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We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling
between geometry and matter. We apply the dynamical system approach to this generalized model and find
that in the cosmological context, different choices of Lagrangian density will apparently result in different
phases of the Universe. By carefully choosing the variables, we prove that there is an attractor solution to
describe the late time accelerating universe when the modified gravity is chosen in a simple power-law form
of the curvature scalar. We further examine the temperature evolution based on the thermodynamic
understanding of the model. Confronting the model with supernova type Ia data sets, we find that the
nonminimally coupled theory of gravity is a viable model to describe the late time Universe acceleration.
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I. INTRODUCTION

Recent astronomical observations consistently tell us
that our universe is undergoing accelerating expansion.
One possible explanation of this accelerating expansion is
the standard Λ cold dark matter (ΛCDM) cosmological
model in the framework of Einstein gravity, containing
dominant dark energy responsible for the cosmic accel-
eration. Another promising way to explain the accelerating
expansion of the universe is to assume that at large scales
Einstein gravity breaks down, and more general actions are
needed to describe the gravitational field. One of these
generalized actions is to replace the standard Einstein-
Hilbert action with an arbitrary nonlinear function of the
Ricci scalar, which is called fðRÞ gravity. fðRÞ generalized
gravity models have been extensively investigated lately,
for a review please see for example [1–3] and references
therein.
The action of the fðRÞ modified gravity theory can be

further generalized by introducing the nonminimal cou-
pling between matter and geometry in the action [4]. The
action of this gravity theory is of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fκf1ðRÞ þ ½1þ λf2ðRÞ�Lg; ð1Þ

where κ ¼ c4=ð16πGÞ, R is the Ricci scalar curvature,
f1ðRÞ and f2ðRÞ are arbitrary functions of R, L is the
matter Langrangian density, and λ is the coupling constant

determining the strength of the interaction between f2ðRÞ
and the matter Lagrangian. Taking f1ðRÞ ¼ R − 2Λ and
λ ¼ 0, (1) returns to the standard Einstein-Hilbert action.
This nonminimal coupling model leads to considerable
cosmological implications, such as the solar system [5] and
stellar dynamics [6], mimicking of dark matter by leading
to the flattening of the galaxy rotation curves [7], the
modeling of the cosmic speed up at late times [8,9], the
reheating scenario after inflation [10] and the virial equi-
librium in galaxy cluster dynamics [11], etc.
In Einstein gravity, different forms of matter Lagrangian

densities like L ¼ p and L ¼ −ρ are perfectly equivalent,
which lead to the same consequences in the gravitational
field equations and the conservation of the energy-
momentum.However in the generalized gravitymodel where
matter is coupled nonminimally with the scalar curvature,
different Lagrangian densities which are classically equiv-
alent do not yield the same gravitational field equations [12].
Depending on the nature of the matter Lagrangian this may
lead to the appearance of an extra force on thematter particles
which makes the motion of particles nongeodesic, but with
an unchanged continuity equation when L ¼ −ρ. Or when
the matter Lagrangian has the form L ¼ p, there is no extra
force on the particles, which implies that the matter particles
follow the geodesics of the background metric, while the
standard continuity equation no longer holds and the matter
energy is not conserved [13].
Recently it was argued that a nonminimal coupling

between the scalar curvature and the matter Lagrangian
density may account for the accelerating expansion of the
Universe [8,9]. In both papers, the authors adopted the
same strategy by assuming a power-law expansion ansatz
a ∼ tβ for the evolution of the scale factor. They chose for
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simplicity the gravity in the forms of f1ðRÞ ¼ R and
f2ðRÞ ∼ Rn and searched for the relation between the
exponent n and β to accommodate the cosmic acceleration.
Asymptotic accelerated universe was obtained in their
solutions, however the thorough exploration is difficult
since their solutions were based on a priori of the scale
factor they assumed. The complete match of the accelerated
expansion of the Universe described by the nonminimal
coupling with observations is still lacking. Comparing to
finding the solution for the cosmological acceleration from
an assumed priori, the dynamical system approach to
nonminimally coupled fðRÞ theories is a better way to
determine the solution of the late time acceleration era in
general models with nonminimal coupling between matter
and geometry. Attempts in this direction can be found in
[14,15], where they fixed the matter Lagrangian density
L ¼ −ρ. It was argued in [14] that the late time acceleration
can only be accommodated in the nonminimally coupled
fðRÞ theory with more complicated assumptions about
f1ðRÞ and f2ðRÞ. In [15], it was confirmed that, assuming
f1ðRÞ ¼ R and f2ðRÞ with a general form, or f1ðRÞ to be
an arbitrary function of R and f2ðRÞ ∼ R, there exists an
attractor solution for the model with nonminimal coupling
between gravity and matter which can explain the late time
accelerating epoch of our Universe. Apart from the success
of finding the late time solutions using dynamical system
approach, in most researches, the effect of the coupling
strength between the matter Lagrangian and gravity on the
acceleration is not analyzed.
In this work we will further investigate the cosmological

