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High-precision astrometry on sub-micro-arcsecond level in angular resolution requires accurate
determination of the trajectory of a light-signal from the celestial light source through the gravitational
field of the Solar System toward the observer. In this investigation the light trajectory in the gravitational
field of N moving bodies is determined in the 1.5 post-Newtonian approximation. In the approach
presented two specific issues of particular importance are accounted for: (1) According to the
recommendations of International Astronomical Union, the metric of the Solar System is expressed in
terms of intrinsic mass-multipoles and intrinsic spin-multipoles of the massive bodies, allowing for
arbitrary shape, inner structure and rotational motion of the massive bodies of the Solar System. (2) The
Solar System bodies move along arbitrary world lines which can later be specified by Solar System
ephemeris. The presented analytical solution for light trajectory is a primary requirement for extremely
high-precision astrometry on sub-micro-arcsecond level of accuracy and associated massive computations
in astrometric data reduction. An estimation of the numerical magnitude for time delay and light deflection
of the leading multipoles is given.
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I. INTRODUCTION

A substantial advancement in astrometric measurements
has been achieved by the astrometry mission Hipparcos
(launch: 8 August 1989) of European Space Agency
(ESA), which has reached an accuracy of a milli-arcsecond
(mas) in determining the angular positions of about 105

stars [1,2]. Meanwhile, the state-of-the-art angular obser-
vations have finally arrived at the level of a few micro-
acrseconds (μas) [3,4]. Especially, the stunning progress in
astrometry has proceeded with the ESA mission Gaia [5]
(launch: 19 December 2013) which aims at an all-sky
survey of more than 109 stars of our galaxy and targets
angular accuracy of up to a few μas for bright stars in the
final catalog scheduled for publication in 2022.
In view of these advancements it becomes obvious that

future astrometry is going to force into the exciting areas of
sub-μas or even nano-arcsecond (nas) level of accuracy. To
step up efforts toward sub-μas-astrometry is of fundamental
importance in astronomy and astrophysics. For example, an
accuracy of about 10 nas in angular resolution would allow
for direct measurement of trigonometric parallaxes of stars
belonging to galaxies of the local group which spans a
diameter of about 107 light-years, that means would enable
us to determine spatial distances of extragalactic objects
independently of dynamical models of the Universe.
Moreover, also extremely high-precision tests of relativity,
detection of dark-matter distributions within or outside of
our galaxy, determination of stellar and galactic kinematics,
and finally even the discovery of one-Earth-mass exopla-
nets in the habitable zone of nearby Sun-like stars would be

possible by means of sub-μas-astrometry. Recently, there
are several mission proposals in this respect. For instance,
the mission NEAT [6,7] has been proposed to ESA which
intends to reach a precision of about 50 nas in angular
resolution for being able to detect Earth-like exoplanets
surrounding stars in the stellar neighborhood of the Sun.
Further space missions like ASTROD [8,9], LATOR
[10,11], ODYSSEY [12], SAGAS [13], or TIPO [14] have
been proposed to ESA which imply the determination of
light trajectory through the Solar System on sub-μas or
even at nas level of accuracy. Also earth-bound telescopes
are under consideration which aim at angular resolutions
of about 10 nas [15].
But, although in view of the recent impressive achieve-

ments, the step from μas-astrometry toward sub-μas-level
or even nas-level of accuracy in angular resolution will
surely be a long-term goal in the astronomical science. This
is because the envisaged advancement toward space-based
nas-astrometry implies many subtle effects and new kind of
challenges which have not been encountered before: What
kind of optical technology would allow for nas-astrometry?
Is it technologically possible to measure the velocity of
spacecraft (observer) with sufficient accuracy allowing
for a precise determination of aberrational effects? How
accurate do we have to determine the ephemeris of the
Solar System bodies and could such precise ephemeris be
provided? Is it possible to model accurate enough the
influence of interstellar medium on light propagation? How
strong is the effect of gravitational waves on light propa-
gation on nano-arcsecond level? How is it possible to
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account for the gravitational light deflection caused by
massive bodies located outside the Solar System?
Each of these and many other problems have to be

