln n̄F=∂ ln F̄ (see [17–20]);
m ¼ m� þ 2.5log10ð ~F �= ~F Þ is the apparent magnitude, and
m� is the apparent magnitude at the (fixed) initial value ~F �
of the flux density. Note that throughout this work we
assume surveys which are independent of the source
apparent angular size (but see [11–13,21,65] for size-
dependent analysis).
Thus the observedmagnification density perturbation (2),

is given byΔobs
M ð ~MÞ≡ δ ~N gð ~MÞ=N̄ g—which is automati-

cally gauge invariant (given that it is an observable):

Δobs
M ðn; zÞ ¼ QðzÞ ~δMðn; zÞ; ð5Þ

where ~δM ≡ δ ~M=M̄ is the magnification density contrast.
Obviously, by (4) (see also [16–20]) the magnification bias
exists only if ŝ ≠ 1. Moreover, provided the background
number density n̄F varies with redshift (or magnitude), the
magnification bias cannot be unity. Thus for Q ¼ 1, it
implies that n̄F ¼ constant.
In the presence of magnification, the transverse area per

unit solid angle—in redshift space— ~A becomes distorted
by a factor μ ¼ ~M=M̄, given by

μ−1 ≡ ~A

Ā
¼

~D2
A

D̄2
A
; ð6Þ

where ~DA is the associated angular diameter distance to the
source. Thus an overdense, inhomogeneous region will
have a magnification factor μ > 1 (objects appear closer
than they actually are, and the screen-space area appears
reduced), and an underdense region will have μ < 1
(objects appear farther, and the screen-space area appears
enlarged), while a smooth, homogeneous region will have
μ ¼ 1 (objects are seen at their true position, with the
screen-space area remaining unchanged). Moreover, for
(μ < 1) μ > 1 the observed flux is (de)amplified; for μ ¼ 1
the observed flux is equal to the true flux.
The area density is usually given as ~A ¼ ~Að> ~F Þ and

Ā ¼ Āð> ~F=μÞ—corresponding to sources with flux den-
sity greater than ~F and ~F=μ, respectively. Note that given
F̄ ∝ M̄, it follows that F̄ ¼ ~F=μ (up to first order).

A. The transverse area density

We compute the screen-space area density—i.e. the area
per unit solid angle transverse to the line of sight—in
redshift space. The transverse area element is

dA ¼ ~Aðn; zÞdΩn ¼ ~D2
Aðn; zÞdΩn; ð7Þ

where the area density ~A is in a given redshift bin. In real
coordinates ~xα, we have

dA ¼
ffiffiffiffiffiffi
− ~g

p
ϵμναβ ~uμ ~l

νd ~xαd ~xβ; ð8Þ

≡AðθO; ϑOÞdθOdϑO; ð9Þ

which is evaluated at a fixed z, with θO and ϑO being
the zenith and the azimuthal angles, respectively, at the
observer O; ~uν is the 4-velocity of the observer.
The 4-vector ~lν is orthogonal to the line of sight, i.e.
~uν ~l

ν ¼ 0, with its background part being purely spatial,
where [6]

~lν ¼ ~uν þ ~nν

~nα ~uα
; ð10Þ

where ~nν ¼ d ~xν=dλ is a tangent 4-vector to the photon
geodesic ~xνðλÞ, with λ being an affine parameter.
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Note that ~A and A are the area densities in redshift
space and in real space, respectively. From (9), we have
(henceforth assuming flat space)

A ¼
ffiffiffiffiffiffi
− ~g

p
ϵμναβ ~uμ ~l

ν ∂ ~xα

∂θS
∂ ~xβ

∂ϑS
���� ∂ðθS; ϑSÞ∂ðθO; ϑOÞ

����; ð11Þ

where ~g ¼ detð ~gμνÞ, with θS ¼ θO þ δθ and ϑS ¼ ϑO þ δϑ
being the angles at the source S. Thus after some calcu-
lations (see the Appendix), we obtain

A ¼ Ā
�
1 − 3D − ϕþ n̄iBji −

1

2
δgαβn̄αn̄β

þ 2
δr
r̄
þ ðcot θ þ ∂θÞδθ þ ∂ϑδϑ

�
; ð12Þ

where Āðz̄Þ ¼ aðz̄Þ2r̄ðz̄Þ2 sin θ is the background area
density—computed at z̄, in the unperturbed universe, with
r ¼ r̄þ δr being the comoving radial distance. The param-
eters B, D and ϕ are scalar metric potentials.

B. The magnification distortion

Here we compute the fractional perturbation ~δM in the
magnification density ~M. By (6), we have μ−1 ¼ ~A=Ā ¼
1þ ~δA, where ~δA ≡ δ ~A=Ā is the redshift-space area
density contrast. Hence by taking a gauge transformation,
from real to redshift space, we have

~δAðn; zÞ ¼ δAðn; zÞ −
d ln Ā
dz̄

δzðn; zÞ; ð13Þ

where δA ≡ δA=Ā is the real-space area density contrast,
with Ā remaining the same for both A and ~A. In (13), we
used that the conformal time perturbation δη ¼ ð∂η̄=∂z̄Þδz;
δz ¼ z − z̄ is the redshift perturbation.
Thus given (12) and (13), we obtain

μ−1 ¼ 1 − 3D − ϕþ n̄iBji −
1

2
δgαβn̄αn̄β þ 2

δr
r̄

þ ðcot θ þ ∂θÞδθ þ ∂ϑδϑþ 2a

�
1 −

1

r̄H

�
δz; ð14Þ

whereH ¼ a0=a is the comoving Hubble parameter, with a
prime denoting differentiation with respect to conformal
time η, a ¼ ð1þ z̄Þ−1 being the scale factor, and

dĀ
dz̄

¼ −2a
�
1 −

1

r̄H

�
Ā: ð15Þ

After some calculations (see the Appendix), given (14) and
μ−1 ¼ 1 − ~δM, we obtain the relativistic magnification
distortion as

