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Conformal higher spin (CHS) field theory, which is a solid part of recent advanced checks of AdS/CFT
correspondence, finds applications in cosmology. The hidden sector of weakly interacting CHS fields
suggests a resolution of the hierarchy problem in the model of initial conditions for inflationary
cosmology driven by a conformal field theory. These initial conditions are set by thermal garland-type
cosmological instantons in the sub-Planckian energy range for the model of CHS fields with a large
positive coefficient β of the Gauss-Bonnet term in their total conformal anomaly and a large number of
their polarizations N. The upper bound of this range MP=

ffiffiffi
β

p
is shown to be much lower than the

gravitational cutoff MP=
ffiffiffiffi
N

p
which is defined by the requirement of smallness of the perturbatively

nonrenormalizable graviton loop contributions. In this way we justify the approximation scheme in
which the nonrenormalizable graviton sector is subject to effective field theory under this cutoff, whereas
the renormalizable sector of multiple CHS fields is treated beyond perturbation theory and dynamically

generates the bound on the inflation scale of the CFT cosmology MP=
ffiffiffi
β

p
≪ MP=

ffiffiffiffi
N

p
. This confirms

recent predictions for the origin of the Starobinsky R2 and Higgs inflation models from the CHS
cosmology, which occurs at the energy scale 3 or 4 orders of magnitude below the gravitational cutoff,ffiffiffiffiffiffiffiffiffi

N=β
p

∼ 10−3–10−4. We also consider cosmological models dominated by fermionic CHS fields with a
negative β and anomaly free models of infinite towers of CHS fields with β ¼ 0 and briefly discuss the
status of unitarity in CHS models.

DOI: 10.1103/PhysRevD.93.103530

I. INTRODUCTION

A rapidly developing trend in nonperturbative approach
to quantum gravity and string theory, which is based on
holographic ideas of AdS/CFT correspondence [1],
involves Vasiliev theory of interacting higher spin fields
[2] and naturally leads to the notion of conformal higher
spin fields (CHS) [3]. Though these CHS fields represent
thus far only a playground for rather sophisticated
verification of the AdS/CFT correspondence [3,4], quite
interestingly they turn out to be important in recent
cosmological applications associated with the problem of
initial conditions in the early inflationary Universe [5–7].
This is the model of the CFT driven cosmology [5,6]
which incorporates two main ideas—a new concept of the
cosmological microcanonical density matrix as the initial
state of the Universe and the implementation of this concept
in cosmology with a large number of quantum fields
conformally coupled to gravity.
This model plays an important role within quantum

cosmology and within the cosmological constant and dark
energy problems. In particular, it resolves the issue of
infrared catastrophe associated with the observer indepen-
dent treatment of the no-boundary state [8]—an anti-
intuitive conclusion that the origin of an infinitely big
universe (with an insufficient amount of inflation produced

at the zero minimum of the inflaton potential rather than its
maximum) is infinitely more probable than that of a finite
one. Another property is that its statistical ensemble is
bounded to a finite range of values of the effective
cosmological constant [5] and gives rise to a new type
of hill-top inflation [7,9]. Also this model incorporates a
certain version of the dS/CFT holographic duality [10] and
is potentially capable of generating the cosmological
acceleration phenomenon within the so-called Big Boost
scenario [11].
The setting of the initial conditions problem is based on

canonical quantization of gravity theory and a natural
notion of the microcanonical density matrix as a projector
on the space of solutions of the quantum gravitational Dirac
constraints—the system of the Wheeler-DeWitt equations
[6,12]. Its statistical sum has a representation of the
Euclidean quantum gravity (EQG) path integral [5,6]

Z ¼
Z
periodic

D½gμν;Φ�e−S½gμν;Φ� ð1Þ

over metric gμν and matter fields Φ which are periodic on
the Euclidean spacetimewith a time compactified to a circle
S1. As shown in [5,6], this statistical sum has a good
predictive power in the model with a primordial
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cosmological constant Λ and the matter sector of a large
number N of quantum fields Φ conformally coupled to
gravity—conformal field theory (CFT) with the action
SCFT½gμν;Φ�,

S½gμν;Φ�¼−M2
P

2

Z
d4xg1=2ðR−2ΛÞþSCFT½gμν;Φ�: ð2Þ

What allows one to go beyond a usual semiclassical
expansion is that the CFT modes Φ dominate over con-
formally noninvariant fields and spatially inhomogeneous
metric modes. Integration over Φ in (1) then leads to the
effective action

Seff ½gμν�¼−M2
P

2

Z
d4xg1=2ðR−2ΛÞþΓCFT½gμν�; ð3Þ

e−ΓCFT½gμν� ¼
Z

DΦe−SCFT½gμν;Φ�: ð4Þ

It differs from (2) by SCFT½gμν;Φ� replaced with
ΓCFT½gμν�—the effective action of the conformal fields
on the background of gμν.
On the Friedmann-Robertson-Walker (FRW) back-

ground this action is exactly calculable by using the local
conformal transformation to the static Einstein universe and
the well-known gravitational trace anomaly

gμν
δΓCFT

δgμν
¼ 1

4ð4πÞ2 g
1=2ðα□Rþ βEþ γC2

μναβÞ; ð5Þ

where the coefficients of local curvature invariants—□R,
Gauss-Bonnet term E ¼ R2

μναγ − 4R2
μν þ R2 and Weyl

tensor squared C2
μναβ—are determined by the CFT particle

content. These coefficients are additive sums of contribu-
tions of all conformal fields of different spins s. In
particular, the coefficient β of the Gauss-Bonnet term,
which is of major interest in what follows, reads

β ¼
X
s

βsNs; ð6Þ

where βs is a partial contribution of spin s conformal field
and Ns is the number of such fields in the set of all Φ.
The resulting ΓCFT½gμν� becomes the sum of the anomaly

contribution and a free energy of conformal matter fields on
the sphere S3 at the temperature determined by the period of
the Euclidean time. Then the physics of the CFT driven
cosmology is entirely determined by the effective action
(3). Solutions of its equations of motion, which give a
saddle point of the statistical sum path integral, are the
cosmological instantons of S1 × S3 topology with the
Friedmann-Robertson-Walker metric

gFRWμν dxμdxν ¼ N2ðτÞdτ2 þ a2ðτÞd2Ωð3Þ; ð7Þ

where a periodic lapse function NðτÞ and scale factor aðτÞ
are the functions of the Euclidean time belonging on S1 [5].
These instantons serve as initial conditions for the cosmo-
logical evolution aLðtÞ in the physical Lorentzian signature
spacetime, which follows from aðτÞ by analytic continu-
ation aLðtÞ ¼ aðτþ þ itÞ at the point of the maximum value
of the Euclidean scale factor aþ ¼ aðτþÞ. The coefficient β
of the Gauss-Bonnet term in (5) plays an especially
important role because it imposes an upper bound on the
range of Λ within which these instantons exist,

