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The equations of anomalous magnetohydrodynamics describe an Abelian plasma where conduction and
chiral currents are simultaneously present and constrained by the second law of thermodynamics. At high
frequencies the magnetic currents play the leading role, and the spectrum is dominated by two-fluid effects.
The system behaves instead as a single fluid in the low-frequency regime where the vortical currents induce
potentially large hypermagnetic fields. After deriving the physical solutions of the generalized Appleton-
Hartree equation, the corresponding dispersion relations are scrutinized and compared with the results valid
for cold plasmas. Hypermagnetic knots and fluid vortices can be concurrently present at very low
frequencies and suggest a qualitatively different dynamics of the hydromagnetic nonlinearities.
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I. INTRODUCTION

Electrically conducting media are customarily described
as a single fluid in the low-frequency branch of the plasma
spectrum. This approach has been extensively applied to
the analysis of hydromagnetic nonlinearities [1] evolving in
terrestrial [2] and astrophysical plasmas [3–5]. The same
strategy cannot be extended to higher frequencies where
the one-fluid description is no longer tenable [6] and the
plasma must be treated, at least, as a double fluid. This
well-known aspect of conventional electromagnetic plas-
mas stems directly from the properties of the vector currents
which are associated, in the high-frequency limit, with the
ions and with the electrons. When the plasma is globally
neutral the total vector current is instead Ohmic in the low-
frequency domain.
A problem of a similar nature occurs in anomalous

magnetohydrodynamics [7] describing a charged fluid
where axial and vector currents are simultaneously present:
While the axial currents are not conserved because of the
triangle anomaly, the vector currents are eventually Ohmic.
The purpose of this investigation is a systematic discussion
of the spectrum of anomalous magnetohydrodynamics
(AMHD). The equations of AMHD differ from the ones
where only chiral currents are present [8,9] at finite
fermionic density. They generalize the system firstly
explored in Ref. [10] accounting for the evolution of the
hypermagnetic and hyperelectric fields in the electroweak
plasma. Indeed, in the symmetric phase of the electroweak
theory the nonscreened vector modes of the plasma corre-
spond to the hypercharge which has a chiral coupling to

fermions. The axial currents may be associated with the
evolution of the chemical potential orwith the presence of an
axionlike field [11,12] (see also [13]). In both cases the
plasma may host parity-odd configurations of the gauge
fields characterized nonvanishing hypermagnetic gyrotropy
~B · ~∇ × ~B which is the hydromagnetic analog of the kinetic

gyrotropy (i.e. ~v · ~∇ × ~v) naturally appearing in the dis-
cussion of mean-field dynamos [1,4]. The dynamical pro-
duction of hypermagnetic knots and Chern-Simons waves
during inflation offers a potentially viablemechanism for the
generation of the baryon asymmetry of theUniverse (see last
two papers in [10]). In AMHD the hypermagnetic current is
complemented by a vortical current possibly leading to the
formation of fluid vortices.
The same class of physical systems previously discussed

in the electroweak plasma also arises in the framework of
the so-called chiral magnetic effect [14]. Both phenomena
are often presented as macroscopic manifestations of
triangle anomalies. The model of the chiral liquid emerging
in the context of AMHD could then be relevant also in the
context of the chiral magnetic effect insofar as axial
currents and quark vector currents are concurrently present
in the strongly interacting plasma. In the absence of finite
conductivity effects (see e.g. [15,16]) the validity of the
second law of thermodynamics is guaranteed by the simul-
taneous presence of a hypermagnetic current and of a chiral
vortical term. In AMHD the vector currents (eventually
responsible of Ohmic dissipation), the chiral currents
(determining the anomalous effects) and the vortical cur-
rents (required by the second principle of thermodynamics)
are all described by the appropriate kinetic coefficients.
Whenever possible AMHD is discussed in analogy with the
spectrum of conventional plasmas. More specifically the
plan of this investigation is the following. In Sec. II we
discuss the relativistic problem and derive the general form
of the kinetic coefficients. In Sec. III the properties of the
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two-fluid equations are analyzed while Sec. IV is devoted to
the dispersion relations in the high-frequency domain. The
one-fluid equations and their implications are presented in
Sec. V. Section VI contains our concluding remarks. To
avoid digressions some relevant technical aspects have been
relegated to the Appendix.

II. RELATIVISTIC FORMULATION
AND TOTAL ENTROPY

The conservation of the total energy-momentum tensor
and the evolution of the chiral and vector currents deter-
mine the relativistic form of the second law of thermody-
namics. If the four-divergence of the entropy four-vector is
to be positive semidefinite (as implied by the generalized
second law) the chiral and vector currents must contain
supplementary kinetic coefficients corresponding to the
hypermagnetic and to the vortical currents. In what follows
the dissipative effects are included in the framework of the
Landau approach: Tthe total four-velocity coincides then
with the velocity of the energy transport defined from the
mixed components of the total energy-momentum tensor.

A. Ohmic and chiral currents

In the simplest situation the total energy-momentum
tensor of the system (TðtotÞ

μν ) consists of four qualitatively
different contributions: the energy-momentum tensor of the

charged species (denoted by Tð�Þ
μν ), the energy-momentum

tensor of the chiral species (labeled by TðRÞ
μν ), the dissipative

contribution (TðdissÞ
μν ) and the gauge contribution (T μν)

(corresponding to an hypercharge gauge field strength Yμν):

TðtotÞ
μν ¼ TðþÞ

μν þ Tð−Þ
μν þ TðRÞ

μν þ TðdissÞ
μν þ T μν: ð2:1Þ

The covariant conservation of TðtotÞ
μν implies, as usual, that

∇μT
μν
ðtotÞ ¼ 0 where ∇μ denotes the covariant derivative1

defined from the metric tensor gμν (with signature mostly
minus). The chiral and the conduction currents coexist but
are not bound to coincide: They obey different equations.
More specifically the anomalous current is not covariantly
conserved, and its evolution can be written as2

∇μj
μ
R ¼ ARYαβ

~Yαβ; jμR ¼ ~nRu
μ
R þ νμR; ð2:2Þ

where AR is a numerical factor that is determined by the
specific nature of the chiral species and by the coupling to
the hypercharge field; note that in the Landau frame
νμRu

R
μ ¼ 0. Conversely the conduction current is covariantly

conserved. It is a source of the evolution equations
of the gauge fields, and it may even contain a dissipative
contribution:

∇μYμν¼ 4πjν; jν ¼ jνþþ jν−; ∇μjμ ¼ 0; ð2:3Þ

where jν� ¼ ðq� ~n�uμ� þ νμ�Þ. The dual field strength ~Yμν

obeys, as usual, ∇μ
~Yμν ¼ 0. This is the approach followed

in [7] which differs from other more conventional
approaches (see, for instance, Ref. [15], and especially
Ref. [16]) where the anomalous current and the conduction
current are identified.
In the present approach the anomalous current is not

directly the source of the evolution of the hypercharge.
Indeed by looking at Eq. (2.3) it is clear that jμ is
covariantly conserved, but it would be anomalous in the
discussion of [15,16]. When the conserved current is
Ohmic the entropy will also increase thanks to the Joule
heating. The kinetic coefficients will always be determined
from the requirement that the four-divergence of the
entropy four-vector is positive semidefinite. In summary
the present investigation deals with the situation where
anomalous currents are present together with conserved
currents. While this system, firstly analyzed in [7], differs
from the one of Ref. [16] we always use the relativistic
generalization of the second principle of thermodynamics
to determine, at least partially, the kinetic coefficients.
In a general relativistic description Yμν and its dual

account for the evolution of the hypercharge field3; how-
ever, the gauge field strength can be decomposed into the
hyperelectric and hypermagnetic parts denoted, respec-
tively, by Eμ and Bμ:

Yαβ ¼ Eαuβ − Eβuα þ EαβρσuρBσ; ð2:4Þ

where Eαβρσ ¼ ffiffiffiffiffiffi−gp
ϵαβρσ and ϵαβρσ is the four-dimensional

Levi-Civita symbol while g is the determinant of the metric
tensor. The total four-velocity of the system follows from

ðpþ ρÞuμuν ¼
X
a

½pðaÞ þ ρðaÞ�uμðaÞuνðaÞ; ð2:5Þ

where w ¼ ðρþ pÞ denotes the total enthalpy density; the
sum in Eq. (2.5) runs over all the species of the plasma,
both charged and chiral. Close to an equilibrium situation
the four-velocity of the anomalous species coincides with
the bulk velocity of the plasma and, therefore, uμR ≃ uμ. The
vorticity four-vector can then be defined as

1The discussion is conducted in a general relativistic
formulation even if the spectrum of AMHD is discussed in flat
space-time.

2Note that ~nR and uμR are, respectively, the concentration and
the four-velocity of the chiral species.

3As soon as we speak of hyperelectric and hypermagnetic
fields we are implicitly assuming that the plasma has a finite
conduction current so that a preferred frame can be selected
where the electric fields are suppressed. Even if the electric and
magnetic fields are nonrelativistic concepts, it is practical to
introduce the electric and the magnetic components of the gauge
field strength in a generally covariant language.
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ωμ ¼ ~fμαuα≡1

2
Eμαβγuαfβγ; fβγ ¼∇βuγ−∇γuβ: ð2:6Þ

From Eqs. (2.4) and (2.6) it follows that the four-
divergences of Eμ, Bμ and ωμ are given by

w∇μω
μ ¼ −2ωα∂αp − 2~nEαωα; ð2:7Þ

w∇μBμ ¼ 2wYρσω
ρuσ þ uμ∂αp ~Yμα þ uμYαβjβ ~Y

μα; ð2:8Þ

w∇μEμ ¼w½4πjαuα− ~Yμρωμuρ�þYβγuβ∂γpþYβγuβYγαjα:

ð2:9Þ
Equations (2.7), (2.8) and (2.9) have been obtained in the
globally neutral case where ~n¼ ~nþ¼ ~n− and qþ ¼ q¼−q−,
but they can be easily generalized to the case where the
plasma is not globally neutral.