dynamics of the modified gravity with a nonminimal
curvature matter coupling. We will provide independent
analysis in favor of different Lagrangian densities. In our
study, we will fix f1ðRÞ ¼ R and choose the form of f2ðRÞ
to be the power function of R. By appropriately choosing
the variables, we will determine the fixed points of the
dynamical system and exhibit the existence of the late time
attractor solution with the simple choice of the modified
gravity to explain the late time acceleration epoch of the
Universe. Furthermore we will examine the radiation
temperature evolution in the presence of the geometry-
matter coupling. Employing the luminosity distance data
from the Union2.1 compilation of type Ia supernovae
observations [16], we constrain our model parameters.
Comparing with the observational data, we will show
the viability of the nonminimally coupled theories of
gravity in the cosmological context.
The organization of the present work is as follows: In

Sec. II, we will briefly introduce the nonminimally coupled
modified gravity model and its field equations. In Sec. III,
by taking particular functional choices of f1ðRÞ and f2ðRÞ,
we will perform a phase space analysis on the modified
gravity theory with nonminimal curvature-matter coupling.
By properly choosing dynamical variables, we will apply
the dynamical system approach to this generalized gravity

model and look for the attractor solution to account for
the late time accelerating expansion. In Sec. IV, we will
examine the temperature evolution in this nonminimally
coupled theory. In the following section, we will confront
the model with the type Ia supernova data sets. The last
section will be devoted to the conclusion.

II. THE MODEL

Variation of the action functional (1) for the nonmini-
mally coupled theory of gravity with respect to the metric
yields the gravitational field equations [13]

½κF1ðRÞ þ λF2ðRÞL�Rμν −
κ

2
gμνf1ðRÞ

¼ ΔμνðκF1ðRÞ þ λF2ðRÞLÞ þ ½1þ λf2ðRÞ�Tμν; ð2Þ

where FiðRÞ≡ f0iðRÞ and the prime denotes the derivative
with respect to the curvature scalar, Δμν ≡∇μ∇ν − gμν□,
Tμν is the matter energy-momentum tensor defined as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÞ
δgμν

: ð3Þ

The trace of (2) reads

½κF1ðRÞ þ λF2ðRÞL�R − 2κf1ðRÞ

¼ −3□½κF1ðRÞ þ λF2ðRÞL� þ
1

2
½1þ λf2ðRÞ�T; ð4Þ

where T is the trace of Tμν. According to the generalized
Bianchi identities, we obtain the noncovariant conservation
law,

∇μTμν ¼
λF2ðRÞ

1þ λf2ðRÞ
½gμνL − Tμν�∇μR; ð5Þ

which can be nonvanishing. This nonconservation can be
interpreted as an energy exchange between geometry and
matter [17].
To study the effect of the nonminimally coupled theory

of gravity in the cosmological context, we need to consider
a flat, homogeneous and isotropic universe by using the
Friedmann-Robertson-Walker metric,

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ; ð6Þ

where aðtÞ is the scale factor. We assume that the matter
content of the universe is described by a perfect fluid with
the energy-momentum tensor,

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð7Þ

where ρ is the energy density, p is the pressure, and uμ is
the four-velocity satisfying uμuμ ¼ −1.
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The tt component of (2) yields the modified Friedmann
equation [13]

