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Testing a two field inflation beyond the slow-roll approximation

Kourosh Nozari and Kosar Asadi’

Department of Physics, Faculty of Basic Sciences, University of Mazandaran,
P. O. Box 47416-95447, Babolsar, Iran
(Received 8 March 2016; published 11 May 2016)

We consider a model of two field inflation, containing an ordinary scalar field and a Dirac-Born-Infeld
(DBI) field. We work beyond the slow-roll approximation, but we assume a separable Hubble parameter.
We then derive the form of potential in this framework and study the spectrum of the primordial
perturbations in detail. We also study the amplitude of the non-Gaussianity of the primordial perturbations
both in equilateral and orthogonal configurations in this setup. We test the model with recent observational
data and find some constraints on the model parameters. Our study shows that for some ranges of the DBI
parameter, the model is consistent with observations, and it is also possible to have large non-Gaussianity
which would be observable by future improvements in experiments.
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I. INTRODUCTION

Inflationary cosmology has become a successful para-
digm to understand the early stage of the Universe
evolution, with its advantages of resolving the flatness,
horizon and relics problems. Moreover, during inflation,
the vacuum fluctuation of light scalar fields grow into
super-Hubble density perturbations which are believed
to be the origin of the structure formation in the
Universe [1-8]. The paradigm of inflation is essentially
related to a quasi-de Sitter universe, a homogeneous and
isotropic universe that expands almost exponentially fast,
with a nearly constant event horizon.

Recent observational data have detected a level of scale
dependence in the primordial perturbations [9,10].
Although there is no direct signal for primordial non-
Gaussianity in observation, the Planck team has obtained
some tight limits on primordial non-Gaussianity [11]. Some
inflationary models also predict a level of non-Gaussianity
in the primordial perturbations mode [12—18]. In fact, the
primordial non-Gaussianity carries a large amount of
information on the cosmological dynamics deriving the
initial inflationary expansion of the Universe. Thus, study-
ing this feature of the perturbation modes is really an
important and interesting issue, and any inflationary model
which can show the non-Gaussianity and scale dependence
of the primordial perturbation is in some sense more
favorable on observational grounds.

It is well known that as a simplest realization inflation is
derived by a single, slowly varying scalar field whose
potential energy dominates the Universe expansion.
However, a single field inflation model often suffers from
fine tuning problems on the parameters of its potential, such
as the mass and the coupling constant. It has been revealed
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that when a number of scalar fields are involved, they can
relax many limits on the single scalar field inflation [19].
Although none of these fields can result inflation separately,
they are able to work cooperatively to give an enough
long inflationary stage [20-23]. Furthermore, there exists
good reasons to believe that inflation might have been
driven by more than one scalar field. First, there are many
theories beyond the standard model of particle physics that
involve multiple scalar fields, such as string theory, grand
unified theories, supersymmetry, and supergravity [24-32].
Moreover, introducing one or more fields may provide
attractive features. For example, hybrid inflation models
[33], which involve two scalar fields, are able to result in
sufficient inflationary expansion and match the observed
power spectrum of density perturbations, while possessing
more natural values for their coupling constants and happen-
ing at sub-Planckian field values [33—35]. Furthermore, the
single field case is unusual in a sense since the evolving
expectation value of the one field serves as a clock that
determines when the inflation phase ends and the Universe
returns to Friedmann-Robertson-Walker expansion [36].
However, with two or more fields, evolution of one field
can be affected by the fluctuations in the other field(s), and
so, the complex conditions under which inflation ends
cannot be expressed in terms of one degree of freedom
(for example some linear combination of the fields). For
these reasons, the issue of multi-field inflation has became
more important recently, and many authors have studied
such models [37-43].

