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J-factors (or D-factors) describe the distribution of dark matter in an astrophysical system and determine
the strength of the signal provided by annihilating (or decaying) dark matter respectively. We provide
simple analytic formulas to calculate the J-factors for spherical cusps obeying the empirical relationship
between enclosed mass, velocity dispersion and half-light radius. We extend the calculation to the spherical
Navarro-Frenk-White model, and demonstrate that our new formulas give accurate results in comparison to
more elaborate Jeans models driven by Markov chain Monte Carlo methods. Of the known ultrafaint dwarf
spheroidals, we show that Ursa Major II, Reticulum II, Tucana II and Horologium I have the largest
J-factors and so provide the most promising candidates for indirect dark matter detection experiments.
Amongst the classical dwarfs, Draco, Sculptor and Ursa Minor have the highest J-factors. We show that the
behavior of the J-factor as a function of integration angle can be inferred for general dark halo models with
inner slope γ and outer slope β. The central and asymptotic behavior of the J-factor curves are derived as a
function of the dark halo properties. Finally, we show that models obeying the empirical relation on
enclosed mass and velocity dispersion have J-factors that are most robust at the integration angle equal to
the projected half-light radius of the dwarf spheroidal (dSph) divided by heliocentric distance. For most of
our results, we give the extension to the D-factor which is appropriate for the decaying dark matter picture.

DOI: 10.1103/PhysRevD.93.103512

I. INTRODUCTION

The dwarf galaxies surrounding the Milky Way are the
most extreme dark matter dominated objects known to us
with central mass to light ratios typically of the order of tens
to hundreds (e.g., [1,2]). Additionally, little or no emission
has been detected in wavebands other than the optical, and
so the intrinsic astrophysical backgrounds are low. This
makes the dwarf spheroidals (dSphs) attractive targets to
look for signals of dark matter annihilation products [3–6].
The γ-ray differential flux from dark matter annihilation

measured within a solid angle ΔΩ is (see e.g., [5,7])

dϕγ

dEγ
¼ ϕPPðEÞ × JðΔΩÞ: ð1Þ

The first term on the right-hand side depends on the particle
physics (i.e. dark matter particle mass, annihilation cross
section, and Standard Model final states). The second term
is the astrophysical factor, or J-factor, and encapsulates the
distribution of dark matter within the system of interest:

J ¼
Z Z

ρDM
2ðl;ΩÞdldΩ: ð2Þ

It is therefore the square of the dark matter density
integrated along the line of sight and over the solid angle
of the sky corresponding to the observation.

For the dSphs, the dark matter density is not known, but
can be constrained from the line-of-sight velocities of
individual stars. The spherical Jeans equations are often
used to relate the velocities of the stars to the underlying
dark matter distribution. Nowadays, this is often explored
in a Bayesian framework using Monte Carlo techniques,
so that the calculation of the J-factors requires significant
computational effort [8–13].
However, it is reasonable to look for a simpler way of

computing J-factors for two reasons. First, for many of the
recently discovered ultrafaint dwarf galaxies, there are few
stars with line-of-sight velocities. In some cases, such as
Ursa Major II, the giant branch itself is so sparse that there
are very few target stars for spectroscopy [14]. Given such
fundamental limitations on the observational data, the
extensive exploration of model space in conventional
Jeans analyses may be needlessly elaborate. Second, an
entirely characteristic feature of the dSphs is that they are
flattened. In fact, some of the ultrafaints are very highly
flattened with ellipticities exceeding 0.5, such as Ursa
Major II [14], Hercules [15], Ursa Major I [16] and
Reticulum II [17]. Therefore, the underlying physical
model of a spherical dark halo containing a round dis-
tribution of stars satisfying the Jeans equation may fail to
capture important aspects of the physics. This leaves the
value of computationally intensive approaches based on
sphericity open to question, as they may suffer from
systematic effects when applied to flattened or triaxial
systems. While there have already been some investigations
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of axisymmetry and triaxiality [11,18], the implications of
these effects on the dark matter annihilation signal warrants
a systematic study, which we provide elsewhere [19].
The question as to whether dSphs have cored or cusped

dark matter densities has been investigated intensively over
the past few years. The latest simulations have reached a
resolution where the effect of individual supernovae can be
modeled, making them much less sensitive to the details of
the “subgrid” star formation and feedback physics [20,21].
They suggest that dark matter cores of size comparable to
the half-light radius of the stellar component should be
present in objects like Carina and Fornax that have formed
stars for a Hubble time. However, dSphs with patchy star
formation may be more cuspy, with the ultrafaints possibly
retaining a pristine cusp of the form originally proposed
by Navarro, Frenk and White (NFW) [22]. This picture is
broadly consistent with simple energy constraints [23], as
well as tidal arguments suggesting that if the ultrafaints had
dark matter cores, then they would not survive for long on
their current orbits [24]. All this suggests that, even if the
larger classical dSphs are cored as implied by the current
observational data on general grounds [25], the smaller
dSphs and the ultrafaints are probably cusped with dark
matter densities behaving like ρDM ∼ r−1 at small radii.
Here, we provide a set of simple formulas for J-factors