Λ ≤
12π2M2

P

β
: ð8Þ

The fact that these instantons exist only in the finite range
of Λ implies the restriction of the microcanonical ensemble
of universes to this range, which from the viewpoint of
string theory can, in particular, be interpreted as the
solution of the landscape problem for stringy vacua if
one assumes that this model is a low energy approximation
of the string theory.
As was recently shown in [7,9], this model with the

fundamental cosmological constant can be generalized to
the case when the role of an effective Λ is simulated by the
hill-like potential of the inflaton scalar field ϕ in the regime
of the slow roll approximation, Λ → VðϕÞ=M2

P. Then the
CFT driven cosmology can be regarded as a source of the
new type of hill-top inflation scenario. In particular, it can
provide initial conditions for the Starobinsky model of R2-
inflation [13] or the model of Higgs inflation with the
Higgs boson playing the role of the inflaton nonminimally
coupled to gravity [14–16]. A major difficulty with this
scenario is the problem of hierarchy between the sub-
Planckian energy scale of inflation—the inflaton energy
density VðϕÞ ∼ 10−11M4

P [16] compatible with current
CMB observational data [17,18]—and the energy scale
of the CFT driven cosmology (8). To match these energy
scales one needs the value of β ∼ 1013. In the Standard
Model or its grand unified theory generalizations contain-
ing only three low spin fields, which can be conformally
coupled to gravity, s ¼ 0, s ¼ 1=2 and s ¼ 1, this is of
course impossible. Their contribution to β,

β ¼ 1

180
ðN0 þ 11N1=2 þ 62N1Þ; ð9Þ

can reach such a magnitude only by the price of unnaturally
high numbers of these particle species. The hidden sector of
N ∼ 1013 low spin particles sounds too unrealistic to be
physically acceptable.
The hidden sector of numerous, actually infinitely many,

particles is possible in string theory which is believed to
underlie the effective quantum field theory and quantum
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gravity. However, these particles are massive, of the
Planckian scale mass, and cannot incorporate local con-
formal invariance which is a cornerstone of the CFT
cosmology. On the other hand, there is a growing belief
that string theory can be a broken phase of the Vasiliev
theory of higher spin gauge fields [2], which was recently
very actively considered in various tests of AdS/CFT
correspondence including very wide implications of con-
formal higher spin (CHS) field models [3,4,19,20].
Therefore, it seems reasonable to try as a hidden weakly
interacting sector of the CFT cosmology the tower of these
CHS fields, which could provide a large value of β. Though
very speculative, in view of problems with unitarity for
higher spins, this idea is strongly motivated by the recent
observation that the partial contributions βs to (6) very
rapidly grow with spin as s6 [3,4], so that the needed value
can be attained with the finite tower of CHS fields up to
s ¼ 100 containing N ∼ 106 polarizations [7,9]. Therefore,
the replacement of multiple species of the same spin by a
tower of higher spins is a much more efficient mechanism
for large β, and the goal of this paper is to discuss this
mechanism and its possible consequences.
The concept of a hidden sector of CHS fields allows one

to solve another important problem in the CFT cosmology.
It suggests the mechanism protecting the theory from
uncontrollable contribution of perturbatively nonrenorma-
lizable graviton loops. This is achieved by bringing the
maximal energy scale of the above cosmological instantons
(8) below the gravitational cutoff. With the definition of
this cutoff as the scale under which only the contribution of
the graviton loops (loops containing at least one graviton
propagator) is suppressed, there arises a strong distinction
between the number of quantum species N and the CFT
central charge c ∼ βwhich participate in the expressions for
a conventional gravitational cutoff Λ ¼ MP=

ffiffiffiffi
N

p
[21,22]

and the inflation scale ΛI ∼MP=
ffiffiffi
β

p
corresponding to (8).

In models of multiple quantum species the cutoff is usually
defined as the scale below which the total one-loop
contribution to the graviton propagator is smaller than
the tree-level part [21], and this leads to the cutoff ∼1=

ffiffiffi
β

p
which is not distinguishable from 1=

ffiffiffiffi
N

p
in simple models,

but can be very different when β and N are very different in
magnitude. Our definition of the cutoff which involves
smallness of only the graviton loop corrections leads to the
expression ∼1=

ffiffiffiffi
N

p
which can be much higher than 1=

ffiffiffi
β

p
for β ≫ N, and this is exactly the case of CHS fields. In this
way we develop the approximation scheme in which the
nonrenormalizable graviton sector is subject to effective
field theory under the cutoff MP=

ffiffiffiffi
N

p
, whereas the renor-

malizable sector of multiple conformal species is treated
beyond perturbation theory.
There are several other interesting features associated

with the contribution of higher spins to the conformal
anomaly (5). First, unlike for the case of lower spins βs is

negative for fermionic fields with s ≥ 3=2 [4]. This means
that overall β in CFT cosmology can be negative, and this
essentially modifies its scenario. Second, irrespective of the
sign of βs one can construct the zeta-function regularized
sum over infinite set of spins of CHS fields (described by
totally symmetric bosonic tensors or fermionic spin ten-
sors) which yields overall zero value of the total β in (6)
[3,4]. This nontrivial manifestation of the AdS/CFT cor-
respondence is conjectured to underlie hypothetical free
of trace anomalies—and therefore quantum consistent—
fundamental theory that might be based on the fusion of
string theory and Vasiliev gauge theory of higher spins.
Motivated by the prospect of solving the hierarchy problem
via CHS fields we consider peculiarities of cosmological
scenario driven by their finite tower in case of both positive
and negative β and by the anomaly-free CHS theory with an
infinite set of fields.