~δMðn; zÞ ¼ −
Z

r̄S

0

dr̄ðr̄ − r̄SÞ
r̄
r̄S

∇2⊥ðΦþΨÞðn; zÞ

þ 2Ψðn; zÞ − 2

r̄S

Z
r̄S

0

dr̄ðΦþΨÞðn; zÞ

þ 2

�
1 −

1

r̄SHðz̄Þ
��

Φðn; zÞ þ V∥ðn; zÞ

−
Z

r̄S

0

dr̄ðΦ0 þΨ0Þðn; zÞ
�
; ð16Þ

where r̄S ¼ r̄ðz̄SÞ is the background comoving
distance at S, Φ and Ψ are the Bardeen potentials, with
V∥ ≡ n · V ¼ n̄i∂iV being the velocity component along
the line of sight, and V is a gauge-invariant velocity
potential; see the Appendix, i.e. (A8)–(A10). [Note that
nonintegral terms in (16) denote the relative values, those at
S relative those at O, accordingly.] The squared operator
∇2⊥ ¼ ∇2 − ðn̄i∂iÞ2 þ 2r̄−1n̄i∂i is the Laplacian on the
screen space—transverse to the line of sight (the various
terms retaining their standard notations). In (16), the first
line gives the weak lensing term; the remaining lines
together give the GR corrections.
Thus given (16), we rewrite the (observed) relativistic

magnification overdensity (5) (see also [6,7,20]):

Δobs
M ðn; zÞ ¼ Δstd

Mðn; zÞ þ ΔGR
M ðn; zÞ; ð17Þ

where the weak lensing magnification is taken as the
standard term, given by

Δstd
M ≡ −Q

Z
r̄S

0

dr̄ðr̄ − r̄SÞ
r̄
r̄S

∇2⊥ðΦþΨÞ; ð18Þ

and the GR corrections are given by

ΔGR
M ≡ 2Q

��
1 −

1

r̄SH

��
V∥ −

Z
r̄S

0

dr̄ðΦ0 þΨ0Þ
�

þΨþ
�
1 −

1

r̄SH

�
Φ −

1

r̄S

Z
r̄S

0

dr̄ðΦþΨÞ
	
: ð19Þ

It should be noted that magnification of sources is only one
of the effects (along with cosmic shear [4,14,20,22–24]) of
weak lensing. However, weak lensing is not the only cause
of cosmic magnification; other causes include (19): the
Doppler effect (first term in square brackets), which is
sourced by the line-of-sight relative velocity between the
source and the observer; the ISW effect (second term in
square brackets)—sourced by the integral of the time
variation of the gravitational potentials; the time-delay
effect (last integral term), and the source-observer relative
gravitational potential effects (nonintegral potential terms).
For example, when a source is moving towards the observer
its flux becomes magnified: this is Doppler effect, i.e.
Doppler magnification (also referred to as “Doppler
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lensing” [25,26]). Time delay also causes magnification
by broadening the observed flux. Moreover, if the
gravitational potential well (i.e. the potential difference)
between the source and the observer is deep enough it can
also result in flux magnification, specifically when the
source is at the potential crest with the observer at the
trough—e.g. sources with sufficiently lower masses relative
to our galaxy (the Milky Way): signals from such sources
reaching an observer on earth will appear magnified
(when other effects are insignificant).

III. MEASURING THE COSMIC MAGNIFICATION

A generic sample of cosmic objects in the sky would
inherently contain both an “unmagnified” fraction and a
“magnified” fraction (see e.g. [6,7,20,65–67]), where the
magnified fraction is proportional to the magnification bias.
However, during observations all events are measured
together without any distinctions of these fractions—only
the number density, i.e. number of objects per unit
solid angle per redshift bin, is measured. Nevertheless,
the unmagnified fraction is volume dependent, while the
magnified fraction is flux (or luminosity) dependent [65].
Thus, in order to measure solely the magnified fraction,
i.e. the magnification overdensity, the observation is done
on a fix-sized survey volume.
Observers sometimes split the survey sample into magni-

tude bins Δm, i.e. instead of redshift bins Δz; thus compute
the galaxy number per unit solid angle in a givenΔm—which

is essentially ~N g. By noting the magnification factor

μ ¼ ~M=M̄, then (2) and (4) yield the following scheme
(here we leave out the experiment details, but see e.g. [24]):

μi ¼ 1þ
~N gðmiÞ − N̄ gðmiÞ

ð1 − ŝðmiÞÞN̄ gðmiÞ
; ð20Þ

where μi ¼ μðmiÞ are the values for galaxies with magni-
tudes mi ¼ m1; m2; m3;…, in a given Δm. Obviously, we
have jμ − 1j ≪ 1 (i.e. at first order perturbation).
In order to optimally estimate μ, a weighting scheme is

crucial—each μi is associated with a certain weighting
function wi ¼ wðmiÞ (see e.g. [17,24,27]), which may be
thought of as a “probability distribution function” in the

given magnitude (or redshift) bin. Thus the effective
estimator for each bin, is given by [24]

μ̂ ¼
P

iwiμiP
iwi

; ð21Þ

with the associated standard error given by

σμ̂ ≈
�X

i
wi

�
−1
2

; ð22Þ

where the given error is only a simplistic (illustrative)
approximation; a more rigorous approach may be neces-
sary. Thus in the case where Δm → 0, i.e. infinitesimally
small, the summations transform to integrals over dm. It
should be noted that any survey that can measure magni-
fication can also measure shear (see e.g. [24]). Moreover,
the true (physical) magnification effect on cosmic objects is
quantified by Q ~δM ¼ ð1 − ŝÞðμ − 1Þ, i.e. at first order
perturbations. (In fact, the method given by [28] can also
be applied to isolate the magnification overdensity in the
GR density perturbation [6,7,65,66,68–71].)