in spherical cusped geometries. Our approach is entirely
elementary, but we show that it leads to formulas that
are very competitive with more laborious approaches.
Section II concentrates on the cosmologically motivated
1=r cusp exemplified by the NFW model. We provide an
analytic formula for the J-factor of the NFW model, as
well as new estimates for the classical and ultrafaint
dwarfs, including the newly discovered Horologium I,
Grus I, Hydra II, and Pisces II. Section III extends the
work into more general cusped and cored dark haloes and
explores the possibility of inferring halo structure from
J-factor profiles. In particular, we show how the behavior
of the J-factor at small and large integration angles is
controlled by the halo parameters. Finally, we investigate
the existence of a sweet spot—namely an integration
angle at which the value of the J-factor is reasonably
insensitive to the unknowable aspects of the underlying
dark halo profile [9,10].

II. SIMPLE FORMULAS FOR J-FACTORS

Here, we provide a simple calculation for the J-factor of
both a spherical cusp and aNFWhalo.We showour formulas
reproduce the results of more sophisticated calculations.

A. Spherical cusp

In spherical symmetry, dSphs follow the empirical law

Mh ¼ MðRhÞ ≈
2.5
G

σ2losRh; ð3Þ

where Rh is the (projected) half-light radius of the stars
and σlos is the luminosity weighted square of the velocity
dispersion. Specifically, this is defined as

σ2los ¼
1

L

Z
V
νðrÞv2losdV ð4Þ

where L is the total luminosity, νðrÞ is the luminosity
density of the dSph and vlos is the line-of-sight velocity.
In other words, the physical content of Eq. (3) is that the
mass enclosed within the half-light radius is robust against
changes in anisotropy. This result was demonstrated from
solutions of the spherical Jeans equations [26,27]. There are
known biases in this formula when applied to populations
deeply embedded with dark haloes, such as the metal-rich
subpopulations of dSphs [28]. In our application to the
entirety of the stellar population of the dSph, any such
bias is negligible, especially compared to the uncertainty in
the velocity dispersion itself, which dominates the overall
error budget.
Infinite spherical cusps obeying this law have enclosed

mass

MðrÞ ¼ Mh

�
r
Rh

�
3−γ

¼ 2.5σ2los
GR2−γ

h

r3−γ; ð5Þ

where 0 < γ < 3. The dark matter density is

ρDMðrÞ ¼
Mh

4πR3−γ
h

3 − γ

rγ
¼ 5σ2los

8πGR2−γ
h

3 − γ

rγ
: ð6Þ

This gives us a one-parameter family of dark matter cusps
that always obey the empirical law (3).
We now make two assumptions to enable us to perform

the integration in the J-factor analytically. First, we assume
that the dSph is sufficiently distant that

dΩdl →
1

D2
2πRdRdz: ð7Þ

Here, D is the heliocentric distance, z is the line of sight
and R is a polar coordinate in the plane of the sky. This
approximation means that the projection is from infinity
rather than from a finite distance. The integration volume is
a cylinder rather than a cone. As even the nearest ultrafaints
(Segue 1 and Reticulum II) are ∼20–30 kpc distant,
this incurs little actual error. Second, we assume that the
J-factor is dominated by contributions from the singular
cusp. We show a posteriori that this approximation is fine
by comparing our formula to the results of more elaborate
calculations.
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The integration in Eq. (2) can now be done analytically

J ¼ 2π

D2

Z
∞

−∞
dz

Z
Dθ

0

RρDM2dR;

¼ 25σ4los
64G2

1

D2Rh

�
Dθ

Rh

�
3−2γ

PðγÞ; ð8Þ

where PðγÞ is a dimensionless number depending on the
cusp slope γ

PðγÞ ¼ 2

π1=2
ð3 − γÞ2Γðγ − 1

2
Þ

ð3 − 2γÞΓðγÞ : ð9Þ

Here, ΓðxÞ is the gamma function, whilst we require
1=2 < γ < 3=2 for convergence. This constraint can be
interpreted physically. If the density is too shallow
(γ < 1=2), then the dark matter extends too far along the
line of sight, causing the z integral to diverge. Similarly, if it
is too strongly cusped (γ > 3=2), then the contribution from
the cusp at r ¼ 0 also causes the z integral to diverge.
The angular integration is usually performed out to

θ ¼ 0.5° from the center of the dSph, as this is typical
of the resolution of Fermi-LAT data in the GeV range.
Walker et al. [10] have argued that the J-factor is most
robust to modeling uncertainty when the integration angle
is θcrit ≈ 2Rh=D, or twice the half-light radius of the stars
divided by distance to the dSph. Finally, it is also useful to
compute the J-factor out to θmax ¼ asinðrmax=DÞ where
rmax is an estimate of the maximum galactocentric
distance in the sample of observed member stars (see [12],
Sec. 6. 2). We expect our formula to break down at large θ,
but this is usually comparable or beyond θmax.
In scenarios in which the dark matter decays (rather than

annihilates) to give γ rays [29], it is also helpful to have the
D-factor, which is just

D ¼
Z Z

ρDMðl;ΩÞdldΩ: ð10Þ

Using the same approximation of an infinite cusp obeying
the empirical law (3), we find

D ¼ 5σ2los
8G

Rh

D2

�
Dθ

Rh

�
3−γ

QðγÞ; ð11Þ

where

QðγÞ ¼ 2π1=2
Γðγ

2
− 1

2
Þ

Γðγ=2Þ ; ð12Þ

with 1 < γ < 3 for convergence. This of course does not
converge for γ ¼ 1 because of contributions at large radii
where the integral diverges logarithmically.