H2 ¼ 1

6F
½ρþ λf2ρ − 6H∂tF þ FR − f1�; ð8Þ

where H ≡ _a=a is the Hubble parameter and a dot stands
for a derivative with respect to t, and F≡ κF1 þ λF2L.
The nontrivial ν ¼ t component of (5) yields the energy

conservation equation

_ρþ 3Hð1þ ωÞ ¼ −
λF2

1þ λf2
ðLþ ρÞ _R; ð9Þ

where ω ¼ p=ρ is the equation of state of matter.
In the rest of our discussion, we will take f1ðRÞ ¼ R and

f2ðRÞ ¼ ðR=R0Þn, where R0 is the Ricci scalar today, to
study the dynamical behavior of the system. And we will
express the matter Lagrangian density in terms of the
energy density L ¼ −αρ [13]. We choose either α ¼ 1 so
that the matter Lagrangian density L ¼ −ρ, or α ¼ −ω so
that the Lagrangian density takes the form L ¼ p.

III. DYNAMICAL SYSTEM

Substituting f1ðRÞ ¼ R, f2ðRÞ ¼ ðR=R0Þn and L ¼
−αρ into the modified Friedmann equation (8), we obtain

H2 ¼ 1

6F
½ρþ λf2ρþ 6λαH∂tðF2ρÞ − λαF2ρR�; ð10Þ

and the energy conservation equation (9) can be rewritten in
the form

_ρþ 3Hð1þ ωÞρ ¼ λF2

1þ λf2
ðα − 1Þρ _R: ð11Þ

To study the cosmological dynamics of the model, we
express the modified Friedmann equation (10) into a
dimensionless form by dividing it withH2, which results in

1 ¼ ρ

6FH2
þ λf2ρ
6FH2

þ λα∂tðF2ρÞ
FH

−
λαF2ρR
6FH2

¼ ρ

6FH2
þ λð1 − αnÞf2ρ

6FH2
þ λα∂tðF2ρÞ

FH
: ð12Þ

In order to obtain the solutions of the field equations, we
will employ the appropriate dimensionless variables below,

x ¼ λð1 − αnÞf2ρ
6FH2

; ð13Þ

y ¼ λα∂tðF2ρÞ
FH

; ð14Þ

u ¼ R
6H2

: ð15Þ

We would like to indicate that the choices of these
dimensionless variables are particularly crucial for the
dynamical system analysis in the following, since they
can accommodate the late time attractor solution in the
gravity model as we will show below. The dimensionless
Friedmann equation (12) then becomes 1 ¼ Ωþ xþ y,
where Ω≡ ρ

6FH2 is the matter energy abundance, and we
can regard xþ y as the effective energy abundance due to
the coupling between matter and curvature. u is the scalar
curvature normalized to the Hubble parameter. Because of
the constraint (12), Ω, x, y, and u are not independent. To
investigate the dynamics of the system, we need to find the
equation of motion. for x, y, and u.
Differentiating the modified Friedmann equation (10),

we obtain

6λα∂2
t ðF2ρÞ ¼ 3ð1þ ωÞð1þ λf2Þρþ 6λαH∂tðF2ρÞ

þ 12F _H; ð16Þ

where we have used Eq. (11) and R ¼ 6ð2H2 þ _HÞ given
by the adopted metric (6).
In terms of the variable quantities defined in

Eqs. (13)–(15), we have

_R
RH

¼ 3ð1þ ωÞαnxþ ð1 − αnÞyu
αnx

·
ð1 − αnÞð1 − y − xÞ þ x

ðn − 1Þ½ð1 − αnÞð1 − x − yÞ þ x� − nð1 − αÞx
≡ s

x
: ð17Þ

We are ready to derive the dynamical system using the
variables above. We will introduce a new “time” variable
N ¼ ln a, so that dN ¼ Hdt. Using (16) and (17), and
differentiating x, y, and u with respect to N, respectively,
we obtain the following autonomous system,

dx
dN

¼ 1 − αn
αn

yuþ xy − 2xuþ 4xþ s; ð18Þ

dy
dN

¼ 3ð1þ ωÞð1 − x − yÞ þ 3ð1þ ωÞ
1 − αn

xþ 3yþ y2

þ 2u − yu − 4; ð19Þ

du
dN

¼ us
x
− 2u2 þ 4u; ð20Þ

where

s ¼ 3ð1þ ωÞαnxþ ð1 − αnÞyu
αn

·
ð1 − αnÞð1 − y − xÞ þ x

ðn − 1Þ½ð1 − αnÞð1 − x − yÞ þ x� − nð1 − αÞx : ð21Þ
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The complete dynamics of this cosmological model is
described by these three equations and the constraint (12).
The properties of the dynamical system (18)–(20) depend
on the values of the constants α, n, and ω. They will in
particular affect the existence and the stability of the fixed
points of the system.
In order to study the dynamics of the system, from