clarified before nas-astrometry becomes feasible. But
certainly, the fundamental assignment in astrometry
remains to trace a light ray observed in the Solar System
back to the celestial light source. The importance of this
fact has also been underlined recently by the ESA-Senior-
Survey-Committee (SSC) in response of the selection of
science themes for the L2 and L3 launch opportunities,
where it has been stated that “SSC recommends that proper
modeling tools, most notably the availability of a General
Relativistic framework able to model photon trajectories to
the accuracy required should be given the proper attention
to prove feasibility” of high-precision astrometry [16].
According to this, the primary effort in any astrometrical
framework concerns the precise description of the light
trajectory, that is to say the determination of the spatial
coordinates of a light-signal as function of coordinate time,
xðtÞ, in some global coordinate system. Accordingly, the
principal purpose of this investigation is the determination
of the trajectory of a light-signal propagating through the
Solar System. In the following four subsections it will be
enlightened how one has to proceed in order to arrive at that
goal: (A) the theory of light propagation, (B) the post-
Newtonian expansion, (C) the state-of-the-art, and (D) the
primary objective of this investigation.

A. Theory of light propagation

The determination of spatial coordinates of the light
ray takes the most simple form in the flat Minkowskian
space-time and assuming a Cartesian coordinate system
which covers the entire space, implying the metric tensor
ηαβ ¼ diagð−1;þ1;þ1;þ1Þ. Suppose the light-signal is
emitted at some initial time t0 by a light source located at
some space-point x0, then the light trajectory is simply
given by a straight line which is also called unperturbed
light trajectory,

xNðtÞ ¼ x0 þ cðt − t0Þσ; ð1Þ

where the unit-vector σ determines the direction of light-
propagation and the sublabel “N” denotes Newtonian
approximation.
In general relativity the four-dimensional space-time in

the presence of matter is curved, that means is described by
a semi-Riemannian manifold with nonvanishing curvature
tensor rather than a flat Minkowskian space-time, and a
light trajectory is no longer a straight line but propagates
along a so-called null geodesic, which generalizes the
concept of a straight light trajectory. The four-coordinates
xαðλÞ of a light trajectory depend on some affine curve-
parameter λ, and are determined by the geodesic equation
[17,18],

d2xαðλÞ
dλ2

þ Γα
μν
dxμðλÞ
dλ

dxνðλÞ
dλ

¼ 0; ð2aÞ

gαβ
dxαðλÞ
dλ

dxβðλÞ
dλ

¼ 0; ð2bÞ

where (2a) represents the geodesic equation, while the
isotropic condition (2b) is an additional constraint for a null
geodesic, a term which refers to the fact that the invariant
line element vanishes, ds2 ¼ dxαðλÞdxαðλÞ ¼ 0, at any
point along the light trajectory. The Christoffel symbols
in (2a) are related to the metric of curved space-time as
follows:

Γα
μν ¼

1

2
gαβ

�∂gβμ
∂xν þ ∂gβν

∂xμ −
∂gμν
∂xβ

�
; ð3Þ

where gαβ and gαβ are the contravariant and covariant
components of the metric tensor, respectively, where the
metric signature ð−;þ;þ;þÞ. The geodesic equation (2a)
represents a second-order differential equation, hence a
unique solution implies the need of two initial values for the
light ray:

xαðλÞjλ¼λ0
; ð4Þ

dxαðλÞ
dλ

����
λ¼λ0

: ð5Þ

The equations in (2a)–(2b) are valid in any reference
system. But in practical astrometry one is necessarily
enforced to specify the reference systems for concrete
observational data. In line with the recommendations
of the International Astronomical Union (IAU) [19,20],
the Barycentric Celestial Reference System (BCRS) with
coordinates ðct; xÞ is the standard global chart to be used in
modern-day astrometry, where t is the BCRS coordinate-
time and x are Cartesian-like spatial coordinates from the
barycenter of the Solar System to some field-point.
Consequently, it becomes much preferable to exploit the
freedom in the choice of scalar curve-parameter λ and to
rewrite the affinely parametrized geodesic equation (2a)
and the isotropic condition (2b) in terms of BCRS
coordinate-time [17,18,21]:

d2xαðtÞ
c2dt2

þ Γα
μν
dxμðtÞ
cdt

dxνðtÞ
cdt

¼ Γ0
μν
dxμðtÞ
cdt

dxνðtÞ
cdt

dxαðtÞ
cdt

;