B. NFW cusp

There is ample numerical evidence that dark matter halos
have an approximate double power-law structure ([22],
hereafter NFW) with cusp slope γ ¼ 1. For this astrophysi-
cally important case, we obtain

J ¼ 25

8G2

σ4losθ

DR2
h

: ð13Þ

This very simple result does not appear to have been given
before. The D-factor however is infinite, as the surface
density of an untruncated 1=r density cusp does not
converge. In fact, for the full NFW model, it is possible
to carry out the integration explicitly for both the J- and the
D-factors and obtain exact results. These are a little more
cumbersome than the pure power-law case, but still simple
enough to be useful.
We begin by introducing an auxiliary function (e.g.,

[30,31])

XðsÞ ¼
( 1ffiffiffiffiffiffiffi

1−s2
p Arcsechs; 0 ≤ s ≤ 1;

1ffiffiffiffiffiffiffi
s2−1

p Arcsecs; s ≥ :

We note that Xð1Þ ¼ 1 so that the function is continuous.
We take the NFW model in the form

ρDMðrÞ ¼
ρ0r3s

rðrþ rsÞ2
: ð14Þ

Then, the J-factor is

J ¼ πρ20r
2
s

3D2Δ4

�
2Dθð7Dr3sθ − 4D3rsθ3 þ 3πΔ4Þ

þ 6

rs
ð2Δ6 − 2r4sΔ2 −D4r2sθ4ÞX

�
Dθ

rs

��
; ð15Þ

Then, defining y ¼ Dθ=rs, the J-factor is

J ¼ πρ20r
3
s

3D2Δ4

�
2yð7y − 4y3 þ 3πΔ4Þ

þ 6ð2Δ6 − 2Δ2 − y4ÞXðyÞ
�
; ð16Þ

where Δ2 ¼ 1 − y2 ¼ 1 −D2θ2=r2s . Given a mass Mh
enclosed within the half-light radius Rh the parameter ρ0
is given by

ρ0 ¼
Mh

4πr3s

�
log

�
rs þ Rh

rs

�
−

Rh

rs þ Rh

�
−1
: ð17Þ

On identifying ρ0rs ¼ 5σ2los=ð4πRhGÞ and letting rs → ∞,
we obtain the infinite cusp (6) with γ ¼ 1. In this limit, the
full J-factor (16) reduces to (13), as it should. In the other
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limit, as θ becomes large, the J-factor curve turns over and
tends to the asymptotic value

J →
4π

3

ρ20r
3
s

D2
: ð18Þ

The D-factor is

D ¼ 4πρ0r3s
D2

�
log

�
Dθ

2rs

�
þ X

�
Dθ

rs

��
ð19Þ

with the limit of an infinite cusp rs → ∞ regenerating the
result of (11) with γ ¼ 1. In particular, as θ becomes large,
the first term in Eq. (19) dominates and the D-factor
diverges logarithmically. However, as θ → 0, the D-factor
tends to

D → 2πρ0rsθ2 log

�
Dθ

2rs

�
ð20Þ

and so approaches zero quadratically.

C. Comparisons

Here, we compare our formulas with results in the
literature. J-factors are often computed by finding the dark
matter density profile that best fits the stellar kinematics
through the spherical Jeans equations [10–12]. The multi-
dimensional likelihood functions, which usually involve
parameters controlling the dark halo structure as well as the
velocity anisotropy, are then explored with Monte Carlo
methods based on Bayesian parameter inference. An
alternative method [13], which was used by the Fermi-
LAT Collaboration, has some points of contact with our
approach here. They use the empirical relationship (3)
between velocity dispersion and mass enclosed within the
half-light radius to circumvent solution of the Jeans
equation. They then construct likelihood functions for each
dSph from the luminosity, half-light radius and mass
enclosed, together with priors, which are explored with a
two-level Bayesian hierarchical model. Once the halo
parameters are derived, the NFW profile is numerically
integrated to find the J-factor.
The J-factors and D-factors computed using the full

formula for a NFW cusp for a range of dSphs are given in
Table I. Error bars are computed via propagation of errors
in velocity dispersion, distance, and half-light radius using
Eq. (16). We use an “ellipticity-corrected” version of the
half-light radius which is given by the geometric average of
the half-light radius as measured along the major and minor
axes. This amounts to multiplying by

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
where ϵ is the

ellipticity. Most data on half-light radii, distances, elliptic-
ities and central velocity dispersions are extracted from the
recent compilation of [32]. In addition, we use data from
[17,33–37] on more recently discovered dwarfs. In cases
where the ellipticity is only bounded we use the reported
upper bound for our ellipticity-corrected half-light radius.