II. CFT DRIVEN COSMOLOGY

The effective action of the CFT driven cosmology (3) on
the FRW metric (7) with S1 × S3 topology, Seff ½gFRWμν �≡
Seff ½a;N�, was obtained by the conformal transformation to
the static Einstein Universe [5] with a compactified
Euclidean time. It consists of the minisuperspace reduced
Einstein term, Riegert-Fradkin-Tseytlin action [23] and the
contribution of the Einstein static spacetime—free energy
of conformal fields and their vacuum Casimir energy. In
units of the rescaled Planck mass mP ¼ ð3π=4GÞ1=2 ¼
ð6π2M2

PÞ1=2 it reads [5]

Seff ½a;N� ¼ m2
P

Z
S1
dτN

�
−aa02 − aþ Λ

3
a3

þ B

�
a02

a
− a04

6a

�
þ B
2a

�
þ FðηÞ; ð10Þ

where a0 ≡ da=Ndτ. The first three terms in curly brackets
of (10) represent the Einstein action with a fundamental
cosmological constant Λ≡ 3H2 (H is the corresponding
Hubble parameter). The constant B is a coefficient of the
contributions of the conformal anomaly and vacuum
(Casimir) energy ðB=2aÞ on a conformally related static
Einstein spacetime. It is proportional to the coefficient β of
the Gauss-Bonnet term E in the trace anomaly of conformal
matter fields (5)

B ¼ 3β

4m2
P
: ð11Þ

The free energy FðηÞ of the set of all conformal fields
labeled by their spin s also comes from this Einstein space,

FðηÞ ¼
X
s

νs
X
ωs

lnð1∓ e−ωsηÞ; ð12Þ
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η ¼
Z
S1

dτN
a

: ð13Þ

This is a typical boson or fermion sum over field oscillators
with energies ωs on a unit 3-sphere, νs denoting the number
of physical polarizations of a spin-s field, which is negative
for fermions, signνs ¼ �1. The role of the temperature is
played here by the inverse of η—an overall circumference
of S1 in the S1 × S3 instanton in units of the conformal
time (13).
The effective action is independent of the anomaly

coefficient α, because it is assumed that α is renormalized
to zero by a local counterterm,

ΓCFT → ΓCFT þ
α

384π2

Z
d4xg1=2R2: ð14Þ

This guarantees the absence of higher derivative terms in
(10) [5,9]—nonghost nature of the scale factor—and
simultaneously shifts the UV renormalized Casimir energy
(which universally expresses in terms of anomaly coef-
ficients α and β [24]) to a particular value independent of α
and proportional to B=2 ¼ β=16π2M2

P [9,24],1

X
s

νs
X
ωs

ωs

2
¼ 3

8

�
β − α

2

�
→

3

8

�
β − α

2

�
þ 3α

16
¼ 3

8
β:

ð15Þ

Both of these properties are critically important for the
instanton solutions of effective equations. The coefficient γ
of the Weyl tensor term C2

μναβ also does not enter (10)
because Cμναβ identically vanishes for any FRW metric.
The statistical sum (1) is dominated by solutions of the

effective equation, δSeff=δNðτÞ ¼ 0, which in the gauge
N ¼ 1 reads

1− _a2

a2
−B

�
_a4

2a4
− _a2

a4

�
¼Λ

3
þ C
a4

; _a¼da
dτ

; ð16Þ

C ¼ B
2
þ 1

m2
P

dF
dη

: ð17Þ

This is the modification of the Euclidean Friedmann
equation by the anomalous B-term and the radiation term
C=a4. The constant C here characterizes the sum of the
Casimir energy and the energy of thermally excited
particles with the inverse temperature η given by (13)

dF
dη

¼
X
s;ωs

jνsjωs

eωsη ∓ 1
: ð18Þ

It is a nonlocal functional of the history aðτÞ—Eq. (17)
plays the role of the bootstrap equation for the amount of
radiation which is determined by the background on top of
which this radiation evolves and produces backreaction.
The quadratic equation (16) can be solved for _a2,

_a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − BÞ2

B2
þ 2H2

B
ða2þ − a2Þða2 − a2−Þ

r

−
a2 − B

B
; ð19Þ

a2� ≡ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4CH2

p

2H2
; ð20Þ

where the positive sign of the square root is chosen to
provide a periodic oscillation of a between its maximal and
minimal values a�. In order to guarantee that at a− is a
turning point with a vanishing _a the value a2− should satisfy
the bound a2− > B. This gives the first two restrictions on
the range of H2 and C,

H2 ≤
1

2B
; C ≥ B − B2H2; ð21Þ

whereas the third one follows from the requirement of real
turning points a�,

C ≤
1

4H2
: ð22Þ

There are two sets of solutions of this integrodifferential
equation [5,6,10]. The main set consists of periodic
S3 × S1 instantons with the oscillating scale factor—
garlands that can be regarded as the thermal version of
the Hartle-Hawking instantons. The scale factor oscillates
m times (m ¼ 1; 2; 3;…) between the maximum and
minimum values (20), a− ≤ aðτÞ ≤ aþ, so that the full
period of the conformal time (13) is the 2m-multiple of the
integral between the two neighboring turning points of
aðτÞ, _aðτ�Þ ¼ 0,

η ¼ 2m
Z

aþ

a−

da
_aa

: ð23Þ

This value of η is finite and determines effective temper-
ature T ¼ 1=η as a function of G ¼ 3π=4m2

P and Λ ¼ 3H2.
This is the artifact of a microcanonical ensemble in
cosmology [6] with only two freely specifiable dimensional
parameters—the gravitational and cosmological constants.
According to (21) these garland-type instantons exist

only in the limited range of the cosmological constant Λ ¼
3H2 [5]. In view of (21) and (22) they belong to the domain

1This finite renormalization can be generated by the inclusion
of the Starobinsky R2-model which also provides the inflaton
mode simulating a slowly varying cosmological term which
decays at the exit from inflation [7,9].
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in the two-dimensional plane of the Hubble constant H2

and the amount of radiation constant C. In this domain
they form an countable, m ¼ 0; 1; 2;…, sequence of one-
parameter families—curves interpolating between the
lower straight line boundary C ¼ B − B2H2 and the upper
hyperbolic boundary C ¼ 1=4H2. Each curve corresponds
to a respective m-fold instanton of the above type.
Therefore, the range of admissible values of Λ,

Λmin ≤ Λ ≤ Λmax ¼
12π2M2

P

β
¼ 3

2B
; ð24Þ

has a band structure, each band Δm being a projection of
the mth curve to the H2 axis. The sequence of bands of
ever narrowing widths with m → ∞ accumulates at the
upper bound of this range H2

max ¼ 1=2B. The lower bound
H2

min—the lowest point of the m ¼ 1 family—can be
obtained numerically for any field content of the model.
Another set of solutions follows from rewriting the

effective equation (16) in the form [retaining in contrast
to (19) both signs of the square root]