ð6aÞ

gαβ
dxαðtÞ
cdt

dxβðtÞ
cdt

¼ 0: ð6bÞ

The zeroth component in (6a) does not carry any new
information because it vanishes identically. In order to
determine the solution of (6a) it is advantageous to
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transform the initial conditions in (4)–(5) into initial-
boundary conditions [18]:

x0 ¼ xðtÞjt¼t0 ; ð7Þ

σ ¼ dxðtÞ
dct

����
t¼−∞

; ð8Þ

with (7) being the position of the light source at the moment
t0 of emission of the light-signal and (8) being the unit-
direction of the light ray at past-null infinity. Then, the
exact solution of (6a) for the light trajectory from the light
source through the Solar System toward the observer can be
written as follows,

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δxðt; t0Þ; ð9Þ

where the term Δxðt; t0Þ denotes gravitational corrections
to the unperturbed light trajectory (1).

B. Post-Newtonian expansion

The correction terms Δxðt; t0Þ in Eq. (9) are highly
complicated expressions which cannot be determined
exactly and one has to resort to approximation schemes.
Such an approximation scheme is provided by the post-
Newtonian expansion of the metric of Solar System, which
represents an expansion in terms of inverse power of the
speed of light, up to terms of the order Oðc−5Þ given by:

gαβ ¼ ηαβ þ hð2Þαβ þ hð3Þαβ þ hð4Þαβ þOðc−5Þ; ð10Þ

where hðnÞαβ ¼ Oðc−nÞ with n ¼ 2, 3, 4. The justification of
such an expansion is based on the fact that the gravitational
fields in the Solar System are weak, ðGMAÞ=ðc2PAÞ ≪ 1,
as well as the velocities of the Solar System bodies are slow,
vA=c ≪ 1, where MA, PA, and vA means mass, radius, and
velocity, respectively, of some massive body A. For these
reasons the post-Newtonian expansion is also called weak-
field slow-motion expansion. As outlined in [17,21–23],
such an expansion is valid inside the near-zone of the Solar
System, jxj ≪ λgr, where λgr ∼ 1017meter is a characteristic
wavelength of gravitational waves emitted by the Solar
System. The near-zone of Solar System is so large that it
still contains all Solar System bodies and even encom-
passes the nearest stars of the stellar neighborhood of
the Sun.
Inserting the expansion (10) into (6a) yields the geodesic

equations for light rays up to terms of the order Oðc−5Þ.
Accordingly, the expansion of the metric in (10) inherits a
corresponding expansion of the light ray, that means the
corrections to the unperturbed light ray can formally be
written as follows:

Δx ¼ Δx1PN þ Δx1.5PN þ Δx2PN þOðc−5Þ; ð11Þ

where Δx1PN ¼ Oðc−2Þ are 1PN corrections, Δx1.5PN ¼
Oðc−3Þ are 1.5PN corrections, and Δx2PN ¼ Oðc−4Þ are
2PN corrections to the unperturbed light ray. In view of the
fact that the post-Newtonian expansion of the metric (10) is
only valid within the near-zone of the Solar System, the
post-Newtonian expansion of the light ray (11) allows for
near-zone astrometry, in particular for reduction of astro-
metric observations of all Solar System objects. The unique
interpretation of astrometrical data of far objects, like stars
or quasars, is the subject of far-zone astrometry and
necessitates the determination of light trajectory outside
the near-zone of the Solar System. That especially means,
the light trajectory in the near-zone has to be aligned
with the light trajectory in the far-zone by means of a
so-called matching procedure as described in detail in
[21,24,25] which, however, will not be a topic of this
investigation.

C. State-of-the-art in the theory of light propagation

A brief survey about the present status in the theory of
light propagation in the gravitational field of massive
bodies has recently been presented [26]. Here we will
summarize and update that survey. In particular, we will
restrict our review to those investigations where the explicit
time-dependence of the photon’s spatial coordinate, xðtÞ,
has been determined, a prerequisite for interpreting real
astrometrical observations.