dx
dN ¼ 0, dy

dN ¼ 0 and du
dN ¼ 0, we can obtain the fixed points

of the system listed in Table I. After finding all the possible
fixed points, we can further compute the eigenvalues and
determine their stabilities.
In order to determine the properties of the fixed points in

the cosmological context, we need to take into account
some physical quantities in cosmology. An important
parameter used in cosmology is the deceleration parameter,
which is defined as

q≡ −
äa
_a2

: ð22Þ

It can be expressed in the form q ¼ 1 − R
6H2 ¼ 1 − u. Since

our universe is expanding at an accelerated rate, we need to
search for a cosmological model with q < 0, which puts the
requirement that u > 1. The effective equation of state of
the universe reads

ωeff ≡ −1 −
2 _H
3H2

¼ 1 − 2u
3

; ð23Þ

and the accelerating expansion requires a fluid with
negative pressure, satisfying ωeff < −1=3.
Considering the transition from radiation domination to a

later accelerated epoch, one barotropic fluid dominated
saddle point which is for a radiation dominated era or a
matter dominated era is sufficient to depict the dynamical
process before the final attractor describing the universe
acceleration [18]. The saddle point makes sure that the
Universe undergoes radiation or matter domination and is
finally attracted to an accelerating expansion. For the
ΛCDMmodel [18], the dynamical system is satisfied when

there is only one saddle point in the deceleration and in the
late epoch the universe approaches the attractor solution
undergoing an accelerating expansion, which is in con-
sistent with observations.
Now we turn to the analysis of the fixed points listed in

Table I in the cosmological context. First we choose α ¼ 1
in the matter Lagrangian density, namelyL ¼ −ρ. We show
that our model is consistent with observations before the
late time acceleration. Thus in the radiation and matter
dominated eras, our model should be consistent with
the standard observational cosmology, with ω ¼ 1=3 and
q ¼ 1 for the radiation era and ω ¼ 0 and q ¼ 1=2 for the
matter era. We obtain the stability of the fixed points in
the radiation era in Table II. u ¼ 0 ensures the effective
equation of state ωeff ¼ 1=3, the deceleration parameter
q ¼ 1 and Ω ¼ 1, indicating the radiation dominance. In
the radiation era, we would have a saddle point so that the
universe will evolve through this era. The fixed points R1
and R2 can meet this requirement. Their stability depends
on the value of n.
For the matter dominant phase, the universe is filled with

a perfect fluid composed of nonrelativistic dust particles
with ω ¼ 0. The effective equation of state should be
ωeff ¼ 0 and the deceleration parameter needs to satisfy
q ¼ 1=2 to ensure the matter dominance with Ω ¼ 1. The
only possible fixed point candidate satisfying all these
requirements in the matter dominated era is M1 in Table II.
It is stable when 0 < n < 1, or unstable provided that n < 0
or n > 1. n is the exponent of the curvature scalar in f2ðRÞ.
Therefore, the matter domination will not be the final state.
Now let us examine whether this model can provide us a

universe with late time accelerating expansion. Suppose the
universe is still filled with perfect fluid composed of
nonrelativistic dust particles with ω ¼ 0. We find that
the fixed point D3 in Table II can be stable when n < 0
or n > 1, which can serve as an attractor solution. We get
the effective equation of state ωeff ¼ ð1þ 3nÞ=ð3 − 3nÞ
and the deceleration parameter q ¼ ð1þ nÞ=ð1 − nÞ.
Taking n > 1 or n < −1, we can have the acceleration
of the universe with q < 0. If jnj tends to infinity, q will
approach −1 and the effective equation of state will
approach −1, so that the universe will approach the
asymptotic de Sitter phase. jnj approaching infinity is an
extreme case, other values of n can also accommodate the
late time acceleration in the model. Therefore, for n > 1 or
n < −1, we find that the Universe undergoes radiation
and matter domination which are unstable fixed points in
the phase space and is finally attracted to the accelerating
expansion.
Then we choose α ¼ −ω so that the nature of the matter

Lagrangian density has the form L ¼ p. We obtain the
stability of the fixed points satisfying all requirements in
Table III. In the radiation era, R2 is always a saddle point,
while for R1, whether it is a stable or saddle point depends
on the value of n. For the matter dominant phase, M1 is

TABLE I. The fixed points of the dynamical system.