In this work, we consider an inflation model driven by
two scalar fields, an ordinary scalar field with a canonical
kinetic term and a Dirac-Born-Infeld (DBI) field with a
noncanonical kinetic term. In fact, one of the fields
describing the inflationary phase of the early Universe is
expressed by the radial position of a D3-brane moving in a
throat region of a warped compactified space. This proposal
is based on the Dirac-Born-Infeld action [44,45] in which
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there is a speed limit upon the motion of the brane, affected
by both its speed and the warp factor of the AdSs throat
[46-48]. The effective action in a model with a DBI field
contains a nonstandard kinetic term and also a function of
the scalar field besides the potential that is related to the
local geometry of the compact manifold traversed by the
D3-brane [46]. Furthermore there is an interesting phe-
nomenological feature in the DBI inflation such that it
results non-Gaussian signatures in the cosmic microwave
background [49,50]. In Ref. [51] the authors have studied a
multi-field DBI inflation. They have shown that adiabatic
and entropy modes in this setup propagate with the same
effective sound speed and so get amplified at the sound
horizon crossing. They have also found that for small sound
speed, the amplitude of the entropy modes is much larger
than the amplitude of the adiabatic modes. This feature can
strongly affect both the observable curvature power spec-
trum and the amplitude of non-Gaussianities without
changing the shape relative to the single field DBI case.
The authors of Ref. [52] have studied a multi-field DBI
inflation by considering some bulk fields present in generic
flux compactification. They have investigated also the
consequences of the bulk form fields on scalar cosmologi-
cal perturbations, both at linear and nonlinear levels. As an
important result, they have shown that the terms due to the
fluctuations of the U(1) gauge field confined on the brane
can be compensated exactly by the terms arising from the
coupling between the bulk forms and the brane position
scalar fields in the second and third order actions. Vector-
type perturbations associated with the U(1) gauge field
confined on the D3-brane are studied in this framework too,
in order to see possible amplification of their quantum
fluctuations. The gravitational wave constraints on DBI
inflation have been studied in this setup when there is a
transfer from entropy into adiabatic perturbations. As a
result, an ultraviolet DBI multi-field scenario is compatible
with data in contrast with the single field case which is in
tension with the data. In Ref. [53] the leading order
connected four-point function and the full quantum tris-
pectrum of the primordial curvature perturbation are
computed in multi-field DBI inflation models. They have
shown that in the squeezed and counter-collinear limits the
consistency relations hold as in single field models. They
have shown also that adiabatic, mixed and purely entropic
contributions have different momentum dependence in this
setup. So the trispectrum has the potential to distinguish
between the multi-field and single field DBI inflation
models if the amount of the transfer from the entropy
perturbations to the curvature perturbation is signifi-
cantly large.

In Ref. [54] the authors have considered an inflationary
model driven by an ordinary scalar field and a DBI field.
They have studied the evolution of the nonadiabatic
pressure perturbation during the inflation phase in this
setup. Their analysis is based on the double quadratic
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potential [55] in the form V (¢, y) = %mi((ﬁz +Ty?). They
have shown also that the evolution of the nonadiabatic
pressure perturbation and also its final amplitude depend
strongly on the kinetic terms. Here, we consider neither
slow roll nor a separable potential; instead, to compare our
inflationary model with observation, we suppose just a
separable Hubble parameter. We study the spectrum of the
primordial modes of perturbations in details. Non-Gaussian
features of perturbations distribution parametrized by the
quantity fyp, characterizing the bispectrum and generated
by the evolution of scalar perturbations on super-Hubble
scales are also treated carefully. We emphasize that our
analysis is done beyond the slow-roll approximation, but
we adopt a separable Hubble parameter. In other words,
since the slow-roll condition can be temporarily violated
during inflation (for example if fields start to decay during
inflation as in staggered/cascade inflation [56-60], if a
bump in the potential is encountered, and if it is necessarily
violated at the end of inflation and during reheating), we go
beyond this approximation, and our strategy is based on the
first order Hamilton-Jacobi formalism developed by
Salopek and Bond in Ref. [61], which allows us to express
inflationary parameters in the model, without having to
focus on a slow-roll regime (one can see [62] for appli-
cation of this formalism to the single field case).

There are important parameters in an inflationary model
such as the tensor-to-scalar ratio and the scalar spectral
index which express the main properties of the cosmo-
logical perturbations. Therefore, confrontation of the
inflation model with observation and constraining the
model’s parameters is an important task toward realization
of more natural models. The constraints r < 0.13 and n, =
0.9636 £ 0.0084 are obtained from the combined
WMAP9 + eCMB + BAO + H, data [63]. The conditions
expressed by the joint Planck2013 + WMAP9 + BAO
data are r<0.12 and n,=0.9643 +0.0059 [64].
Recently, the Planck collaboration released the constraints
r < 0.099 and n, = 0.9652 4+ 0.0047 from Planck TT, TE,
EE + low P + WP data [9-11]. Thus, in order to compare
our model with observational data, we study the behavior of
the tensor-to-scalar ratio versus the scalar spectral index in
the background of the Planck TT, TE, EE + low P data set
and obtain some constraints on the parameters space of the
model. Furthermore, we study numerically the non-
Gaussianity feature of the model by studying the behavior
of the orthogonal configuration versus the equilateral
configuration in the background of the observational data.
We show that for some ranges of the DBI parameter, our
model is consistent with observation, and it is also possible
to have large non-Gaussianity. We note that large non-
Gaussianities would be observable by future improvements
in experiments, and in this respect, this would be an
important result in our study.