There is very little difference between values in this table
and ones inferred from a Jeans analysis. We also show the
J-factors for an opening angle of θ ¼ 0.5° against distance
for the dSphs in Fig. 1. Naturally, the J-factors decrease
with distance making the closest dSphs the most attractive
candidates for dark matter annihilation detection. However,
the diversity in measured velocity dispersions and half-light
radii introduce variation into this J-factor versus distance
relation.
In Figs. 2 and 3, we show how our simple formulas

compare to the results of Jeans calculations for the J-factor
profiles for the classical and the ultrafaint dwarfs respec-
tively. Red and yellow lines show the results obtained using
Eq. (8). In each case, colored bands show the 1σ range of
values obtained by error propagation using the reported
error on the data (half-light radius, line-of-sight velocity
dispersion and heliocentric distance).1 The blue bands use
Eq. (16) with rs ¼ 5Rh, which is a reasonable summary of
results from phase-space modeling of the dSphs, as given in
Fig. 8 of Ref. [38]. For comparison, computed values for
the J- and D-factors from [12] are also shown as solid
circles with error bars. They are derived by assuming
parametric laws for the light profile, the anisotropy of the
stars and the dark halo profile. The latter is permitted to
have a general double power-law structure with the density
falling like r−γ at small radii and r−β at large radii. Solution
of the spherical Jeans equations and subsequent projection
then provides the line-of-sight velocity dispersions. By
choosing priors on the unknown parameters and sampling
the likelihood function through Markov chain Monte Carlo
methods, Geringer-Sameth et al. [12] obtain constraints on
the dark matter distribution. Hence, they can calculate the
median value of the J-factors and the 1σ distribution at
selected angles (see their Table 2). The data points show the
results of their calculations at two locations, namely θ1=2
or the angle containing 50 percent of the emission, and
θmax ¼ arcsinðrmaxÞ=D where rmax is an estimate of the
distance to the outermost member star with a measured
radial velocity. We also show the J-factor profiles with
�1σ errors computed by Bonnivard et al. [39], which were
obtained through a Jeans analysis similar to [12]. Finally,
we show the constraints on the J-factors at θ ¼ 0.5° from
the Fermi-LAT Collaboration [40].
We see that the simple formula (8) performs reasonably

well for the classical dwarfs, and better still for the
ultrafaints. At larger θ, the J-factor for pure power-law
cusps is overestimated—here the assumption of an infi-
nitely extended cusp breaks down. The full formula for the
NFW halo (16) removes even this deficiency and repro-
duces the computational results extremely well. Note that it

1In the cases of Segue 2, Hydra I and Grus I only 95 percent,
upper bounds, C, on the line-of-sight velocity dispersion are
available. For these we assume a uniform distribution on the line-
of-sight velocity dispersion between 0.1 km s−1 and C=0.95.
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is now just as straightforward to work out the entire profile
as to compute a single value. In principle, the full profile
may give information on the structure of the dark halo if a
dSph is detected in γ rays. The largest discrepancy between
our calculation and that of Geringer-Sameth et al. [12] is for
Boötes I. This may arise because Boötes I possesses both a
hot and cold component [42], whereas our calculation uses
the velocity dispersion of the colder population only.
Another possible source of this discrepancy is that the
best-fitting dark halo density law inferred by [12] may
deviate from the strict NFW form—in fact, they report that
Boötes I has a median value of its inner slope γ of 0.53 and

outer slope β of 5.9. This discrepancy persists when
comparing against the results of Bonnivard et al. [39].
The other striking anomaly is when comparing our result
for Segue 1 with Bonnivard et al. [39]. This is caused by
different ways of designating a subset of the spectroscopi-
cally observed stars as “members” of Segue 1 as opposed to
Milky Way foreground contaminants, as originally noted in
[43]. Bonnivard, Maurin, and Walker [41] have shown that
the determination of Segue 1’s J-factor (and, implicitly, its
velocity dispersion) is extremely sensitive to the inclusion
or exclusion of a small number of stars with ambiguous
membership status. The J-factors computed in [39] are

TABLE I. Annihilation and decay factors for dwarf spheroidals: we quote the predictions of the NFW formula from Eqs. (16) and (19)
using rs ¼ 5Rhalf at two angles—the angle between the center of the dwarf and an estimate of the distance to the outermost member star
ðθmaxÞ and θ ¼ 0.5°. The dwarfs in the top section are classical dwarfs and those in the middle section are those ultrafaint dwarfs that
have J and D estimates from the literature. The bottom section shows those ultrafaint dwarfs without preexisting J or D estimates. For
these we adopt θmax ¼ 0.5°.