Fixed points x y u

1 0 1 0
2 0 −1þ 3ω 0
3 5 − 5

nα
−4 0

4 −2þ5nαþ3ω
−1þnα

1−4nα−3ω
−1þnα

0
5 0 0 1

2
ð1 − 3ωÞ

6 1 0 −1þ4nαþ3ω
−2þ2nα

7 1 − 1
nα

0 2
8 2 − 2

nα
−1 2

9 2 − 2
nα

3ð1þ ωÞ 2
10 −2þ4nαþ3ω

−1þ2nα
1−2nα−3ω
−1þ2nα

nαð−2þ4nαþ3ωÞ
ð−1þnαÞð−1þ2nαÞ
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stable when 0 < n < 1 and unstable when n < 0 or n > 1.
For the late time era, the fixed points D3 is always a stable
point, while D4 and D5 can be stable when n < 0. For D1,
D2, and D3, the matter density fraction Ω ¼ 1 − x − y

cannot be negative, so n < 0. We find that when n < 0,
neither radiation nor matter domination will be the final
state, the universe will be attracted to the acceleration era.
In the late time, the dominant component of the universe is

TABLE II. The fixed points of dynamical system and their stability in different eras with L ¼ −ρ.

Radiation era

Fixed point ½x; y; u� ω ¼ 1=3 Stability

R1 ½0;−1þ 3ω; 0� [0,0,0] Stable: 0 < n < 1,
Saddle: n < 0 or n > 1

R2 ½5 − 5
nα ;−4; 0� ½5 − 5

n ;−4; 0� Stable: −35þ 16
ffiffiffi
5

p
≤ n < 1,

Saddle: n < 0 or n > 1

Matter era

Fixed point ½x; y; u� ω ¼ 0 Stability

M1 ½0; 0; 1
2
ð1 − 3ωÞ� ½0; 0; 1

2
� Stable: 0 < n < 1,

Unstable: n < 0 or n > 1

Late time acceleration era

Fixed point ½x; y; u� ω≃ 0 Stability

D1 ½2 − 2
nα ; 3ð1þ ωÞ; 2� ½2 − 2

nα ; 3; 2� Saddle for all
D2 ½1; 0; −1þ4nαþ3ω

−2þ2nα � ½1; 0; 4n−1
2n−2� Unstable: 1

2
< n < 1,

Saddle: n < 1
2
or n > 1

D3 ½−2þ4nαþ3ω
−1þ2nα ; 1−2nα−3ω−1þ2nα ; nαð−2þ4nαþ3ωÞ

ð−1þnαÞð−1þ2nαÞ� ½2;−1; 2n
−1þn� Saddle: 0 < n < 1,

Stable: n < 0 or n > 1

TABLE III. The fixed points of dynamical system and their stability in different eras with L ¼ p.