B. First and second principles of thermodynamics

Denoting with μR the chemical potential associated with
the anomalous species, the first principle of thermodynam-
ics demands

dE ¼ TdS − pdV þ μRdNR;

w ¼ ρþ p ¼ Tςþ μR ~nR: ð2:10Þ

The fundamental identity E ¼ TS − pV þ μRNR can be
divided by a fiducial volume, and the result is the one
reported in the second relation of Eq. (2.10) where ς is the
entropy density and ρ the total energy density of the system.
Combining the two relations of Eq. (2.10) further thermo-
dynamic relations can be obtained.4 Since the anomaly-
induced currents are protected by topology they are not
associated with dissipative effects. Thus, the entropy
production of the plasma must only come, in the relativistic
case, from the viscosity coefficients or from the Ohmic
contributions but neither from the chiral currents nor from
the corresponding diffusive contribution. The absence of
dissipative contributions stemming from the anomalous
sector demands that the total entropy four-vector must be
supplemented by two further coefficients Sω and SB:

ςμ ¼ ςuμ − μ̄Rν
μ
R þ Sωω

μ þ SBBμ; ð2:11Þ

where we introduced a rescaled chemical potential
μ̄R ¼ μR=T. The covariant conservation of the total energy

momentum tensor TðtotÞ
μν can be written as

∇μς
μ − σ

T
YαβYναuνuβ −

Tμν
ðdissÞ
T

∇μuν ¼ Z; ð2:12Þ

where we assumed, for the sake of simplicity, a global
charge neutrality of the plasma and a corresponding Ohmic
form for the charged species, namely Pα

μjμ ¼ σYανuν
where Pα

μ ¼ δαμ − uμuα is the standard projector. The
function Z appearing in Eq. (2.12) is given by

Z ¼ ∇μðSωω
μ þ SBBμÞ − ναuβ

T
Yαβ − ∂βμ̄Rν

β
R

−ARμ̄RYαβ
~Yαβ: ð2:13Þ

We remark that the specific definition of the entropy four-
vector depends on the chemical potential of the system.
However, since the coefficient AR does not have a definite
sign, the anomalous currents may even lead to violation of
the second principle of thermodynamics unless Z vanishes
identically.

C. Magnetic and vortical coefficients

The vortical and the magnetic currents modify also the
diffusive contributions denoted, respectively, by να and ναR
in Eq. (2.13). Four different coefficients parametrize the
relation between (να, ναR) and (ωα, Bα):

να¼Λωω
αþΛBBα; ναR ¼ΛRωω

αþΛRBBα; ð2:14Þ

where ðΛω;ΛBÞ and ðΛRω;ΛRBÞ all depend on the chemical
potential and on the temperature. Using Eqs. (2.7), (2.8)
and (2.9) the condition Z ¼ 0 together with the explicit
expression of Z [see Eq. (2.13)] becomes�
2SB−

�
Λω

T

��
ðωαBαÞþ

�
4μ̄RAR−

�
ΛB

T

��
ðEαBαÞ

−
2

w
σcω

αEβuμBνEαβμνSωþωαPαþBαQα ¼ 0 ð2:15Þ

where Pα and Qα are two differential operators defined
respectively, as

Pα ¼ ∂αSω − 2

w
Sω∂αp − ∂αμ̄RΛRω;

Qα ¼ ∂αSB − SB

w
Sω∂αp − ∂αμ̄RΛRB: ð2:16Þ

The results of Eqs. (2.13)–(2.15) follow easily if we recall
that, by definition, uαωα, uβEβ and uγBγ are all vanishing.
To satisfy the condition expressed by Eq. (2.15) the four-

vectors multiplying ωα and Bα must vanish together with
the coefficients of the terms multiplied by ωαBα and EαBα.
We then arrive at the following conditions:

Pα ¼ 0; Qα ¼ 0; ΛB ¼ 4μRAR;

Λω ¼ 2TSB; Sω ¼ 0: ð2:17Þ

If, as established, Sω ¼ 0 then Eq. (2.15) also implies that
ΛRω ¼ 0. All the coefficients we ought to determine

4Like, for instance, ς∂αT þ ~nR∂αμR ¼ ∂αp or ∂αρ ¼ T∂αςþ
μR∂α ~nR.
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depend on μ̄R and on the pressure. Thus, the conditions of
Eq. (2.17) are equivalent to the following system of
equations:

�∂SB

∂p − SB

w

�
∂αpþ

�∂SB

∂μ̄R − ΛRB

�
∂αμ̄R ¼ 0; ð2:18Þ

where Λω ¼ 2TSB and ΛB ¼ 4ARμ̄RT. Using some stan-
dard thermodynamic relations (giving the partial deriva-
tives of the pressure and of the rescaled chemical potential
with respect to the temperature) the various kinetic coef-
ficients can be determined, after some algebra:

SBðμ̄R;TÞ¼TaBðμ̄RÞ; ΛRB¼
∂

∂μ̄R ½TaBðμ̄RÞ�; ð2:19Þ

Λωðμ̄R;TÞ¼2T2aBðμ̄RÞ; ΛBðμ̄R;TÞ¼4ARμ̄RT; ð2:20Þ

where aBðμ̄RÞ is an arbitrary function of the rescaled
chemical potential. Note also that ΛB is fully determined
in terms of the coefficient of the anomaly, and it is, in
practice, only a function of the chemical potential itself
since, by definition, μ̄RT ¼ μR.
In summary, in a globally neutral plasma with an

anomalous current, the relativistic second law implies that
the nonanomalous current must contain magnetic and
vortical contributions. If the plasma is not hypercharge
neutral the form of the kinetic coefficients is subjected to a
higher degree of arbitrariness since a second chemical
potential must be introduced in the analysis (see the
appendix of Ref. [7]).
Even if this last issue has been thoroughly discussed in

[7], it is nonetheless useful to add further explanatory
details. For this purpose, let us consider, for instance, the
fundamental identity of thermodynamics already written in
the second relation reported in Eq. (2.10). If the plasma is
not neutral Eq. (2.10) gets modified as w ¼ Tςþ μR ~nR þ
μþ ~nþ þ μ− ~n− where ~n� are the concentrations of the
positively and negatively charged species. Recalling that
μþ ¼−μ−¼ μ we have that the enthalpy density can be
easily written as w¼TςþμR ~nRþμ ~n where ~n¼ð ~nþ− ~n−Þ.
It is clear that in the globally neutral case (i.e. when the
positive charges are balanced by the negative charges) the
obtained equation exactly reproduces Eq. (2.10).
If the plasma is not globally neutral the different

expression of the enthalpy density induces differences in
all the other equations. For instance, the first differential
relation mentioned in the footnote after Eq. (2.10) is
modified as ς∂αTþ ~nR∂αμRþ ~n∂αμ¼ ∂αp. Going through
all the different steps of the derivation (see the appendix of
[7]) it is possible to appreciate that the kinetic coefficients
are underdetermined, and as a consequence they suffer a
higher degree of arbitrariness.

III. HIGH-FREQUENCY PROPAGATION

A. Two-fluid AMHD equations

The purpose of this section is to establish a direct
connection between the spectrum of anomalous plasmas
and the spectrum of conventional (cold) plasmas.5 For this
purpose we preferentially consider the situation where
the charged species are massive. Furthermore, as already
mentioned, the plasma is taken as globally neutral, i.e.
characterized by a common concentration of positive
and negative charge carriers. The energy densities of the
charged species are denoted by ~ρ�. In terms of the
concentrations ~n� and of the masses m� they are also
given by ~ρ� ¼ ~n�ðm� þ 3T�=2Þwhere T� are the temper-
atures of the charged species. In approximate thermal
equilibrium Tþ ≃ T− ∼ T. Moreover, in the case of a cold
plasma T�=m� ≪ 1. Since p� ¼ ~n�T� we also have
that p� ≪ ~ρ�.
From Eq. (2.14) the dissipative contributions to the

current densities are

~j ¼ qð ~nþ~vþ − ~n−~v−Þ þ Λω ~ω − ΛB
~B;

~jR ¼ ~nR~vR þ ΛRω ~ω − ΛRB
~B; ð3:1Þ

where ~B is the hypermagnetic field and ~ω is the vorticity
three-vector. Both quantities can be deduced as the spatial
components ofBμ andωμ. The three-vector where ~ω defines
the total vorticity is ~ω¼ð~ρþ ~ωþþ ~ρ− ~ω−Þ=ð~ρþþ ~ρ−Þ
and should not be confused with the frequency (denoted
by Ω). Furthermore, the hyperelectric fields are denoted by
~E. The equations obeyed by ~E and ~B are

~∇ · ~E ¼ 4πqð ~nþ − ~n−Þ; ~∇ × ~E ¼ −∂t
~B; ð3:2Þ

~∇× ~B¼ 4πqð ~nþ~vþ− ~n−~v−Þþcω ~ω−cB ~Bþ∂t
~E; ð3:3Þ

where ~B is divergenceless (i.e. ~∇ · ~B ¼ 0). Note that cω ¼
4πΛω and cB ¼ 4πΛB. Since the divergence of the entropy
four-vector must be positive semidefinite Eqs. (2.19) and
(2.20) determine Λω and ΛB. Instead of carrying various
numerical factors it is more convenient to define the rescaled
kinetic coefficients cω and cB which directly enter Eq. (3.3):

cωðμ̄R; TÞ ¼ 8πT2aBðμ̄RÞ; cBðμ̄R; TÞ ¼ 16πARμ̄RT;