The paper is organized as follows: After introducing the
setup in Sec. II, we investigate the linear perturbation of the
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model in Sec. III. By expanding the action up to the second
order in perturbation, we obtain the two-point correlation
functions which results in the amplitude of the scalar
perturbation and its spectral index. Also, by studying the
tensor part of the perturbed metric, we obtain the tensor
perturbation and its spectral index as well. In order to
investigate nonlinear perturbation in the model, in Sec. IV,
the action is expanded up to the cubic order in perturbation.
To study the non-Gaussian modes of the primordial
perturbations, we consider the three-point correlation
functions. In this section, the amplitude of the non-
Gaussianity is obtained in the equilateral and orthogonal
configurations and in k; = k, = k3 limit. In other words,
we focus on the possibility to obtain a large level of non-
Gaussianity beyond the slow-roll inflation and derive some
conditions to have large non-Guassianity. In Sec. V, we test
our two field inflationary model in confrontation with the
recently released observational data. Finally, we conclude
in Sec. VL

II. THE MODEL

We consider a model of inflation driven by two mini-
mally coupled scalar fields, a scalar field with a canonical
kinetic term and a DBI field, described by the action

M?> 1
S = /\/—_g|:7pl7€—§8”¢3”¢

— 0 =7y = V(d.x) | d*x, (1)

where, R is the Ricci scalar and M, = (82G)~!/? is the
reduced Planck mass. Here, ¢ is the ordinary scalar
field and y is the DBI field, whereas V is the potential
of the model which is a function of both fields. Also,

1 . . .
= ———is the warp factor describing the shape of
4 \V1=f(0)0ax 3y ap & P

the extra dimensions, and f~!(y), which is the inverse
brane tension, is related to the geometry of the throat in the
original DBI framework [46,47].

We consider a spatially flat Friedmann-Robertson-
Walker spacetime:

ds* = —di* + a*(1)5,;dx'dx/, (2)

where a(7) is the scale factor. The equations of motion for
both fields are given by

¢+3Hp+V,;=0, (3)
. 5. 1 . _ _ _
¥+ 3Hy 2)(+§f,;(f M=3y2+2y7+y7V, =0,

(4)

and Einstein’s equations give
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L G S
H _3M51<2¢ —l-f()()(y 1)—|—V>, (5)

where a dot denotes the derivative with respect to the
cosmic time ¢ and a )’ represents the derivative with
respect to the scalar field. Here, H :§ 1s the Hubble
parameter.

Following the notation of slow-roll parameters defined
bye=— % andy = — %z we find these parameters in our
setup as follows:

M§1(3¢2+3?)'(2)
€=~ R
P2y —1)+2V

(7)

_ 2tk PR ERE)
! H + i) |

It is important to note that we have not used the slow-roll
conditions in the calculation of ¢ and 5. Up to now, we
obtained the main equations of this inflationary setup. In
the next section, in order to test this inflationary model, we
study the linear perturbation of the primordial fluctuations.
To this end, we calculate the spectrum of perturbations
produced due to quantum fluctuations of the fields about
their homogeneous background values.

III. LINEAR PERTURBATIONS

Now, we study linear perturbations of the two field
model introduced in the previous section. To this end, we
expand the action up to the second order of fluctuations
within the Arnowitt-Deser-Misner (ADM) formalism in
which we can eliminate one extra degree of freedom of
perturbations at the beginning of the calculation by choos-
ing a suitable gauge.

The space-time metric in the ADM formalism is

ds® = =N?d* + hy;(dx’ + N'dr)(dx/ + Nidr).  (9)

with N being the lapse function and N; the shift vector. By
expanding the lapse function N and the shift vector N,, as
N =1+2® and N' = §9,B, the general perturbed form
of the metric will be obtained. There is no need to compute
N or N; up to the second order, since the second order
perturbation is multiplied by a factor which is vanishing
using the first order solution. We also note that the
contribution of the third order term vanishes. This is
because it is multiplied by a constraint equation at the
zeroth order obeying the equations of motion. Here, 4;; is
written as h;; = a?[(1 —2W)5;; + 27 ;;], where VU is the
spatial curvature perturbation and 7;; is a spatial shear
three-tensor which is symmetric and also traceless. So, the
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above perturbed metric (9) becomes

ds* = —(1 +2®)dr* + 2a(t)B ;dtdx’

+a(0)[(1 = 20)8;; + 2T ldxidxl.  (10)

