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We explicitly confirm that spatially flat nonsingular bouncing cosmologies make sense as effective
theories. The presence of a nonsingular bounce in a spatially flat universe implies a temporary violation of
the null energy condition, which can be achieved through a phase of ghost condensation. We calculate the
scale of strong coupling and demonstrate that the ghost–condensate bounce remains trustworthy
throughout, and that all perturbation modes within the regime of validity of the effective description
remain under control. For this purpose we require the perturbed action up to third order in perturbations,
which we calculate in both flat and co-moving gauge—since these two gauges allow us to highlight
different physical aspects. Our conclusion is that there exist healthy descriptions of nonsingular bouncing
cosmologies providing a viable resolution of the big-bang singularities in cosmological models. Our results
also suggest a variant of ekpyrotic cosmology, in which entropy perturbations are generated during the
contracting phase, but are only converted into curvature perturbations after the bounce.
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I. INTRODUCTION

Almost a hundred years ago the discovery that the
universe is expanding brought about a major paradigm
shift in cosmological thinking: the universe is not static and
eternal, but it evolves and consequently it has a history. But
the expansion of the universe also brought with it a whole
series of puzzles, the most famous one being the big bang
singularity. Indeed, the equations of general relativity,
together with certain assumptions about the matter content
of the universe (in particular that it should obey the null
energy condition, which is the assumption that the sum of
energy density ρ and pressure p is positive) imply that the
current expanding phase must be preceded by a singularity
at which the spacetime curvature blows up and where
general relativity predicts its own breakdown [1]. A general
expectation is that quantum effects, and in particular
quantum gravity, will be able to resolve this singularity
and shed light on the physics of the big bang—a recent
attempt in this direction is, for instance, provided by [2].
However, there remains the interesting possibility that the
big bang might already be resolved at the classical level, via
a relaxation of the assumptions inherent in the singularity
theorems. For example, one can obtain nonsingular sol-
utions in which the universe bounces instead of crunches
when the null energy condition is violated [3–5]. Such
solutions are of great intrinsic interest, but one may also
hope that they capture salient features of quantum resolved
singularities (an example of this is provided by [6,7]).

Regardless of whether that will turn out to be the case, these
solutions are appealing because they allow physical phe-
nomena to remain fully calculable, all the way through the
bounce. This is of obvious interest for cosmology, as it
allows one to ask questions such as: could there have been a
phase of cosmological evolution before the expanding
phase (that is, before the big bang)? If so, what can we
find out about this pre-expansion phase? How does it
influence the post-bounce evolution?
These questions must be addressed within the context of

particular models. It was long believed, for example, that
violations of the null energy condition go hand in hand with
the appearance of ghosts. If this were the case, the theory
would be subject to a fatal growth of instabilities, and its
solutions would not be trustworthy. In recent years, new
matter models have been discovered, for example, the ghost
condensate [8] and Galileons [9–11], which in certain
circumstances allow for violations of the null energy
condition without the appearance of ghosts. This is already
very encouraging, but nevertheless other instabilities might
appear under such extreme conditions. In this context, it is
important to realize that these matter models are formulated
as effective theories. In order to determine their reliability it
is, therefore, crucial to know their range of validity. This is
the topic of the present paper—to find out when the effective
description is valid, and when it is not. This turns out to be
directly related to the cosmological questions alluded to
above. In particular, we want to answer the question: can a
specific class of smooth, nonsingular bounces be trusted—
not only at the classical level but when fluctuations in the
associated scalar fields and metric are included?
In this paper, we will focus on bounces caused solely by

a ghost condensate. We do this because not only do such
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models have the crucial property of allowing for ghost-free
violations of the null energy conditions, but they are
technically much simpler than pure Galileon models and
mixed Galileon/ghost condensate theories. Also, ghost
condensate bounces have been used in several cosmologi-
cal models of interest, starting with the preinflationary
model of Creminelli et al. [12] and the new ekpyrotic
cosmology of Buchbinder et al. [3] (see also [4]), and even
have been found useful in quantum cosmology [13].
Furthermore they can be embedded into supersymmetry
[14] and supergravity [15–17]. Specifically, in the first part
of [17] we constructed classical bounce cosmologies
based on a single real scalar field whose kinetic terms
are a ghost condensate coupled to a generalized third-order
(L3) Galileon. The scalar also possessed a potential energy
of the ekpyrotic type. We analyzed the classical dynamics
of this system in a flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) spacetime. We then went on to show that
theories of this type can be generalized to N ¼ 1 local
supersymmetry. However, in this paper we will focus solely
on the nonsupersymmetric theory. Furthermore, for speci-
ficity and simplicity, we will also set the coefficient of the
Galileon term to zero—that is, we will consider a scalar
field with a pure ghost condensate kinetic term and an
ekpyrotic potential in flat FLRW spacetime. To make this
paper as self-contained as possible, we review the non-
supersymmetric part of [17] in the beginning of the next
section—focusing specifically on the classical bounce
solution arising from a pure ghost condensate.
Having presented this nonsingular, classical bouncing

cosmology, we recognize that it is essential to discuss both
scalar and metric linearized perturbations in this back-
ground. This analysis is required to ensure that these
perturbations do not develop large amplitudes that could
disrupt the evolution of the bounce. In previous work with
L. Battarra [18], we investigated linearized perturbation
theory for nonsingular ghost condensate bounces where a
(subdominant) Galileon term was also added. We demon-
strated that long-wavelength comoving curvature perturba-
tions pass through ghost condensate bounces essentially
unchanged. This remains true despite the fact that during
the bounce phase the speed of sound squared c2s becomes
negative. For long-wavelength modes one can argue that
the bounce occurs on a length/time scale that is so short
that this cannot possibly influence the long-wavelength
modes that are relevant for observations in ekpyrotic
models. However, this same argument suggests that short-
wavelength modes—that is, modes whose wavelengths
are much shorter than the scale of the bounce–can grow
significantly during the bounce phase. This leads to the first
of three important questions. The first is:

(i) Can the growth of these short subhorizon comoving
curvature modes disrupt the bounce?

The quadratic action for the comoving curvature perturba-
tion contains terms that are proportional to 1=H, whereH is

the Hubble rate. At the bounce, the Hubble rate passes
through zero and, thus, there is an apparent singularity.
However, it was shown in [18] that this is really only
“apparent.” An appropriate analysis reveals that the quad-
ratic action is actually completely well-behaved and non-
singular through the bounce. However, in determining the
validity of the effective theory we will have to calculate the
action to cubic order in fluctuations. This will again contain
terms involving inverse powers of the Hubble rate. This
leads to the second important question:
(ii) Will the 1=H terms in the cubic action just be

“apparent” singularities, or do they signal the
breakdown of the perturbative description?

Within the context of inflation and the calculation of non-
Gaussianities, the cubic action for perturbations has been
calculated for a wide range of models, including ghost
condensate models [19]. The actions typically contain terms
that are proportional to 1=c2s , that is, terms that are inversely
proportional to the speed of sound squared. As described
above, the speed of sound squared becomes negative in the
vicinity of the bounce, implying that it passes through zero
both before and after the bounce. Hence, there is a third
important question:
(iii) It would appear that the cubic action becomes infinite

at the moments when c2s ¼ 0, signaling the break-
down of the effective theory. Is this true—or are these
singularities only “apparent,” disappearing upon
careful calculation of the cubic action?

We emphasize that all of the conclusions—and
questions—just presented remain true even in the case
when the coefficient of the Galileon term is set to zero.
Again, to make this paper as self-contained as possible, we
will review the above theory and questions in the second
part of the next section—focusing specifically on both
scalar and metric linearized perturbations within the spe-
cific context of the classical bounce solution arising from a
pure ghost condensate.
Having specified the results in [17] and [18] within the

context of the pure ghost condensate theory, the bulk of this
paper is devoted to examining this theory so as to answer all
three of the above puzzles. We do this by calculating
the strong coupling cutoff of the ghost condensate theory.
We show that it can be significantly above the scale of the
bounce—so that the bounce solution can be trusted—while
still being lowenough so that thedangerous shortwavelength
modes described above lie outside the range of validity of
the effective theory. Hence, these modes can be disregarded.
We also find that apparent singularities in the cubic action
can be resolved by a careful calculation of the perturbative
action. Our conclusion will be: there exist healthy descrip-
tions of nonsingular bounces, which can be used to replace
the big bang singularity in cosmological models.
Finally, we note that the notation used in [17] and [18] is

not entirely uniform. Furthermore, some of the notation
used in those papers does not conform with more
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“standard” notation in the cosmological literature. In order
to make this paper completely consistent throughout, we
use a uniform, standard notation in all of the following
analysis. The relation of this notation to that used in [17]
and [18] should be self-evident.