1. Monopoles at rest

The case of light propagation in the Schwarzschild
metric, i.e., in the gravitational field of one spherically
symmetric massive body at rest,

xAðtÞ ¼ xA; ð12Þ

where xA ¼ const is the constant position of the body,
is the most simple case and has been determined long
time ago in 1PN approximation, e.g. [18,24,26–28]. The
solution for the light trajectory is given by Eq. (J7). Besides
its simplicity, the determination of the photon’s spatial
coordinate in the Schwarzschild-field is the initial point in
the theory of light propagation in astrometry.

2. Monopoles in motion

In reality, the bodies A ¼ 1;…; N of the Solar System
move along their timelike world lines xAðtÞ and for today’s
extremely high-precision in astrometric measurements the
gravitational field of some Solar System body cannot
any longer be treated as static and spherically symmetric.
In a first approximation, the motion of one massive body A
can be considered as translational motion with constant
velocity vA:

xAðtÞ ¼ xA þ vAðt − tAÞ; ð13Þ
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where xA ¼ xAðtAÞ and vA ¼ vAðtAÞ are the spatial position
and velocity of the body A at some initial time-moment tA.
The light-trajectory in the field of one massive body in
translational motion has completely been solved in 1PN
approximation in [29]. This solution has later been reder-
ived by means of a suitable Lorentz transformation [30].
Following a suggestion in [31], in the investigation [24] it
has been shown that the free parameter tA in Eq. (13) should
be chosen as the time-moment of closest approach [given
by Eqs. (B14) and (B15)] between the massive body A and
the photon in order to minimize the residual effects caused
by the approximation of the real motion by a translational
motion of the massive body. With the aid of advanced
integration methods, originally introduced in [32] and
further developed in [33], a rigorous solution for the
trajectory of a light-signal through the gravitational field
of an arbitrarily moving body has thoroughly been solved
in [34] in the first post-Minkowskian approximation. The
first post-Minkowskian approximation takes into account
all terms proportional to the gravitational constant and
especially all terms to any power in vA=c, hence the body
can even be in ultrarelativistic motion and, therefore, the
post-Minkowskian approximation is often called weak-field
approximation opposite to the post-Newtonian approxima-
tion which is called weak-field slow-motion approximation.
Comparing the solution in [34] with [29,30], it has been
demonstrated in [35] that the simpler solution for the light-
trajectory in the field of a uniformly moving body is
actually sufficient for high-precision astrometry on sub-
μas-level provided the free parameter tA is chosen either
as time-moment of closest approach or as retarded
time-moment [given by Eq. (143)] between the photon
and the position of the massive body. All these results
agree with our investigation in [26] for the case of bodies in
slow-motion.

3. Spin-dipoles at rest

The light trajectory in the gravitational field of one
body at rest having spin-dipole SA ¼ const has first been
solved in [36] and later confirmed in [24]. The magnitude
of light deflection due to the rotational motion of Solar
System bodies has been determined in [28,36] and turns
out to be significant for astrometry on sub-μas-level of
accuracy.

4. Spin-dipoles in motion

In [37] an explicit solution for the light-trajectory in the
field of N uniformly moving bodies with intrinsic spin has
been obtained. A comprehensive solution in 1PM approxi-
mation for the light-trajectory in the field of N arbitrarily
moving bodies with individual spin-structure has been
derived in [38] using the already mentioned advanced
integration methods originally developed in [32,33].

5. Mass-quadrupoles at rest

The solution for the light-trajectory in the field of mass-
quadrupoles at rest in 1PN approximation was given in [36]
and later in [24,26,28]. Especially, in [36] the magnitude of
light deflection caused by the mass-quadrupole structure of
Solar System bodies has been determined, where it was
figured out that astrometry on μas-level of accuracy is
able to detect this light deflection effect. In fact, the light
deflection due to the quadrupole-structure of Jupiter is
presently under investigation by the ESA astrometry-
mission Gaia [5].

6. Mass-quadrupoles in motion

The light trajectory in the field of N arbitrarily slowly-
moving bodies with quadrupole structure has been deter-
mined in [26]. Recently, the light-trajectory in the field
of N uniformly moving bodies with mass-quadrupole
structure has also been obtained in [37] by integrating
the geodesic equations for the light ray. Another interesting
approach has been found in [39], which is based on the
time transfer function (TTF) which avoids solving the
geodesic equations and hence circumvents some of its
involved peculiarities.