In what follows, to study the scalar perturbations, we
choose the uniform field gauge, ¢ = 0 (which fixes the
time component of a gauge transformation vector /), and
the gauge 7;; = 0. Finally, by considering the scalar part of
the perturbations at the linear level, the perturbed metric
can be rewritten as

ds®> = —(1 +2®)dr* + 2a(t)B ;dx'dt
a(1)(1 —2W)6;;dx’dx/. (11)

By expanding the action (1) up to the second order in the
perturbations, we obtain

. M.
S, = / dtd*xa’ [—3M§1\If2 + —zpl (2¥ —2H®)d’B
a
M? .
—2-200?V + 6MAHDY
a
Lo 1, 5, 2 172 \ &2
+ 39" o 5 frat - 3MH? )@

2
+ % (8\1/)2] . (12)

Variation of the action with respect to N and N; yields the
following constraints:

1 . 1
a aH

1 (1 1 ., 1 4.,
= = = —3M*H? | ®,
+M§1H (24) tone Sy ol
(13)
1.
d=_—10. (14)

H

Making use of the above results and doing some integra-
tions by parts, the second order action takes the form

a

2
S, = /dtd3xa3W{\I/ ——(6\1/) } (15)
where

b+ i+

W =
2H?

and the sound speed, c% is defined as
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2 (32 %)
C2 _ Mpl(¢ + 144 ) (17)
N Y . o4 "
¢+ri* + frivt
Now, in order to obtain the quantum perturbations of ¥,

one can vary the action (15) and find the equation of motion
of the curvature perturbation, ¥, as follows:

. W\. LK
\I/+<3H+W>\I/+c“,az\1':0. (18)
The solution of this equation, up to the lowest order in the
slow-roll variables gives

iHe—tcSkr
U= 1 +ic.kr). 19
ey ()

By computing the two-point correlation function in our
setup, we are able to study the power spectrum of the
curvature perturbation. The two-point correlation function
of curvature perturbations can be derived by obtaining the
vacuum expectation value at the end of inflation

2

(01T (0.k,)T(0.k2)|0) =5 2 A(20)8 (ky +ky). (20)

where A = 2W

perturbations and is evaluated at c,k =aH (k is the
comoving wave number). Its spectral index can be derived
as follows:

3 is the power spectrum of the scalar

1d 1d
—1=-2¢———Inc;, ———Ine. 21
s “THar " Har "¢ @1
Let us now proceed further to obtain power spectrum of the
gravitational waves in this model. We study the tensor
perturbations of the form

ds* = —dt* + a*(1)(6;; + h]] )dx'dx/, (22)

where /] is transverse and traceless. It is known that /];"
can be written in terms of the two polarization modes, as
hi" = h_ef; + hye};. We choose the normalization for the

two matrices such that in Fourier space,

el (k)el) (—k)* =2, (23)

e (kel (—k)* =2, (24)
and

el (e (=k)" = 0. (25)

In this case the second order action for the gravitational
waves can be expressed as

103511-4



TESTING A TWO FIELD INFLATION BEYOND THE ...
3.3 TG o T
ST: /dtd xa- WT |:h(+) —?(81’1(_'_)) +l’l(><) —?(ah(xﬂ 5
(26)

M?

where Wy = — and ¢7 = 1.
The power spectrum of tensor perturbations, which is

obtained by strategy as performed for the scalar perturba-

tions, is as follows:

H2

AT - 27I2WT ’

(27)

which results the following spectral index of gravitational
waves:
dln AT
nr = =
Y

—2e. (28)

Another important inflationary parameter is the tensor-to-
scalar ratio, which in this model takes the following form

r= % = 16¢,e. (29)

S

This is the consistency relation in this model. Up to this
point, we have calculated the primordial fluctuations in
linear order. In what follows, we explore the non-
Gaussianity of the density perturbations by studying the
nonlinear perturbations.

IV. NONLINEAR PERTURBATIONS
AND NON-GAUSSIANITY

Now, we study the non-Gaussianity of the primordial
density perturbation which is another important aspect of
an inflationary model. It follows that to compute the
amount of non-Gaussianity in specific inflation models
we need to go beyond the linear order perturbation
theory. Since the two-point correlation function of the
scalar perturbations gives no information about the non-
Gaussianity of perturbations distribution, one has to study
higher order correlation functions. The most appropriate
correlation function to study the non-Gaussian feature of
the primordial perturbations is the three-point correlation
function. In order to calculate the three-point correlation
function, the action (1) should be expanded up to the cubic
order in the small fluctuations around the homogeneous
background solution. Note that cubic terms obtained in this
manner result in a change both in the ground state of the
quantum field and also nonlinearities in the evolution. After
expanding the action (1) up to the third order in perturba-
tion, the next step is to eliminate the perturbation parameter
® in the expanded action. By introducing an auxiliary field
Q satisfying the following relation
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Bty g (30)
H My
and
PQ =Wy, (31)

the third order action up to the leading order can be
written as

3IM% a3 1 .
S3:/dtd3x[— 2 €(—2—1>\Il\112
CS CS

1 a*M e (1 AN -
2 2 p 3
+aMple(C%—1)\IJ(8\IJ) + o <C§—1—22>\Il

ae

—-2— xi/(aixy)(a,.g)], (32)