IV. THE MAGNIFICATION ANGULAR POWER
SPECTRUM

The magnification overdensity (17) may be expanded in
spherical multipoles, given by

Δobs
M ðn; zÞ ¼

X
lm

almðzÞYlmðnÞ;

almðzÞ ¼
Z

d2nY�
lmðnÞΔobs

M ðn; zÞ; ð23Þ

where YlmðnÞ are the spherical harmonics and alm are the
multipole expansion coefficients, with the asterisk denoting
complex conjugate. The angular power spectrum observed
at a source zS may then be computed as follows:

ClðzSÞ ¼ hjalmðzSÞj2i;

¼ 4

π2

Z
dkk2jflðk; zSÞj2; ð24Þ

where by using the transformation to spherical harmonics
(see [69]), we have

flðk; zSÞ ¼ 2QðzSÞ
�
jlðkr̄SÞΦðk; zSÞ −

1

r̄S

Z
r̄S

0

dr̄jlðkr̄Þ
�
2 −

ðr̄ − r̄SÞ
r̄

lðlþ 1Þ
�
Φðk; r̄Þ

þ
�
1 −

1

r̄SH

��
j0lðkr̄SÞV∥

mðk; zSÞ þ jlðkr̄SÞΦðk; zSÞ − 2

Z
r̄S

0

dr̄jlðkr̄ÞΦ0ðk; r̄Þ
�	

; ð25Þ

where V∥
m is the line-of-sight matter peculiar velocity

(i.e. relative to the observer); j0lðkr̄Þ ¼ ∂jlðkr̄Þ=∂ðkr̄Þ,
and jl is the spherical Bessel function. Henceforth, we
use the conformal Newtonian metric—with Ψ ¼ Φ.

By adopting the matter density parameter Ωm0 ¼ 0.24
and Hubble constant H0 ¼ 73 km s−1 · Mpc−1, we com-
pute the (radial) magnification angular power spectrum (24)
in the late-time universe. Firstly, we compute the angular
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power spectrum for a standard, noninteracting DE scenario
(in this section)—assuming cosmic domination by DE and
matter (dark plus baryonic), then for an IDE scenario (in
Sec. V). We use (Gaussian) adiabatic initial conditions (see
[7,72–74]) for the perturbations, in noninteracting DE and
in IDE, accordingly. Throughout this work, we initialize
evolutions at the decoupling epoch, 1þ zd ¼ 103 ¼ a−1d .
We take DE as a fluid with a parametrized equation of

state parameter, given by [107,108]

wxðaÞ ¼ w0 þ wað1 − aÞ; ð26Þ

where we choose the (free) constants w0 ¼ −0.8 and
wa ¼ −0.2. Henceforth, we adopt a DE physical sound
speed cx ¼ 1 and a magnification bias Q ¼ 1, for all
numerical computations. [Throughout this work, the DE
equation of state parameter wx is used as given by (26).]
Note that given our consideration of Cl, which is evaluated
at a fixed z, the sign of Q is irrelevant—see (24) and (25).
However, care must be taken when considering the cross-
angular power spectrum, where different redshift patches
Δz are cross correlated—as the sign of Q may vary in
different Δz, and hence could affect the output of the
prediction.
In Fig. 1 we show the plot of the radial angular power

spectrum of the magnification overdensity, with all the GR
corrections taken into account, i.e. for Δobs

M (17), and for the
standard term containing only the weak lensing effect, i.e.
for Δstd

M (18)—at the epoch zS ¼ 0.1. We see that at this
epoch, the full (GR-corrected) power spectrum Cl is
greater in power than the standard (lensing) power spec-
trum Cstd

l , by a factor Cl=Cstd
l ∼ 103. This difference is

mainly owing to the Doppler effect in Cl; the Doppler term

in Δobs
M dominates at low z [20,25], which fluctuates on

small l≲ 100. Our results are also in agreement with the
work by [69] (see Fig. 3, top panel, by [69]). Clearly, we
see that the effect of GR corrections in the magnification
power spectrum at the given epoch is about a thousand
times in excess of the weak lensing effect—which may
allow for the measurement of the GR effects. Thus the
magnification power spectrum not only lends another
avenue to study GR effects, but also offers a good
possibility to measure GR effects at low z, on large scales.
In contrast, the combined contribution of the GR effects in
the observed galaxy power spectrum at low z is largely
subdominant—hence may be difficult to measure at low z.
(Moreover, for a single-tracer two- or three-dimensional
galaxy power spectrum, all previously undetected GR
corrections—i.e. excluding weak lensing—are completely
unobservable [71].)
Similarly, in Fig. 2 we give the plot of the radial angular

power spectrum of the magnification overdensity, at zS ¼ 1
(top panel), and at zS ¼ 3 (bottom panel). We see that at the
given epochs, the amplitude of the weak lensing power

FIG. 1. The magnification (radial) angular power spectrum at
zS ¼ 0.1 with Q ¼ 1, for noninteracting DE scenario. The red
line is the full power spectrum Cl with all GR corrections
included [i.e. for Δobs

M , given by (17)], while the blue line is the
standard power spectrum Cstd

l containing only the weak lensing
effect [i.e. for Δstd

M, given by (18)].