ð3:4Þ
since cω and cB multiply the vortical and the magnetic terms
they are referred to as the vortical and the magnetic
coefficients. With a similar logic Eqs. (2.19) and (2.20)
also fix ΛRω and ΛRB. We can therefore define two further
coefficients cRω and cRB:

5Cold plasmas are rather common systems ranging from
the ionosphere to some regions of the interstellar medium (see
e.g. [1–3]).
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cRBðμ̄R;TÞ¼
∂

∂μ̄R ½TaBðμ̄RÞ�; cRωðμ̄R;TÞ¼ 0; ð3:5Þ

affecting directly the evolution of the concentrations

∂t ~nþ þ ~∇ · ð ~nþ~vþÞ þ
1

q
~∇ · ðcωλþ ~ωþÞ

− 1

q
~∇ · ðcBλþ ~BÞ ¼ 0; ð3:6Þ

∂t ~n− þ ~∇ · ð ~n−~v−Þ − 1

q
~∇ · ðcωλ− ~ω−Þ

þ 1

q
~∇ · ðcBλ− ~BÞ ¼ 0; ð3:7Þ

∂t ~nR þ ~∇ · ð ~nR~vRÞ þ ~∇ · ðcRω ~ωÞ − ~∇ · ðcRB ~BÞ
¼ −4AR

~E · ~B; ð3:8Þ

where λ� ¼ ~ρ�=ð~ρþ þ ~ρ−Þ. Concerning Eqs. (3.2) and (3.3)
andEqs. (3.6)–(3.8) few comments are in order. If ~nþ ≠ ~n− a
second chemical potential μY (corresponding to the hyper-
charge) can be introduced in Eq. (2.10). The global
hypercharge neutrality of the plasma implies μY ¼ 0. The
peculiar velocities determining the currents obey the follow-
ing set of equations:

∂t~v− þ ð~v− · ~∇Þ~v−
¼ −q ~n−

~ρ−
½~Eþ ~v− × ~B� þ Γcð~vþ − ~v−Þ −

~∇pþ
ρþ

; ð3:9Þ

∂t~vþ þ ð~vþ · ~∇Þ~vþ ¼ q
~nþ
~ρþ

½~Eþ ~vþ × ~B�

þ Γc
~ρ−
~ρþ

ð~v− − ~vþÞ −
~∇p−
ρ−

; ð3:10Þ

∂t~vR þ ð~vR · ~∇Þ~vR ¼ 0: ð3:11Þ

Concerning Eqs. (3.9), (3.10) and (3.11) two comments are
in order: The pressure gradients are eventually neglected,
and Γc denotes the collision frequency (i.e. the typical
velocity divided by the mean free path). In connection with
the first point it is clear that the dielectric properties of the
plasmas are altered by the addition of pressure gradients, and
this iswhy the first step is always to consider a homogeneous
plasma eventually supplemented by an external magnetic
field. Note that the collision frequency determines the
generalized conductivity in the single fluid limit.

B. Linearization of the two-fluid equations

Equations (3.2)–(3.3), (3.6)–(3.8) and (3.9)–(3.11) are
now linearized in the presence of the weak background

magnetic field ~B0 with the aim of deriving the dispersion
relations. The background field is considered homo-
geneous: This means that the variation of ~B0 occurs over
typical length scales6 much larger than 1=cB. The fluctua-
tions of the various quantities are introduced as follows:

~n�ðt; ~xÞ ¼ n0 þ δ ~n�ðt; ~xÞ; ~nRðt; ~xÞ ¼ n1 þ δ ~nRðt; ~xÞ;
~Bðt; ~xÞ ¼ ~B0 þ δ~Bðt; ~xÞ; ð3:12Þ

while for the other quantities [i.e. ~v�ðt; ~xÞ ¼ δ~v�ðt; ~xÞ,
~vRðt; ~xÞ ¼ δ~vRðt; ~xÞ and ~Eðt; ~xÞ ¼ δ~Eðt; ~xÞ] the fluctua-
tions coincide with the field itself. In Eq. (3.12) n0 and
n1 are, respectively, the uniform background charge and the
uniform chiral concentration. The homogeneous value of
the chemical potential is related to n1, and the kinetic
coefficients will also be homogeneous. In the case of
approximate thermal equilibrium the chemical potential
can be related to the concentration as μ̄R ¼ μ0 ~nR=ς where ς
denotes the entropy density at equilibrium and where μ0 is a
numerical constant. Therefore, if ~nR is perturbed around a
homogeneous background the kinetic coefficients will also
be, in the first approximation, homogeneous. Thanks to
Eq. (3.12) the perturbed version of the evolution of the
concentrations can be written as

δ ~n0� þ n0ð ~∇ · δ~v�Þ ¼ 0;

δ ~n0R þ n1ð ~∇ · δ~vRÞ ¼ −4ARδ~E · ~B0; ð3:13Þ

where the prime denotes a derivation with respect to
the time coordinate t. Since the kinetic coefficients are
homogeneous in the first approximation, their contribution
disappears from Eq. (3.13). With the same notations
Eqs. (3.9), (3.10) and (3.11) imply instead

δ~v0� ¼ � q
m�

½δ~Eþ δ ~v� × ~B0�; δ~v0R ¼ 0: ð3:14Þ

In Eq. (3.14) the collision frequency Γc [already introduced
in Eqs. (3.9) and (3.10)] will become relevant at lower
frequencies, aswe see later. Finally, after insertingEq. (3.12)
into Eqs. (3.2) and (3.3) we obtain

~∇ · δ~E ¼ 4πqðδ ~nþ − δ ~n−Þ; ~∇ · δ~B ¼ 0;

~∇ × δ~E ¼ −δ~B0; ð3:15Þ

~∇ × δ~B ¼ δ~E0 þ 4πqn0ðδ~vþ − δ~v−Þ − cBδ~B

þ cω½λþ ~∇ × δ~vþ þ λ− ~∇ × δ~v−�: ð3:16Þ

6In Sec. IV we specifically also discuss the opposite limit
where ~B0 varies appreciably over typical lengths L < 1=cB, and
we see that, in this case, the background solution belongs to the
class of Beltrami fields.
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From Eqs. (3.14) the equations obeyed by δ~ω� can also be

deduced, and they are δ~ω0
�¼�q½−δ~B0þ ~∇×ðδ~v�× ~B0Þ�=

m�. Recalling the standard vector identities
7 the equation for

δ~ω� can also be expressed as

δ~ω0
� ¼� q

m�
½−δ~B0− ~B0ð ~∇ ·δ~v�Þþð~B0 · ~∇Þδ~v��: ð3:17Þ

From Eqs. (3.14) and (3.16) the relevant dispersion relations
and the associated refraction indices can be obtained by
treating separately the motions parallel and perpendicular to
the magnetic field direction.

C. Appleton-Hartree determinant

While in conventional plasmas the Appleton-Hartree
dispersion relation has been extensively discussed in the
literature [6,17], the AMHD equations linearized in the two-
fluid limit containvortical andmagnetic currents. TheLaplace
transform of Eq. (3.16) implies the following equation:

ð ~∇ × δ~BÞΩ ¼ −iΩεsðΩÞ · δ~EΩ − cBδ~BΩ þ icω ~∇
× ½εvðΩÞ · δ~EΩ�; ð3:18Þ

where Ω is the frequency (not to be confused with the total
vorticity). In Eq. (3.18) εsðΩÞ and εvðΩÞ denote, respectively,
the standard and the vortical components of the dielectric
tensor. The explicit form of εsðΩÞ and εvðΩÞ can be found in
Appendix A; taking then the curl of Eq. (3.15) and using
Eq. (3.18) we obtain the following equation:

~∇ × ð ~∇ × δ~EΩÞ ¼ Ω2εsðΩÞ · δ~EΩ − cB ~∇ × δ~EΩ

−Ωcω ~∇ × ½εvðΩÞ · δ~EΩ�: ð3:19Þ

We can now go to Fourier space and write Eq. (3.19) as

−~k × ~k × δ~E~kΩ ¼ Ω2εsðΩÞ · δ~E~kΩ − icB~k × δ~E~kΩ

− icωΩ~k × ½εvðΩÞ · δ~E~kΩ�: ð3:20Þ

We can therefore introduce the refractive index8 n satisfying

n ¼ k=Ω where k ¼ j~kj; choosing the coordinate system as
~k ¼ ð0; nΩ sin θ; nΩ cos θÞwe can obtain fromEq. (3.20) the
following Appleton-Hartree matrix:

0
BBBBBBBB@

h
1 − ε1

n2
þ cω

ε4
n
cðθÞ

i
−i

hε2
n2

þ cB
nΩ

cðθÞ þ cω
n
ε3cðθÞ

i
i
cB
nΩ

sðθÞ

i

�
ε2
n2

þ cB
nω

cðθÞ þ cω
n
ε3cðθÞ

� �
c2ðθÞ − ε1

n2
þ ε4ðΩÞ

n
cωcðθÞ

�
−sðθÞcðθÞ

−i cB
nΩ

sðθÞ − i
cω
n
ε3ðΩÞ −sðθÞcðθÞ þ cω

n
ε4sðθÞ

�
s2ðθÞ − ε∥ðωÞ

n2

�

1
CCCCCCCA
: ð3:21Þ

The above matrix reduces to the standard form of the Appleton-Hartree matrix in the limit cω → 0 and cB → 0.