Distance θmax log10 JðθmaxÞ log10Jð0.5°Þ log10 DðθmaxÞ log10 Dð0.5°Þ
Name [kpc] [°] [GeV2 cm−5] [GeV2 cm−5] [GeV cm−2] [GeV cm−2]

Carina 105� 6 1.26 18.03þ0.34
−0.34 17.99þ0.34

−0.34 18.37þ0.17
−0.17 17.98þ0.34

−0.34

Draco 76� 6 1.3 18.92þ0.25
−0.25 18.86þ0.24

−0.24 18.82þ0.12
−0.12 18.39þ0.25

−0.25

Fornax 147� 12 2.61 18.27þ0.17
−0.17 18.15þ0.16

−0.16 19.04þ0.09
−0.09 18.26þ0.17

−0.17

Leo I 254� 15 0.45 17.80þ0.28
−0.28 17.80þ0.28

−0.28 17.84þ0.14
−0.14 17.89þ0.28

−0.28

Leo II 233� 14 0.23 17.41þ0.25
−0.25 17.44þ0.25

−0.25 17.31þ0.12
−0.12 17.62þ0.25

−0.25

Sculptor 86� 6 1.94 18.73þ0.29
−0.29 18.65þ0.29

−0.29 18.93þ0.15
−0.15 18.33þ0.29

−0.29

Sextans 86� 4 1.7 18.04þ0.29
−0.29 17.87þ0.29

−0.29 18.76þ0.15
−0.15 18.07þ0.29

−0.29

Ursa Minor 76� 3 1.37 19.18þ0.24
−0.24 19.15þ0.25

−0.24 18.84þ0.12
−0.12 18.45þ0.24

−0.24

Boötes I 66� 2 0.47 16.64þ0.64
−0.38 16.65þ0.64

−0.38 17.25þ0.32
−0.19 17.28þ0.64

−0.38

Coma Berenices 44� 4 0.31 18.64þ0.32
−0.32 18.67þ0.33

−0.32 17.83þ0.16
−0.16 18.06þ0.32

−0.32

Canes Venatici I 218� 10 0.53 17.27þ0.11
−0.11 17.27þ0.11

−0.11 17.81þ0.05
−0.05 17.78þ0.11

−0.11

Canes Venatici II 160� 4 0.13 17.63þ0.40
−0.40 17.65þ0.40

−0.40 16.91þ0.20
−0.20 17.37þ0.40

−0.40

Hercules 133� 12 0.28 16.79þ0.45
−0.45 16.83þ0.45

−0.45 17.10þ0.22
−0.22 17.38þ0.45

−0.45

Leo IV 154� 6 0.16 16.56þ0.90
−0.90 16.64þ0.90

−0.90 16.68þ0.45
−0.45 17.22þ0.90

−0.90

Leo V 178� 10 0.07 16.82þ1.05
−0.70 16.94þ1.05

−0.72 16.35þ0.53
−0.35 17.23þ1.05

−0.70

Leo T 417� 19 0.08 17.28þ0.37
−0.37 17.32þ0.38

−0.37 16.70þ0.19
−0.19 17.35þ0.38

−0.38

Segue 1 23� 2 0.35 19.39þ0.39
−0.39 19.41þ0.39

−0.40 18.03þ0.20
−0.20 18.17þ0.39

−0.39

Segue 2 35� 2 0.19 17.06þ0.86
−1.75 17.11þ0.85

−1.76 16.64þ0.43
−0.87 17.08þ0.86

−1.75

Ursa Major I 97� 4 0.43 18.47þ0.25
−0.25 18.48þ0.25

−0.25 18.08þ0.13
−0.13 18.15þ0.25

−0.25

Ursa Major II 32� 4 0.53 19.38þ0.39
−0.39 19.38þ0.39

−0.39 18.51þ0.19
−0.19 18.48þ0.39

−0.39

Willman 1 38� 7 0.5 19.29þ0.91
−0.62 19.29þ0.91

−0.62 18.03þ0.45
−0.32 18.03þ0.91

−0.62

Reticulum II 30� 3 1.0 18.72þ0.85
−0.32 18.71þ0.84

−0.32 18.19þ0.42
−0.17 17.93þ0.85

−0.32

Tucana II 57� 5 1.0 19.10þ0.88
−0.58 19.05þ0.87

−0.58 18.79þ0.44
−0.29 18.45þ0.88

−0.58

Horologium I 79� 7 0.5 18.64þ0.95
−0.39 � � � 17.78þ0.47

−0.20 � � �
Hydra II 134� 10 0.5 16.56þ0.87

−1.85 � � � 16.89þ0.44
−0.92 � � �

Pisces II 182� 18 0.5 17.90þ1.14
−0.80 � � � 17.41þ0.57

−0.40 � � �
Grus I 120� 11 0.5 17.96þ0.90

−1.93 � � � 17.59þ0.46
−0.96 � � �
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based on more stringent membership criteria for Segue 1 as
compared to the analyses of [12] and [40].
A straightforward conclusion from Figs. 2 and 3 is that