FIG. 2. The magnification (radial) angular power spectrum with
Q ¼ 1, for noninteracting DE scenario: at zS ¼ 1 (top panel), and
at zS ¼ 3 (bottom panel). Line styles are as in Fig. 1. The insets
show the fractional changes in the angular power spectrum at the
given z, where ΔCl ≡ Cl − Cstd

l .
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spectrum Cstd
l approaches that of the GR magnification

power spectrum Cl. This implies that at z ≥ 1, the weak
lensing effect in the magnification angular power spectrum
gradually becomes significant. We observe (Figs. 1 and 2)
that there is a consistent decrease in the amplitude of Cl
with increasing z; with the contribution of the GR effects
(relative to the weak lensing effect) gradually falling, to
∼40% at zS ¼ 3 (see inset), which is a significant amount
nevertheless, as we enter an era of precision cosmology—
e.g. BOSS is expected to measure the area distance ~DA with
a precision of ∼1.0% at z < 0.7 and ∼4.5% at z ≈ 2.5 (with
higher % at 2≲ z≲ 3.5) [63], while the SKA is expected to
be better (∼0.3% at z ≈ 1.3) [61]. (Note however that, in
reality, detecting the actual effect of the GR corrections
depends on the cosmic variance on the given scales, and the
error bars achievable by the survey experiment; but for the
purpose of this work, we leave out all exact experimental
aspects.) In general, given the large relative contribution of
the GR effects it implies that even at low z, by using the
magnification power spectrum, GR effects can be suitably
probed (and, in principle, measured)—contrary to the case
of the galaxy power spectrum, which requires going to very
high z (and large magnification bias).

V. THE POWER SPECTRUM WITH
INTERACTING DARK ENERGY

The dark sector, i.e. DE and DM, does not interact with
baryonic matter. In the standard cosmologies, i.e. as
considered in Sec. IV, baryons, DM and DE interact only
indirectly by gravitation (via the Poisson equation).
However, DE may interact with DM non-gravitationally,
via a reciprocal exchange of energy and momentum; thus,
is called interacting DE (IDE) [7,73,109–111]. In this
section we probe the magnification angular power spectrum
for an IDE scenario—assuming (hereafter) a late-time
universe dominated by DM and DE only.

A. The IDE model

We assume that the energy density transfer 4-vectors Qμ
A

(A ¼ m, x, denoting DM and DE, respectively) are parallel
to the DE 4-velocity:

Qμ
x ¼ Qxu

μ
x ¼ −Qμ

m; ð27Þ

i.e. there is zero momentum transfer in the DE rest frame;
Qx is the DE (energy) density transfer rate, and uμx is the DE
4-velocity. The momentum density transfer rates are

fx ¼ Q̄xðVx − VÞ ¼ −fm; ð28Þ

where V and Vx are the total and the DE velocity potentials,
respectively; the 4-velocities,

uμ ¼ a−1ð1 − Φ; ∂iVÞ; uμA ¼ a−1ð1 − Φ; ∂iVAÞ;

V ¼ 1

1þ w

X
A

ΩAð1þ wAÞVA; w ¼
X
A

ΩAwA; ð29Þ

with ΩA ≡ ρ̄A=ρ̄ being the density parameter, and ρ̄ is the
total background energy density.
We specify the IDE model by choosing Qx [7,73,109]:

Qx ¼
1

3
ξρxΘ; Θ ¼ ∇μuμ; ð30Þ

with the interaction parameter ξ ¼ constant, the DE
(energy) density ρx ¼ ρ̄x þ δρx and, Θ the expansion rate:

Θ ¼ 3a−1
�
H − ðΦ0 þHΦÞ þ 1

3
∇2V

�
: ð31Þ

Note that, apart from [7,73,109], it is common in the
literature to use an energy density transfer rate of the form
Q ∝ a−1Hρx, with the main motivation being that the
background energy conservation equations are easily
solved. However, the Hubble rate H is typically not
perturbed—being a background parameter—which is thus
a problem for the perturbed case of the given transfer rate.
This problem is suitably resolved by (30).
Equations (27), (29), (30) and (31) then lead to

Qx ¼ Q̄x

�
1þ δx − Φ −

1

3H
ð3Φ0 −∇2VÞ

�
¼ −Qm;

Qx
μ ¼ aQ̄x

�
−1 − δx þ

1

3H
ð3Φ0 −∇2VÞ; ∂iVx

�
¼ −Qm

μ ;

where Q̄x ¼ a−1ξHρ̄x ¼ −Q̄m are the DE and the DM
background energy density transfer rates, respectively, and
δx ≡ δρx=ρ̄x is the DE density contrast. Moreover, the range
of wx is restricted by stability requirements [7,73,110,111]

wx > −1 for ξ > 0; wx < −1 for ξ < 0: ð32Þ

We set the evolution equations such that, (32) corresponds
to the energy transfer directions:

DM → DE for ξ > 0; DE → DM for ξ < 0: ð33Þ

(See [7,73] for the full IDE background and perturbation
evolution equations.)

B. The Cl’s with IDE

Here we probe the magnification (radial) angular power
spectrum in a universe with IDE, for various values of the
interaction parameter. The overall behavior of the angular
power spectra, i.e. Cl and Cstd

l , for the IDE scenario is
similar to the standard DE scenario (Figs. 1 and 2)—except
that the power is suppressed. The chosen values of ξ are
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such that DM transfers energy and momentum to DE—see
(32) and (33).
In Fig. 3, we plot the fractional change ΔCl=Cstd

l
owing to the GR corrections in the magnification angular
power spectrum, for the interaction parameter values
ξ ¼ 0, 0.1, 0.4, 0.7: at zS ¼ 0.1 (top left panel), zS ¼ 1
(top right panel), zS ¼ 2 (bottom left panel) and zS ¼ 3

(bottom right panel). The ratios ΔCl=Cstd
l for the various

values of ξ show the action or effect of the IDE on the
GR effects in the magnification power spectrum. In both
panels, we see that there is a consistent suppression of
large-scale power (i.e. on small l’s) in the magnification
power spectrum—for larger values of ξ ≥ 0 at epochs
z ≤ 1. This may be expected since DM loses energy
(and momentum) to DE. Thus it implies that GR effects
in the cosmic magnification at the given redshifts will
diminish with increasing interaction strength, when DM
transfers energy to DE. Note however that, at zS ¼ 0.1
the fractional contribution by the GR effects, i.e. relative
to the standard lensing effect, is still very high up to
ΔCl=Cstd

l ∼ 103 which is owing to the dominance of
the Doppler effect at low z; the gravitational potential
(which sources weak lensing) decays at low z—but
grows as z increases.