Cy

where the parameters 4 and X are defined as follows

7t 7°
A= 4 — 33
40— fr*e 3(1—fi%): 33
1.
=3 (@ +1i® + friih). (34)

Now, having obtained the third order action, we can
proceed to study the non-Gaussianity of the primordial
perturbations by evaluating the three-point correlation
functions. In order to calculate the three-point correlation
function, we use the interaction picture where H;,, the
interacting Hamiltonian, is equal to the Lagrangian of the
cubic action. The vacuum expectation value of the curva-
ture perturbation for the three-point operator in the con-
formal time interval between the beginning of the inflation,
7;, and the end of the inflation, 7, is given by the following
expression [65-67]:

(W(kp)W (ko)W (ks))

=i [ dral0l[ (k) W) V(). H0): (35)

Solving the integral in the above equation results the
following three-point correlation function of the curvature
perturbation in the Fourier space:

(U(k))¥(k,)¥(ks3))
= (27)38° (ky + Ky + k3) AT Fy (ki ko, k3),  (36)

where A, is the power spectrum of perturbation some time
after the Hubble radius crossing, and
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(271)4

Fylky, ky ks) = g\IJ (37)

We note that, in solving the integral of Eq. (35), we have
used the approximation that the coefficients in the brackets
of the Lagrangian (32) to be constants, because these
coefficients would vary slower than the scale factor.
Furthermore, the parameter Gy, is defined as

3 1 1 1
o3 (1-z)si+3(1-3)=
3 1 22
— (- 38
- ( )83, (38)

in which we have the following relations for the shape
functions S, S, and 83, respectively,

Zk2k2 e Zk%k?, (39)

i>] i#]
1 3 2 21,2 21,3
52:§Zki+?2k1k ——Zklkj, (40)
i i>j i#j
(kikyks)?
83 - T, (41)

and also
K=> k. (42)

It is obvious from Eq. (36) that the three-point correlator
depends on the three momenta k;, k, and k5. There are
several different shapes of non-Gaussianities depending on
these wave numbers satisfying the condition k; + k, +
ks = 0 [68-72]. The simplest one is the so-called local
shape [73-76], which has a peak in the squeezed limit
(k3 — 0 and k; = k,). The second shape corresponds to the
equilateral configuration [77] with a signal at k| = k, = k5.
There is another shape whose scalar product with the
equilateral template vanishes and is called the orthogonal
configuration [78]. A linear combination of the equilateral
and orthogonal templates gives a shape corresponding to
folded triangle [79] with a maximal signal in k; = 2k, =
2k limit. We also note that the orthogonal configuration has
a signal with a positive peak at the equilateral configuration
and a negative peak at the folded configuration. From the
bispectrum Gy of the three-point correlation function of
curvature perturbations, the nonlinear parameter character-
izing the amplitude of non-Gaussianities is expressed by

10 Gy
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As has been stated previously, purely adiabatic Gaussian
perturbations give fy;, = 0; however, the presence of non-
Gaussian perturbations results in deviation from fy;, = 0.
Here, we study the amplitude of non-Gaussianity in the
equilateral and orthogonal configurations. To this end, we
should find the bispectrum Gy, in these configurations. In this

regard, we follow [80-82] and introduce a shape S as
; 12
Sl = 3 381-5). (44)
Moreover, we define another shape which is exactly
orthogonal to Seaull 2 follows:

Sortho _ 12

where f = 1.1967996. Finally, making use of these rela-
tions, the leading order bispectrum (38) can be written in

terms of the equilateral basis, S"", and the orthogonal
basis, SO0 as

Gy = C, 8! 4 ¢, 8ortho, (46)

where C; and C, are coefficients which determine the
magnitudes of the three-point correlation function coming
from equilateral and orthogonal contributions, respectively,
and are defined as

e=1 s (1- ) e+ 5z -3 @)

and

Mo YA
GC="1 [8 <1 c§> 42]' (48)