IV. DISPERSION RELATIONS

The determinant of the Appleton-Hartree matrix obtained in Eq. (3.21) leads to the following expression:

sin2 θðε∥ − n2Þ½n2ðεL þ εRÞ − 2εRεL� − 2 cos2 θε∥ðn2 − εLÞðn2 − εRÞ þ 2n6½c2BfBðε;Ω; n; θÞ þ cBgBðε;Ω; n; θÞ
þ c2ωfωðε;Ω; n; θÞ þ cωgωðε;Ω; n; θÞc2Bcωh1ðε;Ω; n; θÞ þ cBcωh2ðε;Ω; n; θÞ þ c2ωcBh3ðε;Ω; n; θÞ� ¼ 0: ð4:1Þ

Equation (4.1) is written in terms of the seven functions explicitly reported in Eq. (A7) of Appendix A. These functions have
a specific dependence upon the dielectric tensors; with a collective notation such a dependence has been indicated by ε. The
notations followed in Eq. (4.1) imply that c2B multiplies fB; c2ω multiplies fω; gB and gω multiply, respectively, cB and cω;
the three functions h1, h2 and h3 multiply instead the mixed products. Finally both in Eqs. (4.1) and in Eq. (A7) we have
introduced εL ¼ ðε1 þ ε2Þ and εR ¼ ðε1 − ε2Þ given by9

9The divergence of εL (for Ω → ΩBþ) and of εR (for Ω → ΩB−) are nothing but the cyclotron resonances occurring in the case of
conventional plasmas. If the mass of the ions is larger than the mass of the negatively charged species the cyclotron resonance for the
ions occurs typically at a frequency which is lower in comparison with the cyclotron resonance of the electrons. The chiral magnetic and
the chiral vortical terms appear in Eq. (4.1) and determine the dispersion relations. In spite of this they do not affect εL nor εR.

8The refractive index cannot be confused with the concentrations denoted by ~n� and ~nR; their homogeneous values n0 and n1 carry
specific subscripts so that the notations are clearly established.

7In particular, we recall that ~∇ × ð~a × ~bÞ ¼ ½~að ~∇ · ~bÞ − ~bð ~∇ · ~aÞ þ ð~b · ~∇Þ~a − ð~a · ~∇Þ~b].
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εLðΩÞ ¼ 1 − Ω2
p

ðΩþ ΩB−ÞðΩ −ΩBþÞ
;

εRðΩÞ ¼ 1 − Ω2
p

ðΩþ ΩBþÞðΩ −ΩB−Þ
; ð4:2Þ

where Ω2
p ¼ ðΩ2

pþ þ Ω2
p−Þ. When cB ¼ cω ¼ 0 the mag-

netic and the vortical currents are absent from the two-
fluid AMHD equations, and Eq. (4.1) implies the standard
result [6]:

sin2 θ

�
1

n2
− 1

ε∥

��
1

2

�
1

εL
þ 1

εR

�
− 1

n2

�

¼ cos2 θ

�
1

εL
− 1

n2

��
1

εR
− 1

n2

�
: ð4:3Þ

The dispersion relations for a wave propagating parallel
(i.e. θ ¼ 0) and perpendicular (i.e. θ ¼ π=2) to the mag-
netic field direction can be easily derived from Eq. (4.3). If
θ ¼ 0 Eq. (4.3) reduces to ðn2 − εRÞðn2 − εLÞ ¼ 0 while
for θ¼ π=2 Eq. (4.3) implies ðn2−ε∥Þ½n2ðεLþ εRÞ−
2εLεR� ¼ 0. These dispersion relations give therefore
the conventional results10 which are generalized
hereunder.

A. Free-field propagation

In the absence of a magnetic field there is no preferred
direction, and the dispersion relations follow from
Eqs. (4.3) and (A7) by setting all the Larmor frequencies
to zero. In this case εR ¼ εL ¼ ε∥, and the dispersion
relations stem from the following two conditions, namely

ε∥ðΩÞ ¼ 0; ðn2 − ε∥ÞΩ∓ncB ¼ 0: ð4:4Þ

Equation (4.4) demonstrates that the vortical current does
not contribute to the dispersion relations in the free-field
case: cω is absent from Eq. (4.4) since the two-fluid
effects cancel in the total vorticity. This cancellation is
either exact (as in the case of the free-field propagation)
or approximate (as we see later in the presence of the
magnetic field). Indeed, as it can be explicitly verified
fromEqs. (A1), (A5) and (A6), ϵvðΩÞ → 0whenB0 → 0: In
the limit B0 → 0 the vorticity of positively and negatively
charged species is balanced so that the net total vorticity
vanishes.
The dispersion relation ε∥ðΩÞ ¼ 0 implies Ω ¼ Ωp.

This wave does not propagate since its group velocity
vanishes, and these are nothing but the electrostatic plasma

oscillations [6]. The solution of the second equation in
Eq. (4.4) is instead11

n ¼ � cB
2Ω

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

p

Ω2
þ c2B
4Ω2

s
: ð4:5Þ

Equation (4.5) implies also Ω2 ¼ Ω2
p þ k2∓kcB; these

modes are propagating but only affected by the magnetic
current, as previously remarked. The birefringent nature of
the dispersion relations are discussed a bit later since this
free-field effect may interfere with the presence of the
background magnetic field.
If cB → 0 and cω → 0 we have that n → 0 whenever one

of the following three possibility are separately verified
ε∥ðΩÞ ¼ 0 or εLðΩÞ ¼ 0 or even εRðΩÞ ¼ 0. The frequen-
cies arising from the previous conditions are cutoffs
because, for given equilibrium conditions, they define
frequencies above or below which the wave ceases to
propagate at any angle (k → 0 for finite Ω, i.e. vp ¼
Ω=k → ∞ and vg → 0 where vp and vg are, respectively,
the phase and the group velocities). This is what happens,
in particular, with the dispersion relation of Eq. (4.5). Let us
finally remark that the remaining two cutoffs stemming
from the conditions εLðΩÞ ¼ 0 and εRðΩÞ ¼ 0 in Eqs. (4.2)
are given, respectively, by

ΩR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

pþðΩBþþΩB−Þ2=4
q

− ðΩBþþΩB−Þ=2; ð4:6Þ

ΩL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

pþðΩBþþΩB−Þ2=4
q

þðΩBþþΩB−Þ=2: ð4:7Þ

B. Parallel propagation

Taking the limit θ → 0 in Eq. (4.1) and recalling the
results of Eq. (A7) we obtain

ε∥fncB þ ½n2 þ ncωðε3 þ ε4Þ − εR�Ωg
× fncB − ½n2 þ ncωð−ε3 þ ε4Þ − εL�Ωg ¼ 0: ð4:8Þ

If ε∥ðΩÞ ¼ 0 we go back to the case of electrostatic
oscillations. Therefore, assuming ε∥ðΩÞ ≠ 0, Eq. (4.8)
implies that the standard dispersion relations are
modified as

n ¼ 1

2Ω
½−cB − cωðε3 þ ε4ÞΩ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4εRΩ2 þ ½cB þ cωΩðε3 þ ε4Þ�2

q
�; ð4:9Þ

10Along θ ¼ 0 we thus obtain usual dispersion relations for the
two circular polarizations of the electromagnetic wave, i.e. n2 ¼
εR and n2 ¼ εL, while along θ ¼ π=2 we have the dispersion
relations for the “ordinary” (i.e. n2 ¼ ε∥) and “extraordinary” [i.e.
n2 ¼ 2εRεL=ðεR þ εLÞ] plasma waves.

11The positive square root has been chosen in Eq. (4.5) in order
to get Ω > 0; we consider only positive Ω since solutions with
Ω < 0 simply correspond to waves traveling in the opposite
direction.
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n ¼ 1

2Ω
½cB þ cωðε3 − ε4ÞΩ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4εLΩ2 þ ½cB þ cωΩðε3 − ε4Þ�2

q
�: ð4:10Þ

Thus the dispersion relations for the generalized L-mode
and R-mode are given, respectively, by

Ω2εRðΩÞ ¼ k2 þ k½cB þ cωðε3 þ ε4ÞΩ�; ð4:11Þ

Ω2εLðΩÞ ¼ k2 − k½cB þ cωðε3 − ε4ÞΩ�: ð4:12Þ

In the high-frequency limit (i.e. formally12 Ω → ∞) we
have that cωðε3 � ε4ÞΩ → 0 since, from Eqs. (A5) and
(A6), we have

cωðε3þ ε4ÞΩ¼ qcω
ðmþþm−Þ

�
Ω

ΩB− −Ω
þ Ω
ΩBþþΩ

�
; ð4:13Þ

cωðε3−ε4ÞΩ¼ qcω
ðmþþm−Þ

�
Ω

Ω−ΩBþ
− Ω
ΩþΩB−

�
: ð4:14Þ

The results of Eqs. (4.11)–(4.14) demonstrate, once
more, that in the high-frequency limit of the spectrum
the magnetic current dominates against the vortical current.
For intermediate frequencies (i.e. as soon as we reduce Ω)
the terms containing the natural frequencies of the plasma
come then into play so that for the R- and L-modes the
corresponding dispersion relations become

Ω2 ¼ k2 þ kcB þ Ω2
pΩ

ðΩ −ΩB−Þ
; R −mode;

Ω2 ¼ k2 − kcB þ Ω2
pΩ

ðΩþΩB−Þ
; L −mode: ð4:15Þ

As in the standard case, the phase velocity of the R-mode is
greater than that of the L-mode. In Eq. (4.15) we assumed
mþ > m−, and therefore, ΩBþ < ΩB−. In the limit k → 0
the R-mode cutoff occurs above Ωp while the L-mode
cutoff occurs below Ωp (i.e., recalling Eqs. (4.6) and (4.7),
Ω → ΩR and Ω → ΩL). In the low-frequency limit εR and
εL coincide to leading order in ðΩ=ΩBþÞ and in ðΩ=ΩB−Þ
since

lim
Ω→0

εRðΩÞ ¼ lim
Ω→0

εLðΩÞ → 1þ Ω2
p

ΩBþΩB−
¼ 1þ 1

v2A
;

vA ¼ B0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn0ðmþ þm−Þ

p ; ð4:16Þ

where vA denotes the Alfvén velocity of the system. In the
low-frequency limit the dispersion relations for the R-mode
and for the L-mode are, respectively,