7. Higher mass-multipoles and spin-multipoles at rest

A fruitful and systematic approach which allows to
integrate analytically the geodesic equations in 1.5 approxi-
mation in the field of one body at rest having full time-
independent mass-multipolesMA

L and spin-multipoles SAL to
any order in the multi-index L has been introduced in [32].
The advanced integration method in [32] has been

developed further in [33] for the case of time-dependent
mass-multipoles MA

LðtÞ and spin-multipoles SALðtÞ in 1PM
approximation. Using this advanced approach the analyti-
cal solution in 1PM approximation for the light-trajectory
in the field of one massive body at rest with the full set of
time-dependent multipoles has been determined in [40,41].
One comment should be in order at this stage. Namely, it is
of course possible to interpret the Solar System just as one
global massive body A which consists of many individual
small massive bodies. But then the solution in [40,41] has
to be interpreted as still expressed in terms of global
multipoles mLðtÞ and sLðtÞ which characterize the entire
multipole structure of the Solar System as a whole.
However, physically meaningful multipoles can only be
defined in the local reference system of each individual
massive body. This important issue will later be further
considered in some more detail.
Another approach is based on the solution for the TTF

and its spatial derivative. A corresponding multipole
decomposition of the TTF has been applied in [42] in
order to determine the coordinate travel time and the light
deflection of a light ray in the gravitational field of one
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axisymmetric body at rest expressed in terms of mass-
multipoles MA

L.

8. Higher mass-multipoles in uniform motion

In [39] the TTF approach in 1PM approximation has
been applied for the case of light propagation in the field of
one axisymmetric body in uniform motion. Especially, an
expression for the TTF and its spatial derivative is obtained
for this case, which allows to determine astrometric
observables like the coordinate travel time of the light
ray, the direction of an incident light ray, and the gauge-
invariant angle between the direction of two incoming
photons. A similar investigation has been done in [43],
where the TTF approach has been used in order to
determine the coordinate travel time of a light ray in the
field of one slowly and uniformly moving extended body
with full mass-multipole and spin-multipole structure.

9. 2PN light propagation in the field of monopoles

Light propagation 2PN approximation is not on the
scope of the presented investigation, but for reasons of
completeness some results obtained in 2PN approximation
will briefly be mentioned, not only because of its relevance
for future high-precision astrometry on sub-μas-level of
accuracy but also for its importance in today’s high-
precision astrometry on μas-level.
Important progress has been made in [18,27], where an

analytical solution of the light-trajectory in 2PN approxi-
mation has been determined with explicit time-dependence
of the photon’s spatial coordinates by solving the null
geodesic equations. This solution has later been con-
firmed by several progressing and ongoing investigations
[24,37,44–46], and has also been determined in this
investigation, see Eqs. (J8)–(J10). Furthermore, in [46]
the time-derivative of the light trajectory in the field of two
pointlike bodies at rest has been obtained, allowing us to
determine the light deflection in such a system. An
important new result of this investigation is the fact that
the 2PN two-body effect in the Solar System is less than
0.1 nas which considerably simplifies future analytical
investigations for high-precision astrometry on sub-μas-
level of accuracy.
In [47–49] the general formalism of how to determine the

TTF and its derivatives has been extended up to the second
post-Newtonian (2PN) and second post-Minkowskian
(2PM) order, that means including all terms to order
OðG2Þ. The formalism has finally been specified for the
case of light propagation in the gravitational field of one
spherically symmetric body at rest where the 2PM and 2PN
approximations become identically. Especially, explicit
expressions for the coordinate travel time of light ray,
for the direction of the light ray, and for the angular
separation between two incident light rays have been
obtained.

Finally, we also mention another approach which is
based on the eikonal concept [50], where the light trajectory
in 2PN approximation in the field of one spherically
symmetric body at rest has also been derived. The results
of this work completely agree with [45].