_a2 ¼ 1 − a2

B

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2BH2 − Bð2C − BÞ

a4

r �
ð25Þ

and noting [25] that for C ¼ B=2 it reduces to

_a2 ¼ 1 −H2
�a

2; ð26Þ

H2
� ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2BH2

p

B
¼ 1

a2∓

����
C¼B=2

ð27Þ

(without radiation contribution in Lorentzian signature
spacetime this solution was derived in [26]). Obviously
the solutions to these two equations, aðτÞ ¼ sinðH�τÞ=H�,
represent spherical Euclidean instantons S4� of the radii a∓
respectively, or the strings of such spheres touching each
other at their poles and forming a “necklace” with any
number of such spherical beads [25]. Note that the value of
C ¼ B=2 is consistent with the bootstrap equation (17),
because the time period for such a necklace consisting ofm
beads,

η ¼ 2m
Z

a�

0

da
_aa

¼ ∞; ð28Þ

diverges at the poles of spherical beads, where they touch
each other—the range of integration over a in contrast to
Eq. (23) is a multiple of the range between a ¼ 0 at the pole
of the 4-sphere S4� and its value a∓ at the equator of S4�.
Therefore both FðηÞ and dFðηÞ=dη vanish and give in view
of (17) the value of C ¼ B=2.
These vacuum (or zero temperature, 1=η ¼ 0) necklace

instantons existing for all values of Λ ¼ 3H2 > 0 are,

however, uninteresting because their contribution to the
statistical sum is suppressed to zero by their infinite positive
Euclidean action. For B > 0 the on-shell value of the
action (10),

Γ0 ¼ FðηÞ − ηF0ðηÞ þ 4m2
P

Z
S1

dτ
a

_a2
�
B − a2 − B _a2

3

�
→ þ∞; ð29Þ

diverges to þ∞ at the poles of necklace beads with a ¼ 0,
where j _aj ¼ 1 and B − B _a2=3 > 0. Thus the CFT cosmol-
ogy scenario is free from the infrared catastrophe of
vacuum no-boundary instantons, which would otherwise
have a negative tree-level Euclidean action (proportional to
−1=Λ → −∞ at Λ → 0) and which would imply that the
origin of an infinitely big universe is infinitely more
probable than that of a finite one. Elimination of this
infrared catastrophe is the quantum effect of the trace
anomaly which flips the sign of the effective action and
sends it to þ∞.
The explanation why the trace anomaly action does not

produce the same effect for the no-boundary prescription of
Hartle and Hawking consists in the observation [25] that
the density matrix prescription in the CFT cosmology,
despite the same S4-geometry of the cosmological instan-
ton, has boundary conditions other than those of the no-
boundary case. A graphical representation of the origin of
the periodic garland instanton from the density matrix,
whose two arguments are associated with spatial hyper-
surfaces Σ and Σ0, is demonstrated in Fig. 1 for a single-fold
case. An analogous single-bead necklace instanton origi-
nates by a similar procedure shown in Fig. 2. It implies that
prior to transition to the statistical sum the values of the
fields on two hemispheres should coincide at the point
where these hemispheres touch. After tracing out the fields
at the identified surfaces Σ0 ¼ Σ the hemispheres get glued
into a complete S4 instanton, but its antipodal pole points
should still be identified as well as their field values
ϕðx−Þ ¼ ϕðxþÞ. This is the additional boundary condition
which is absent in the conventional no-boundary prescrip-
tion. As shown in [25], path integration over the quantum
field on a generic Euclidean manifold with the identifica-
tion of values of this field at two spacetime points leads to

FIG. 1. Transition from the density matrix to the statistical sum.
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the suppression of the result to zero by its one-loop
prefactor. This result strongly relies on positivity of the
classical Euclidean action or unitarity, which is apparently
related to the positivity of B ∼ β in the above derivation.

III. CFT DRIVEN COSMOLOGY
WITH CHS FIELDS

The main motivation for introducing CHS fields in
cosmology is an attempt of solving the hierarchy problem.
Realistic CFT driven cosmology capable of generating a
finite inflationary stage arises by the generalization of the
model (2) to the case of an effective cosmological term with
a slowly varying Λ. Λ is simulated by a potential VðϕÞ of a
dynamical scalar field ϕ—the inflaton in the regime of the
slow roll from the slope of VðϕÞ. Such a model of a new
hill-top inflation scenario was recently built in [7,9]. It turns
out that the slow roll conditions—smallness of inflationary
parameters ϵ and η, which determine the properties of the
primordial CMB power spectrum [27]—are satisfied for
those models which are very close to the upper boundary of
the effective cosmological constant range (24). This leads
to a major difficulty in a realistic inflationary scenario—the
problem of hierarchy between the Planckian scale of this
bound and the estimates for the scale of inflation based on
the CMB data in the models which provide a good fit of
these data [17,18]. Here we show that using CHS fields
suggests a solution to this hierarchy problem and, more-
over, provides a mechanism protecting the obtained results
from the contribution of nonrenormalizable graviton loops.

A. Hierarchy problem

Two models which perhaps give the best fit are the
Starobinsky R2-inflation model and quantitatively very
close to it Higgs inflation model with a large nonminimal
coupling of the Higgs inflaton to curvature [14–16]. In
particular, the latter model establishes a very convincing
relation between the observable CMB spectral parameter
ns ≃ 0.96 and the value of the Higgs mass very close to the
one discovered at LHC [15,16].
For Higgs inflation with a large nonminimal coupling

the energy density (in the Einstein frame of fields) at the

start of inflation should be essentially sub-Planckian,
V ∼ 10−11M4

P [15]. Matching with the upper bound (24)

M2
PΛ ∼

3M2
P

2B
¼ 12π2

β
M4

P; ð30Þ

implies that the total beta must be of the order of
magnitude

β ∼ 1013: ð31Þ

In order to reach this value with the conventional low spin
particle phenomenology characteristic of the Standard
Model one would need unrealistically high numbers of
conformal invariant scalar bosons N0, Dirac fermions N1=2

and vector bosons N1 in the expression (9) for β.
The hidden sector of so numerous low spin weakly

interacting particles does not seem to be realistic. However,
unification of interactions inspired by the ideas of string
theory, holographic duality [1] and higher spin gauge
theory [2] suggests that this hidden sector might contain
conformal higher spin (CHS) fields described by totally
symmetric tensors and spin tensors [3,4,19], and the total
value of β consists of the additive sum of all their partial
contributions (6). Recently there was essential progress in
the theory of these fields. In particular, it was advocated in
[3,4] that the values of βs can be explicitly calculated for
both bosons and Dirac fermions of a generic spin s. They
read for bosons

βs ¼
1

360
ν2sð3þ 14νsÞ;

νs ¼ sðsþ 1Þ;
s ¼ 1; 2; 3;…; ð32Þ

and for fermions

βs ¼
1

720
νsð12þ 45νs þ 14ν2sÞ;

νs ¼ −2
�
sþ 1

2

�
2

;

s ¼ 1

2
;
3

2
;
5

2
;…; ð33Þ

where νs is their respective number of dynamical degrees of
freedom—polarizations (negative for fermions).2 Though
these fields serve now basically as a playground for
holographic AdS/CFT duality issues and suffer from the
problems of perturbative unitarity, which is anticipated to

FIG. 2. Origin of boundary conditions: in the transition to the
statistical sum the pinching point x goes over into two different
points of S4, x → x�, with equal field values.