However, at zS ¼ 1 we see that the magnitude of the
fractional change significantly falls to ΔCl=Cstd

l ≲ 2, with
a much smaller separation between successive lines (or
fractions) on large scales; the amplitudes of the fractions at
zS ¼ 1 fall by a factor of the order of 10−3, relative to the
amplitudes at zS ¼ 0.1. This fall in amplitude is mainly
due to the fact that as z increases, the amplitude of the
DM peculiar velocity (which sources the Doppler effect)
decreases, via the lose of momentum on large scales. Thus
on moving towards earlier epochs, the contribution of the
Doppler effect—relative to the weak lensing effect—in
the magnification power spectrum decreases. Moreover, the
fact that we see relatively narrower separations between
the fractions of the different values of ξ ≥ 0 at zS ¼ 1, it
implies that at this epoch the GR effects become less
sensitive to the strength of the dark sector interaction. Thus
trying to constrain the nature of IDE by GR effects (or vice
versa), via the magnification power spectrum, at this epoch
may not be suitable. Basically, the plots in the top panels
(Fig. 3) show that IDE leads to the suppression of GR
effects in the magnification power spectrum at z ≤ 1—
when DM loses energy and momentum to DE, the higher
the rate of energy (and momentum) density transfer, the
stronger the suppression.

FIG. 3. The fractional change—owing to GR effects—in the magnification angular power spectrum with IDE, for the following values
of the interaction parameter ξ ¼ 0, 0.1, 0.4, 0.7: at zS ¼ 0.1 (top left), zS ¼ 1 (top right), zS ¼ 2 (bottom left) and zS ¼ 3 (bottom right).
Notations are as in Fig. 2.
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Moreover, in the bottom panels of Fig. 3 (i.e. at z > 1),
we observe that we have the converse behavior of the plots
in the top panels (i.e. at z ≤ 1): the fractional change
ΔCl=Cstd

l grows with increasing interaction strength, i.e.
the excess power induced by the GR effects increases as the
rate of energy and momentum transfer between DM and
DE increases. It is known that GR effects are typically
stronger at high z, but with negative magnitude [73], i.e.
ΔGR

M < 0 at high z≳ 1. Moreover, given our metric choice,
Δstd

M < 0 for all z. Thus at high z the correlation between
ΔGR

M and Δstd
M leads to positive contribution in the magni-

fication power spectrum, and hence a growing fraction
ΔCl=Cstd

l with increasing dark sector interaction strength.
However, at high z the IDE effects are weaker, since the
effects of DE in general are weaker at earlier times; hence
although GR effects become enhanced with increasing ξ,
we see that the amplitude of each fraction (for a given value
of ξ ≥ 0) decreases as z increases: compare the right and the
left bottom panels in Fig. 3. At low z we have ΔGR

M > 0, so
that its correlation with Δstd

M leads to negative contribution,
thereby gradually reducing power in the magnification
power spectrum for increasing ξ ≥ 0, on the largest
scales—which is the case in the top panels (Fig. 3). In

essence, at z ≤ 1 we have that IDE suppresses GR effects,
while at z > 1 an IDE supports the enhancement of GR
effects in the magnification power spectrum—when DM
loses energy and momentum to DE.
In Fig. 4, we show the plots of the ratios of the

magnification angular power spectra, Cl and Cstd
l : those

with IDE (i.e. ξ ≠ 0) relative to those with standard DE
(i.e. ξ ¼ 0); at the source epochs zS ¼ 0.1 (top left panel),
zS ¼ 1 (top right panel), zS ¼ 2 (bottom left panel) and
zS ¼ 3 (bottom right panel). These results show the IDE
effects in the magnification angular power spectrum—with
and without GR effects. The ratios of Cstd

l (dashed lines)
show the effect purely from the IDE; we see, in the four
panels, that IDE leads to power suppression on all scales in
the standard magnification power spectrum. There is a
consistent suppression of power for increasing ξ > 0,
with the ratios gradually growing from small scales,
tending to converge on the largest scales—such that the
rate of convergence increases, on moving towards the
present epoch. Moreover, the amplitude of the various
ratios decreases very slowly as z increases, supporting
the fact that the IDE effect is weaker at higher z.
However, on introducing the GR effects we see significant
changes in the behavior of the ratios, i.e. the ratios of Cl