Radiation era

Fixed point ½x; y; u� ω ¼ 1=3 Stability

R1 ½0;−1þ 3ω; 0� [0,0,0] Stable: 0 < n < 1,
Saddle: n < 0 or n > 1

R2 ½5 − 5
nα ;−4; 0� ½5þ 15

n ;−4; 0� Saddle for all

Matter era

Fixed point ½x; y; u� ω ¼ 0 Stability

M1 ½0; 0; 1
2
ð1 − 3ωÞ� ½0; 0; 1

2
� Stable: 0 < n < 1,

Unstable: n < 0 or n > 1

Late time acceleration era

Fixed point ½x; y; u� ω≃ 0 Stability

D1 ½2 − 2
nα ; 3ð1þ ωÞ; 2� ½2þ 2

nω ; 3; 2� Saddle for all
D2 ½1 − 1

nα ; 0; 2� ½1þ 1
nω ; 0; 2� Saddle for all

D3 ½2 − 2
nα ;−1; 2� ½2þ 2

nω ;−1; 2� Stable for all
D4 ½1; 0; −1þ4nαþ3ω

−2þ2nα � ½1; 0; 4nωþ1
2nωþ2

� Stable: n < 0,
Saddle: n > 0

D5 ½−2þ4nαþ3ω
−1þ2nα ; 1−2nα−3ω−1þ2nα ; nαð−2þ4nαþ3ωÞ

ð−1þnαÞð−1þ2nαÞ� ½2;−1; 2nω
1þnω� Stable: n < 0,

Saddle: n > 0
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nonrelativistic matter with ω≃ 0. For the fixed points D1,
D2, and D3, one must set jnj ≫ 1 in order to avoid the
divergence in x. Similarly, for D4 and D5, though ω≃ 0
would not lead to divergence, the requirement u > 1 which
guarantees the accelerated expansion of the universe also
demands that jnj ≫ 1. Therefore, when L ¼ p, we always
need jnj ≫ 1.
In Fig. 1, we show the phase-space trajectories for the

universe evolution described by the modified gravity with
nonminimally gravitational coupling to matter. We see that
the dynamics of the universe can evolve passing the saddle
points such as R1 in the radiation era and D2 in the
acceleration period and finally approaching the final
attractor solution D3. For the unstable point in the matter
dominated epoch M1, we see that trajectories for the
universe evolution will detour around it but will not pass
through it. This does not mean that the universe will not
undergo a matter dominated epoch. In the two-dimensional
projection figure we mark the matter dominated region
between the dashed lines and see that all trajectories for the
universe evolution pass through this matter domination
region and finally converge to D3. Comparing with most of
cosmological models, it is not so surprising that we here
again find only one saddle point corresponding to the
radiation dominated era in the deceleration of the universe.
On the other hand the only unstable fixed point of the
dynamic system in the matter dominated era deserve further
studies. Whether this unstable point appears due to the
choice of dynamical variables or it might indicate some
problems of this model, for example whether the model can
accommodate long enough matter dominated period for the
structure formation, are questions we need to answer in the
future.

We have shown that the modified nonminimally coupled
gravity theory with f2ðRÞ in terms of the power law of the
curvature scalar can accommodate the late time acceler-
ation epoch of the universe. Our result obtained through
dynamical system analysis confirms the solutions based on
the studies assuming an specific ansatz about the scale
factor of the universe [8,9]. The universe described by this
model can finally enter the epoch of accelerated expansion.

IV. RADIATION TEMPERATURE

The thermodynamic interpretation of the generalized
gravity theories with geometry-matter coupling in the
framework of the irreversible thermodynamics of open
systems was introduced in [19], where the generalized
conservation equations in the gravitational theories were
interpreted from a thermodynamic point of view as describ-
ing the irreversible matter creation processes. According to
the second law of thermodynamics, the matter creation
corresponds to an irreversible energy flow from the
gravitational field to the created matter constituents.
More discussions in this direction can be found in
Refs. [20–22].
In this spirit, the energy conservation equation (9) reads

_ρþ 3Hðρþ pÞ ¼ Γðρþ pÞ; ð24Þ

where Γ can be interpreted as the particle creation rate in
the thermodynamic explanations, which can be expressed
in the form

Γ≡ −
1

ρþ p
d
dt

ln½fLðR;LÞ�ðLþ ρÞ; ð25Þ

R1 0,0,0

M1 0,0,0.5

D2 1,0,2

D3 2, 1,2

2

4

x

4

2

0

y

0.0

0.5

1.0

1.5

2.0

u

R1 M1 0,0 D2 1,0

D3 2, 1

x y 0

x y 0.5

y

x

0 1 2 3 4 5
5

4

3

2

1

0

FIG. 1. Phase-space trajectories for the universe evolution described by the modified gravity with nonminimal gravitational coupling
to matter, where we choose L ¼ −ρ and n ¼ −100. We have also shown the projection plot. The point D3 is the global attractor where
all lines converge.