2Spin zero field—a scalar conformally coupled to gravity—for
certain group-theoretical reasons [4] is not included in the list of
bosonic CHS, and its value β0 ¼ 1=180 violates the rule (32)
which is valid for s > 0.
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be restored only at the nonperturbative level,3 it is worth
trying to exploit them as a possible solution of the hierarchy
problem in the CFT driven cosmology.
A strong motivation for this is that partial contributions

of individual higher spins rapidly grow with the spin as s6,
so that the tower of spins up to some large S generates the
total value of β:

β≃ 7

180

Z
S

0

dss6 ¼ S7

180
ð34Þ

(for simplicity we consider only bosons and assume that
every higher spin species is taken only once, Ns ¼ 1).
Therefore, in order to provide the hierarchy bound (31) the
maximal spin should be S ∼ 100, which corresponds to the
following estimate of the total number of particle modes
(polarizations) in the hidden sector of the theory:

N ¼
X
s

νs ≃
Z

S

0

dss2 ∼ 106: ð35Þ

When, instead of a tower of spins, the cosmological model
is driven by a conformal field of an individual spin s ≫ 1

with βs ≃ s6=25 and νs ≃ s2, then the needed value of spin
and the number of polarizations are

s≃ 200; Ns ≡ νs ≃ 4 × 104: ð36Þ

Quite interestingly, in the case of (34) and (35) this
coincides with the estimate for the average value of β

per one conformal degree of freedom, ~β≡ βboson=Nboson ∼
106 at which the thermal correction to the spectral
parameter of CMB, Δnthermal

s ∼ −0.001, depending on
the properties of the hill-like inflaton potential might
appear in its third decimal order [9,28]—the precision
anticipated to be reachable in the next generation of CMB
observations following Planck. For the case of the indi-
vidual spin (36) the thermal correction is even stronger and
can appear in the second or even the first decimal order.
This means that a potential resolution of the hierarchy
problem in the CFT scenario via CHS simultaneously
would make measurable the thermal contribution to the
CMB red tilt, which is complementary to the conventional
tilt caused by the deviation of the slow roll evolution from
the exact de Sitter evolution [27].

B. Stability of quantum corrections
and gravitational cutoff

CHS fields provide a mechanism which does not only
solve the phenomenological problem of hierarchy between

the Planckian and inflation scales, but is also likely to
justify the approximation underlying the predictions of the
above type. As mentioned in the Introduction this approxi-
mation goes beyond semiclassical expansion, because its
subleading one-loop order is critically important for the
construction of the model. In particular, it contributes a
large one-loop contribution whose balance against the tree-
level part establishes the upper bound (8) on the energy
scale of inflation. Therefore, the inflation scale

ΛI ¼
MPffiffiffi
β

p ð37Þ

is deeply below the Planck scale for a large β generated by
large numbers of quantum species Ns,MP=

ffiffiffi
β

p
∼MP=

ffiffiffiffi
N

p
,

N ¼ P
sNs. This seems to imply validity of the semi-

classical expansion in which all graviton loops can be
disregarded. However, there is a problem associated with
the fact that quantum gravity with a large number N of
quantum species has the effective field theory cutoff

Λ ¼ MPffiffiffiffi
N

p ; ð38Þ

which decreases for growing N along with the scale (37) and
can be even higher than the latter. This is a well-known
statement based on perturbation theory arguments [21] or
implications of the Hawking radiation from a semiclassical
black hole [22]. Within a conventional perturbation theory
this completely breaks the predictions in our model, because
we cannot guarantee smallness of quantum corrections
due to nonrenormalizable graviton loops—the theory is
not protected from uncontrollable radiative corrections.
The origin of the gravitational cutoff (38), below which a

nonrenormalizable contribution of graviton loops can be
disregarded, is based on the following reasoning. Suppose
we have N quantum species which generate in the external
gravitational field a full set of Feynman diagrams. Inclusion
of quantum graviton loops consists in the insertion into
these diagrams graviton propagators with the relevant
vertices of gravity-matter interaction. Each graviton propa-
gator carries an extra factor of 1=M2

P which suppresses a
relevant background quantity of the scale Λ2—a spacetime
curvature or a second order spacetime derivative. With a
small Oð1Þ number of quantum fields the suppression
factor for this contribution would be Λ2=M2

P which implies
a standard Planck scale cutoff Λ ¼ MP. However, with
many quantum fields this contribution gets enhanced.
For noninteracting multiple species the above contribu-

tion is multiplied by the first power of N, since the graviton
propagator connects two vertices of one and the same field.
This is because another matter field propagator, connecting
these vertices, for free (linear) fields can connect only the
vertices of one and the same species, whereas another
graviton propagator which could have connected vertices of

3Lack of perturbative unitarity is associated with the fact that
CHS fields are not free from ghosts—their kinetic operator
contains higher derivatives of order 2s.
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different fields would give (together with the first
added propagator) a subdominant contribution ∼1=M4

P.
Therefore, the overall suppression factor for the insertion of
any single graviton propagator becomes NΛ2=M2

P, and the
cutoff equals ([22]).4 Thus, a hidden sector of multiple
quantum species does not help to protect the model from
unrenormalizable graviton corrections. Its energy scale
MP=

ffiffiffi
β

p
with β ∼ N either coincides with the gravitational

cutoff (38) or even exceeds it. This is the consequence of
the universality of the gravitational interaction—no matter
how small is the coupling of the hidden sector to observable
sector, universal gravitational interaction cannot be reduced
below the gravitational cutoff.
It should be emphasized here that in the above derivation

of the gravitational cutoff we did not require smallness of the
full quantum (say one-loop) correction relative to the tree-
level part as it was done in [21]. In the perturbation theory
approach of [21] this would have led instead of N to the
central charge of the theory—the relevant coefficient of the
conformal anomaly c ∼ β, and the cutoff would beMP=

ffiffiffi
β

p
.