Draco, Ursa Minor, Sculptor, Coma Berenices, Reticulum
II, Tucana II and Ursa Major II are the most favourable
dSphs for which to look for signatures of dark matter
annihilation. Willman 1 also has a high J-factor but the
assumption of dynamical equilibrium for this object is
dubious as it appears to be severely tidally disrupted [44].
Similarly, Segue 1 has a high J-factor but the issue of
foreground contamination of the spectroscopic sample
brings this into doubt [41,43].
Figure 4 gives predictions for 4 recently discovered

ultrafaints for which there are no J-factors in the literature.
These objects are Horologium I and Grus I (discovered in
Dark Energy Survey Data [17,45]), Hydra II (discovered by
the Survey of the Magellanic Stellar History) and [34],
Pisces II (discovered in Sloan Digital Sky Survey data [35]).
Keck/DEIMOS spectroscopy of Hydra II and Pisces II has
recently been published [36]. The Gaia-ESO survey has
measured the velocities of 5 stars in Horologium I using the
VLT/Giraffe combination [46], while Magellan/M2FS has
been used to target 7 stars in Grus I [37]. Using the data in
these papers,we calculate the J-factors. The uncertainties are
calculated byMonte Carlo sampling and then estimating the

FIG. 1. Dwarf annihilation factors against distance: the points
show the J-factors computed for an opening angle of 0.5° using
the simple NFW formula presented in this paper with rs ¼ 5Rh.
The red diamonds correspond to the classical dwarfs, the black
circles to the ultrafaints, and the blue squares to four recently
discovered dwarfs with no preexisting literature estimates of their
J-factors.

FIG. 2. Classical dwarf annihilation factors: the points are taken from the full Jeans analysis of [12]. The red and yellow bands are the
estimates from Eq. (8) using γ ¼ 1 and γ ¼ 0.51 respectively. The blue band is the estimate from Eq. (16) using rs ¼ 5Rhalf . The median
and �1σ estimates of log10ðJðθÞÞ from [39] are given by the black solid and dashed lines respectively. The red diamonds are the
estimates of log10ðJð0.5°ÞÞ from [40].
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1σ bound on the J-factor from the ensuing distributions.
It is clear that Horologium I is another excellent candi-
date with a J-factor comparable to Reticulum II and
Tucana II.
We show in Figs 5–7 analogous plots for the D-factor for

classical dwarfs, ultrafaints and predictions for recent
discoveries. Both the simple formula (11) and the exact
result for an NFW cusp (19) do an excellent job of

reproducing the results in the literature—with much greater
economy of effort.

III. APPLICATIONS

A. Cusps and cores

So far, we have focussed on the NFWmodel with its 1=r
density cusp. Although this has a preferred status because

FIG. 3. Ultrafaint dwarf annihilation factors: see caption of Fig. 2. The points for Tucana II and Reticulum II are taken from Refs. [37]
and [41] respectively.
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of its importance in theories of galaxy formation, there is
some evidence that dark haloes may have a different
structure. For example, many of the detailed kinematical
fits reported by [12] have milder cusps, often with ρDM ∼
r−1=2 at small radii. There is also strong observational
evidence that some of the dwarf galaxies are mildly cusped
or even cored. This includes the persistence of substructure

in Ursa Minor [47], the survival of globular clusters in
Fornax [48], and the kinematics of multiple populations
[25,28,49,50]. Here, somewhat speculatively, we suppose
that the J-profile can be mapped out as a function of θ and
ask what can then be deduced about the dark halo structure.
A flexible set of dark halos with double power-law

structure has the form [9,51]

FIG. 4. Predictions for ultrafaint dwarf annihilation factors: see caption of Fig. 2.

FIG. 5. Classical dwarfs decay factors: the points are taken from the full Jeans analysis of [12]. The red and yellow bands are the
estimates from Eq. (11) using γ ¼ 1 and γ ¼ 1.49 respectively. The blue band is the estimate from Eq. (19) using rs ¼ 5Rhalf . The
median and �1σ estimates of log10ðDðθÞÞ from [39] are given by the black solid and dashed lines respectively.
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ρDMðrÞ ¼ ρ0

�
r
rs

�
−γ
�
1þ

�
r
rs

�
α
�ðγ−βÞ=α

; ð21Þ

with α, β and γ as positive numbers. The familiar NFW
profile is recovered in the case ðθ; β; γÞ ¼ ð1; 3; 1Þ.
Although the J-factors for this entire class of models are
not analytic, nonetheless we can easily work out their
general properties. At small radii, the density is cusped like

r−γ . For strong cusps with 1=2 < γ < 3=2, the behavior
can be deduced from our work on infinite cusps in Sec. II
by making the identification ρ0r

γ
s ¼ ð3 − γÞσ2los=ðπR2−γ

h GÞ.
We see from Eq. (8) that the J-factor increases like
J ∝ θ3−2γ on moving outwards from the center of the halo.
For weaker cusps and cores (0 ≤ γ < 1=2), the dominant
term in the J-factor near the origin is always a gentler
quadratic, namely J ∝ θ2, as the γ-ray emission is now no