II. THE COSMOLOGICAL MODEL

The bounce model we consider in this paper consists of a
single real scalar field ϕ with noncanonical kinetic terms
and a potential VðϕÞ. It is identical to the model discussed
in our two previous papers [17,18] on bouncing cosmology,
with the important exception that—for simplicity—we
have set to zero the contribution from the Galileon term.
In “natural” units—defined by 8πG ¼ M−2

P ¼ 1, whereMP
is the “reduced” Planck mass—the Lagrangian is given by

L ¼ ffiffiffiffiffiffi−gp �
R
2
þ PðX;ϕÞ

�
; ð1Þ

where R is the Ricci scalar and

PðX;ϕÞ ¼ κðϕÞX þ qðϕÞX2 − VðϕÞ ð2Þ
with X ≡− 1

2
gμν∂μϕ∂νϕ. Since there are at most single

derivatives acting on fields in the Lagrangian, it is clear that
the equations of motion will be of second order. The
explicit forms of the functions κ, q, V are chosen as follows.
First, we take the kinetic function κðϕÞ to be equal to

unity everywhere except as it approaches the origin of ϕ,
where it smoothly switches sign; becoming −1 precisely at
ϕ ¼ 0. We use the specific form

κðϕÞ ¼ 1 − 2

ð1þ 2κ̄ϕ2Þ2 ; ð3Þ

where κ̄ denotes a parameter that controls the width in field
space over which the kinetic term switches sign. This form
is chosen so as to allow for a simple supersymmetric

extension—see [17]. The function qðϕÞ controls the
strength of the term that is the square of the ordinary
kinetic term. It is chosen to interpolate between 0 and a
positive constant q̄ in precisely the same interval where the
ordinary kinetic term switches sign. We take

qðϕÞ ¼ q̄
ð1þ 2κ̄ϕ2Þ2 ; ð4Þ

where, again, we have chosen a functional form that allows
for a simple supersymmetric extension. It is crucial that this
function is already nonzero when κðϕÞ passes through zero,
otherwise a singularity would develop at this point. Both
functions κðϕÞ and qðϕÞ are illustrated in Fig. 1(a) for the
choice

κ̄ ¼ 1

4
ð5Þ

which, for specificity, we will employ for the remainder of
this paper. We should emphasize that the specific functions
written out above are chosen for convenience of super-
symmetrization only—there is, in general, considerable
freedom in their choices and, in particular, the functional
forms of κ and q need not be related in as simple a manner
as they are in our example. What is important, however, is
that at ϕ ¼ 0 the kinetic part of PðX;ϕÞ simply be

PðX; 0Þ ¼ −X þ q̄X2; ð6Þ

that is, the canonical form for the “ghost condensate” [8]. It
follows that in an interval containing ϕ ¼ 0 the so-called
null energy condition (NEC) is violated, thus enabling a
“bounce” from a contracting to an expanding spacetime.
Momentarily restoring mass dimensions in the Lagrangian
density (2), we see that q̄ has mass dimension−4. It follows
that the ratio of the horizon length at the bounce to the

FIG. 1. Graphs of the functions entering the scalar field Lagrangian. (a) The blue curve shows κðϕÞ while the yellow curve shows
the normalized function qðϕÞ=q̄, both with κ̄ ¼ 1=4. (b) The ekpyrotic potential (9) with V0 ¼ 100, λ ¼ 3, ϕek−end ¼ 15, cðϕÞ ¼ 3. The
ekpyrotic phase starts at large positive ϕ, with the field rolling down the potential towards smaller values of the field. Around ϕek−end the
potential starts to come back up to zero, and is irrelevant from then on. In this model, the bounce occurs at small values, ϕ ≈ 0.
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“reduced” Planck length is ∼MPq̄1=4. In order for the
horizon length to be sufficiently “classical,” we want this
ratio to be

MPq̄1=4 ≳ 102; ð7Þ
corresponding to a horizon mass of at most order
1016 GeV. Returning to natural units, we henceforth, for
specificity, take the horizon mass to be exactly order
1016 GeV and, therefore, choose

q̄ ¼ 108: ð8Þ

The potential function VðϕÞ is taken to be an ekpyrotic
potential [20] of the form

VðϕÞ ¼ −V0vðϕÞe−cðϕÞϕ; ð9Þ
where V0 is a positive constant, cðϕÞ is a slowly varying
function of ϕ, with cðϕÞ > ffiffiffi

6
p

over a significant field
range, and vðϕÞ is a function chosen so that the potential
turns off for ϕ < ϕek−end. One can take, for example,
vðϕÞ ¼ 1

2
½1þ tanhðλðϕ − ϕek−endÞÞ� for some positive con-

stant λ—see Fig. 1(b).
Throughout this paper, we will take the spacetime

background to be a flat FLRW universe. In “physical”
time t the metric is given by

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj: ð10Þ
Wewill denote derivatives with respect to the (background)
physical time by _≡ d

dt. The equations for the energy
density, pressure and the field ϕ are given by

3H2 ¼ ρ ¼ 2XP;X − P; ð11Þ
_H ¼ −

1

2
ðρþ pÞ ¼ −XP;X; ð12Þ

0 ¼ P;ϕ − P;Xðϕ̈þ 3H _ϕÞ − P;XXϕ̈ _ϕ2 − P;Xϕ
_ϕ2: ð13Þ

These equations were analyzed in [17], where we found that
at large positive values of ϕ the universe starts to undergo an
ekpyrotic contraction phase. During this phase, the kinetic
term is approximately canonical and the universe contracts
slowly. For c >

ffiffiffi
6

p
in the potential (9), the equation of state

of the scalar field satisfies w ¼ p=ρ > 1—thus suppressing
anisotropies [21].Aroundϕ ¼ ϕek−end, the potential bottoms
out and rises back up to zero. At that time, the universe goes
over into a kinetic phase; that is, a phase where the energy
density is dominated by the kinetic energy of the scalar
field and the potential becomes irrelevant. Subsequently,
the ordinary kinetic term switches sign while the higher-
derivative term proportional to X2 is switched on simulta-
neously. The effective ghost condensate (P ∼ −X þ q̄X2)
leads to a brief violation of the NEC, such that the universe
undergoes a “bounce” at small values ofϕ from a contracting
to an expanding phase. After the bounce, the universe is in a
standard expanding phase, where the kinetic term once again
becomes canonical. We are assuming that reheating takes
place around the time of the bounce, and that this causes the
universe to become filledwith radiation. Theordinary hot big
bang cosmological model follows.
Figures 2–3 present an explicit numerical example of the

bounce phase. Here, and in the remainder of this paper, we
will choose for convenience and specificity the initial
conditions for our differential equations to be1

FIG. 2. (a) The scale factor around the time of the bounce as a function of physical time t minus tb, where tb denotes the time of the
bounce (HðtbÞ≡ 0). Our numerical evaluation starts at ϕ0 ¼ 17=2 with _ϕ0 ¼ −10−9, a0 ¼ 1 and H0 is determined by the Friedmann
equation. We are using the parameters κ̄ ¼ 1=4, q̄ ¼ 108. The figure shows a zoom-in on the most interesting time period, namely that of
the bounce. One can clearly see that the bounce is smooth. (b) The evolution of the scalar field ϕ during the bounce phase. The
approximately linear evolution near ϕ ¼ 0 corresponds to the ghost condensate phase which is responsible for the bounce.

1These initial conditions are equivalent to those used in our
earlier papers [17,18], but where _ϕ0 is rescaled in accordance
with the rescaling of the ghost condensate mass from q̄ ¼ 1 to
q̄ ¼ 108. We also point out that, given that a0 ¼ 1, the time
derivative of ϕ takes the same numerical value in physical time,
conformal time and harmonic time at that initial moment.
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ϕ0 ¼
17

2
; _ϕ0 ¼ −10−9; a0 ¼ 1: ð14Þ

The numerical evaluation is started after the ekpyrotic
phase has come to an end; that is, at the time when the
kinetic phase is underway and about to go over into the
bounce phase. As the figures show, a smooth bounce is
obtained during the time period that the NEC is violated.
Furthermore, we note from Fig. 2(b) that during the time
that the NEC is violated, the scalar field evolves almost
exactly linearly with time—this is a characteristic feature of
ghost condensation. A detailed analysis in [17] shows that
during the bounce period, when the scalar field reaches its
highest velocity, our effective field theory treatment
remains consistent and applicable. We conclude that a
smooth, singularity free solution of the “classical” field
equations of Lagrangian (2) corresponding to a bounce
from a contracting to an expanding flat FLRW spacetime
exists and is trustworthy.

But what about quantum fluctuations in the scalar field
and the metric? Could such fluctuations have pathologies
that preclude a consistent, singularity free bouncing cos-
mology? A study of the quantum perturbations of the scalar
field and the scalar components of the metric in this class of
bounce spacetimes was carried out in [18]. Specifically, we
addressed the question of the evolution of gauge invariant
comoving curvature perturbations of various wavelengths
through the nonsingular bounce cosmology presented
above. To keep the notation in this paper consistent, we
will analyze the results in [18] using “natural” units and the
Lagrangian density given in Eqs. (2)–(5). We will also
choose the constant q̄ ¼ 108 as specified in (8) above.
The linearized (Fourier space) equation for the gauge

invariant curvature perturbation R is given by [17,18]

R̈þ
�
2
_z
z
þH

�
_Rþ c2s

k2

a2
R ¼ 0; ð15Þ

where k denotes the comoving wave number (k=a thus
being the physical wave number) and we use the definitions

z2 ¼ a2
Σ
H2

; ð16Þ

Σ ¼ P;XX þ 2P;XXX2; ð17Þ

c2s ¼
P;XX
Σ

: ð18Þ

The quantities c2s and z2 are plotted in Fig. 4. We note that
z2 appears as the coefficient of the kinetic term of R in the
perturbed action at quadratic order [17] (this action will be
rederived in Sec. IV) and, thus, its positivity is essential to
ensure the absence of ghosts. The plot in Fig. 4(a) confirms
the positivity of z2 and thus the absence of ghost fluctua-
tions in this background spacetime. However, z2 blows up

FIG. 3. The sum of energy density and pressure during the
bounce phase. When this quantity goes negative, the null energy
condition is violated. This is a necessary condition for a non-
singular bounce in a flat FLRW universe, as is clear from
inspecting Eq. (12).