Ω2 ¼ v2A
1þ v2A

�
k2 þ k

�
cB þ qcω

m

�
Ω

ΩBþ
þ Ω
ΩB−

���
;

ð4:17Þ

Ω2 ¼ v2A
1þ v2A

�
k2 − k

�
cB − qcω

m

�
Ω

ΩBþ
þ Ω
ΩB−

���
;

ð4:18Þ

since vA ≪ 1 we also have v2A=ð1þ v2AÞ≃ v2A.
Having determined the dispersion relations in the case of

parallel propagation, the Faraday rotation rate can be easily
determined with the standard procedure. The generalized
Faraday rotation angle experienced by the linearly polar-
ized radiation traveling parallel to the magnetic field
direction can be obtained as

ΔΦ ¼ Ω
2

(
cB
Ω

þ cωε3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εL þ

�
cB
2Ω

þ cω
2
ðε3 þ ε4Þ

�
2

s

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εR þ

�
cB
2Ω

þ cω
2
ðε3 − ε4Þ

�
2

s )
ΔL; ð4:19Þ

where ΔL is the distance traveled by the signal in the
direction parallel to the magnetic field direction. It is
interesting to compare the contribution of the terms
depending upon cB and those depending upon the back-
ground magnetic field intensity, i.e. the terms appearing in
the squared brackets. Recalling the expressions of ðεR; εLÞ
we have that ΩBþ ≪ ΩB− andΩpþ ≪ Ωp− (always assum-
ing13 mþ ≫ m−). In this case ΔΦ=ΔL interpolates between
the standard result ðΩB−=2ÞðΩp−=ΩÞ2 (valid when cB → 0)
and the constant rotation rate cB=2 (valid when B0 → 0 as
in the case of free-field propagation). As it can be explicitly
verified the cω is subdominant at high frequencies and can
be neglected.

C. Orthogonal propagation

By setting θ → π=2 in Eq. (4.1) and recalling the results
of Eq. (A7) we obtain the following simple equation:

n4ðεL þ εRÞΩ2 − n2fc2BðεL þ εRÞ þ cBcω½ε4ð−εL þ εRÞ
þ ε3ðεL þ εRÞ�Ωþ ½ε∥εR þ εLðε∥ þ 2εRÞ�Ω2g
þ 2εLεRΩ2ε∥ ¼ 0: ð4:20Þ

12This limit is formal in the sense that Ω can get larger than all
the other frequencies of the problem but always remain smaller
than the plasma frequency Ωp.

13The hierarchy mþ ≫ m− has been privileged since it is the
same hierarchy of ordinary electromagnetic plasmas where mþ
coincides with the mass of the ions (or protons) andm− coincides
with the mass of the electrons.
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The solution of Eq. (4.20) can be obtained by first solving
in terms of n2. The result is

n2 ¼ J ðε;ΩÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðε;ΩÞp

2ðεR þ εLÞΩ2
; ð4:21Þ

J ðε;ΩÞ ¼ c2BðεL þ εRÞ þ cBcω½ε4ð−εL þ εRÞ
þ ε3ðεL þ εRÞ�Ωþ ½ε∥εR þ εLðε∥ þ 2εRÞ�Ω2;

ð4:22Þ

Mðε;ΩÞ ¼ −8ε∥εRεLðεL þ εRÞΩ4 þ fc2BðεL þ εRÞ
þ cBcω½ε4ðεR − εLÞ þ ε3ðεL þ εRÞ�Ω
þ ½ε∥εR þ εLðε∥ þ 2εRÞ�Ω2g2: ð4:23Þ

Equation (4.21) in the limit cω → 0 and cB → 0 reduces to
the ordinary mode if we choose the plus (i.e. n2 ¼ ε∥) and
to the extraordinary mode [i.e. n2 ¼ 2εRεL=ðεR þ εLÞ] if
we choose the minus. In the high-frequency limit the terms
multiplying the vortical current are always negligible as
already remarked in the case of the parallel propagation.
The phenomena related to the oblique propagation are not
be specifically discussed.

D. Spectrum around a hypermagnetic knot

Introducing the three mutually orthogonal unit vectors
âðz; pÞ, b̂ðz; pÞ and ẑ defined in Appendix B, we can
consider the modes of fluctuation of the hypermagnetic

field around a fully inhomogeneous background ~B0ðt; ~xÞ,
namely

~Bðt; ~xÞ ¼ ~B0ðt; ~xÞ þ δ~Bðt; ~xÞ: ð4:24Þ

Since the background solution is not uniform we can align
~B0 along âðz; pÞ and write that ~B0ðzÞ ¼ B0âðz; pÞ. The
background equations are solved by setting p ¼ −cB (since
~∇ × ~B0 ¼ p~B0). As in the homogeneous case the velocities
vanish on the background solution. For L < 1=cB the
background field is homogeneous, and the previous analy-
ses apply. For typical length scales larger than the scale of
spatial variation of hypermagnetic knot (i.e. L ≫ 1=cB)
there are two separate possibilities for the perturbed

velocity field: either δ~v∥~B0 or δ~v⊥~B0. These two cases
now are separately examined.
The case of parallel propagation mirrors exactly the one

already discussed in the case of uniform field. If we assume
that δ~v∥~B0 the dispersion relations follow from

f½k2 −Ω2ε∥ðΩÞ�2 − c2Bk
2gε∥ðΩÞ ¼ 0: ð4:25Þ

The parallel dielectric tensor is ε∥ðΩÞ¼1−Ω2
p=½ΩðΩþiΓcÞ�

where the correction coming from the collision rate has been

added for immediate convenience. The solution ε∥ðΩÞ ¼ 0

gives, as before, the electrostatic wave. The solution of
f½k2 −Ω2ε∥ðΩÞ�2 − c2Bk

2g ¼ 0 gives, respectively, a high-
frequency and a low-frequency branch. The high-frequency
branch has the same dispersion relation of the free-field case,
namely Ω2 ≃Ω2

p þ k2∓kcB. The low-frequency branch is
instead derived from the explicit form of the dispersion
relation written as

Ωþ iΓc ¼
Ω2

k2
ðΩþ iΓcÞ−Ω2

pΩ
k2

�cB
k
ðΩþ iΓcÞ; ð4:26Þ

neglecting the first term at the right-hand side of the
previous equation (which is unimportant at low frequencies)
we have that

Ω ¼ − iΓcð1∓cB=kÞ
1þ Ω2

p=k2∓cB=k
: ð4:27Þ

The low-frequency mode, in which the conducting current
dominates over the displacement current, has no counterpart
in vacuum. In the low-frequency mode, a small electric field
proportional to Γc exists to give the necessary current
parallel to the magnetic field. In the limit Γc → 0 both
the electric field and resistivity vanish, and the low-
frequency mode becomes the force-free field. As expected
the same phenomenon occurs in the absence ofmagnetic and
vortical currents [18,19].
In the case of orthogonal propagation the fluctuations of

the hypermagnetic field and of the velocity can be decom-
posed by using the gyrotropic basis of Appendix B:

δ~Bðt; zÞ ¼ δB1ðtÞb̂ðz; pÞ þ δB2ðtÞẑ;
δ~vð�Þðt; zÞ ¼ δvð�Þ

1 ðtÞb̂ðz; pÞ þ δvð�Þ
2 ðtÞẑ: ð4:28Þ

For a generic velocity fluctuation orthogonal to ~B0 we have

δ~v × ~B0 ¼ ½B0ðδ~v · ẑÞb̂ − B0ðδ~v · b̂Þẑ�; the solutions for

δvð�Þ
1 ðtÞ and δvð�Þ

2 ðtÞ can then be expressed as

δvð�Þ
1 ðΩÞ ¼ q

m�ðΩ2
B� −Ω2Þ ½�iΩδE1 þ ΩB�δE2�;

δvð�Þ
2 ðΩÞ ¼ q

m�ðΩ2
B� −Ω2Þ ½�iΩδE2 −ΩB�δE1�: ð4:29Þ

The dispersion relations in this case are given by

εRεL − cBcω
2Ω

½εLðε3 − ε4Þ þ εRðε3 þ ε4Þ� ¼ 0: ð4:30Þ

In the high-frequency limits14 defined by Eqs. (4.13) and
(4.14), Eq. (4.30) is satisfied if εRεL ¼ 0 which is verified

14The remark on the formal sense of the infinite frequency
limit discussed prior to Eqs. (4.13) and (4.14) holds also for
Eq. (4.30) evaluated in the limit Ω → ∞.
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when either εL or εR are vanishing. Equation (4.30) leads to
vanishing group velocity in the high-frequency regime: The
corresponding modes are then not propagating. The proper
frequencies defined by these equations have been already
derived in Eqs. (4.11) and (4.12).