FIG. 4. The ratios of the magnification (radial) angular power spectra: those with IDE (ξ ¼ 0.1, 0.4, 0.7) relative to those with standard
DE (ξ ¼ 0): at zS ¼ 0.1 (top left), zS ¼ 1 (top right), zS ¼ 2 (bottom left) and zS ¼ 3 (bottom right). The solid lines denote ratios of the
full power spectrum Cl, while the dashed lines denote ratios of the standard (lensing) power spectrum Cstd

l .
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(solid lines)—which measure the IDE effect in the presence
of GR effects. At zS ¼ 0.1 we see that, with GR effects, the
ratios become well differentiated. This implies that GR
effects cause the IDE effect to become more prominent, and
sensitive on large scales. This will be crucial for constraints
on IDE. On the other hand, the associated ratios of Cstd

l
show weak sensitivity to the IDE effect, having relatively
negligible separations. This implies that at near epochs
z ≪ 1, the standard (lensing) magnification power spec-
trum will not be suitable for constraints on IDE on very
large scales.
On going from zS ¼ 0.1 through to zS ¼ 3 (i.e. top left to

bottom right panels) we see how the GR corrections
influence the IDE effect in the magnification angular power
spectrum, on the largest scales. For a given value of the
interaction parameter ξ > 0, at late epochs z≲ 1 the IDE
effect is reduced (and lower) when GR corrections are
included; while at early epochs z > 1 the IDE effect
becomes enlarged (and higher) when GR corrections are
included—however with the IDE effect becoming well
differentiated, and prominent in all cases. Thus this implies
that if GR corrections are not taken into account in the
analysis, the IDE effect will not be properly illuminated
(and/or incorporated), which may lead to an incorrect
estimate of the large-scale imprint of IDE in the cosmic
magnification. Including the GR corrections may also
present the possibility of discriminating the IDE effect
from any other (possible) large-scale effects in the cosmic
magnification. Thus by neglecting GR corrections, the true
potential of the cosmic magnification as a cosmological
probe may be severely reduced (or forfeited).

VI. CONCLUSION

We have investigated GR effects in the observed
cosmic magnification power spectrum. After rederiving
the known GR magnification overdensity, we discussed
the GR effects in noninteracting DE scenario—where
we compared the full GR-corrected magnification radial
angular power spectrum with the (standard) lensing mag-
nification angular power spectrum. In a similar manner, we
probed the magnification angular power spectrum with
IDE. Furthermore, we compared the angular power spectra
of the IDE scenario with those of the noninteracting DE
scenario, throughout keeping the DE physical sound speed
csx ¼ 1, and a magnification bias Q ¼ 1. (Note however
that given the purpose of this work, the value and/or form of
Q is irrelevant—as its effect is canceled out in the power
spectrum ratios.)
We found that for the standard DE scenario, while the

weak lensing effect in the magnification power spectrum
grows as redshift z increases, the total contribution by the
GR effects—i.e. relative to the sole weak lensing effect—
falls gradually, to about 40% at z ¼ 3 on very large scales
(which is a significant amount, especially as we enter the
era of precision cosmology). Moreover, we found that the

magnification power spectrum can be suitably used to
probe (and in principle, measure) GR effects at low z—
contrary to the case of the galaxy power spectrum, which
requires going to very high z. In essence, the cosmic
magnification offers a better means of elaborating the
effects of GR corrections (and DE, in general).
We also found that IDE suppresses the GR effects in the

magnification angular power spectrum at epochs z ≤ 1,
when DM loses energy (and momentum) to DE: the higher
the rate of energy transfer, the stronger the suppression.
Whereas at z > 1, the contribution of GR effects become
enhanced with increasing interaction strength. This is
because at high z, the correlation between the GR term
and the weak lensing term has a positive contribution in the
magnification power spectrum—which grows with increas-
ing z; while at low z, this term gives a negative contribution
(consequently reducing the power amplitude).
The IDE effect generally showed strong sensitivity to the

GR corrections in the magnification power spectrum, on
large scales—which will be crucial for constraints on IDE,
particularly at low z. Moreover, the results showed that the
IDE effect becomes more elaborate, and prominent when
GR corrections are included; thus if GR corrections are
omitted in the analysis, this may lead to an incorrect
estimate of the large-scale imprint of IDE in the cosmic
magnification. Including the GR corrections can enhance
the true potential of the cosmic magnification as a cosmo-
logical probe.
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APPENDIX: DERIVATION OF THE
MAGNIFICATION OVERDENSITY

All derivations in this appendix—which give some of
the details of Sec. II—are taken from the more rigorous
work by [7] (and references therein); assuming flat space
throughout.

1. The metric

The metric is often expressed in the form of a quadratic
differential, given in terms of the geometric metric tensor
gμν, in real coordinates xμ by

ds2 ¼ gμνdxμdxν: ðA1Þ

In a perturbed Friedmann-Robertson-Walker universe, the
metric tensor may be decomposed as follows:
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gμν ¼ ḡμν þ δgμν; ðA2Þ

where ḡμν ¼ ḡμνðη̄Þ is the background term, δgμν ¼
δgμνðη; xiÞ is the perturbation, with η ¼ η̄þ δη being the
conformal time, and

ḡ00 ¼ −a2; ḡi0 ¼ ~0 ¼ ḡ0j; ḡij ¼ a2δij; ðA3Þ

where we consider (henceforth) only linear perturbations;
a is the scale factor. The perturbation δgμν may be
parametrized by scalar fields, i.e. if xi denotes the space
3-vector, then we can express the perturbation of the metric
tenor by the scalar quantities ϕ ¼ ϕðη; xiÞ, B ¼ Bðη; xiÞ,
D ¼ Dðη; xiÞ and E ¼ Eðη; xiÞ, given by

δg00 ¼ −2a2ϕ; δgi0 ¼ a2Bi; δgij ¼ −2a2ðDδij − EijÞ;

where Bi ¼ Bji and Eij ¼ Ejij − 1
3
δij∇2E is a traceless

transverse tensor—i.e. Ei
i ¼ 0, such that it has no con-

tribution to the term,Dδii, in the diagonal plane. We denote
Xji ≡∇iX, and Xjij ≡∇i∇jX for a scalar X.
Henceforth we adopt the conformal transformation:

ds2 → d ~s2 ¼ a2ds2;

¼ aðηÞ2f−ð1þ 2ϕÞdη2 þ 2Bjidηdxi

þ ½ð1 − 2ψÞδij þ 2Ejij�dxidxjg; ðA4Þ

where ψ ≡Dþ 1
3
∇2E, and we have assumed flat space.