FIG. 4. (a) Evolution of z2 and (b) of the speed of sound squared in the nonsingular bounce background. The positivity of z2

demonstrates the absence of perturbative ghost fluctuations, while the brief period over which c2s becomes negative indicates the
presence of a gradient instability.
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at the bounce since the denominator of (16) passes through
zero when H ¼ 0. Thus at the moment of the bounce the
equation of motion for R becomes singular. This singu-
larity turns out to be entirely harmless, but it motivated us to
analyze the fluctuations in this bouncing spacetime in a
manifestly nonsingular manner in our earlier paper [18].
Figure 4(b) shows the time evolution of the speed of sound
squared c2s . During the phase where the NEC is violated, c2s
becomes negative, which is a signal of a gradient instability.
Thus the last term in Eq. (15) switches sign, and will admit
growing (as opposed to oscillatory) solutions. For long-
wavelength modes (small k) one may argue that this effect
can be ignored, but for short-wavelength modes (large k)
one may fear that the perturbation modes become amplified
to such an extent as to disrupt the background evolution. In
order to circumvent the singularity of z2 and to investigate
the behavior of the curvature perturbations across the
bounce, we performed a calculation in harmonic gauge
in [18], where the evolution of the curvature perturbations
is entirely nonsingular. For completeness, we repeat some
of the main results here. As just stated, it is useful to adopt
harmonic gauge, in which the coordinates satisfy the
defining relation

Γμ ¼ gρσΓμ
ρσ: ð19Þ

For the background, this relation can be satisfied by
choosing a “harmonic” time coordinate th defined by

dt ¼ aðthÞ3dth: ð20Þ
It follows that the flat FLRW metric becomes

ds2 ¼ −aðthÞ6dt2h þ aðthÞ2δijdxidxj ð21Þ

while the associated background scalar field is

ϕ ¼ ϕðthÞ: ð22Þ
The specific classical bounce solution discussed above is
easily reexpressed in harmonic time. We then write the
generic linearized scalar perturbations of our background
fields as

ds2 ¼ −a6ð1þ 2AÞdt2h þ 2a4B;idthdxi

þ a2½ð1 − 2ψÞδij þ 2E;ij�dxidxj; ð23Þ

ϕ ¼ ϕðthÞ þ Φðth; xÞ; ð24Þ

where, for the sake of clarity, metric and scalar field
perturbations are written in boldface. Furthermore, if one
chooses the constraints

0 ¼ A0 þ 3ψ 0 þ k2ðE0 − a2BÞ; ð25Þ

0 ¼ ða2BÞ0 þ a4ðA − ψ þ k2EÞ ð26Þ

where 0 ≡ d
dth
, then the perturbed metric continues to satisfy

condition (19). This defines the “harmonic” gauge for the
perturbation calculation.
The differential equations, the initial conditions and

numerical solutions for the perturbation variables A, B,
ψ ,E andΦ in harmonic gauge were completely analyzed in
[18]. Using these results, and the definition

R≡ ψ þH
ϕ0 Φ; ð27Þ

we obtained singularity free expressions for the comoving
gauge invariant perturbations R as they enter from the
contracting phase, pass through the bounce, and then exit
into the expanding phase. This was accomplished for a
wide range of initial parameters in the classical effective
field theory—including a nonzero Galileon term. For the
initial parameters being used, for specificity, in this paper—
that is, no Galileon term and

κ̄ ¼ 1

4
; q̄ ¼ 108; ϕ0 ¼

17

2
;

ϕ0
0 ¼ −10−9; a0 ¼ 1 ð28Þ

the results are plotted in Fig. 5 for comoving wave
numbers k in the range 10−12–10−6, alongside a plot of
the horizon size.
The long-wavelength modes k ¼ 10−12, 10−11, 10−10 are

super-horizon at all times except in the close vicinity of the
bounce. Hence they can be described classically. These
modes can be seen in Fig. 5(a) to remain constant to high
precision, and show explicitly that the bounce occurs on a
time scale that is too short to affect them. This means, in
particular, that the modes of interest for cosmological
perturbations—that is, modes that left the horizon about
50 to 60 e-folds earlier during the ekpyrotic phase and thus
corresponding to wave numbers k ∼ 10−30—pass through
the bounce unchanged. This was the main finding in [18]
and is of crucial importance in comparing the predictions of
bouncing cosmologies to observations. For k ¼ 10−9, 10−8,
10−7 one can see from Fig. 5(b) that these modes leave the
horizon only shortly before the bounce. For these wave
numbers a classical description is still fairly appropriate,
and they are also little affected by the bounce.
We strongly emphasize, however, that one cannot simply

ignore the behavior of shorter-wavelength modes. For
modes with k≳ 10−6 the negativity of c2s during the bounce
phase becomes increasingly relevant—see Fig. 6 which
shows examples of the behavior of short-wavelength modes
during the brief time period when the NEC is violated.
These short-wavelength modes remain subhorizon into the
NEC violating phase (of course, right near the bounce all
modes become briefly superhorizon since 1=jHj momen-
tarily blows up) and thus a classical description is inappro-
priate. However, as Fig. 6 shows, these modes become
increasingly amplified. For instance, the mode with
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k ¼ 10−4 gets amplified by about 10 orders of magnitude,
while the mode with k ¼ 10−3 gets amplified by nearly
100 orders of magnitude. Such an enormous amplification
makes one wonder whether these modes render a classical
description of the background bouncing spacetime untrust-
worthy. In other words, a large amplification of short-
wavelength modes may be interpreted as significant
particle production—this can potentially invalidate the
bounce solution, which was obtained by solving the equa-
tions of motion in the absence of such additional matter.
Even though the numerical solutions shown in the

figures were obtained via calculations in harmonic gauge,
we explicitly demonstrated in [18] that the results are gauge
invariant, as they should be. Thus, instead of calculating ψ
and Φ first (as above), we may obtain an estimate for the
amplification by analyzing directly the equation of motion
(15) for the curvature perturbation R, which leads to the
approximate solution

Rpostbounce ∼ exp

�
k
Z
c2s<0

jcsj
a

dt

�
Rprebounce

∼ ek=k⋆Rprebounce: ð29Þ

For the classical background considered here, numerical
integration gives k⋆ ≃ 9 × 10−5. This equation thus gives a

quasianalytic explanation for the results shown in Fig. 6.
More specifically, it indicates that the amplitudes for
shorter wavelength modes—that is, modes with wave-
lengths always smaller than the horizon (but larger than
the Planck length)—grow exponentially. Naively, this dra-
matic growth seems to imply that the effective field theory
and, hence, the bounce solution become wildly unstable at
these scales—perhaps negating the validity of the non-
singular classical bounce discussed above. It is the purpose
of the present paper to prove that this is not the case and that a
smooth bounce solution exists—even including its scalar
and metric perturbations.

III. STRONG COUPLING SCALE

The theories we are interested in are effective theories.
As such, they are only valid up to some energy scale Λ at
which the fluctuations become strongly coupled. At this
energy scale quantum corrections to the theory become
large, and we cannot trust the tree level theory any further.
Going to even higher energies would require an ultraviolet
extension of the theory. However, crucially, for energies
below the cutoff scale the predictions of the effective theory
remain valid. One can determine the strong coupling scale
by comparing the size of the coefficients of the cubic action
for fluctuations to those of the quadratic action—keeping in

FIG. 5. (a) The evolution of the comoving curvature perturbationRk for various comoving wave numbers k in the range 10−12–10−6,
in the bouncing background of Figs. 2–4 and expressed as a function of harmonic time th, with th;b denoting the time of the bounce. This
figure is adapted from [18]. The initial conditions for the perturbations are chosen to correspond to the Bunch-Davies state appropriate
for superhorizon perturbations, in particular Rk ∝ k−3=2. Long-wavelength modes evolve essentially unchanged across the bounce.
(b) The horizon size 1=jHj (in black) vs. the various physical wavelengths a=k of the perturbation modes. Modes with wave numbers
k ≤ 10−7 leave the horizon before the bounce, while shorter wavelength modes remain subhorizon throughout. The red dotted line
corresponds to a wavelength a factor of 2 smaller than the minimum horizon size reached during the bounce phase. Its significance will
become clear in Sec. III.

NONSINGULAR BOUNCING COSMOLOGY: CONSISTENCY … PHYSICAL REVIEW D 93, 103501 (2016)

103501-7



mind that one loop corrections to scattering processes are
determined by the cubic vertex. Therefore, the strong
coupling scale does not just tell us where the classical
description becomes hard to analyze, it also tells us the
scale at which quantum corrections will strongly modify
the theory itself. The physics occurring at energy scales
above the strong coupling scale may be of great interest, but
requires the use of a more complete theory with a higher
cutoff scale. We will not attempt such an analysis in
this paper.

A. Lagrangian of PðX;ϕÞ form
As discussed above, in this paper we consider theories

with a matter Lagrangian of the PðX;ϕÞ form, where
X ≡− 1

2
gμν∂μϕ∂νϕ denotes the ordinary kinetic term of a

scalar field ϕ of mass dimension 1. This is minimally
coupled to gravity, with the full action given by

S ¼
Z

dtd3x
ffiffiffiffiffiffi−gp �

M2
P

2
Rþ PðX;ϕÞ

�
: ð30Þ

Note that, henceforth, we no longer use “natural” units but,
rather, explicitly display all masses—such as the reduced
Planck mass MP. Hence, for example, the functions κðϕÞ
and qðϕÞ have mass dimensions 0 and −4, respectively.
This will be the case for the remainder of the paper. This

class of theories includes the description of ordinary scalar
fields with potentials, but also allows for ghost condensates
and bounces. It is most convenient to employ the Arnowitt-
Deser-Misner (ADM) decomposition of the metric,

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð31Þ

where N represents the lapse function, Ni the shift and hij
the metric on spatial slices of constant time. The action may
then be written as

S ¼ 1

2

Z
dtdx3

ffiffiffi
h

p �
NðM2

PR
ð3Þ þ 2PðX;ϕÞÞ

þM2
P

N
ðKijKij − K2Þ

�
; ð32Þ

where Rð3Þ is the three-dimensional Ricci scalar formed
from hij and where the extrinsic curvature is defined as

Kij ¼
1

2
_hij − 1

2
Ni;j − 1

2
Nj;i þ Γk

ijNk: ð33Þ

We are interested in determining the scale at which strong
coupling occurs—that is, we are interested in determining
the cutoff of the models under consideration, in order to
assess the validity and reliability of particular solutions. We
will focus on scalar perturbations here. In the Appendix we