V. SINGLE FLUID DESCRIPTION AND ITS
IMPLICATIONS

The two-fluid equations can now be combined with the
purpose of deriving the effective single fluid description
valid for sufficiently large length scales and for frequencies
much smaller thanΩp andΩB�. The one-fluid variables are
the total current ~J ¼ qðnþ; ~vþ − n−~v−Þ, the bulk velocity
of the plasma ~v¼ðmþ~vþþm−~v−Þ=ðmþþm−Þ and the
total mass density ρm ¼ðmþnþþm−n−Þ. In the globally
neutral case ~J and ρm become, respectively, ~J¼ n0ð~vþ−
~v−Þ and ρm ¼ n0ðmþ þm−Þ. Summing up Eq. (3.9)
(multiplied by mþ) and Eq. (3.10) (multiplied by m−)
the evolution equation for the bulk velocity of the plasma is

ρm½∂t~vþ ~v · ~∇ ~v� ¼ ~J × ~B − ~∇Pþ η∇2~v; ð5:1Þ
where the shear viscosity contribution, labeled by η, has
been added for convenience.15 Taking the difference of
Eqs. (3.9) and (3.10) (and assuming mþ > m−) the
generalized Ohm’s law can be written as

∂t
~J þ Γc

~J ≃Ω2
P−
4π

�
~Eþ ~v × ~Bþ

~∇p−
qn0

− ~J × ~B
qn0

�
; ð5:2Þ

where global neutrality has been assumed. Note that we
have also kept the thermoelectric term (depending on the
pressure gradient of the lightest charge carriers) and the
Hall term. Since we mainly consider the case of homo-
geneous pressures the thermoelectric term is neglected; the
Hall term is a higher order contribution, as we argue here.
In the globally neutral case the single fluid equations

stipulate that ~E, ~B and ~J are all solenoidal (i.e. ~∇ · ~E ¼
~∇ · ~B ¼ ~∇ · ~J ¼ 0). A fourth possible solenoidal vector is
the bulk velocity of the plasma ~v. Indeed, since the
evolution of ρm and ρq ¼ qðnþ − n−Þ is given by16

∂tρm þ ~∇ · ðρm~vÞ ¼ 0; ∂tρq þ ~∇ · ~J ¼ 0; ð5:3Þ

the incompressible closure ~∇ · ~v ¼ 0 is adopted; consistent
with the incompressible closure ρm is considered

homogeneous, at least in the first part of this section. A
full discussion of other possible closures (such as the ones
conventionally adopted in conventional plasmas) is desir-
able but beyond the scoped of this analysis. The remaining
one-fluid equation containing the vortical and the magnetic
currents, can be written as

~∇× ~B−∂t
~E¼ 4π~Jþcω ~ω−cB ~B; ~ω¼ ~∇× ~v: ð5:4Þ

Since the one-fluid description involves the lowest branch
of the spectrum we can neglect the displacement current
that becomes relevant only for the electromagnetic
propagation. For the same reason we can neglect the time

derivative in Eq. (5.2), i.e. ∂t
~J ≪ Ω2

p
~E. Consequently

Eqs. (5.2) and (5.4) in the low-frequency branch of the
spectrum become

~∇× ~B¼ 4π~Jþcω ~ω−cB ~B; ~E¼ ~J=σ− ~v× ~B: ð5:5Þ

Recalling that ~∇ × ~E ¼ −∂t
~B, Eq. (5.5) can be used to

obtain an equation that is reminiscent of the magnetic
diffusivity equation, namely

∂t
~B ¼ ~∇ × ð~v × ~BÞ þ∇2 ~B

4πσ
þ 1

4πσ
~∇ × ðcω ~ωÞ

− 1

4πσ
~∇ × ðcB ~BÞ: ð5:6Þ

Introducing the vorticity ~ω into Eq. (5.1) and dividing
both sides of the equation by ρm we obtain

∂t~vþ ~ω × ~v ¼
~J × ~B
ρm

− ~∇
�
P
ρm

þ v2

2

�
þ νkin∇2~v: ð5:7Þ

Taking the curl of Eq. (5.7) the evolution equation of the
vorticity becomes

∂t ~ω ¼ ~∇ × ð~v × ~ωÞ þ
~∇ × ð~J × ~BÞ

ρm
þ νkin∇2 ~ω: ð5:8Þ

The most interesting solutions of the one-fluid equations
will involve the situations where the vortical and the
magnetic currents play the dominant role. However, before
turning the attention on these classes solutions it is useful to
remark that the equilibrium solutions of the plasma at rest
(i.e. ~v ¼ 0) are simply given by

~∇P ¼ ~J × ~B; 4π~J ¼ ð ~∇ × ~B − cω ~ωþ cB ~BÞ: ð5:9Þ

From Eq. (5.9) it is immediate to obtain the following three
identities:

15If the total pressure does not vanish Eq. (5.1) is modified as
follows ∂t½w~v�þ ð~v · ~∇Þ½w~v�þ ~v ~∇ ·½w~v� ¼− ~∇Pþ ~J× ~Bþη∇2~v
where w, as already discussed, is the enthalpy density.

16Note that the global neutrality implies ρq ¼ 0, and Eq. (5.3)
demands ~∇ · ~J ¼ 0 in full agreement with the solenoidal nature of
the total Ohmic current.
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4π ~∇P ¼ ð ~∇ × ~BÞ × ~B; ð~B · ~∇ÞP ¼ 0;

ð~J · ~∇ÞP ¼ 0: ð5:10Þ

The relations of Eq. (5.10) are not explicitly modified by
the presence of vortical and magnetic currents. The two last
conditions in Eq. (5.10) define the so-called magnetic
surfaces: The pressure gradient vanishes along the lines
of magnetic force and along the current lines. We conclude
that neither the vortical nor the magnetic current affect
directly the equilibrium solutions.

A. Bulk velocity parallel to the magnetic
field direction

The single fluid AMHD equations admit various sol-
utions that have no counterpart in the case of ordinary
MHD. Consider first the situation where the hypermagnetic
magnetic field and the velocity are parallel and have
nonvanishing magnetic and kinetic gyrotropy, i.e.

~v × ~B ¼ 0; ~v · ~∇ × ~v ¼ pvðtÞv2;
~B · ~∇ × ~B ¼ pBðtÞB2: ð5:11Þ

The simplest way to realize the situation described by
Eq. (5.11) is to require that ~v and ~B are both Beltrami-like
fields (see Appendix B for this terminology) characterized

by ~∇ × ~v ¼ pvðtÞ~v and ~∇ × ~B ¼ pBðtÞ~B. Moreover, since

~v × ~B ¼ 0, it is natural17 to require that pvðtÞ ¼ pBðtÞ.
From Eq. (5.5) the total current ~J can be easily determined;
the Ohmic electric field is then given by

~E ¼ pBðtÞ þ cBðtÞ
4πσ

~B − cωðtÞ
4πσ

~ω: ð5:12Þ

From Eq. (5.6) the hypermagnetic field is obtained by
solving the following equation:

∂t
~B ¼ −pBðtÞ½pBðtÞ þ cBðtÞ�

4πσðtÞ
~Bþ cωðtÞ

4πσðtÞpBðtÞ~ω;

ð5:13Þ

where ~ωðt; zÞ is the solution of Eq. (5.8). Thanks to the
symmetries of the problem the solution of this equation is
given by ~ωðt; zÞ ¼ ~ω0ðzÞ exp ½−

R
t
0 p

2
Bðt0Þνkinðt0Þdt0� where

ω0ðzÞ is the initial vorticity which can also be written as
~ω0ðzÞ ¼ pBð0Þ~v0ðzÞ. Equation (5.13) can then be solved in
general terms. However, recalling that cBðtÞ and cωðtÞ are
explicit functions of time they depend on the rescaled

chemical potential,18 and since pBðtÞ is arbitrary we can
choose pBðtÞ ¼ −cBðtÞ. In this case, the solution of
Eq. (5.13) shares the same properties of the general
solution, but it is mathematically simpler:

~Bðt; zÞ ¼ ~ω0ðzÞ
Z

t

0

dt0
cBðt0Þcωðt0Þ
4πσðt0Þ e−

R
t0
0
c2Bðt00Þνkinðt00Þdt00 :

ð5:14Þ
The results of Eq. (5.14) describe the generation of the
hypermagnetic field thanks to some initial vortical current.
To deepen this question let us assume that cω and cB are
both constant. Equation (5.14) can then be solved, and the
result is

~Bðz; tÞ ¼ − ~v0ðzÞcω
4πνkinσ

½1 − e−νkinc2Bt�; ð5:15Þ

where we used that ~ω0ðzÞ ¼ −cB~v0ðzÞ when cB is constant
in time and cBð0Þ ¼ cB. This result is also valid for a
relativistic equation of state (i.e. w ¼ 4ρ=3) provided the
incompressible closure is consistently adopted and can be
easily generalized to curved backgrounds. While these
generalizations are not germane to our theme it is worth
emphasizing that in the limit t → ∞ the suppression of the
magnetic field is controlled by 4πσνkin which is nothing but
the Prandtl number given as the ratio of the magnetic and of
the kinetic Reynolds number [2]. The Prandtl number is
roughly independent on the temperature. For instance, at
the electroweak epoch [10] we would have that νkin ≃
1=ðα02TÞ while σ ≃ T=α0 where α0 ¼ g02=ð4πÞ. Recalling
the results of Eqs. (2.19) and (2.20) we therefore have that

lim
t→∞

~Bðt; zÞ ¼ cωðTÞ
4π

α03~v0; cωðTÞ ¼ 2T2aðμ̄RÞ;
ð5:16Þ

where aBðμ̄RÞ is the usual arbitrary function of the rescaled
chemical potential μ̄R ¼ μR=T [see Eqs. (2.19) and (2.20)].
The suppression due to the conductivity is therefore
eliminated, and what is left is a milder suppression
Oðα03Þ. In the same limit the hypermagnetic current turns
out to be more suppressed than the vortical current. As long
as the inverse of the Prandtl number scales as α03 the
previous discussion is generally valid, and this is what
happens in the case of the electroweak plasma [10] (see also
[20] for specific estimates of the conductivity in the
electroweak phase19).

17To impose pB ¼ pv means that the inhomogeneity scale of
the magnetic and kinetic knots are the same. According to some
this condition is natural; according to some others it is just
practical since in this case the system can be solved exactly.

18In this discussion we keep the time dependence in the kinetic
coefficients even if, strictly speaking, cB and cω may depend on
the temperature and on the chemical potential, but they are
constant in time. However, in curved backgrounds a mild
breaking of conformal invariance may induce a time dependence
which is, however, not central to the present analysis.