Note that all the given scalar amplitudes of the metric (A4)
perturbations are coordinate dependent. Thus, (A4) implies
that the respective metric tensors are

~gμν ¼ a2ðḡμν þ δgμνÞ; ḡ00 ¼ −1;

ḡi0 ¼ ~0 ¼ ḡ0j; ḡij ¼ δij; ðA5Þ

where an overbar denotes background component. For a
geodesic ~xνðλÞ in the metric d ~s, the associated tangent
vectors are given by

~nμ ¼ a−2nμ ¼ a−2ð1þ δn0; n̄i þ δniÞ; ðA6Þ

where nμ ¼ dxμ=dλ and λ is the affine parameter.
Henceforth, we assume photon (or null) geodesics: hence
n̄μn̄μ ¼ 0, with n̄0n̄0 ¼ −1 (where n̄0 ¼ 1) and n̄in̄i ¼ 1.
The 4-velocities of a particle moving in d ~s, are given by

~uμ ¼ a−1uμ ¼ a−1ð1 − ϕ; vjiÞ;
~uμ ¼ auμ ¼ að−1 − ϕ; vji þ BjiÞ; ðA7Þ

where vji ¼ ∂iv, and v is the velocity (scalar) potential.

2. Gauge-invariant potentials

We have the well-known Bardeen potentials Φ and Ψ,
and the gauge-invariant velocity potential V, given by

Φ≡ ϕ −Hσ − σ0; ðA8Þ

Ψ≡Dþ 1

3
∇2EþHσ; ðA9Þ

V ≡ vþ E0; ðA10Þ

where σ ¼ −Bþ E0. These correspond to the potentials in
conformal Newtonian gauge.

3. The position 4-vector

The position 4-vector xμ of a photon moving in the
direction n, from a given source S to an observer O, is

xμðη̄SÞ ¼ −ðη̄O − η̄SÞn̄μ −
Z

r̄S

0

dr̄ðδnμ − n̄μδn0Þ; ðA11Þ

where r̄S ¼ r̄ðη̄SÞ with r̄ðη̄OÞ ¼ 0, and to lowest order
along the photon geodesic

dη̄ ¼ −dr̄ ¼ dλ: ðA12Þ

Thus we have the position deviation 4-vector, given by

δxiðη̄SÞ ¼
1

2

Z
r̄S

0

dr̄ðr̄S − r̄Þðḡij∂jδgαβ þ δg0αβn̄
iÞn̄αn̄β

þ
Z

r̄S

0

dr̄ðḡijδgjβ þ δg0βn̄iÞn̄β; ðA13Þ

where we used the following identities:

δn0 ¼ δg0βn̄β −
1

2

Z
0

r̄S

dr̄δg0αβn̄
αn̄β; ðA14Þ

δni ¼ −ḡijδgjβn̄β þ
1

2
ḡij

Z
0

r̄S

dr̄∂jδgαβn̄αn̄β; ðA15Þ

where δnμ ≡ δnμjSO. See [7,69] for further details regarding
the calculations in this subsection.

4. The transverse area

Here we compute the area density transverse to the
photon geodesic. From (11), we have the only nonvanish-
ing terms to yield (and the indices i, j, k and l denote spatial
components)
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A ¼ a−2
ffiffiffiffiffiffi
− ~g

p �
1þ δu0

ū0
þ δll

l̄l

�
ϵijkl̄i ∂ ~xj

∂θS
∂ ~xk

∂ϑS
���� ∂ðθS; ϑSÞ∂ðθO; ϑOÞ

����;

¼ a2r2 sin ~θS

�
1 − 3D − ϕþ n̄lBjl −

1

2
δgμνn̄αn̄β

����� ∂ð
~θS; ~ϑSÞ

∂ðθO; ϑOÞ
����;

¼ a2r̄2 sin θO

�
1 − 3D − ϕþ n̄iBji −

1

2
δgμνn̄αn̄β þ 2

δr
r̄
þ ðcot θO þ ∂θÞδθ þ ∂ϑδϑ

�
; ðA16Þ

where
ffiffiffiffiffiffi
− ~g

p ¼ a4ð1þ ϕ − 3DÞ, with ~̄uμ ¼ a−1δμ0 and
~̄uμ ¼ −aδ0μ as given by (A7). The determinant of the
transformation matrix becomes j∂ðθS; ϑSÞ=∂ðθO;ϑOÞj ¼
1þ ∂θδθ þ ∂ϑδϑ, with ∂θ ≡ ∂=∂θO; for jδθj ≪ 1, we have
sin θS ¼ ð1þ δθ cot θOÞ sin θO. Also, (10) becomes

~lν ¼ a−1
�
uν þ nν

nαuα

�
¼ a−1lν: ðA17Þ

Given (A6) and (A7) we have l̄0 ¼ 0 and ~̄l
i ¼ a−1l̄i ¼

−a−1n̄i=n̄0. Then we obtain

δli

l̄i ¼ −n̄ivji þ n̄iδni − δn0 þ δu0 − l̄iδui;

¼ n̄iBji − ϕ −
1

2
δgαβn̄αn̄β; ðA18Þ

where in the first line we used the identity n̄i ¼ 1=n̄i, and
the second line comes by combining (A14) and (A15) and
integrating once.
To compute the various terms of (A16), we need to relate

polar coordinates x̌μ to Cartesian coordinates xμ. The
deviation 4-vectors are related (to first order) by