FIG. 6. (a) The curvature perturbation modes Rk near the time of the bounce, expressed as functions of physical time t. The initial
conditions for these subhorizon modes are taken to correspond to the early time limit of the Bunch-Davies state, in particular
Rk ∝ k−1=2. The period of NEC violation extends from about t ¼ −8000 to t ¼ þ14000, as can be seen from Fig. 3. During this time
period short modes with wave number k ≥ 10−5 are seen to be amplified significantly. (b) The same plot, but with an expanded vertical
scale. The mode with wave number k ¼ 10−3 (and thus with a physical wavelength more than 3 orders of magnitude smaller than the
minimum horizon size) is seen to be amplified by almost 100 orders of magnitude near the bounce.
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will treat vector and tensor perturbations, which turn out to
have no influence on the bouncing solution. For the scalar
perturbations, there is as always the question of which
gauge to use. In our previous paper [18] dealing with
linearized perturbation theory, we found it convenient to
work in harmonic gauge. However, in the present paper,
where we need to derive the cubic action in fluctuations,
harmonic gauge is too cumbersome. We have, in fact, found
it convenient to use both “flat” gauge (used throughout
Sec. III) and “comoving” gauge (used throughout Sec. IV),
depending on which physical aspect we want to highlight.
We will start our calculation in flat gauge where the

spatial metric hij ¼ aðtÞ2δij is kept fixed (by choosing
the appropriate time and space reparametrizations of the
coordinates) as the spatial section of a flat FLRW universe.
The remaining scalar perturbations are defined as

ϕ ¼ ϕðtÞ þ φðt; xiÞ; ð34Þ

N ¼ 1þ αðt; xiÞ; ð35Þ
Ni ¼ ∂iβðt; xiÞ: ð36Þ

The constraints arising from varying the shift and lapse
functions are

M2
PR

ð3Þ þ 2P − 4P;XX −M2
P

N2
ðhikhjlKijKkl − K2Þ ¼ 0;

ð37Þ
�
1

N
ðhjlKil − Kδi

jÞ
�
jj
¼ 0; ð38Þ

where jj denotes a covariant derivative with respect to the
three-dimensional metric hij and K ¼ hijKij. At linear
order, which is all we will need, the constraints are given by

α ¼
_ϕ

2M2
PH

P;Xφ ð39Þ

1

a
∂2β ¼

�
1

2M2
PH

P;ϕ þ
_ϕ

2M4
PH

2
PP;X − _ϕ3

4M4
PH

2
P2
;X − _ϕ2

2M2
PH

P;Xϕ þ
_ϕ5

4M4
PH

2
P;XP;XX

�
φ

þ
�
− _ϕ

2M2
PH

P;X − _ϕ3

2M2
PH

P;XX

�
_φ; ð40Þ

where ∂2 ¼ δij∂i∂j is summed only over spatial indices and where in the constraint for β we have already used (39) to
replace α. The action in flat gauge and at quadratic order in fluctuations is given by

Sð2Þ ¼
Z

dtd3xa3
�
1

2
_φ2½P;X þ P;XX

_ϕ2� − 1

2a2
P;Xð∂φÞ2

þ φ2

�
1

2
P;ϕϕ þ

3 _ϕ2P2
;X

8M2
P

þ
_ϕP;XP;ϕ

2M2
PH

þ
_ϕ4P3

;X þ _ϕ6P2
;XP;XX

8M4
PH

2
þ P2

;X
_ϕ ϕ̈

2M2
PH

þ PP2
;X
_ϕ2

8M4
PH

2
þ 3P;XP;XX

_ϕ3ϕ̈

2M2
PH

þ 9P;XP;XX
_ϕ4

8M2
P

þ P;XP;XXP _ϕ4

8M4
PH

2
þ P2

;XX
_ϕ5ϕ̈

4M2
PH

þ P;XϕP;XX
_ϕ5

4M2
PH

þ P;XP;XXX
_ϕ5ϕ̈

4M2
PH

þ P;XP;XXϕ
_ϕ5

4M2
PH

− 1

2
P;Xϕϕ̈ − 1

2
P;XXϕ

_ϕ2ϕ̈ − 1

2
P;Xϕϕ

_ϕ2 − 3

2
P;XϕH _ϕ

��
: ð41Þ

The speed of propagation (speed of sound) cs of the fluctuations can be read off from the ratio of spatial to time derivative
terms,

c2s ¼
P;X

P;X þ P;XX
_ϕ2

: ð42Þ

The quadratic action shows that for an ordinary scalar field with P ¼ X, the canonically normalized perturbation variable is
φ. Note that the perturbation in the shift function (β) simply does not appear here, and the perturbation in the lapse (α) has
been eliminated via the constraint equation.
At cubic order, the action is given by
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Sð3Þ ¼
Z

dtd3xa3
�
_φ3

�
1

2
_ϕP;XXþ

1

6
_ϕ3P;XXX

�
þ _φ2φ

�
− _ϕP2

;X

4M2
PH

−2 _ϕ3P;XP;XX

M2
PH

− _ϕ5P;XP;XXX

4M2
PH

þ1

2
P;Xϕþ

1

2
_ϕ2P;XXϕ

�

þ _φφ2

� _ϕ3P3
;X

4M4
PH

2
− _ϕ2P;XP;Xϕ

2M2
PH

þ1

2
_ϕP;Xϕϕþ

5 _ϕ5P2
;XP;XX

8M4
PH

2
−
_ϕ4P;XP;XXϕ

2M2
PH

þ
_ϕ7P2

;XP;XXX

8M4
PH

2

�

þφ3

�
1

6
P;ϕϕϕþ

_ϕP;XP;ϕϕ

4M2
PH

þ3 _ϕ3P3
;X

8M4
PH

− _ϕ5P4
;X

16M6
PH

3
þ

_ϕ4P2
;XP;Xϕ

8M4
PH

2
−
_ϕ3P;XP;Xϕϕ

4M2
PH

− _ϕ7P3
;XP;XX

8M6
PH

3
þ

_ϕ6P2
;XP;XXϕ

8M4
PH

2
− _ϕ9P3

;XP;XXX

48M6
PH

3

�
þ

_ϕP;X

4a2H
φ½∂2β∂2β−β;ijβ

;ij�þφ2∂2β

� _ϕ2P2
;X

4M2
PaH

þ 1

2a
_ϕP;Xϕ−P;XP;XX

_ϕ4

4M2
PaH

�

þφð∂φÞ2
�
− _ϕP2

;X

4M2
Pa

2H
− 1

2a2
P;Xϕþ

P;XP;XX
_ϕ3

4M2
Pa

2H

�
− _φ∂φ∂β1

a
½P;Xþ _ϕ2P;XX�− 1

2a2
_ϕP;XX _φð∂φÞ2

�
: ð43Þ

We are now ready to analyze various special cases of interest.

B. Example of a canonical scalar field

First, as a check on our formalism, we want to determine the strong coupling scale for a scalar field with an ordinary
kinetic term plus a potential, PðX;ϕÞ ¼ X − VðϕÞ. For this case, the quadratic and cubic actions simplify to

Sð2þ3Þ ¼
Z

dtd3xa3
�
1

2

�
_φ2 − 1

a2
ð∂φÞ

�
þ φ2

�
− 1

2
V;ϕϕ −

_ϕV;ϕ

M2
PH

− V _ϕ2

2M4
PH

2

�
− _φ2φ

�
_ϕ

4M2
PH

�
þ _φφ2

�
_ϕ3

4M4
PH

2

�

þ φ3

�
−V;ϕϕϕ

6
− _ϕV;ϕϕ

4M2
PH

þ 3 _ϕ3

8M4
PH

− _ϕ5

16M6
PH

3

�
þ

_ϕ

4a2H
φ½∂2β∂2β − β;ijβ

;ij� þ φ2∂2β

�
_ϕ2

4M2
PaH

�

− φð∂φÞ2
�

_ϕ

4M2
Pa

2H

�
− _φ∂φ∂β 1

a

�
; ð44Þ

while the constraint reduces to

1

a
∂2β ¼ − 1

2M2
PH

�
V;ϕ þ

_ϕ

M3
PH

V

�
φ − _ϕ

2M2
PH

_φ: ð45Þ

The quadratic action shows that φ is already the canonically
normalized perturbation variable. One could, in principle,
simplify the action further using integrations by parts.
However, the main features are already clear in the present
form; that is, if we define the slow-roll/fast-roll parameter

ϵ≡− _H
H2

; ð46Þ

then we have that _ϕ=H ¼ ffiffiffiffiffi
2ϵ

p
MP. The parameter ϵ is

typically of order Oð10−2Þ −Oð102Þ, where this range
encompasses a free scalar, a massive scalar and typical
inflationary and ekpyrotic models as well. One can see that
all terms in the cubic action (including those involving β)
have coefficients that are of this order or smaller (some

terms are suppressed by additional factors of _ϕ, which we
take to be smaller than the Planck scale in magnitude).
The cutoff of the theory is determined by comparing the

terms with the highest number of derivatives at quadratic
and cubic order, since at high energies the terms with the
most derivatives are the most relevant ones. Writing the
dominant terms as

Sð2þ3Þ ⊃
Z

dtd3xa3
�
1

2
_φ2 − _φ2φ

�
_ϕ

4M2
PH

�
þ � � �

�
ð47Þ

≡
Z

dtd3xa3
�
1

2
_φ2 − 1

2Λs
_φ2φþ � � �

�
; ð48Þ

we can see that the strong coupling scale Λs of an ordinary
scalar field minimally coupled to gravity is given by

Λs ¼
2HM2

P

_ϕ
¼

ffiffiffi
2

ϵ

r
MP: ð49Þ
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That is, the cutoff is near the Planck scale—as intuitively
expected.