19Similar kinds of considerations can also be developed in the
case of a strongly interacting plasma as long as the same scaling
occurs [21].
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B. Bulk velocity orthogonal to the
magnetic field direction

If the hypermagnetic field and the bulk velocity of the
plasma are orthogonal (i.e. ~v · ~B ¼ 0), employing the
helical basis of Appendix B the hypermagnetic field and
the velocity field can be written as

~Bðt; zÞ ¼ B0ðtÞẑþ B1ðtÞâðz; pÞ;
~vðz; tÞ ¼ vðtÞb̂ðz; pÞ: ð5:17Þ

From Eq. (5.5) the AMHD current becomes

~Jðt; zÞ ¼ B1ðtÞ
4π

½cB þ p�âðz; pÞ − cω
4π

pvðtÞb̂ðz; pÞ

þ cBB0ðtÞ
4π

ẑ: ð5:18Þ

By analyzing the structure of the evolution equation of the
magnetic field and of the vorticity it emerges that the
system is consistent provided ∂tB0 ¼ 0 (i.e. constant
magnetic field along ẑ) and provided cω ¼ 0. In this case
the coupled evolution of the vorticity and of the magnetic
field obeys

dω
dt

¼ pcBB0

4πρm
B1 − B0

4πρm
p½cB þ p�B1;

dB1

dt
¼ ωB0 − pB1

4πσ
½cB þ p�; ð5:19Þ

where ωðtÞ ¼ pvðtÞ and ωðz; tÞ ¼ ωðtÞb̂ðz; pÞ. The equa-
tions can be diagonalized with a specific choice of the
coordinate system. The simplest and most convenient one
is p ¼ −cB; in this case the two equations can be combined
by differentiating once Eq. (5.19). The result is

d2B1

dt2
þ c2Bv

2
AB1 ¼ 0; vA ¼ B0ffiffiffiffiffiffiffiffiffiffiffi

4πρm
p ; ð5:20Þ

where vA is the Alfvén velocity. This solution has been
swiftly presented in Ref. [7] and recently rediscovered in
[22]. Equation (5.20) describes the AMHD analog of the
nonlinear Alfvén wave. The anomalous Alfvén wave has
been already discussed in Sec. III as a low-frequency limit
of the two-fluid equations.

C. Fully nonlinear evolution and baryogenesis

So far we considered small fluctuations of the chiral
concentration around an otherwise homogeneous value
denoted by n1 in Sec. II. In the opposite case the
AMHD equations imply a specific relation between the
concentration (or the chemical potential) and the topologi-
cal properties of the hypermagnetic fields. To illustrate this
point we show that close to equilibrium the chemical
potential is determined not only by the magnetic gyrotropy

but also by the total vorticity of the plasma. Hypermagnetic
field configurations with nonvanishing gyrotropy have
been used to model the generation of the baryon or lepton
asymmetry [10] (see also [23–25]). Consider, therefore, the
evolution equation of the chemical potential which can be
written as

∂tμ̄R þ Γμ̄R ¼ − 4μ0
ς

AR
~E · ~B; ð5:21Þ

where Γ is the perturbative rate of he chirality flip processes
(in the case of [10] it is determined by the scattering of right
electrons with the Higgs and gauge bosons and with the top
quarks because of their large Yukawa coupling). In
Eq. (5.21) we also used the following general relation
relation μ̄R ¼ μ0nR=ς where μ0 is a numerical factor
depending on the specific features of the plasma while ς
is, as usual, the entropy density.
To compute μ̄R in the proximity of an equilibrium

situation we need to deduce the hyperelectric field.
Recalling then Eq. (5.5), the hyperelectric field can be
related to the total Ohmic current so that Eq. (5.21)
becomes

∂tμ̄R þ Γμ̄R − 8T2aBðμ̄RÞμ0
σς

AR ~ω · ~Bþ 16
μ0Tμ̄R
σς

A2
RB

2

¼ − μ0
πσς

~B · ~∇ × ~B: ð5:22Þ

We now choose aBðμ̄RÞ ¼ μ̄R; if aBðμ̄RÞ ≠ μ̄R in the
evolution equation of the concentration we should add a

further term proportional to ~∇ · ½cRBðμ̄RÞ~B�. This term
vanishes in the case aBðμ̄RÞ ∝ μ̄R: cRBðμ̄RÞ contains the
derivative of aBðμ̄RÞ with respect to μ̄R, and it is therefore
constant. In more general situations Eq. (5.22) just contains

a supplementary contribution of the type ~B · ~∇μ̄R.
The rescaled chemical potential enters the infinitely

conducting limit (see Appendix B), and the smallness of
the particle asymmetries is the rationale for the minuteness
of the rescaled chemical potentials in approximate thermal
equilibrium. At equilibrium, we can determine μ̄R from
Eq. (5.22), and the result is given by

μ̄R ¼ −
�
μ0AR

πςσ

� ~B · ~∇ × ~B
½Γþ ΓB − Γω�

: ð5:23Þ

While Γ is the perturbative chirality flip rate, the other
terms can be understood as rates stemming from the
hypermagnetic current and from the vortical current, and
they are

ΓB ¼ 16μ0
ςσ

A2
RTB

2; Γω ¼ 8T2μ0
πσς

AR ~ω · ~B: ð5:24Þ
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In the case of right electrons (see [10]) AR ¼
−g02y2R=ð64π2Þ where g0 denotes the gauge coupling and
yR ¼ −2 is the hypercharge assignment of the right
electrons. In the same situation we have μ̄R ¼ μ0nR=ς and
μ0 ¼ 87π2Neff=220, where Neff is the effective number
of relativistic degrees of freedom of the system.20 If the
plasma is hypercharge neutral the value of the chemical
potential can be estimated from the asymmetry in the case
where all the standardmodel charges are in complete thermal
equilibrium. If all the asymmetry is attributed to the right
electrons (which is, in some sense, the most favorable
situation) then μ̄R¼ð87π2=220ÞNeffðnR=ςÞ where Neff ¼
106.75. With these specifications Eq. (5.23) becomes

μ̄R ¼ − 783α0

88πσT3

~B · ~∇ × ~B
½Γþ ΓB − Γω�

; ΓB ¼ 783α02

22π2σ

B2

T3
;

ð5:25Þ

where α0 ¼ g02=ð4πÞ. Equation (5.25) coincides with the
previous results (see e.g. Eq. (6.15) of the last paper of [10]
and see also [23–25]) in the limit Γω → 0. The results of
Eq. (5.25) show that the final value of the chemical potential
depends on the properties of the flow entering the definition
of Γω. In summary we can say that the magnetic currents and
the vortical currents can affect a number of processes such
as the formation of the baryon asymmetry or the dynamics of
the electroweak phase transition. Similar kinds of effects can
be expected in the case of strongly interacting plasmaswhere
the magnetic gyrotropy can also determine the properties of
the chemical potential.

VI. CONCLUDING REMARKS

The dispersion relations of anomalous magnetohydro-
dynamics are affected by the vortical and the hypermag-
netic currents. The vortical currents do not impact on the
high-frequency branch of the spectrum, but the opposite is
true at lower frequencies where new solutions describe the
simultaneous presence of hypermagnetic knots and fluid
vortices. These parity-odd configurations carry, respec-
tively, hypermagnetic and kinetic gyrotropy. The physical
properties of the system roughly interpolate between the
features of conventional chiral liquids, and the results are
valid for cold electromagnetic plasmas. While chiral
currents are anomalous and do not contribute to entropy
production, vector currents are associated with the gener-
alized Joule heating.

When chiral and Ohmic currents are simultaneously
present the second law of thermodynamics constrains the
kinetic coefficients. The hypermagnetic, vortical and
Ohmic currents affect the evolution of the gauge fields
and determine the hyperelectric field of the plasma. In
anomalous magnetohydrodynamics the perfectly con-
ducting limit is well posed, and the hypermagnetic helicity
of the knots is strictly conserved, as it happens in the case of
conventional plasmas.21 The hypermagnetic currents are
then completely washed out in the perfectly conducting
limit and strongly suppressed when the conductivity is
large but finite. Close to thermal equilibrium the concen-
tration of the chiral species and the corresponding chemical
potential will depend not only on the hypermagnetic
gyrotropy but also on the vortical currents.
In summary the evolution equations of anomalous mag-

netohydrodynamics offer a minimal theoretical framework
where the interplay between conduction currents and chiral
currents can be quantitatively analyzed. It is therefore fair to
say that the results derivedhere complement andextend some
of the present and earlier strategies aimed at an improved
understanding of chiral liquids when generalized Ohmic
effects cannot be neglected in the evolution of hypermagnetic
and hyperelectric fields at finite fermionic density.

APPENDIX A: GENERALIZED APPLETON-
HARTREE EQUATION

1. Explicit form of εs and εv
We are going to give, in what follows, the explicit form

of the dielectric tensors appearing in Sec. III. The matrix
form of εsðΩÞ and εvðΩÞ is given by

εsðΩÞ ¼

0
B@

ε1ðΩÞ iε2ðΩÞ 0

−iε2ðΩÞ ε1ðΩÞ 0

0 0 ε∥ðΩÞ

1
CA;

εvðΩÞ ¼

0
B@

ε3ðΩÞ −iε4ðΩÞ 0

iε4ðΩÞ ε3ðΩÞ 0

0 0 0

1
CA; ðA1Þ

20There have been a number of suggestions for possible roles
that the Abelian hypermagnetic Chern-Simons term might play in
cosmology. One of them is related to the observation that right-
handed electrons, which do not take part in weak interactions and
also have a very small Yukawa coupling, are practically de-
coupled from the thermal ensemble above temperatures of about
10 TeV.