δx̌μ ¼ ∂x̌μ
∂xν δx

ν ¼ δμνδxν: ðA19Þ

An infinitesimal deviation in the position of a photon is
given by the 3-vector

δx̌ ¼ δrer þ r̄δθeθ þ r̄ sin θδϑeϑ; ðA20Þ

where er, eθ and eϑ are the orthonormal unit vectors of the
polar coordinates x̌μ, with

eθ ¼ ∂θer; eϑ sin θ ¼ ∂ϑer; er ¼ −n; ðA21Þ

where er · er ¼ eθ · eθ ¼ eϑ · eϑ ¼ 1, and er · eθ ¼ eθ · eϑ ¼
eϑ · er ¼ 0. From (A20), we get

δr ¼ er · δx̌; r̄δθ ¼ eθ · δx̌; r̄ sin θδϑ ¼ eϑ · δx̌:

ðA22Þ

Moreover, the components of the Laplacian in spherical
coordinates are given by

∂r ¼ −n̄i∂i;
1

r̄
∂θ ¼ eiθ∂i;

1

r̄ sin θ
∂ϑ ¼ eiϑ∂i: ðA23Þ

Thus given (A13) and (A19), we get that (but see [7,69] for
details)

δr ¼ −
1

2

Z
r̄S

0

dr̄δgαβn̄αn̄β;

¼
Z

r̄S

0

dr̄ðΦþΨÞ þ
�
Bþ

�
dE
dλ

− 2E0
��

S

O
; ðA24Þ

i.e. δr ¼ −n̄iδxi, where we have integrated by parts once
and applied the stationary condition on surface terms,
which then vanish. Similarly, we have

r̄Sδθ ¼ eθiδxi;

¼ −
1

2

Z
r̄S

0

dr̄ðr̄ − r̄SÞejθ∂jðδgαβÞn̄αn̄β

þ
Z

r̄S

0

dr̄δgjβe
j
θn̄

β; ðA25Þ

r̄S sin θδϑ ¼ eϑiδxi;

¼ −
1

2

Z
r̄S

0

dr̄ðr̄ − r̄SÞejϑ∂jðδgαβÞn̄αn̄β

þ
Z

r̄S

0

dr̄δgjβe
j
ϑn̄

β: ðA26Þ

From (A12) and (A24), we have

dδr
dλ

¼ 1

2
δgαβn̄αn̄β ¼ −ðΦþΨÞ þ dB

dλ
þ
�
d2E
dλ2

− 2
dE0

dλ

�
;

ðA27Þ
where we used (A8) and (A9) and that

dX
dλ

¼ X0 þ n̄i∂iX ¼ X0 − ∂rX; ðA28Þ

where X is a scalar, and ∂r ≡ ∂=∂r is the partial derivative
with respect to r. After some lengthy, but straightforward
calculations (see [7,69]), we obtain

ðcot θ þ ∂θÞδθ þ ∂ϑδϑ ¼
Z

r̄S

0

dr̄ðr̄S − r̄Þ r̄
r̄S

∇2⊥ðΦþΨÞ

− ½∇2⊥E�SO; ðA29Þ
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where ∇2⊥ ≡ ∇2 − ∂2
r − 2r̄−1∂r is the “screen-space”

Laplacian—i.e. in the plane of the source (perpendicular
to the line of sight); and we have used that fact that

ejθ∂jðδgαβÞn̄αn̄β ¼
1

r̄
½∂θðδgαβn̄αn̄βÞ þ 2δgαjn̄αe

j
θ�;

ejϑ∂jðδgαβÞn̄αn̄β ¼
1

r̄ sin θ
½∂ϑðδgαβn̄αn̄βÞ

þ 2δgαjn̄αe
j
ϑ sin θ�:

Furthermore, we used the following terms i.e. given (A23)
and (A28),

δgαjn̄αe
j
θ ¼

∂θB
r̄

þ 2n̄iejθEjij;

¼ ∂θB
r̄

þ 2

r̄
∂θ

�
dE
dλ

− E0
�
: ðA30Þ

Then in a similar manner, we obtain that

δgαjn̄αe
j
ϑ ¼

∂ϑB
r̄ sin θ

þ 2

r̄ sin θ
∂ϑ

�
dE
dλ

− E0
�
: ðA31Þ

Moreover we have that

∇2⊥E ¼ ∇2E −
�
d2E
dλ2

− 2
dE0

dλ
þ E00

�
þ 2

r̄

�
dE
dλ

− E0
�
:

ðA32Þ

The perturbation in the redshift of the propagating photon is
given by [7,69]

δz
1þ z̄

¼½ΦþΨþn ·v−ψ �0zS−
Z

0

rS

dr̄ðΦ0þΨ0Þ: ðA33Þ

By using (A4), (A5), (A9) and (A28), we get

δϕ ≡ −3D − ϕþ n̄iBji −
1

2
δgμνn̄αn̄β;

¼ −2Ψ − Eþ 2Hσ − E00 −
�
d2E
dλ2

− 2
dE0

dλ

�
: ðA34Þ

Then given (A16), (A24), (A29), (A32) and (A34)

A ¼ a2r̄2 sinθO

�
1− 2Ψþ 2

r̄S

Z
r̄S

0

dr̄ðΦþΨÞ

þ
Z

r̄S

0

dr̄ðr̄− r̄SÞ
r̄
r̄S

∇2⊥ðΦþΨÞ þ 2H
�
1−

1

r̄SH

�
σ

�
:

ðA35Þ

By taking a gauge transformation (13), we get the redshift-
space perturbation

~δA ¼ A − Ā

Ā
−
d ln Ā
dz̄

δz;
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where δA ≡ δA=Ā ¼ ðA − ĀÞ=Ā, with Ā≡ a2r̄2 sin θO;

d ln Ā
dz̄
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Thus given (A33), (A36) and μ−1 ¼ 1þ ~δA, we get
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