C. Example of a pure ghost condensate

Another interesting example is provided by ghost con-
densate models, which can be used to model accelerated
expansion and, with slight modifications, cosmic bounces.
Let us first concentrate on the pure ghost condensate case,
which allows for eternal “self-accelerated” solutions
despite the absence of a potential. The simplest model
consists in choosing the matter Lagrangian function to be
PðX;ϕÞ ¼ −X þ q̄X2, where q̄ is a constant of mass
dimension −4. In a homogeneous FLRW background,
the scalar equation of motion is given by

d
dt
ða3P;X

_ϕÞ ¼ 0: ð50Þ

The ghost condensate solution corresponds to P;X ¼ 0—
that is, X ¼ 1=ð2q̄Þ. For this solution, the null energy
condition (NEC) is marginally satisfied since the sum of
energy density and pressure is zero,

ρþ p ¼ 2XP;X ¼ 0: ð51Þ

It follows that the energy density is given by

ρ ¼ 2XP;X − P ¼ 1

4q̄
: ð52Þ

Thus 1=ð4q̄Þ may be regarded as the energy density of the
ghost condensate. If we now compare the quadratic and
cubic _φ terms, evaluating them on this ghost condensate
background (at P;X ¼ 0), we find the surprisingly simple
result

Sð2þ3Þ ¼
Z

dtd3xa3
�
_φ2 þ q̄1=2 _φ

�
_φ2 − 1

a2
ð∂φÞ2

�

− 2

a
_φ∂φ∂β

�
; ð53Þ

where, for definiteness we have chosen the positive sign
_ϕ ¼ þ ffiffiffī

q
p

. Almost all terms are vanishing due to the fact that
P;X ¼ 0 at ghost condensation. In particular, the coefficient
of ð∂φÞ2 vanishes, indicating that the speed of sound of
fluctuations is zero around the ghost condensate2. The
expression for the variation in the shift is also very simple,

1

a
∂2β ¼

ffiffiffiffiffi
12

p

MP
_φ: ð54Þ

It demonstrates that ∂2β is of the same order as _φ. Given this
relationship between β and φ, we may infer that _φ∂φ∂β ∼
_φφ∂2β in magnitude. It follows that the term involving β in
the cubic action has a coefficient of order 1 and is, therefore,
subdominant regarding the determination of the strong
coupling scale. Taking into account that the constraint for
the lapse function (39) also implies that α ∝ P;X ¼ 0 on the
ghost condensate solution,we discover an important feature:
the metric perturbations decouple from the scalar field
perturbations to the extent that the ghost condensate scale
q̄−1=4 is separated from the Planck scale MP. In the cubic
Lagrangian, the term involving _φ3 is then the dominant term.
In order to determine the strong coupling scale, we must
compare its magnitude to that of the _φ2 kinetic term. We
obtain the canonical normalization of the fluctuation field φ
by rescaling it to φ≡ 1ffiffi

2
p χ. It follows that we may write the

dominant terms in the action at quadratic and cubic order as

Sð2þ3Þ ⊃
Z

dtd3xa3
�
1

2
_χ2 þ 1

2

�
q̄
2

�
1=2

_χ3 þ � � �
�

ð55Þ

≡
Z

dtd3x
1

2
a3
�
_χ2 þ 1

Λ2
gc
_χ3 þ � � �

�
: ð56Þ

There is an overall 1
2
a3 factor multiplying the two relevant

terms in the Lagrangian, which simply cancels out of their
ratio. Then the strong coupling scale Λgc is given by

Λgc ¼
�
2

q̄

�
1=4

: ð57Þ

Therefore, the energy density of the background, ρ ¼
1=ð4q̄Þ, and the strong coupling energy scale, Λ4

gc ¼ 2=q̄,
are close together—with the background energy density
being smaller by a factor of 8. This order-of-magnitude
difference is very important, since it allows the ghost
condensate solution to (just) lie within the regime of validity
of the effective theory.Below, however,wewill show that this
difference in energy scales can be increased through the
inclusion of a potential.

D. Ghost condensate bounces

Above, we analyzed the simplest model of a ghost
condensate, where the ghost condensate solution applies
at all times. However, in a realistic cosmological context we
are interested in the situation where the ghost condensate
occurs only over a brief period of time, during which a
smooth bounce may occur. This can be achieved by
considering theories of the form

PðX;ϕÞ ¼ κðϕÞX þ qðϕÞX2 − VðϕÞ; ð58Þ
where the functions κðϕÞ, qðϕÞ can be chosen such that
they turn the ghost condensate on and of—such as those

2We note that one often considers the addition of higher
derivative terms ∼ð□ϕÞ2 which then contribute a k4 term to the
dispersion relation, see for example the discussions in [3,12].
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presented in (3), (4) and Fig. 1 in Sec. II. In such a situation,
the onset of ghost condensation is determined by the
condition P;X ¼ 0. At that moment, it follows from (42)
that the speed of sound cs vanishes. Immediately afterwards,
when P;X turns negative, the null energy condition starts
being violated (since the sum of the energy density and
pressure is given by ρþ p ¼ 2XP;X). The onset of NEC
violation is themost crucial moment for at least two reasons.
First, previous treatments within the context of inflation led
to cubic actions containing terms proportional to 1=c2s ,
naively indicating a singularity when c2s vanishes. We will
return to this point later on. Second, during the bounce
phase, the energy density of the background becomes small.
This follows from the Friedmann equation 3M2

PH
2 ¼ ρ and

the fact thatH ¼ 0 at the bounce. Thus, any effects from the
strong coupling regime are alleviated during the bounce
phase. Also, before the null energy condition is violated, we
do not expect any troublesome effects, so that the most
stringent constraints may be expected right at the interface
between NEC preservation and the bounce phase. For these
reasons, the strong coupling scale may be determined by
looking at the action at quadratic and cubic order at the
moment when P;X ¼ 0. The result is that

Sð2þ3ÞjP;X¼0 ¼
Z

dtd3xa3
�
1

2
_φ2½P;XX

_ϕ2�þ _φφ½ _ϕP;Xϕ�

þφ2

�
1

2
P;ϕϕ

�
þ _φ3

�
1

2
_ϕP;XXþ

1

6
_ϕ3P;XXX

�

þ _φ2φ

�
1

2
P;Xϕþ

1

2
_ϕ2P;XXϕ

�
þ _φφ2

�
1

2
_ϕP;Xϕϕ

�

þφ3

�
1

6
P;ϕϕϕ

�
þφ2∂2β

�
2

a
_ϕP;Xϕ

�

−φð∂φÞ2
�
1

2a2
P;Xϕ

�
− _φ∂φ∂β1

a
½ _ϕ2P;XX�

−
1

2a2
_ϕP;XX _φð∂φÞ2

�
; ð59Þ

while the constraint is given by

1

a
∂2βjP;X¼0 ¼

�
1

2M2
PH

P;ϕ −
_ϕ2

2M2
PH

P;Xϕ

�
φ

−
�

_ϕ3

2M2
PH

P;XX

�
_φ

¼ − ρ;ϕ
2M2

PH
φ −

�
_ϕ3

2M2
PH

P;XX

�
_φ: ð60Þ

Notice that, at thismoment, the coefficient of ð∂φÞ2 vanishes
again, so that the speed of sound cs is zero. Nevertheless,
since our formalism does not contain any 1=c2s factors, it is
evident that the perturbative action remains perfectly non-
singular andwell-behaved. The dominant terms in the action

are once again the _φ2 and _φ3 terms, as can be guessed from
the treatment of the pure ghost condensate in the previous
section. This can also be verified numerically for the bounce
solutionswe are interested in here. The strong coupling scale
is inferred by first normalizing the quadratic action via the
redefinition φ≡ ðP;XX

_ϕ2Þ−1=2χ, so that the dominant quad-
ratic and cubic terms can be written as

Sð2þ3Þ ⊃
Z

dtd3xa3
�
1

2
_χ2þ1

2

P;XX
_ϕþ 1

3
P;XXX

_ϕ3

ðP;XX
_ϕ2Þ3=2 _χ3þ���

�

ð61Þ

≡
Z

dtd3x
1

2
a3
�
_χ2 þ 1

Λ2
_χ3 þ � � �

�
: ð62Þ

We can then read off the strong coupling scale Λ, with the
result that

Λ ¼ ðP;XXÞ3=4 _ϕ
ðP;XX þ 1

3
_ϕ2P;XXXÞ1=2

≈ ðP;XXÞ1=4 _ϕ: ð63Þ

This scale should now be compared to the energy density of
the background at that time, which is ρ ¼ −P. Using the
condition thatP;X ¼ 0, which impliesX ¼ −κðϕÞ=ð2qðϕÞÞ,
it follows that

Λ4 ¼ 2κ2

q
; ρ ¼ κ2

4q
þ VðϕÞ ð64Þ

where the functions κ, q and V are evaluated at ϕ for which
P;X ¼ 0. In the absence of a potential, we recover the same
result as for the pure ghost condensate; namely that the
energy density of the background is a factor of 8 smaller than
the strong coupling energy density. Thus, once again, the
bounce solution just fits into the regime of validity of the
effective theory. However, we now see that this (slightly
uncomfortable) closeness of the two energy scales can be
significantly affected by the presence of a potential. In
particular, a negative potential during the bounce phase
increases the separation between the energy density of the
background and the strong coupling scale. The two scales
can, in fact, be separated by an arbitrarily large factor—
provided the potential can approach close to the minimally
allowed value of Vmin ¼ −κ2=ð4qÞ.3 However, one would
not want this separation to become too large either, since it is
essential that the potentially dangerous ultrashort wave-
length perturbation modes with large amplitude remain
outside the regime of validity of the effective theory. It is
interesting to note that a negative potential is natural in
ekpyrotic models. Up to now it was typically assumed that

3An even more negative potential would not allow for a bounce
solution.
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this negative potential would be nonvanishing during the
contracting phase–but rapidly vanish before, and be irrel-
evant at, the moment of the bounce [22]. See, for example,
Fig. 1 in Sec. II. Our results suggest a newperspective, in that
we see here that the potential can still play an important role
during the bounce phase. This has implications for ekpyrotic
model building, as we will discuss in Sec. V below.
One should verify that the most stringent constraint

indeed arises at the moment where c2s ¼ 0. We do this by
numerically evaluating the strong coupling scale for a time
period starting before, passing through, and then ending
after the interval of NEC violation. From the _φ2 and _φ3

terms in the general actions (41) and (43), we find—after
normalizing the scalar field as above—that the strong
coupling scale is given by