21This point is very important, and it has been already
emphasized in Ref. [7] by analyzing explicitly the conservation
of the helicity. The key observation is that in the perfectly
conducting limit the chiral magnetic and the chiral vortical terms
disappear from the hypermagnetic diffusivity equation [see
Eq. (5.6)]. In this situation it can be shown that the magnetic
configurations minimizing the energy density with the constraint
that the helicity be conserved coincide, in the perfectly con-
ducting limit, with the ones obtainable in ideal magnetohydro-
dynamics where the anomalous currents are neglected. This
result, coming from variational considerations, explains why it
has been repeatedly observed throughout the years that the
solutions of ordinary magnetohydrodynamics can be lifted to
the anomalous case (see e.g. [10]) when the conductivity goes
formally to infinity.
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where ε1ðΩÞ, ε2ðΩÞ, ε3ðΩÞ, ε4ðΩÞ and ε∥ðΩÞ are defined as

ε1ðΩÞ ¼ 1 − Ω2
pþ

Ω2 −Ω2
Bþ

− Ω2
p−

Ω2 −Ω2
B−

; ðA2Þ

ε2ðΩÞ ¼
�
ΩB−
Ω

�
Ω2

p−
Ω2 −Ω2

B−
−
�
ΩBþ
Ω

�
Ω2

pþ
Ω2 −Ω2

Bþ
: ðA3Þ

ε∥ðΩÞ ¼ 1 −Ω2
pþ
Ω2

−Ω2
p−
Ω2

; ðA4Þ

ε3ðΩÞ ¼
qΩ

ðmþ þm−Þ
�

1

Ω2
B− −Ω2

− 1

Ω2
Bþ −Ω2

�
; ðA5Þ

ε4ðΩÞ ¼
q

ðmþ þm−Þ
�

ΩB−
Ω2

B− −Ω2
þ ΩBþ
Ω2

Bþ −Ω2

�
: ðA6Þ

Both ε3ðΩÞ and ε4ðΩÞ have dimensions of an inverse
frequency squared; ε1ðΩÞ, ε2ðΩÞ and ε∥ðΩÞ are instead
dimensionless. The frequencies appearing in Eqs. (A2)–
(A4) and (A5) and (A6) are the plasma and the Larmor
frequencies associated with the charge carriers of both
signs, i.e. Ωp� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πq2n0

p
=m� and ΩB� ¼ qB0=m�. To

compare the dispersion relations with the standard situation
of cold plasmas we must bear in mind that the ratios of the
plasma and Larmor frequencies are related to the inverse
ratio of the masses, i.e. Ωpþ=Ωp− ¼ ΩBþ=ΩB− ¼ m−=mþ.

2. The seven function

The generalized form of the Appleton-Hartree equation
[see Eq. (4.1)] depends on seven functions whose explicit
form is given by

fBðε;Ω; n; θÞ ¼
ε∥

n4Ω2
cos2θ þ ðεL þ εRÞ

2n4Ω2
sin2θ;

gBðε;Ω; n; θÞ ¼
ε∥ðεL − εRÞ

n5Ω
cos θ;

fωðε;Ω; n; θÞ ¼
cos2θ
n4

�
ðε3 − ε4Þðε3 þ ε4Þε∥ þ n2

�
sin θε23 − ðε23 − 2ε24Þsin2θ

��
;

gωðε;Ω; n; θÞ ¼
cos θ
2n5

�
2ε∥

�
−n2ε4 þ ε3ðεL − εRÞ þ ε4ðεL þ εRÞ

�
− 2n2ε4ε∥cos2θ þ n2ε3ðεL − εRÞ sin θ

þ n2
�
4n2ε4 − 2ε3ðεL − εRÞ − 3ε4ðεL þ εRÞ

�
sin2θ

�
;

h1ðε;Ω; n; θÞ ¼ −
2ε4
n3Ω2

cos θsin2θ;

h2ðε;Ω; n; θÞ ¼
1

2n4Ω

�
4ε3ε∥cos2θ þ sin θ

�
ε3ðεL þ εRÞ þ ε4ð−εL þ εRÞ sin θ

��
;

h3ðε;Ω; n; θÞ ¼ −
ε3ε4 sin 2θð1þ sin θÞ

2n3Ω
: ðA7Þ

The functions reported in Eq. (A7) determine, through
Eq. (4.1), the form of the dispersion relations when the
hypermagnetic and the vortical currents are simultane-
ously present in the anomalous magnetohydrodynamics
equations.

APPENDIX B: HYPERMAGNETIC KNOTS AND
BELTRAMI FIELDS

In the resistive approximation, the hyperelectric and the
hypermagnetic fields are not exactly orthogonal, and the
nature of this misalignment is crucial both for the gen-
eration of the baryon asymmetry and for the chiral
magnetic effect. In AMHD the induced hyperelectric field
stems directly from the approximate form of the Ohm’s law,
and it vanishes exactly, in the plasma frame, when the

conductivity goes formally to infinity.22 In the same limit
the contribution of the chemical potential to the anomalous
hypermagnetic diffusivity equation gets always erased. At
finite conductivity the anomalous contribution can be often
rephrased in terms of the magnetic gyrotropy [2] which
defines hypermagnetic knot solutions [10].

22In the nonrelativistic limit the conductivity
ffiffiffiffiffiffiffiffiffiffiffiffi
T=m−

p ðT=α0Þ
where m− denotes the mass of the charge lightest charge carrier
and α0 is the gauge coupling. If the temperature is much higher
than the masses of the charge carriers the previous formula is
replaced simply by T=α0. The perfectly conducting limit (also
named infinite conducting limit) defines the ideal regime in
ordinary magnetohydrodynamics. It is not uncommon, in the
literature, to mention the perfectly conducting limit where the
conductivity goes (formally) to infinity (see e.g. [1–3]).
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1. Hypermagnetic knots

The configurations minimizing the hypermagnetic
energy density with the constraint that the helicity be
conserved coincide, in the perfectly conducting limit, with
the ones obtainable in ideal magnetohydrodynamics where
the anomalous currents are neglected [1–4].
In the perfectly conducting limit Eq. (5.6) leads to

∂t
~B ¼ ~∇ × ð~v × ~BÞ þOðμ̄R=σÞ which is qualitatively sim-

ilar to the result of conventional magnetohydrdynamics.
Defining the vector potential in the Coulomb gauge, the
magnetic diffusivity equation becomes, up to small cor-

rections, ∂t
~A ¼ ~v × ð ~∇ × ~AÞ. The analysis of Ref. [26] can

then be exploited. The magnetic energy density is then
minimized in a finite volume under the assumption of
constant magnetic helicity by introducing the Lagrange
multiplier pB. By taking the functional variation of

G ¼ R
V d

3xfj ~∇ × ~Aj2 − pB
~A · ð ~∇ × ~AÞg, with respect to

~A and by requiring δG ¼ 0, the configurations extremizing

G are such that ~∇ × ~B ¼ pB
~B. In performing the functional

variation we assumed that V is the fiducial volume of a
closed system.
The configurations ~∇ × ~B ¼ pB

~B have been used to
describe hypermagnetic knots (see [10], third and fourth
papers); in this case q has dimensions of an inverse length
and sets the scale of the hypermagnetic knot which is
related to Chern-Simons waves. The configurations with
constant pB represent the lowest state of magnetic energy
which a closed system may attain also in the case where
anomalous currents are present, provided the ambient
plasma is perfectly conducting.

2. Gyrotropic bases

The knotted solutions can be expanded in an appropriate
gyrotropic basis. Let us then consider a vector field ~a

fields satisfying ~a × ð ~∇ × ~aÞ ¼ 0. The simplest realization
of these Beltrami fields is provided by the eigenvectors of

the curl operator, but more general situations are known and
have been extensively examined in the literature. Two
gryrotropic and orthonormal bases of opposite parity are
given by (â, b̂, ẑ) and by (ĉ, d̂, ẑ):

âðz; pÞ ¼ fcospz;− sinpz; 0g;
b̂ðz; pÞ ¼ fsinpz; cospz; 0g; ðB1Þ
ĉðz; pÞ ¼ fcospz; sinpz; 0g;
d̂ðz; pÞ ¼ f− sinpz; cospz; 0g: ðB2Þ

As anticipated the bases of Eqs. (B1) and (B2) are
orthonormal. Indeed we have â · b̂ ¼ â · ẑ ¼ b̂ · ẑ ¼ 0

and ðâ × b̂Þ · ẑ ¼ 1 (and similarly for ĉ, d̂ and ẑ). The
unit vectors of Eqs. (B1) and (B2) are normalized eigen-
vectors of the curl operator with eigenvalues þp and −p.
In ordinary MHD knotted solutions can be constructed

from Beltrami fields by postulating a solenoidal (static)
current and by neglecting the displacement current. In
anomalous magnetohydrodynamics these simple construc-
tions cannot be immediately extended because of the
magnetic and vortical currents. The knot solutions obtain-
able by extremizing the functional G correspond to uniform
magnetic fields well inside the core of the knot. This
conclusion is evident if we use the basis of Eqs. (B1) and
(B2). For instance, in the limit pz < 1 the field configu-

ration ~Bðz; pÞ ¼ B0âðz; pÞ → B0x̂ is practically uniform
and directed along the x̂ axis. The connections between
Beltrami fields, force-free solutions in ordinary MHD
equilibrium and electromagnetic waves propagation have
been explored in a number of papers [18,19,26,27] starting
from the classic works of Fermi and Chandrasekhar [28]. It
is also possible to obtain hypermagnetic knot solutions with
finite helicity and finite gyrotropy which do not satisfy the
relation of Beltrami fields. These solutions have been
studied in a number of interesting frameworks (see the
last two papers of Ref. [10] and also [29,30]).
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