AN, XU, WANG, and GONG PHYSICAL REVIEW D 93, 103505 (2016)

103505-6



where fðR;LÞ ¼ κf1ðRÞ þ ½1þ λf2ðRÞ�L in our model
and the subscript in (25) stands for the derivative with
respect to L.
Substituting fLðR;LÞ ¼ 1þ λf2ðRÞ and L ¼ −αρ into

(25), we have the particle creation rate

Γ ¼ α − 1

1þ ω

d
dt

ln½1þ λf2ðRÞ�: ð26Þ

When the matter Lagrangian takes the form L ¼ p, during
radiation era, the universe was filled with a perfect fluid
composed of relativistic particles ω ¼ ρ=p ¼ 1=3 and
α ¼ −ω ¼ −1=3, so that

Γ ¼ −
d
dt

ln½1þ λf2ðRÞ�: ð27Þ

For the matter Lagrangian L ¼ −ρ, we have α ¼ 1 which
leads to the zero creation rate Γ.
With the help of the thermodynamic relations, we obtain

the temperature evolution of the particles as [23]

_T
T
¼ ðΓ − 3HÞ ∂p∂ρ : ð28Þ

In the radiation dominated era, where radiation has pressure
p ¼ ρ=3, one finds

_T
T
¼ −

_a
a
þ Γ

3
: ð29Þ

This equation can be rearranged as

T ¼ T0

�
a0
a

�
exp

�
−
1

3

Z
t0

t
Γðt0Þdt0

�
; ð30Þ

or equivalently

T ¼ T0ð1þ zÞ exp
�
1

3

Z
z

0

Γðz0Þ dt
0

dz0
dz0

�
; ð31Þ

where a0 and T0 are the present values of the scale factor
and of the radiation temperature, respectively.
Taking L ¼ −ρ, Γ ¼ 0, (31) returns to T ¼ T0ð1þ zÞ.

While for the Lagrangian L ¼ p, we have nonzero creation
rate (27). Substituting (27) into (31), we have the temper-
ature evolution in the generalized gravity models with
geometry-matter coupling

T ¼ T0ð1þ zÞ
�
1þ λf2½RðzÞ�
1þ λf2½Rð0Þ�

�
−1
3

: ð32Þ

Here we can clearly see the effect of the strength of
coupling between matter and geometry, which was
hidden in the previous dynamics system analysis. Taking
f2ðRÞ ¼ ðR=R0Þn, we obtain the temperature of the
radiation

T ¼ T0ð1þ zÞ
�
1þ λ½RðzÞ=Rð0Þ�n

1þ λ

�
−1
3

: ð33Þ

If there is no coupling between matter and geometry,
λ ¼ 0, so that Γ ¼ 0, which results in the temperature-
redshift relation T ¼ T0ð1þ zÞ. This is identical to the
evolution of the radiation temperature in the standard
Einstein relativity in equilibrium and is consistent with
the observations. If there is coupling between matter and
geometry, the strength of the coupling will influence the
radiation temperature evolution. Besides the coupling, we
see in (33) that the power law parameter n is also
involved in the temperature evolution if there is matter-
geometry coupling.

V. OBSERVATIONAL CONSTRAINT

In this section we will constrain the parameters in our
model. When L ¼ p, we have α ¼ −ω. In the late time,
the universe is filled with nonrelativistic matter particles
with ω≃ 0, which requires n to be negative and jnj ≫ 1
as discussed above. This makes the numerical integration
of the system difficult, thus we will only investigate the
case L ¼ −ρ. To constrain the model parameters, we
confront our model to observations. Theoretically we
have shown that the power law parameter n in the
modified gravity will influence the late time acceleration,
since it can modify the values of the effective equation of
state and the deceleration parameter. On the other hand,
the analysis in the last section implies that the influence
of the nonminimal coupling to the evolution of radiation
temperature depends on the form of the matter
Lagrangian. For L ¼ −ρ, the particle creation rate van-
ishes and the radiation temperature is not affected by the
coupling. Thus we focus on the observations probing the
expansion history of our universe.
We can clearly see in (10) that the luminosity distance

is influenced by both the form of f2ðRÞ, which in our
model is parameterized by the index n, and the coupling
strength λ, due to the modification of Hubble parameter.
From the dynamical system (18)–(20) we can calculate
the H-z relation which deduce the theoretically luminos-
ity distance relation. Therefore, in the analysis we take
the measurements of luminosity distance from the type Ia
supernova observations [16]. The χ2L of the luminosity
distance reads