Λ ¼ ðP;X þ P;XX
_ϕ2Þ3=4

ð _ϕP;XX þ 1
3
_ϕ3P;XXXÞ1=2

: ð65Þ

Note that we have now reinstated the P;X term. This was set
to zero above where we limited the calculation precisely to
the times when P;X ¼ 0. We can now check numerically
that the energy density of the background solution comes
closest to the expression (65) precisely when P;X passes
through zero. The specific example was introduced in the
beginning of Sec. II. That is, we will choose the super-
bounce model [17], but with the Galileon term set to zero
and the coefficient κ̄ ¼ 1=4. Additionally, we take the
coefficient q̄ ¼ 108M−4

P . It then follows that the kinetic part
of the Lagrangian is specified by

PðX;ϕÞ ¼ κðϕÞX þ qðϕÞX2 − VðϕÞ; ð66Þ

κðϕÞ ¼ 1 − 2

ð1þ 1
2
ϕ2

M2
P
Þ2
; ð67Þ

qðϕÞ ¼ 108M−4
P

ð1þ 1
2
ϕ2

M2
P
Þ2
: ð68Þ

The potential energy is chosen to be in the generic form
presented in (9). However, for reasons to become clear, here
we take the associated functions to be c ¼ ffiffiffiffiffi

20
p

(which
satisfies the ekpyrotic constraint that c >

ffiffiffi
6

p
) and

vðϕÞ ¼ 2=ð1þ e−2
ffiffiffiffi
20

p ϕ
MPÞ. It follows that the potential

energy can be expressed as

VðϕÞ ¼ − 2V0

e−
ffiffiffiffi
20

p ϕ
MP þ e

ffiffiffiffi
20

p ϕ
MP

; ð69Þ

where V0 has mass dimension 4. Equation (69) is of a form
previously used by Cai et al. [23] in their closely related
bounce model. Note that the kinetic function κ switches
sign, thereby allowing the null energy condition to be

violated and, thus, enabling the presence of bouncing
solutions. That we do not end up with ghost fluctuations
is due to the second kinetic function qðϕÞ, which contrib-
utes fluctuations of sufficiently large positive energy during
the bounce phase.
We first consider the example of a ghost condensate

induced bounce without a potential; that is, V0 ¼ 0. The
corresponding plots for the strong coupling scale (65) and
the energy density of the background are shown in Fig. 7.
Moreover, the ratio between the two scales is plotted in
Fig. 8. The plots clearly show that the most stringent

FIG. 8. Plot of the ratio of strong coupling scale to background
energy density (to the quarter power) against physical time. As
expected from our analytical treatment, we see that at the
moments where the NEC starts and ends being violated, this
ratio reduces to a factor of 8. Thus the bouncing background
solution lies within the regime of validity of the effective theory,
while dangerous short wavelength modes lie outside.

FIG. 7. Ghost condensate bounce without a potential, V0 ¼ 0,
for the bouncing background described in Sec. II and expressed in
Figs. 2–4. Plotted here are the strong coupling scale Λ and the
energy density ρ1=4 against physical time t, relative to the time of
the bounce tb. Also plotted is the sum of the energy density and
pressure (to the quarter power). At the two moments where this
quantity vanishes the null energy condition is marginally satisfied,
while in the time interval in between the NEC is violated. This plot
confirms that Λ and ρ1=4 are closest to each other precisely at the
moments when the NEC starts and ends being violated.
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moments are indeed those where the NEC starts and ends
being violated. Moreover, the strong coupling scale Λ4 is
larger than the background energy density ρ by a factor of 8
precisely at those moments, as expected.
We now analyze how these results are modified when a

nonvanishing potential is added. The potential (69) we have
chosen is of the ekpyrotic form, and turns on and then
off symmetrically around the bounce. For specificity, we
will choose V0 ¼ 0.2 × 10−8 M4

P. This potential is plotted
in Fig. 9. The numerically evaluated background solution
for the scale factor and the scalar field is displayed in
Figs. 10(a) and (b) respectively. These plots are qualita-
tively very similar to the case in Fig. 2 where the potential is
absent. The strong coupling scale and background energy
density for V0 ¼ 0.2 × 10−8 M4

P are shown in Fig. 11,
while the ratio between these two scales is plotted in
Fig. 12. As can be seen, the strong coupling scale is now
further separated from the background energy density. In
this specific example, the ratio Λ4=ρ is always bigger than a

factor of about 40. This corresponds to a factor of about 2.5
in frequency. Thus, perturbation modes with a wavelength
at least 2.5 times smaller than the horizon size at the onset
of the bounce are beyond the cutoff of the theory. It follows
that the modes whose amplitudes grow dangerously during
the bounce period—that is, modes with wavelengths more
than two orders of magnitude shorter than the horizon size
at the onset of the bounce—are well outside of the range of
validity of the effective theory. Hence, the bouncing
spacetime solution can be trusted. Note that an even more
negative potential would enhance the separation between
the two scales further. As long as this separation remains
smaller than a factor of about two orders of magnitude in
frequency, that is, a factor 108 in energy density, one need
not worry about potentially dangerous short wavelength
modes. For such theories the bouncing spacetime solution
remains trustworthy.
The results of this section definitively answer the first of

the three important questions that were discussed in the
Introduction. That is

(i) Can the growth of these short sub-horizon co-
moving curvature modes disrupt the bounce?

The answer is no—the short wavelength subhorizon
comoving curvature modes with amplitudes sufficiently
large to disrupt the bouncing cosmology all lie in the region
of strong coupling, where the effective action is no longer
valid. One may now go back to Figs. 5 and 6 to see how this
result affects the interpretation of the graphs shown there.
In particular, the previous discussion has led to the
conclusion that the strong coupling scale is about a factor
of 2 smaller in size than the minimum horizon size reached
during the bounce phase. This scale is plotted via the red
dotted line in Fig. 5(b). Perturbations modes with longer
wavelengths (k ≤ 10−6 in that example) form a part of the
effective theory, but are little affected by the bounce, while

FIG. 9. Plot of the ekpyrotic-type potential (68) with
V0 ¼ 0.2 × 10−8 M4

P.

FIG. 10. The bouncing background solution with the new potential Eq. (68) and V0 ¼ 0.2 × 10−8 M4
P. We have fixed the initial

conditions at the moment of the bounce, H ¼ 0, and have chosen ϕbounce ¼ 0. The Friedmann equation then determines the time
derivative of the scalar field at that moment, since it implies 0 ¼ 3M2

PH
2jbounce ¼ ρjbounce ¼ − 1

2
_ϕ2
bounce þ 3

4
_ϕ4
bounce − V0. Figure 10(a)

shows the scale factor around the time tb of the bounce as a function of t − tb. Figure 10 (b) shows the evolution of the scalar field ϕ
during the bounce phase.
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modes with shorter wavelengths (k > 10−6) lie outside of
the range of validity of the effective theory, and thus their
dramatic growth can be ignored.

IV. THROUGH THE BOUNCE

We now want to address the remaining two questions
presented in the Introduction regarding “apparent” singu-
larities in the perturbative action. In the above analysis—
which was carried out in flat gauge—the action contained
terms inversely proportional to the Hubble rate. Thus, it
appears that a perturbative treatment might break down in
the vicinity of the bounce, exactly the period we are most
interested in. It turns out that it is rather difficult to prove
directly in flat gauge that these are simply apparent
singularities. It is, in fact, much easier to prove this by

calculating the action for the comoving curvature pertur-
bation in comoving gauge. Note that, as shown by
Maldacena [24], it is possible to transform the perturbative
action from flat gauge to comoving gauge via a time
reparametrization. However, the rewriting of the perturba-
tive action is highly nontrivial, as it involves many
integrations by parts and the use of the perturbative
equations of motion. It is, in fact, much easier to directly
calculate the cubic action in comoving gauge, which is
what we now do.
In comoving gauge the scalar field perturbation is set

to zero,

δϕ ¼ 0; ð70Þ

so that hypersurfaces of constant scalar field are also
hypersurfaces of constant time. Again employing the
ADM formalism, one can implement comoving gauge
by expanding the lapse, shift and spatial metric as

N ¼ 1þ αðt; xiÞ; ð71Þ

Ni ¼ ∂iβðt; xiÞ; ð72Þ

hij ¼ δija2ðtÞe2Rðt;xiÞ; ð73Þ

where R is the comoving curvature perturbation. The
extrinsic curvature is then given by

Kij ¼ hijðH þ _RÞ − β;ij þR;iβ;j þR;jβ;i − δij∂R · ∂β;
ð74Þ

where ∂R · ∂β≡ δij∂iR∂jβ.
4 At linear order, the con-

straints are given by [19]

−M2
P∂2R −M2

PH∂2β þ a2½3M2
PHð _R −HαÞ

þ ðP;XX þ 2P;XXX2Þα� ¼ 0; ð75Þ

α ¼
_R
H
: ð76Þ

At quadratic order in fluctuations, plugging in the con-
straints and discarding total derivatives, the action becomes

Sð2Þ ¼
Z

dtdx3a3
�
P;XX þ 2P;XXX2

H2
ð _RÞ2 þM2

P
_H

a2H2
ð∂RÞ2

�

ð77Þ

FIG. 11. Analogous plot to Fig. 7, but with a potential of
strength V0 ¼ 0.2 × 10−8 M4

P included. Again the zeroes of the
curve plotting ðρþ pÞ1=4 indicate the start and end of the NEC
violating phase.

FIG. 12. When a negative potential is included, the background
energy density and the strong coupling scale are further separated
from each other. For V0 ¼ 0.2 × 10−8 M4

P the ratio Λ=ρ1=4

always remains above a factor of about 40. This implies that
the background solution lies more comfortably inside the regime
of validity of the effective theory, compared to the case where no
potential is present during the bounce.