FIG. 6. Ultrafaint dwarfs decay factors: see caption of Fig. 5.
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longer dominated by the very center. Beyond the scale
radius rs, the J-factor turns over and tends to a constant
value. This is given by

J →
4πr3sρ20
D2

Γ½ð2β − 3Þ=α�Γ½ð3 − 2γÞ=α�
αΓ½2ðβ − γÞ=α� : ð22Þ

Formally, we require β > 3=2 and γ < 3=2 for conver-
gence, though this is satisfied by almost all astrophysically
realistic models. Notice when ðα; β; γÞ ¼ ð1; 3; 1Þ, we
recover the asymptotic value for the J-factor of a NFW
halo [Eq. (18)].
The behavior of the D-factor can be worked out in a

similar way, though now the boundary between strong and
weak cusps is at γ ¼ 1. For cusps with γ < 1, the D-factor
initially rises like J ∝ θ3−γ , while for cusps with γ ≤ 1, the
rise is quadratic J ∝ θ2. At large angles, the D-factor turns
over to the constant value

D →
4πr3sρ0
D2

Γ½ðβ − 3Þ=α�Γ½ð3 − γÞ=α�
αΓ½ðβ − γÞ=α� ; ð23Þ

provide β > 3 and γ < 3, as required for convergence. For
the NFW model, β ¼ 3 and so the D-factor logarithmically
diverges.
We can illustrate this behavior with two simple models.

A prototype of a weakly cusped dark halo is the model with
ðα; β; γÞ ¼ ð1; 3; 1=2Þ, namely,

ρðrÞ ¼ ρ0r3s
r1=2ðrþ rsÞ5=2

ð24Þ

for which the J-factor is

J ¼ πρ20
6Δ6r3s

�
6D2r2sθ2 − 2D4θ4 − 19r4s

þ 3r2s ð4r2s þD2θ2ÞX
�
Dθ

rs

��
: ð25Þ

Its asymptotic value is

J →
πr3sρ20
3D2

ð26Þ

while its central value is

J →
πrsρ20
6

�
6 log

�
4r2s
D2θ2

�
− 19

�
θ2: ð27Þ

The D-factor is not analytic, but diverges logarithmically at
large radii.
A prototype for cored dark haloes is the famous Plummer

(1911) model, which corresponds to ðα; β; γÞ ¼ ð2; 5; 0Þ.
This is often used for modeling cored dark haloes (as well
as clusters and the stellar populations in dSphs). The
density is

ρðrÞ ¼ ρ0r5s
ðr2 þ r2s Þ5=2

: ð28Þ

The J-factor is

J ¼ 5π2

64

ρ20r
3
s

D2

�
1 −

r7s
ðr2s þD2θ2Þ72

�
: ð29Þ

Notice that the J-factor behaves like θ2 at small angles,
whereas the asymptotic value is in accord with our general
rule (22). The D-factor is also very simple

FIG. 7. Predictions for ultrafaint dwarf decay factors: see caption of Fig. 5.
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D ¼ 4π

3

ρ0r3sθ2

ðr2s þD2θ2Þ : ð30Þ

It again approaches zero quadratically, and tends to the
asymptotic value given by (23). This is in accord with our
general results.
In principle, if the variation of the J-factor can be mapped

out with integration angle, then valuable information on the
structure of the dark halo can be gleaned. The behavior at
small angles can yield information on the cusp slope γ.
In particular, if γ > 1=2, then the logarithmic gradient of J
with respect to θ is the cusp slope. Alternatively, if J ∝ θ2,
then the cusp is either very mild or the dark halo is cored.
Similarly, the asymptotic value of the J-factor is controlled
by the normalisation ρ0, scale-length rs and the density
falloff β. Some of these quantities, such as rs can of course
be constrained by the stellar kinematics of the stars, so the
asymptotic value may enable a complete solution for the
halo to be obtained.

B. The sweet spot

The idea that there is a sweet spot—a location in which
the measured quantity is reasonably robust against changes
in the underlying dark halo model—has proved quite
powerful in studies of dSphs. Of course, the most success-
ful instance is the hypothesis that the mass of dark matter
enclosed within the half-light radius of the stellar popula-
tion is reasonably robust against changes in anisotropy
[26,27]. Similar ideas have been used to identify radii at
which the enclosed mass is insensitive to changes in the
underlying halo models [38,52]. It is therefore natural to
wonder if there is a special angle θ at which the J-factor is
particularly robust.
Walker et al. [10] noticed from their Jeans solutions for

dark matter haloes for the Carina dSph that the J-factor was
least sensitive to changes in the inner slope γ, outer slope β
and velocity anisotropy at an integration angle θ ≈ 2Rh=D.
They then generated mock data sets from distribution
functions for models with varying inner slope γ and
velocity anisotropy, but fixed outer slope β, which sup-
ported the idea of a sweet spot at θ ≈ 2Rh=D.
We test this directly in Fig. 8 by plotting the range of