Here, A and X are defined by Eqgs. (33) and (34), respectively.
Making use of Egs. (44)—(48), and also by definition of the
nonlinearity parameter (43), one can obtain the following
expressions for amplitude of the non-Gaussianity in the
equilateral and orthogonal configurations, respectively:

i 130 1 1
S (36 N ;a) {ﬂ (1 _E) (2+36)
+ o5 (22— 3ﬁ)] geauil (49)

and

140 — 1308 1 A
ortho _ 1—— ortho.
= (o) 5 (1-3) -l o

As has been mentioned previously, the shape function in the
equilateral configuration has a peak in k| = k, = k5 limit,
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and also, the orthogonal shape has a signal with a positive
peak at the equilateral configuration. Thus, the nonlinearity
parameter in both configurations can be rewritten as

; 32511 /1
equil
=—|—=(—=—-1])(2
NL 18 {24(& >( +36)
A

+E(2—3ﬁ)}, (51)

and

10 /65 7\ [1 1 2
ortho __ ~ 7 [ 7~ = _ ) -
NL- g <4ﬂ+6> {8 <1 c§> 42} (52)

Up to this point, we have obtained the main equations of
the two field inflation model. In the following section, we
examine the model in confrontation with Planck 2015 TT,
TE, EE + low P and Planck2015 TTT, EEE, TTE and EET
joint data set to see the consistency of this model. We also
obtain some constraints on the model’s parameters space in
this treatment.

V. OBSERVATIONAL CONSTRAINTS

In previous sections we have calculated the primordial
fluctuations in both linear and nonlinear orders. An infla-
tionary model is successful and viable if its perturbation
parameters are consistent with observational data. So, in
what follows we find some observational constraints on the
parameters space of the model in hand. To this end, we
should firstly define the form of the DBI function f(y).
Usually, f(y), which is related to the geometry of the
throat, is given in terms of the warp factor of the Anti de
Sitter (AdS)-like throat. In the pure AdSs, this function
takes a simple form as f(y) = % [47].

We also emphasize that our method is based on the first
order Hamilton-Jacobi formalism. As we have mentioned,
slow roll is not the only possibility for successfully
implementing models of inflation, and solutions beyond
the slow-roll approximation have been found in particular
situations. In fact, inflation is defined to be a period of
accelerated expansion, (2> 0), indicating an equation of
state in which vacuum energy dominates over the kinetic
energy of the field(s). In the slow-roll limit the expansion of
the Universe is of the de Sitter form, with the scale factor
increasing exponentially in time (H = const, and a « ef).
With constant Hubble distance and exponentially increas-
ing scale factor, comoving length scales that are initially
smaller than the horizon, get rapidly redshifted toward
outside the horizon. In general, the Hubble parameter H is
not exactly a constant, but it varies slowly as the field(s)
evolve along the potential V. A convenient approach to the
more general case is to express the Hubble parameter
directly as a function of the field(s) instead of as a function
of time [62,83-86]. Thus, we continue our analysis by
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reformulating the equations of motion as first order
Hamilton-Jacobi equations, following [20]. We concentrate
on solutions satisfying the following sum separable Hubble
parameter:

As has been suggested by Kinney [62,87], as long as ¢ is a
single-valued function of fields separately, one can express
the Hubble parameter directly as a function of the fields
instead of as a function of time. In this case one can use the
Hamilton-Jacobi formalism to describe dynamics of infla-
tion. For this reason, we use the ansatz (53) in our setup
(see [88,89] for other occasions of the sum separable
Hubble parameter in the literature).

Focusing on a homogeneous universe, the equations of
motion for both ordinary and DBI fields can be written as a
first order Hamilton-Jacobi system as (see Appendix A)

. OH
=-2— 4

. OH
X = —20){@, (55)

where ¢, is the individual sound speed of the DBI field and
is given by

c, = S (56)

\J1+47H,

The above Hamilton-Jacobi equations of motion have the
solutions as follows (see Appendix B):

¢(t) = =2H,t + ¢y, (57)
)(0\/Z
_)(0),‘ +VA G8)

leading to the scale factor as

a(t) = agexp((Ho+ H o)t — H3t* + HyV/AIn(yot + V1)),
(59)

where ¢, and y, correspond to the value of each fields at 7,
(the time at which observable scales exit the horizon).
Furthermore, one can easily obtain the corresponding
potential of the scalar fields by using the Friedmann
equation (5):
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Left Panel: Variations of ¢ versus N for different values of 1. Right Panel: Trajectories in the fields space, originating at

¢o = 10 and y, = 1 and ending at some values on N around N == 65 e-folds of inflation when ¢ = 1.