4We will sometimes write summed spatial indices on the same
line, where it is understood that they are contracted with the
Kronecker delta alone.
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¼
Z

dtdx3a3
�
ðP;XX þ 2P;XXX2Þ

�
_R
H

�2

þ 2M2
P

a2
∂
�
_R
H

�
· ∂RþM2

P

a2
ð∂RÞ2

�
: ð78Þ

The reason for rewriting the last term using integration by
parts will become obvious momentarily. Often the quad-
ratic action is expressed as

Sð2Þ ¼
Z

dtdx3a3
Σ
H2

�
ð _RÞ2 − c2s

a2
ð∂RÞ2

�
; ð79Þ

where we employ the conventional definitions

Σ≡ P;XX þ 2P;XXX2;

c2s ≡ P;X=ðP;X þ 2P;XXXÞ ¼ −M2
P
_H=Σ: ð80Þ

The linearized equation of motion for the curvature
perturbation is then given by

H
d
dt

�
_R
H

�
þ
�
3H2 þH

_Σ
Σ
− _H

�
_R
H

þM2
P
_H

a2Σ
∂2R ¼ 0:

ð81Þ

At the bounce, whereH ¼ 0, we therefore obtain the useful
relation

_R
H

¼ M2
P

a2Σ
∂2R at H ¼ 0: ð82Þ

From this, we learn that the crucial quantity _R=H is finite
when H becomes zero. Moreover, it is small for long-
wavelength modes due to the double spatial derivative. This
result has the immediate implication that the quadratic
action in Eq. (78) is perfectly finite everywhere and, in
particular, at the bounce. We note here that one can also
solve the equation of motion for the curvature perturbation
perturbatively around the bounce [18]. The result, written
in Fourier space, is that near H ¼ 0

Rk ¼ c1

�
1 − 1

2
c2sk2t2 þ � � �

�
þ c2t3 þ � � � ; ð83Þ

where c1, c2 are integration constants. This solution is
consistent with (82) above. In comoving gauge, the cubic
action is found to be

Sð3Þ ¼
Z

dtdx3a3
��

3M2
PH

2 − P;XX − 4P;XXX2 − 4

3
P;XXXX3

�
α3 − 6M2

PHα2 _Rþ ð−9M2
PH

2 þ 3P;XX þ 6P;XXX2Þα2R

þ 3M2
Pα _R2 þ 18M2

PHαR _Rþ
�
27

2
M2

PH
2 þ 9

2
P − 9P;XX

�
αR2 − 2M2

P

a2
αR∂2R −M2

P

a2
αð∂RÞ2

− 9M2
P
_R2R − 27M2

PH _RR2 þ 9

2
ð−3M2

PH
2 þ PÞR3 −M2

P

a2
R2∂2R −M2

P

a2
Rð∂RÞ2

þM2
P

a2
ð2R _R − 2α _RþHR2 − 2HαRþ 2Hα2Þ∂2β þ 2M2

P

a2
ð _R −HαþHRÞ∂R · ∂β

− M2
P

2a4
ðRþ αÞðβ;ijβ;ij − ∂2β∂2βÞ − 2M2

P

a4
R;iβ;jβ;ij

�
: ð84Þ

Terms proportional to the second order perturbation of the lapse function multiply a constraint, and thus do not appear.
Substituting α ¼ _R=H, integrating by parts, discarding total derivatives and employing the background equations of motion
we obtain

Sð3Þ ¼
Z

dtdx3a3
��

−P;XX − 4P;XXX2 − 4

3
P;XXXX3

��
_R
H

�3

þ ð3P;XX þ 6P;XXX2Þ
�
_R
H

�2

R

− 2M2
P

a2
_R
H
R∂2R −M2

P

a2
_R
H
ð∂RÞ2 þM2

P

a2
Rð∂RÞ2

þ M2
P

2a4

�
3R − _R

H

�
ðβ;ijβ;ij − ∂2β∂2βÞ − 2M2

P

a4
ð∂R · ∂βÞ∂2β

�
: ð85Þ
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A few comments. We have performed fewer integrations by
parts than Seery and Lidsey [19] and other authors [25]. By
doing this, we find that no dangerous looking 1=c2s terms
appear5. We also highlight the difference with inflationary
models in which the speed of sound goes to zero [26]: in
such models the limit c2s → 0 is singular and corresponds to
a strong coupling limit, assuming the presence of an
ordinary kinetic term. Here the situation is very different,
as near c2s ¼ 0 the higher-derivative term becomes the
leading kinetic term, thus avoiding a singularity. This is in
fact rather similar to ghost inflation [12,27,28].
When H ¼ 0, there are again several apparently singular

terms, but notice that they all involve powers of _R=H,
which we have shown to be finite at the bounce. We still
have to discuss the behavior of the shift function β at the
bounce. The linear constraint (75) “appears” as though it
might cause β to blow up at the bounce. Since β drops out
entirely from the quadratic action, any singularity in β
would have gone unnoticed to this order. However, it
follows from (85) that β blowing up at the bounce would
render the cubic action singular. We can combine the
constraint for β with the equation of motion forR to obtain

M2
P
_H

a2Σ
H∂2β ¼ H

d
dt

�
_R
H

�
þ
�
3H2 þH

_Σ
Σ

�
_R
H
: ð86Þ

Since _R=H is momentarily constant when H ¼ 0, we find
from the relation above that

M2
P∂2β ¼ a2 _Σ

_H

_R
H

¼
_Σ

Σ _H
∂2R at H ¼ 0: ð87Þ

There is only one independent perturbation variable for
systems of gravity coupled to a single scalar field. This is
true because out of the 5 scalar perturbations of the metric
and scalar field, two are eliminated by time and space
reparametrizations, and two more are eliminated by the
constraints. Hence the perturbation β must vanish when R
does, implying that

M2
Pβ ¼

_Σ
Σ _H

R at H ¼ 0: ð88Þ

Keeping in mind that Σ ¼ M2
PH

2 ϵ
c2s
¼ −M2

P
_H=c2s , we can

conclude that _Σ remains finite at the moment of the
bounce. In fact one can easily show that _Σ ¼ 0 at H ¼ 0

for time-symmetric bounces such as in our example here. In
all cases the prefactor _Σ

Σ _H
remains finite, such that the shift

perturbation β and thus the full action are finite and non-
singular through the bounce.
The results of this section definitively answer the second

and third important questions raised in the Introduction.
That is,

(i) Will the 1=H terms in the cubic action just be
“apparent” singularities, or do they signal the
breakdown of the perturbative description?

(ii) It would appear that the cubic action becomes
infinite at the moments when c2s ¼ 0, signaling
the breakdown of the effective theory. Is this
true–or are these singularities only “apparent,”
disappearing upon careful calculation of the cubic
action?

The answer to the second question is that terms propor-
tional to 1=H in the cubic action are actually explicitly
finite and, hence, only “apparent” singularities. A careful
analysis of the cubic action also reveals that there are, in our
context, no terms proportional to 1=c2s . This answers the
third question. The apparent 1=c2s divergences on either
side of the NEC violating region simply do not exist. The
positive answer to both of these questions means that the
effective theory of the bounce cosmology is completely
finite, singularity free and trustworthy.

V. DISCUSSION

Our results show that there exist effective theories for a
nonsingular bouncing cosmology where all perturbation
modes that lie within the regime of validity of the theory
evolve through the bounce in a controlled manner. This
includes, in particular, the modes of observational interest
in ekpyrotic cosmology. This is a nontrivial result because,
in a flat universe, the existence of a bounce requires the null
energy condition to be violated. This can be achieved
through a temporary phase of ghost condensation, at the
expense of a very brief instability due to an imaginary
speed of sound. In previous work with L. Battarra [18], we
had shown that this instability is in fact too brief to
significantly affect long wavelength modes. On the other
hand, the same work had also indicated an increasing
amplification of ever shorter modes, specifically those
whose wavelengths are smaller than the horizon size at
the onset of the bounce—see Fig. 5. Hence, one may worry
whether these small wavelength, large amplitude modes
could destabilize the background evolution. Through a
derivation—carried out in flat gauge—of the action up to
third order in perturbation theory, we have calculated the
scale of strong coupling and shown that it is higher than the
background energy density throughout the bounce. We then
show that the problematic modes are so short that they are
outside of the range of validity of the classical effective
theory and, hence, do not disrupt the bouncing spacetime

5Such dangerous terms can appear by performing integrations
by parts of the following form:

R Σ
H2 α2R ¼ R

ϵ
c2s
α2R ¼R

d
dt ð 1HÞ 1

c2s
α2R ¼ − R

1
c2sH

α2 _Rþ � � �, where the dots include a
“boundary” term localized at c2s ¼ 0. If one were to keep this
boundary term, the total action would be manifestly nonsingular,
but often such terms are dropped, leading to naively singular-
looking actions.
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background. This establishes that the bounce solution is
trustworthy. More quantitatively, we find that in the
absence of a potential the cutoff scale is always a factor
of 8 or more above the energy density of the background,
while the inclusion of a (negative) potential can separate the
two scales arbitrarily far, depending on the value of the
potential during the bounce phase—we gave an explicit
example where the separation is a factor of 40. Of course,
the cutoff should not be too far above the scale of the
bounce, since then the short modes which get amplified
excessively would start entering the regime of validity of
the effective theory. As we have shown, this however only
happens when the cutoff scale is higher than the energy
density of the bounce by a factor of 108 or more, so that
there exists a significant range of energies over which the
nonsingular bounce is fully trustworthy.
An important aspect of the calculation is that it reveals a

decoupling limit (reminiscent of that in Galileon models
[29]), in which the scalar field perturbations decouple from
the metric perturbations to the extent that the ghost
condensate scale is separated from the Planck scale. It is
interesting that this decoupling, which intuitively rests on
the notion that over sufficiently short distances the metric
may be approximated as being flat, also operates in a
bouncing spacetime. Furthermore, we have studied the
appearance of inverse powers of the Hubble rate and the
speed of sound in calculations of the cubic perturbation
action—see, for example, [19]. Both H and c2s necessarily
pass through zero during the evolution of the type of
bounces that we are studying. Hence, one may wonder
whether this will cause perturbation theory to completely
break down. Resorting to comoving gauge to analyze
this problem, we have shown that each inverse power of
the Hubble rate gets multiplied by the time derivative of
the comoving curvature perturbation, and that this product
remains finite. Furthermore, we demonstrated that the
dangerous cubic terms proportional to 1=c2s simply do
not appear in our effective action. It follows that the
perturbative analysis is valid throughout the bounce
solution.
Our results are in line with the nonperturbative numerical