Rather, in our definition of the cutoff we demanded small-
ness of only the graviton corrections—all nonrenormaliz-
able contributions containing any single graviton
propagator. On the contrary, the contribution of purely
quantum species loops can be large and treated beyond
perturbation theory, as it was done in the construction of
cosmological instantons above. With this definition the
cutoff is inverse proportional to

ffiffiffiffi
N

p
rather than

ffiffiffi
β

p
. For

conventional low spin theories these two quantities are of the
same order of magnitude and are usually not distinguished
from one another in the cutoff expression.
A remarkable property of CHS fields is that they

qualitatively change this situation. This is because for this
theory—either for an individual sufficiently high spin s or
for a tower of spins up to some s ¼ S ≫ 1—the parameter
β grows with the spin much faster than the number of fields.
For an individual spin s the role of the number of quantum
species is played now by the number of polarizations
νs ≃ s2, while for a tower of spins (for bosonic case with
every spin taken once) it is

N ¼
X
s

νs ≃ S3

3
: ð39Þ

Correspondingly, the total value of β equals βs ≃ 7s6=180
for an individual spin and β≃ S7=180, see Eq. (34), for

such a tower of spins. Therefore the ratio of the inflation
scale (37) to the cutoff (38) is decreasing with the growth of
the individual spin s or the height of the spin tower S
respectively as5

ΛI;s

Λs
¼

ffiffiffiffiffiffi
Ns

βs

s
≃ 5

s2
; ð40Þ

ΛI;S

ΛS
¼

ffiffiffiffi
N
β

s
≃

ffiffiffiffiffi
60

p

S2
; ð41Þ

where the inflation scales and cutoffs labeled by s and S
obviously denote the cases of the individual spin or a tower
of those. In both cases of the individual spin (36), s ∼ 200,
and the tower of spins (34) and (35), S ∼ 100, these ratios
are very small and range within the limits 10−4–10−3.
Therefore, the model is in the quantum state 3 or 4 orders of
magnitude below its gravitational cutoff, and an uncon-
trollable contribution of nonrenormalizable graviton loops
is negligible.
For strongly coupled species with the cutoff Λint ¼

MP=N mentioned above (see footnote 4) these ratios are
higher ΛI;s=Λint;s ≃ 5=s, ΛI;S=Λint;S ≃ ð20=SÞ1=2, and
amount to 0.03–0.4. So for a tower of spins, S ∼ 100,
the system becomes too close to the gravitational cutoff.
This case is, however, not so important because (non-
diagonal) propagator mixing between the CHS species is
possible only on the nonzero background of these fields,
whereas we assume that in conformal cosmology it is
vanishing—conformal species have vanishing expectation
values and contribute only via their quantum fluctuations.
Thus the model is deeply below the gravitational cutoff,

and we remain with the dominant quantum contribution of
only the CHS fields in the external gravitational field. This
contribution is big, because it is weighted by β ≫ N, and it
is treated beyond perturbation theory. For linear fields it is
exhausted by the one-loop order, which is exactly calcu-
lable for the FRW metric by the trace anomaly method
described above. The generalization to a nonlinear case also
looks straightforward. It is important that this sector is
perturbatively renormalizable, which is obvious for low
spin fields s ¼ 0, 1=2, 1, while for higher order spins it
directly follows from their higher-derivative nature—the
conformal field of spin s has a kinetic operator of order
2s [4]. Due to renormalizability gravitational multiloop
counterterms are exhausted by the same three tensor
invariants as in the one-loop order, C2

μναβ, E and □R (R2

is absent due to conformal invariance) which generate the
three-parameter trace anomaly (5), and the principal effect

4For interacting quantum species the inserted graviton propa-
gator can connect vertices of different fields (the full N × N
matrix propagator of quantum species can be nondiagonal), so
that the suppression factor equals N2Λ2=M2

P and the cutoff
seemingly reduces to Λint ¼ MP=N. But off-diagonal elements
should carry the coupling constant which should scale as 1=N to
guarantee the perturbative regime in the matter field sector, and
this raises Λint back to the noninteracting case of (38).

5Here and above we disregarded powers of 2π which should
equally enter the expressions for the inflation scale (37),
cf. Eq. (8), and the gravitational cutoff ([22]) and, therefore,
cancel out in their ratio.
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of nonlinearity is a slow logarithmic RG running of α, β
and γ [29]. Moreover, for the FRW background this
sector is actually free from logarithmic UV divergences,
because on this closed S1 × S3 instanton the counterterms
—
R
d4xg1=2C2

μναβ, the Euler number (contributed by the

Gauss-Bonnet invariant E) as well as
R
d4xg1=2□R—are all

vanishing. Thus, this sector of the model is free from
UV divergences, and its power divergences are absorbed by
the renormalization of the cosmological Λ and gravitational
M2

P coupling constants. It is in terms of these two
renormalized constants and without any renormalization
ambiguity that the FRW cosmological instantons were built
within the dynamically suppressed energy scale (8).
Note that the R2-term of the Starobinsky model, con-

sidered above (14) and used for a finite renormalization of
the Casimir energy (15) and simulation of the effective
cosmological term [7], belongs to UV finite sector.
Therefore, elimination of higher-derivative ghosts in the
gravitational sector by this finite renormalization cannot be
broken by leading radiative corrections, which justifies the
criterion of “naturalness” in this model.

IV. PECULIARITIES OF FERMIONIC AND
ANOMALY-FREE CHS MODELS

Equation (33) shows that when the model is dominated
by CHS fermions the total β and B can be negative,
because fermionic βs are negative starting with s ¼ 3=2.
Apparently, this is associated with the fact that CHS fields
are not free from ghosts—their kinetic operator contains
higher derivatives of order 2s. There exists a hope that at the
nonperturbative level CHS theories can be rendered uni-
tarity, so that their effect can still be interesting within the
CFT cosmology scenario. The picture of this scenario with
a negative B is somewhat different from the case of B > 0
and looks as follows.
First consider the garland instantons. For a negative

B ¼ −jBj the equation (19) should be chosen in the form
with the negative sign of the square root,

_a2 ¼ 1þ a2

jBj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ a2

jBj
�

2 − 2H2

jBj ða
2þ − a2Þða2 − a2−Þ

s
;

ð42Þ

if we want periodic oscillations between a− and aþ. Here
the argument of the square root equals a4ð1þ 2jBjH2Þ=
B2 þ 1þ 2C=jBj and is positive definite, and also no
restrictions on the range of H2 and C similar to (21)
follow. A priori, in the two-dimensional plane of H2 > 0
andC > 0 garland instanton solutions can occupy all points
below the hyperbola C ¼ 1=4H2. However, the bootstrap
equation (17) with a negative B imposes the upper bound
on the value of the conformal time period of garland
instantons, and this leads to a reduction of this domain. The

constant C cannot be negative because a2− should be
positive for garlands, so that the range 0 < C < 1=4H2

gives, in view of dF=dη being a monotonically decreasing
function of η, a restriction on the domain of possible η:

jBj
2

<
1

m2
P

dF
dη

<
1

4H2
þ jBj

2
; ηmax > η > ηmin: ð43Þ

This immediately rules out solutions belonging toH2 andC
axes of the curvilinear triangle, because both for C ¼ 0