V(p.x) =3(Hy+ H\p + Hoy)* — 2H3

4 4 2H2 —-1/2
_%[(1— o 2) —1]. (60)
X

After deriving the form of the potential, we explore the
behavior of the tensor-to-scalar ratio versus the scalar
spectral index and the orthogonal configuration versus
the equilateral configuration in the background of the
Planck2015 TTT, EEE, TTE and EET data in order to see
the viability of this theoretical model in confrontation
with the recent observations. We note that in our numerical
study the values of H,, H; and H, are chosen so that for a
defined number of e-folds, the inflation phase terminates

0.08
r

0.06

0.04

0.02

() -1— T T T
0.95 0.96 0.97 0.98

[——N=50 — N=60]

fNL

gracefully. For instance, we have set H, = 107, H, = 0.01
and H, = 0.01. Note also that we considered the case where
inflation is initially driven dominantly by the ordinary scalar
field ¢. The initial values for the two fields are ¢, = 10
and yo = 1.

Figure 1 in the left panel shows variations of the slow-roll
parameter € versus N for different values of 1. For instance,
the condition € = 1 with 1 = 10° is achieved for N = 67. In
the right panel of this figure, the trajectories in the fields
space are depicted. For relatively small values of 4, the field
¢ plays the central role. For large values of A the DBI field
takes more important role in the dynamics of inflation
relative to its role in the case with smaller 4. The left panel
of Fig. 2 shows the behavior of the tensor-to-scalar ratio

60

40

20

0

ortho -2() -

-40 4

-60 4

-80 -

-100

equil

fNL

[——N=50 — N=60 = - ' N=70]

FIG. 2. Tensor-to-scalar ratio versus the scalar spectral index in the background of Planck2015 TT, TE, EE + low P data (left panel)
and the amplitude of the orthogonal versus equilateral configuration of non-Gaussianity in the background of Planck2015 TTT,
EEE, TTE and EET data (right panel). Note that these figures are plotted with N = 50, 60 and 70, for the geometric function of the

DBI field as 4/y*.
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TABLE 1. The ranges of A in which the values of the infla-
tionary parameters r and n; and also, fo° and £ are
compatible with the 95% C.L. of the Planck2015 TT, TE, EE +
low P and Planck2015 TTT, EEE, TTE and EET joint data set,
respectively.

N 7 Versus ng f%r]ldho versus feNqLui
50 20400 < A < 47000 A < 2102800
60 88200 < 4 < 95000 A < 911800
70 not consistent A < 357260

versus the scalar spectral index for inflationary model
with two scalar fields (an ordinary field and a DBI
field) for N = 50, 60 and 70. Our numerical analysis shows
that, although this model is not consistent with the
Planck2015 data set for N = 70, it will be consistent with
observations if 20400 < 4 < 47000 for N = 50 and 88200 <
A < 95000 for N = 60. The behavior of the orthogonal
configuration versus the equilateral non-Gaussianity of this
model is shown in the right panel of Fig. 2. This figure
confirms that in some ranges of the geometric parameter
of the DBI field, that is, 4, it is possible to have large
non-Gaussianity. For instance, for N = 60 and 4 < 911800,
large non-Gaussianity can be realized in this setup. The
ranges of Ain which the values of the inflationary parameters

r and n, and also 3 and f3}" are compatible with the
95% confidence level of the Planck2015 TT, TE, EE + low P
and Planck2015 TTT, EEE, TTE and EET joint data set,

respectively, are shown in Table 1.
Now we derive the form of the scale factor versus the
involving fields in order to depict evolution in the fields
J

PHYSICAL REVIEW D 93, 103511 (2016)
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FIG. 3.

Evolution in fields space for 1 = 10°.

space. Since ‘Z—“ = Hdt, using the sum separable Hubble
parameter (53), it can be written as

da
After integration we have

1n%:/ﬂodt+/%d¢+/%dx, (62)

which results in the following relation:

1 1 4
) = avexp {3 (7 = #7) = 500 = o) fexp {5 a2 am [ + i) ) |
X exp {%(\/)(3 + 42H3 — \/){4 + 4/1H%)} exp {—% AH3 ln<)% (2AH3 + \/ AH3 (x§ + 4/1H%))> } (63)
0

Figure 3 shows the evolution in fields space for 4 = 10°.