treatment of Xue et al. [30], where perturbations were also
seen to be little affected by their passage through the
bounce. However, their study employs a model with a ghost
field and, hence, is ill-defined at the quantum level. In
contrast, Peter et al. [31] found that for curvature-induced
bounces in closed universes—that is, FLRW metrics with
curvature parameter K ¼ þ1—perturbations are strongly
affected by the bounce. For example, unacceptably large
non-Gaussianities are typically generated. We note, how-
ever, that such curvature-dominated bounces are highly
tuned because matter, radiation and, in particular, anisot-
ropies scale faster than homogeneous curvature in a
contracting universe. This makes such curvature-dominated
bounces highly unlikely. Our results demonstrate that for

flat FLRW bounces, which in the context of ekpyrotic
cosmologies are natural6, perturbations are essentially
unaffected by the bounce. In order to comment on the
issue of non-Gaussianity, we should first discuss the
implications of our results for model building.
One of our main findings is that the background and

cutoff are further separated in the presence of a negative
potential during the bounce7. This is noteworthy, since
negative potentials are natural in ekpyrotic cosmology
[20,32]. However, with regard to the generation of pri-
mordial curvature perturbations, the presence of a negative
potential during the bounce suggests a small modification
of existing scenarios. During the ekpyrotic phase, curvature
perturbations are not amplified [33–36]. However, in the
presence of a second scalar field, nearly scale-invariant
entropy perturbations may be generated [37–40]. Note that
such a second spectator field does not affect the back-
ground evolution and, hence, does not affect the calcu-
lations of the present paper. So far, it has typically been
assumed that the entropy perturbations get converted into
curvature perturbations in between the end of the ekpyrotic
phase and the bounce. Were they to get converted while the
ekpyrotic potential still dominates the dynamics, the
resulting non-Gaussianities could be unacceptably large
[41,42]. This conversion can, for example, occur via a turn
in the scalar field trajectory—see [43,44] for a concrete
model. However, our results now indicate that the bounce is
under better control when the ekpyrotic potential is
significant throughout the entire NEC violating phase.
Hence it may be more natural for the ekpyrotic phase to
lead directly into the bounce, with no intermediate kinetic
phase. In that case, the potential would turn off again after
the bounce, and the conversion of entropy into curvature
fluctuations could occur after the bounce. In this scenario,
all adiabatic modes would remain in their quantum vacuum
throughout the contracting phase and would only be
negligibly amplified during the bounce. There would be
entropy perturbations present during the bounce phase, but
with no effect on the bouncing spacetime itself. Then, after
the bounce, and perhaps during reheating [45], the entropy
perturbations would be converted into curvature perturba-
tions and the universe would eventually reach thermal
equilibrium, with the hot big bang phase following. In this
case, the non-Gaussianity of the curvature perturbations
would also be generated after the bounce. In future work, it
will be interesting to see whether any of the predictions, in
particular those regarding non-Gaussianities [46–48], are
changed when the conversion of entropy into curvature

6This follows from the fact that the ekpyrotic phase
strongly suppresses both homogeneous and anisotropic
curvature.

7It would also be interesting to see if the two scales can be
further separated in more elaborate models including, for in-
stance, Galileon terms, as in the full superbounce model [17].
We leave this question for future work.
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fluctuations occurs after the bounce, rather than before.
This will require a separate study.
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APPENDIX: VECTOR AND TENSOR
PERTURBATIONS IN A BOUNCING

SPACETIME

In the main part of the paper, we focused on scalar
fluctuations, which allowed us to calculate the strong
coupling scale of the theories we are interested in.
However, in general one has to consider not just scalar
fluctuations, but also vector and tensor perturbations (by
which we mean perturbations transforming as vectors or
tensors from the spatial three-dimensional point of view).
In this Appendix, we will analyze the behavior of vector
and tensor perturbations in a bouncing spacetime. As we
will see, these perturbations are not amplified and, hence,
we need not consider them in assessing the validity of
bouncing solutions. We will comment on the observational
significance of this result below.
Under a change of coordinates xμ → xμ þ ξμ the metric

changes as

gμν → gμν − ∇μξν − ∇νξμ

¼ gμν − gσν∂μξ
σ − gσμ∂νξ

σ − gμν;σξσ: ðA1Þ

One can decompose ξμ into scalar (2 degrees of freedom)
and vector parts (also 2 degrees of freedom):

ξμ ¼ ðξ0; ξiÞ with ξi ¼ ξiT þ ξ;i where ∂iξ
i
T ¼ 0:

ðA2Þ
Now consider a perturbed metric in conformal time τ,
where we only write out the vector and tensor perturbations
at this point. We find

ds2 ¼ aðτÞ2½−dτ2 þ 2Sidτdxi

þ ðδij þ Fi;j þ Fj;i þ γijÞdxidxj�: ðA3Þ

Here we impose that the vector perturbations are transverse,
∂iSi ¼ 0 ¼ ∂iFi and the tensor perturbations are both
transverse and traceless γij;i ¼ 0 ¼ γii. Then, under a
change of coordinates (where we are now only interested
in the vector part ξiT), these perturbations change as follows:

Si → Si − δijξ
j
T;τ ðA4Þ

Fi → Fi − δijξ
j
T ðA5Þ

γij → γij: ðA6Þ

The tensor perturbations are immediately gauge invariant,
but the vector perturbations are not. However, it is easy to
see that there exists a gauge-invariant quantity, namely

Vi ≡ Si − Fi;τ: ðA7Þ
To obtain the equations for Vi, the simplest procedure is to
use ξiT to fix the gauge such that Fi ¼ 0, since we can then
just replace Si with Vi. The perturbed Einstein tensor is
given in Fourier space by

δG00 ¼ 0 ðA8Þ

δG0i ¼ Við−2H;τ −H2Þ þ 1

2
k2Vi ðA9Þ

δGij ¼ −
1

2
½ðVi;jτ þ Vj;iτÞ þ 2HðVi;j þ Vj;iÞ� ðA10Þ

þ γijð−2H;τ −H2Þ

þ 1

2
½γij;ττ þ 2Hγij;τ þ k2γij�; ðA11Þ

where H≡ a;τ
a . For a PðX;ϕÞ theory, the perturbed stress-

energy tensor is

δT00 ¼ 0; ðA12Þ

δT0i ¼ a2ViP; ðA13Þ

δTij ¼ a2γijP: ðA14Þ
Using the background Einstein equation 2H;τ þH2þ

a2P ¼ 0, the linearized equations of motion then become

k2Vi ¼ 0; ðA15Þ

ðVi;jτ þ Vj;iτÞ þ 2HðVi;j þ Vj;iÞ ¼ 0; ðA16Þ

γij;ττ þ 2Hγij;τ þ k2γij ¼ 0: ðA17Þ
Thus, there is no source for either the vector or tensor
perturbations. The first equation above then implies that we
have no vector perturbations to worry about. Even if there
were initial vector perturbations, according to the second
equation they would scale as Vi ∝ 1=a2. Thus they cannot
compete with the ekpyrotic background (which scales as
ρ ∝ a−2ϵ with ϵ > 3), and would also do very little during a
nonsingular bounce, as the scale factor evolves very little
during the bounce. For long-wavelength modes—that is,
ignoring the k2 term—the tensor equation above has two
solutions; either γ ¼ constant or γ ∝ 1=a2. Again both are
harmless. Short-wavelength tensor fluctuations (large k)
simply oscillate but are not amplified. Note also that they
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always propagate at the speed of light, and thus, in contrast
to the scalar modes, they do not suffer from any gradient-
type instability near the bounce. Thus our flat cosmological
bounce does not generate any vector or tensor perturba-
tions, nor does it amplify any preexisting ones.
The fact that vector perturbations are not amplified in

ekpyrotic models is easy to understand: first note that
vector perturbations imply a preferred direction in space.
But the ekpyrotic phase renders the universe increasingly
isotropic and in doing so it suppresses any existing vector
perturbations. As discussed above, no additional vector
perturbations are then created during the bounce phase. For
tensor perturbations, we have a similar outcome. The growth
of tensor perturbations is solely dependent on the behavior
of the metric. In inflationary models, for instance, the tensor
perturbations are amplified because the background space-
time expands in an accelerated fashion [49]. In ekpyrotic
models, we have a rather different situation: the contraction
phase proceeds with a very small Hubble rate—that is, it is a
phase of very slow contraction during which the scalar field
rolls down a steep and negative potential. A rough approxi-
mation to the background spacetime is in fact simply
Minkowski space. This rough approximation immediately
explains why tensor modes are not amplified in ekpyrotic

models [50]—they are not amplified around us in our living
rooms either. Rather, during the ekpyrotic phase, at linear
order in perturbation theory the tensor modes remain in their
quantum vacuum state just like the adiabatic modes [36].
Thus, to linear order, the tensor-to-scalar ratio r is simply
zero. Once curvature fluctuations have been generated
(which, as we have discussed, could occur either before
or after the bounce), these scalar fluctuations act as a source
for the tensor modes at second order in perturbation theory,
leading to a small tensor-to-scalar ratio of r ≈ 10−6 [51]. As
we have just discussed, even if this tiny tensor spectrum is
produced before the bounce, it will not get amplified by the
nonsingular bounce. Thus ekpyrotic models combined with
nonsingular bounces predict that no primordial gravitational
waves (nor the associated B-mode polarization of the CMB
photons) should be detected by near-future experiments
(which will optimistically probe down to values of
r ≈ 10−3). It remains to be seen when our observational
technologies will be developed enough to detect the tiny r
value implied by all currently known ekpyrotic models.
The conclusion of the present Appendix is that it is

enough to look at the behavior of the scalar perturbation
modes in assessing the validity of the effective description
of nonsingular bounces.
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