(a− ¼ 0) and H2 ¼ 0 (a2þ → ∞) the time period is infinite,
which contradicts η ≤ ηmax. Similarly, the asymptotics
H2 → 0 cannot be reached along the upper hyperbolic
boundary, C ¼ 1=4H2, because the bootstrap equation
would imply that dF=dη ∼m2

PC ¼ m2
P=4H

2 → ∞ and
η → 0 (in view of bosonic contributions to dF=dη tending
to infinity for vanishing η). But this is impossible because at
this boundary the conformal time period is exactly calcu-
lable6 [5] and equals

ηjC¼1=4H2 ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − 2BH2Þ

q
≥ π

ffiffiffi
2

p
: ð44Þ

The values of H2 are also bounded from above because for
H2 → ∞ the conformal time period η ∼H

ffiffiffiffiffijBp j → ∞, and
large H are also ruled out by the maximal value of η. In
contrast to the case of positive B, however, the upper bound
on the cosmological constant is not universal and can be
obtained only numerically.
Thus, negative B rules out the infrared catastrophe in

the distribution of garland-type cosmological models with
H2 → 0, because there are no corresponding garland
instantons in this limit. This restricts the range of
the cosmological constant from above. One would think
that the upper limit on η might also bound the value of
H2 and solve the hierarchy problem. Say, on the
hyperbolic boundary with η ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2jBjH2Þ

p
it reads

1þ 2jBjH2 ≤ η2max=2π2. But this bound turns out to be too
weak to provide H2 ≃ 10−12m2

P, unless the value of m
2
PjBj

in H2=m2
P ≤ ðη2max=2π2 − 1Þ=2jBjm2

P ∼ 10−12 is very big,
which again implies a high tower of fermionic CHS.
The domain of negative C and B in (17) corresponds to

necklace instantons described above in Sec. II. For C < 0

the value of a2− is also negative, so that a sensible minimal
value of the scale factor is actually zero. This does not lead
to a contradiction with (42), because the conformal time η
in view of Eq. (28) diverges to infinity at the lower limit and
C ¼ −jBj=2, so that the geometry smoothly closes at a ¼ 0

without a conical singularity to form a round sphere S4− (or
a necklace—the string of round spheres) for all positiveH2.

6At C → 1=4H2 the turning points a� approach each other and
the integral for η becomes exactly calculable [5].
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However, in contrast to necklace instantons with a positive
B they are not ruled out by their on-shell effective action
(29) because B < 0 and the action is infinitely negative
Γ0 ¼ −∞. Note that this divergence occurs not at a
particular value of H2—the statistical sum is badly defined
for all values of H2, and the situation is qualitatively
different from the no-boundary state. Therefore, the cos-
mology with β < 0 is in principle inconsistent, because its
full statistical sum contains this divergent contribution of
necklace instantons. The additional ensemble of garland
instantons, discussed above, contributes to the statistical
sum a finite part, but it is hard to interpret it on top of the
divergent part of the necklace distribution.
Another interesting case of CHS theory is the infinitely

high tower of spins S → ∞. In this case the total β and other
characteristics of the CHS tower are formally divergent, but
in the case when all spin particles are taken only once,
Ns ¼ 1, the use of ζ-function regularization for the diver-
gent spin series gives a remarkable result—an overall B
becomes zero [3,4],X

s

βs ¼ 0; B ¼ 0: ð45Þ

This result holds independently for boson, s ≥ 1, and
fermion, s ≥ 1=2 [4], CHS towers and underlies a non-
trivial check of the AdS5=CFT4-correspondence in which
the vanishing result on the five-dimensional AdS side
simply follows from the absence of conformal anomaly
in odd-dimensional spacetime.
An explicit summation over spins is possible not only for

trace anomaly coefficients but also for the thermal free
energies of CHS particles [20]. This can be done by
expanding the logarithm in (12) in the sum over “one-
particle” statistical sums ZsðmηÞ with growing inverse
temperature mη and interchanging the order of summation
over spins and equidistant levels of the inverse temperature,

FbosonðηÞ ¼ −X∞
m¼1

1

m
ZbosonðmηÞ; ð46Þ

ZbosonðηÞ ¼
X∞
s¼1

ZsðηÞ; ZsðηÞ ¼
X
ωs

jνsje−ηωs : ð47Þ

Explicit summation of ZsðηÞ over spin s gives the answer
[20]

ZbosonðηÞ ¼ − e−2ηð11þ 26e−η þ 11e−2ηÞ
6ð1 − e−ηÞ6

≃− 11

6
e−2η; ð48Þ

FbosonðηÞ≃−ZbosonðηÞ≃ 11

6
e−2η; η → ∞; ð49Þ

which gives a good approximation for the sum over m in
the limit of large η. Irrespective of this approximation, the
answer for the total free energy, given by this convergent
sum over m, has an important property—unexpectedly it is
negative. Similarly for fermions

FfermionðηÞ ¼
X∞
m¼1

ð−1Þm
m

ZfermionðmηÞ; ð50Þ

ZfermionðηÞ ¼
X∞
s¼1=2

ZsðηÞ

¼ − e−3η=2ð1þ 23e−η þ 23e−2η þ e−3ηÞ
3ð1 − e−ηÞ6

≃− 1

3
e−3η=2; η → ∞: ð51Þ

Therefore, both bosonic and fermionic theories of CHS
have negative thermal energy densities dF=dη.
Obviously, this unnatural conclusion is the result of the

oversubtraction performed by the ζ-function renormaliza-
tion of [3,4,19,20] which annihilates all UV divergences in
the infinite sum over spins. This is clearly seen in the
special cutoff regularization by the parameter ϵ → 0:

Zϵ
bosonðηÞ ¼

X∞
s¼0

e−ϵðsþ1=2ÞZsðηÞ; ð52Þ

Zϵ
bosonðηÞ ¼

4e−2η
ð1 − e−ηÞ4ϵ2

−
e−2ηð11þ 26e−η þ 11e−2ηÞ

6ð1 − e−ηÞ6 þOðϵÞ: ð53Þ

This regularization retains power divergences which give a
dominant positive contribution, while the ζ-function regu-
larization subtracts these divergences and leaves us with the
negative remnant. Potential justification for this property
could be a conjectured nonperturbative treatment of such
theories which solves the problem of their unitarity. Wewill
see now that outside of this nonperturbative approach these
models recover the situation of the vacuum no-boundary
instantons with the infrared catastrophe of Λ → 0.
Indeed, for B ¼ 0 and dF=dη < 0 Eqs. (16) and (17)

lead to a negative C < 0, so that the turning points (20)
cannot be both positive. Similarly to the situation a negative
C above, the negative value of a2− implies that the minimal
value of the scale factor is zero, which does not lead to a
conical singularity of the solution at a− ¼ 0, because the
conformal time η in view of (23) diverges to infinity and
C → 0. The solution becomes a2ðτÞ ¼ sin2ðHτÞ=H2,
which represents the Hartle-Hawking instanton S4. In view
of the overall B equal to zero, the on-shell action (29) does
not diverge—its integral term is finite for all H2. It
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coincides with the tree-level action of the no-boundary
instanton—the 4-sphere of the radius 1=H—and diverges
to −∞ at H2 → 0, Γ0 ¼ −2m2

P=3H
2.

V. CONCLUSIONS

Our main conclusion is that cosmology with numerous
CHS fields can solve the problem of hierarchy between the
Planck scale and the sub-Planckian inflationary scale
compatible with CMB observations within a number of
inflation models including R2-gravity and Higgs inflation
model [7,9]. For that a finite height tower of bosonic and
fermionic CHS fields should generate a large positive
coefficient β of the Gauss-Bonnet invariant in the overall
conformal anomaly of the theory.
In CHS models the coefficient β is much higher than the

number of field polarizations N which means that the
energy scale of the model MP=

ffiffiffi
β

p
is essentially (by 3 or 4

orders of magnitude for R2-gravity and Higgs inflation
model) below the gravitational cutoff MP=

ffiffiffiffi
N

p
, the latter

being determined from the requirement of smallness of
graviton loop corrections. This justifies a special approxi-
mation scheme in which these nonrenormalizable correc-
tions are treated within the effective field theory below this
cutoff, while the dominant quantum contribution of CHS
fields is treated beyond perturbation theory and dynami-
cally puts the bound on the energy scale of the model.
Though it fits presently very popular ideas of string

theory, higher spin gauge theory [2] and holographic
duality [3], this mechanism of a large β is still vulnerable
to criticism regarding the problem of perturbative unitarity
for CHS fields due to their higher-derivative nature. How
important is the lack of unitarity in the hidden sector of our
model? Free or weakly self-interacting CHS fields are
coupled to the observable sector only gravitationally, but
below the gravitational cutoff this coupling is apparently
suppressed similarly to the contribution of graviton loops
and the loops containing any single graviton propagator.
This effective decoupling essentially reduces the effects of
nonunitarity. Of course, this is not a fundamental solution
of the problem, which is expected to be achieved only at the
nonperturbative level under a better understanding of the
gauge theory of interacting higher spin fields.
The problem of unitarity can manifest itself and even can

be destructive for a negative β, which is possible in the case
of the dominant contribution of higher spin conformal
fermions with s ≥ 3=2. As we saw, cosmology with β < 0
is inconsistent, because its statistical sum contains a
divergent contribution of necklace instantons. The source
of this inconsistency is apparently related to the breakdown
of perturbative unitarity. Suppression of vacuum necklace
instantons, mentioned in Sec. II, is based on the Gaussian
integration with a positive definite quadratic form [25].
The boundary condition ϕðxþÞ ¼ ϕðx−Þ, induced by the

microcanonical density matrix as depicted in Fig. 2, can be
enforced with the Lagrange multiplier λ in the path integral
for a generic theory with the quadratic action
S½ϕ� ¼ 1

2

R
dxϕFϕ. Therefore, the modification due to this

boundary condition reduces to a single Gaussian integral
over λ,

Z ¼
Z

Dϕdλe−S½ϕ�þiλðϕðxþÞ−ϕðx−ÞÞ

¼ ðDetFÞ−1=2
Z

dλe−
1
2

R
dxdyJλðxÞGðx;yÞJλðyÞ; ð54Þ

with the local source JλðxÞ peaked at x�, JλðxÞ≡
λðδðx − xþÞ − δðx − x−ÞÞ, and the kernel Gðx; yÞ—
the Green’s function of F. Therefore, the statistical
sum reduces to zero, Z ∼ ðGðxþ; xþÞ þ Gðx−; x−Þ−
2Gðxþ; x−ÞÞ−1=2 ¼ 0, in view of the divergent coincidence
limits for Gðx; yÞ, Gðxþ; xþÞ ¼ Gðx−; x−Þ ¼ ∞. Violation
of unitarity is associated with the indefiniteness of the
operator F which makes Z divergent, and this is consistent
with the divergence to −∞ of the integral part of (29)
for B < 0.
The situation with the anomaly-free theory of the

infinite chain of CHS fields is different. Its statistical
sum is finite, but it suffers from the infrared catastrophe
at Λ → 0 similar to the problem with the no-boundary
prescription. Therefore, it is hardly acceptable as a source
of cosmological initial conditions, because it suggests that
the origin of an infinitely big universe is infinitely more
probable than that of the finite one. This means that the
anomaly-free CHS model, as a potential basis of a con-
sistent theory “of everything,” does not give any advantages
in the context of cosmological applications. What ruins
these advantages is the oversubtraction of power divergen-
ces by ζ-regularization of the sum over spins in (53), which
leads to a negative value of the thermal energy—the other
side of breakdown of perturbative unitarity. Apparently, the
disregard of power divergences in the sum over spins
physically is not such a harmless procedure. Their recovery
in the regularization (52) with the parameter ϵ → 0, which
is equivalent to the cutoff in the height of the spin tower at
S ∼ 1=ϵ, brings us back to the predictions of the model with
a finite tower of CHS fields. This spin cutoff becomes a
phenomenological parameter related to the inflation energy
scale detectable via CMB observations.
Thus, the CHS models dominated by fermions with

B < 0 and anomaly-free models with B ¼ 0 remain a
playground of holographic methods in AdS/CFT corre-
spondence, but fail to generate interesting CFT driven
cosmology. This matches with the fact established in [10]
that the CFT driven scenario implies another type of
holographic duality—the DGP/CFT correspondence. For
positive β ∼ B > 0 this is the duality between the four-
dimensional CFT driven cosmology of [5] and the tree-
level dynamics of the 4D brane which is embedded into the
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five-dimensional Schwarzschild–de Sitter bulk and carries
the 4D Einstein-Hilbert term—the generalization of the
DGP model [30].
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