VI. CONCLUSION

In this paper we have studied the dynamics of an
inflationary model driven by two scalar fields, an ordinary
scalar field with canonical kinetic term and a DBI field with
noncanonical kinetic term. At first, we have obtained the
main equations of the model. Then, we have studied
the linear perturbations of this inflationary model using
the ADM formalism. By expanding the action of the model
up to the second order in perturbation, we have derived the
two-point correlation functions which result in the ampli-
tude of the scalar perturbation and its spectral index. Also,
by studying the tensor part of the perturbed metric, we have

|

obtained the tensor perturbation and its spectral index as
well. The ratio between the amplitude of the tensor and
scalar perturbations has been obtained in this setup. In order
to study the non-Gaussian feature of the primordial
perturbations in this setup, we have studied the nonlinear
theory in details. To investigate nonlinear perturbation in
the model, one has to expand the action up to the cubic
order in perturbation and calculate the three-point corre-
lation functions. Thus, by using the interacting picture we
have computed the three-point correlation functions and
the nonlinearity parameter in our setup. By introducing the
shape functions as S and S™°, we have obtained the
amplitude of the non-Gaussianity in the equilateral and
orthogonal configurations. We have focused in the limit
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k, = ky = k3, in which both the equilateral and orthogonal
configuration have peak.

After calculating the main perturbation parameters, we
have tested our model with recent observational data. Note
that we have worked beyond the slow-roll approximation,
but we have assumed a separable Hubble parameter. In
other words, since the slow-roll condition can be tempo-
rarily violated during inflation, we have gone beyond this
approximation, and our method is based on the first order
Hamilton-Jacobi formalism, which allows us to express
inflationary parameters in the model, without having to
focus on a slow-roll regime. We have also defined the form
of the DBI function, f(y) in terms of the warp factor of the
AdS-like throat as f(y) = % Then, we have studied this

inflationary model numerically and compared our model
with the recently released observational data. To this end,
we have studied the behavior of the tensor-to-scalar ratio
versus the scalar spectral index in the background of the
Planck2015 TT, TE, EE + low P data and obtained some
constraints on model’s parameters space. Furthermore, by
studying the behavior of the orthogonal configuration
versus the equilateral configuration in the equilateral limit
and in the background of the Planck2015 TTT, EEE, TTE
and EET data, the non-Gaussinaty feature of the primordial
perturbations has been analyzed numerically. In this paper,
we have shown that this inflationary model is observatio-
nally viable in some ranges of the DBI parameter. As an
important result, we have shown that this model allows us
to have large non-Gaussianity that would be observable by
future improvements in experiments. On the other hand, the
trajectories in the fields space have been depicted which
indicate that for relatively small values of 4 the field ¢ plays
the central role in deriving inflation. However, for large
values of 4, the DBI field takes a more important role in the
dynamics of inflation relative to its role in the case with
smaller A.
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APPENDIX A: EQUATIONS OF MOTION IN
HAMILTION-JACOBI FORMALISM

In this appendix we obtain the equations of motion (3)
and (4) in Hamilton-Jacobi formalism. For an ordinary
scalar field the Friedmann equation and the equation of
motion are

1

=3 (37 V), (A1)

and

PHYSICAL REVIEW D 93, 103511 (2016)
¢+3Hp+V,=0, (A2)

respectively. Differentiating Eq. (A1) with respect to time
results in

2HH 4 = % P+ V). (A3)

Using the equation of motion (A2) we can easily simplify
the right-hand side of this relation as

2HH 4 = —H¢*, (A4)
and by substituting back into the definition of the Hubble
parameter in the Friedmann equation, we find the following

two first order equations which are entirely equivalent to
the second order equation of motion (A2)

¢ =—2H,, (A5)
and

3H* =2H% +V, (A6)
which are the Hamilton-Jacobi equations. In our case with

an ordinary scalar field and a DBI field, by differentiating
the Friedmann equation (5) with respect to time, we obtain

A NV - 1
2HH = 5 ((gb +Vy)o+ (ﬁ;‘(’ + 57’3f,;(f_2

FIAP SV ) @)

We can also write
H=Hyp+H,. (A8)

Finally using equations of motion (3) and (4) one can easily
find the following first order equations

¢ =-2H,, (A9)
. 2
7= —;H,X, (A10)
and also
1
3H2:2H2¢+f1<——1)+v. (A11)
) ,

We note that according to definition of ¢, in Eq. (56) it is
obvious that c, = y”, and we have therefore

i =-2c,H, (A12)
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APPENDIX B: DERIVATION OF EQ. (58)

In order to derive Eq. (58), we note that since

OH
y = —2¢c,—, Bl
X x ay (B1)
one should solve the following integral to find y(7)
/ dr = / 1 —i—MH%d (B2)
- 2H 2 ){4 A

PHYSICAL REVIEW D 93, 103511 (2016)

The right-hand side integral cannot be solved analytically.
To find an approximate analytical solution, we can neglect
the unity in comparison with the second term in the square
root (this is reasonable at least for sufficiently large A):

-1 4\H3
= —_ B
/dt 2H2/\/ 7 dy. (B3)
and it follows
1 1 t
—_——— = B4
x() xo VA (B4)
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