D. Primary objective of this investigation

According to the survey given above about the present
situation in the theory of light propagation, thus far there is
no analytical solution available for the light trajectory
in the field of arbitrarily moving extended bodies in
1.5PN approximation which, however, is of decisive
importance in future high-precision astrometric measure-
ments on sub-μas-level of accuracy and its foreseen
involved massive computations, see also [26]. In respect
thereof, two important aspects must carefully be treated:
(1) The metric perturbations in the exterior of the

massive bodies can be decomposed in terms of global
mass-multipoles mL and global spin-multipoles sL
[51–54]:

hðnÞαβ ¼ hðnÞαβ ðmL; sLÞ; n ¼ 2; 3;…: ð14Þ

These global mass and spin multipoles describe the
gravitational field of the Solar System as a whole.
However, from the theory of relativistic reference
systems it is clear that physically meaningful multi-
pole moments of amassive bodyA have to be defined
in the body’s local reference system ðcTA;XAÞ tied to
that body under consideration. Such multipoles are
called intrinsic mass-multipoles MA

L and intrinsic
spin-multipoles SAL. Then the question arises about
how to express the global BCRS metric in terms of
such intrinsic multipoles, that is to say how to
determine the global metric perturbations:

hðnÞαβ ¼ hðnÞαβ ðMA
L; S

A
LÞ; n ¼ 2; 3;…: ð15Þ

Such a framework has been elaborated by the
approach of Damour-Soffel-Xu (DSX) [55–58] and
within the Brumberg-Kopeikin (BK) formalisms
[18,59–62], both of which became a part of the
IAU resolutions [19,20].

(2) The second issue concerns the motion of the massive
Solar System bodies. While in first approximation
these bodies orbit the barycenter of the Solar System
along ellipse-shaped trajectories, in reality their
orbital motion xAðtÞ is highly complicated due to
the mutual interactions among these bodies. The
world lines of all massive bodies can be concretized
by Solar System ephemeris [63] at any stage of the
calculations. One might prefer to series expand these
world lines as follows:
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xAðtÞ ¼ xA þ vA
1!

ðt − tAÞ þ
aA
2!

ðt − tAÞ2 þOð _aAÞ;
ð16Þ

where xA ¼ xAðtAÞ, vA ¼ vAðtAÞ and aA ¼ aAðtAÞ
are the position, velocity and acceleration of body A
at some time-moment tA. However, such an ap-
proach is problematic mainly for two reasons:
(i) all terms of the infinite series expansion (16)

contribute on 1PN or 1.5PN level, because the
expansion in (16) is not performed with respect
to the inverse powers of the speed of light.

(ii) the time-moment tA remains an open parameter
as long as no additional arguments are intro-
duced, which would uniquely allow us to
identify that parameter with the time of closest
approach or with the retarded time.

These both aspects (1) and (2) enforce to deter-
mine the light trajectory xðtÞ of a light-signal from
the celestial light source toward the observer as
function of intrinsic multipolesMA

L and SAL as well as
function of the arbitrary world lines xAðtÞ of these
massive Solar System bodies.

In a previous investigation [26] a solution for the light
trajectory in 1PN approximation in the gravitational field of
N massive bodies in arbitrary motion and expressed in
terms of their intrinsic multipoles has been obtained:

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δx1PN þOðc−3Þ: ð17Þ

However, as outlined in more detail in [26], such 1PN
solution is not sufficient for astrometry on sub-μas-level of
accuracy. For instance, the rotational motion of the massive
bodies cannot be taken into account in 1PN approximation.
However, the impact of the spin-dipole structure of the
massive bodies on light deflection amounts to be about
0.7 μas, 0.2 μas, and 0.04 μas for a grazing light ray at Sun,
Jupiter, and Saturn, respectively [28,36]. Moreover, also
higher spin-multipoles have a significant impact on
sub-μas-level [26,64]. Furthermore, in 1PN approximation
there are no terms proportional to vA

c Mab where Mab is the
mass-quadrupole term. Already a straightforward estimate
reveals that such terms become relevant on sub-μas-level
of accuracy [26], see also Table III. In order to scrutinize
the impact of such terms one is necessarily enforced to
determine the 1.5PN solution for the light trajectory.
In view of these facts, the primary goal of this inves-

tigation is to determine a solution for the light trajectory in
1.5PN approximation, which includes all terms up to the
order Oðc−4Þ, where both of the important aspects (1) and
(2) addressed above are fully taken into account:

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δx1PN þ Δx1.5PN þOðc−4Þ:
ð18Þ

Especially, the massive bodies of the Solar System are
allowed to move along arbitrary world lines xAðtÞ and they
are having arbitrary shape and inner structure and rotational
motion, given in terms of time-dependent intrinsic mass-
multipoles MA

LðtÞ and spin-multipoles SALðtÞ, in accordance
with the IAU recommendations [19,20] and the theory of
relativistic reference systems [18,55–62]. The given sol-
ution for the light trajectory is considered as a further step
toward a consistent model of general-relativistic theory of
light propagation in the gravitational field of the Solar
System, which finally aims at accuracies on sub-μas-level
and even on nas-level.
The article is organized as follows: In Sec. II the

geodesic equation in 1.5PN approximation is considered.
A compendium of the DSX framework is presented in
Sec. III. The transformation of geodesic equation in terms
of new variables, which are more efficient than the
standard parametrization, is given in Sec. IV. The first
and second integration of geodesic equation is deter-
mined in Sec. V and Sec. VI, respectively. The important
case of light-propagation in the gravitational field of
moving spin-dipoles is investigated in Sec. VII. Finally,
the expressions for the observables of time delay and
light deflection are obtained in Secs. VIII and IX.
Especially, numerical values for the impact of the leading
mass-multipoles and spin-multipoles on time delay and
light deflection are given in Table II and Table III,
respectively. A summary and outlook can be found in
Sec. X. The used notations and conventions and further
details and several checks of the calculations are shifted
into the appendix.

II. GEODESIC EQUATION IN 1.5PN
APPROXIMATION

The Solar System is composed of N arbitrarily shaped,
rotating and deformable massive bodies which move under
the influence of their mutual gravitational interaction among
their common barycenter. It is clear, that the metric of such a
highly complicatedN-body system is not known in its exact
form and can only be determined within an approximative
scheme. In view of the weak gravitational fields and slow
motions of the bodies, the metric tensor of the Solar System
in theBCRScoordinate systemxμ ¼ ðct; xÞcanbeexpanded
in terms of inverse powers in the light-velocity, called post-
Newtonian expansion [17]:

gαβðt; xÞ ¼ ηαβ þ hð2Þαβ ðt; xÞ þ hð3Þαβ ðt; xÞ þOðc−4Þ; ð19Þ

where ηαβ is the metric tensor of flat Minkowski space-time

and the metric perturbations are of the order hð2Þαβ ¼ Oðc−2Þ
and hð3Þαβ ¼ Oðc−3Þ, cf. Eq. (10). Inserting (19) into (6a)
yields the geodesic equation in 1.5PN approximation, which
in termsof global coordinate time reads [18,24,33,35,40,41]:
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ẍiðtÞ
c2

¼ 1

2
hð2Þ00;i − hð2Þ00;j

_xiðtÞ
c

_xjðtÞ
c

− hð2Þij;k
_xjðtÞ
c

_xkðtÞ
c

þ 1

2
hð2Þjk;i

_xjðtÞ
c

_xkðtÞ
c

−
1

2
hð2Þ00;0

_xiðtÞ
c

− hð2Þij;0
_xjðtÞ
c

þ 1

2
hð2Þjk;0

_xiðtÞ
c

_xjðtÞ
c

_xkðtÞ
c

− hð3Þ0i;j
_xjðtÞ
c

þ hð3Þ0j;i
_xjðtÞ
c

− hð3Þ0j;k
_xiðtÞ
c

_xjðtÞ
c

_xkðtÞ
c

þOðc−4Þ;
ð20Þ

where a dot means total time-derivative. Note that the

constraint in (6b) results in _xðtÞ·_xðtÞ
c2 ¼1þOðc−2Þ, hence will

not change the form of geodesic equation in 1.5PN approxi-
mation in (20).
In (20) we have taken into account that in general hð2Þ0i ¼