J-factors and D-factors of (α, β, γ) models with the same
mass enclosed within the half-light radius of the stars Rh.
This mass was chosen using the velocity dispersion and
half-light radius of Reticulum II. The range of models
explored were α ∈ ½1.; 2.�, β ∈ ½3.; 6.�, γ ∈ ½0.; 1.2�.
Although we have not explicitly used any kinematic data,
it is nonetheless encoded in the models using the fact that
the mass enclosed with Rh—and hence the luminosity
weighted velocity dispersion—is the same for all the
models [26,27]. The vertical line in Fig. 8 shows that
the integration angle θ ≈ Rh=D at which the scatter in the
J-factors of the models is minimized. Notice even though
the mass enclosed within Rh is exactly the same for all the

models, there is nonetheless some scatter in the J-factors
even at θ ¼ Rh=D. Also shown with a vertical line is the
angle θ ≈ 2Rh=D suggested by [10], at which the scatter is
rather greater.
Presumably, the explanation of this discrepancy is that

the models constructed in [10], which are derived from
Markov chain Monte Carlo fits to discrete radial velocities,
do not exactly satisfy the empirical relation on mass
enclosed within the half-light radius and velocity
dispersion. Of course, the actual integration angle used

FIG. 8. Comparison of J-factors and D-factors of (α, β, γ) dark
halos with the same mass enclosed within the half-light radius
(Rh ¼ 30 pc), represented by the left black dashed line. The
parameters chosen approximately match those of Reticulum II
and we set rs ¼ 5Rh. The blue band shows the range of possible
profiles when α ∈ ½1.; 2.�, β ∈ ½3.; 6.�, γ ∈ ½0.; 1.2�. The solid
black line corresponds to the NFW profile. Notice that the
J-factors of these models show least scatter at the angle
θ ≈ Rh=D. The radii suggested in [10] is indicated by a vertical
dotted line, and—at least for these models—shows greater
scatter. The D-factors show the smallest scatter at a much smaller
angle. The red dashed vertical line shows Fermi-LAT resolution
for Reticulum II.
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is a tradeoff between gathering power and minimizing the
uncertainty in the dark halo properties.

IV. CONCLUSIONS

The main advance in this paper is the provision of very
simple formulas for J-factors for indirect dark matter
detection. This includes power-law spherical cusps, as
well as the exact result for the Navarro-Frenk-White [22]
model. These compact formula offer significant savings in
effort over Jeans solution methods driven by Markov Chain
Monte Carlo engines. Especially for the ultrafaint dwarfs,
for which the size of the datasets of discrete velocities
is tiny, this provides an entirely elementary method of
evaluating J-factors. The exact formulas for the J-factors
and D-factors of the NFW should prove particularly useful,
as there are reasons increasing in quality and quantity
(e.g., [20,21,23,24]) for believing that many of the
ultrafaints have pristine dark matter haloes, even if some
of the largest dSphs most probably have cored haloes
(e.g., [25,28,47,49]).
We have computed the J-factors (and 1σ uncertainties)

for all the known dSph galaxies with kinematic data.
This includes the first estimates for Horologium I and
Grus I—recently discovered in Dark Energy Survey Data
data—as well as Hydra II and Pisces II. From this
compendium, the ultrafaints with the highest J-factors are
Ursa Major II, Reticulum II, Tucana II and Horologium I.
They are very attractive targets for indirect detection
experiments. Although our formulas assign Willman 1
and Segue 1 high J-factors, these ambiguous objects
may be extended clusters suffering disruption in the
Galactic tidal field rather than dwarf galaxies, perhaps
complicating or even invalidating previous estimates of σlos
for these systems. Amongst the classical dSphs, Draco,
Sculptor and Ursa Minor have the highest J-factors.
If the J-factor profile can be mapped out as a function of

integration angle, then this raises the possibility of inferring

properties for the dark matter halo directly. We have shown
for general halo models that the J-factor rises from the
origin, yet approaches a constant asymptotic value with
increasing integration angle. The behavior at the origin
encodes information on the inner cusp slope γ. If the model
is cored or weakly cusped (0 ≤ γ ≤ 1=2), then the J-factor
rises quadratically from the origin, J ∝ θ2. If the model is
more strongly cusped (1=2 < γ < 3=2), then J ∝ θ3−2γ .
The asymptotic value of the J-factor—which can be worked
out analytically—depends on both inner slope γ, outer
slope β as well as the halo scale length and normalization.
Finally, we have identified a sweet spot, or preferential

integration angle, at which the J-factor is robust against
changes in the dark halo model. This is at the integration
angle θ ¼ Rh=D, or the ratio of the dSphs half-light radius
Rh to distance from the observer D. This result holds good
for models that exactly obey the empirical relation between
velocity dispersion and mass enclosed within half-light
radius [26,27].
An important outstanding problem is the extension

of this work to flattened geometries. Most dSphs are
flattened—and some of the most promising targets such
as Reticulum II or Horologium I are very highly flattened.
Spherical models can provide useful guides, especially for
the largest classical dSphs (like Leo I or Fornax) that look
nearly round on the sky. They are least useful for the
flattened ultrafaints. In a companion paper, we show how to
extend the techniques presented here to explore flattened
and triaxial geometries [19].
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