χ2Lðn; λÞ ¼
Xk
i¼1

�
μobsðziÞ − μcalðzi; n; λÞ

σi

�
2

; ð34Þ

where μobsðziÞ and μcalðzi; n; λÞ are the observed and
theoretically calculated luminosity distance, respectively.
k represents the number of data points and σi is the
uncertainty in the observed data.
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The likelihood function L is defined as

L ¼ exp

�
−
χ2L
2

�
; ð35Þ

In the analysis we sample n in the range ½−30;−1� and λ in
[0.001, 0.227]. In Fig. 2 we present the 68% and 95% con-
fidence contour plots of the normalized likelihood L in the
ðn; λÞ plane.
In Fig. 3, We plot the evolution of luminosity distance for

n ¼ −10 and λ ¼ 0.057, which lies in the 1σ confidence
region in the parameter space, and compare them with the

observational data sets. It is clear that the generalized
gravity model with geometry and matter coupling can fit
the observations well.

VI. CONCLUSIONS

In this work, we have employed the dynamical system
approach to investigate the generalized gravity model with
geometry-matter coupling. We have learned that when
matter is coupled explicitly to gravity the Lagrangian
densities describing perfect fluid composed of different
particles are not equivalent. Moreover in the cosmological
context, we have shown that different choices of
Lagrangian density will apparently result in different
phases of the universe. This is one more evidence showing
that different Lagrangian densities are not equivalent when
there is coupling between matter and geometry.
In the nonminimally coupled theories of gravity, for

the simple choices of free functions f1ðRÞ ¼ R and
f2ðRÞ ∼ Rn, we obtained a solution accommodating late
time accelerating expansion of the universe by dynamical
system approach. This is a systematic method to find
solutions of the dynamics in general modified gravity
theories without assuming particular forms of solution or
initial conditions a priori. Our results confirmed previous
solutions derived from some specific, a priori assump-
tions [8,9].
Following the thermodynamic understandings of the

generalized gravity theories with geometry-matter cou-
pling, we further investigated the evolution of radiation
temperature in the model. Comparing the theoretical
prediction of the model with the measurement of the
luminosity distance, we constrained the model parameters
n and λ when the Lagrangian density L ¼ −ρ. We found
that the nonminimally coupled theory of gravity is com-
patible with current observations. Taking the model param-
eter n < −5, the radiation dominated fixed point R1 is a
saddle point, the matter dominated fixed point M1 is
unstable and the accelerating fixed point D3 is stable, so
the model not only accommodates the usual radiation and
matter dominant epoch, but also has an attractor corre-
sponding to late time accelerated expansion. In [24], the
authors studied the nonminimally coupled generalized
modified gravity model and obtained the conditions
required for the absence of tachyon instabilities and ghost
degrees of freedom. In particular, they found that one can
avoid the Dolgov-Kawasaki instability if n < 0, which is
compatible with our constraint.
For the universe filled with the matter Lagrangian

L ¼ p, the dynamical analysis can also accommodate
the universe to evolve from the radiation to matter domi-
nated phase and finally settle down in the late time
acceleration. However for this Lagrangian, when the late
time universe is filled with nonrelativistic matter so that
α ¼ −ω → 0, the exponent parameter n is no longer free
and it is required to approach negative infinity.

n

30 25 20 15 10 5
0.00

0.05

0.10

0.15

0.20

FIG. 2. Confidence contours. The solid and dashed lines
represent the 68% and 95% confidence regions, respectively.
The “þ” corresponds to n ¼ −10 and λ ¼ 0.057.
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FIG. 3. The luminosity distance–redshift relation. The red
curve represents the modified gravity model for n ¼ −10 and
λ ¼ 0.057.
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In [25] it was argued that the fðRÞ gravity with the
inverse power law of the Ricci scalar is grossly inconsistent
with cosmological observations although it can pass the
supernova test. The reason for this fðRÞ gravity was ruled
out for viable cosmology is that it cannot supply the long
enough matter dominated period for the structure forma-
tion. Whether this problem can be overcome in the model
with nonminimally coupling between gravity and matter is
an open question and worth pursuing.
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