hð3Þ00 ¼ hð3Þij ¼ 0 and hð3Þ0i;0 ¼ Oðc−4Þ. The metric perturba-
tions in (19) are functions of the field-points ðt; xÞ, while in
the geodesic equation (20) the metric perturbations
are of relevance at the coordinates of the photon xðtÞ.
Consequently, the derivatives in (20) are taken along the
light ray:

hðnÞαβ;μ ¼
∂hðnÞαβ ðt; xÞ

∂xμ
����
x¼xðtÞ

; n ¼ 2; 3: ð21Þ

In order to find an unique solution of the geodesic equation
in (20), so-called mixed initial-boundary conditions can be
imposed, which have extensively been used in the liter-
ature, e.g. [18,24,27,32,33,40,45]:

x0 ¼ xðt0Þ; ð22Þ

σ ¼ lim
t→−∞

_xðtÞ
c

: ð23Þ

The first condition (22) defines the spatial coordinates of
the photon at the moment t0 of emission of light. The
second condition (23) defines the unit-direction ðσ · σ ¼ 1Þ
of the light ray at past null infinity, that means the unit-
tangent vector along the light path in the infinite past hence
at infinite spatial distance from the origin of the global
coordinate system.
In the flat space-time there is no gravitational field,

hðnÞαβ ¼ 0, hence the geodesic equation (20) simplifies to the
form ẍðtÞ ¼ 0, having the solution

xðtÞ ¼ x0 þ cðt − t0Þσ þOðc−2Þ; ð24Þ

which is nothing other than just the unperturbed light
trajectory in Eq. (1).
The exact light trajectory xðtÞ in (9) deviates from the

Newtonian approximation in (24) by terms of the order

Oðc−2Þ, that means xðtÞ ¼ xNðtÞ þOðc−2Þ. Accordingly,
in (20) we may replace _xðtÞ by its Newtonian approxima-
tion, _xN ¼ cσ, and (20) simplifies as follows:

ẍiðtÞ
c2

¼ 1

2
hð2Þ00;i − hð2Þ00;jσ

iσj − hð2Þij;kσ
jσk

þ 1

2
hð2Þjk;iσ

jσk −
1

2
hð2Þ00;0σ

i − hð2Þij;0σ
j þ 1

2
hð2Þjk;0σ

iσjσk

− hð3Þ0i;jσ
j þ hð3Þ0j;iσ

j − hð3Þ0j;kσ
iσjσk þOðc−4Þ; ð25Þ

which agrees with Eq. (3) in [33]; recall hð3Þ0i;0 ¼ Oðc−4Þ.
Furthermore, in 1.5PN approximation the metric perturba-
tions in (25) can be taken at the spatial coordinates of
the unperturbed light ray. That means, in (25) one has first
to perform the differentiations with respect to BCRS
coordinates xμ ¼ ðct; xÞ and afterwards to insert the
unperturbed light ray:

hðnÞαβ;μ ¼
∂hðnÞαβ ðt; xÞ

∂xμ
����
x¼xNðtÞ

: ð26Þ

In this investigation we will determine the
solution of the geodesic equation (25) in 1.5PN approxi-
mation, which can formally be written as follows
[cf. Eq. (18)]:

xðtÞ ¼ x0 þ cσðt − t0Þ þ Δx1PNðt; t0Þ
þ Δx1.5PNðt; t0Þ þOðc−4Þ: ð27Þ

The 1PN corrections Δx1PNðt; t0Þ in Eq. (27) are terms of
the order Oðc−2Þ and have already been determined in our
recent analysis [26]. Here, the primary goal is the deter-
mination of the 1.5PN corrections Δx1.5PNðt; t0Þ in Eq. (27)
which are terms of the order Oðc−3Þ.

III. COMPENDIUM OF DSX FRAMEWORK

The DSX framework represents a well-established for-
malism in the general-relativistic celestial mechanics of a
N-body system of arbitrarily shaped, rotating and deform-
able bodies, and has been introduced and thoroughly
formulated in [55–58]. The original intension of DSX
was the description of the dynamics of N massive bodies,
that is the equations of motion in celestial mechanics
for N extended bodies under the influence of their mutual
gravitational interaction.
The basic assumption is to introduce N þ 1 reference

systems: one global chart (BCRS) with coordinates xμ ¼
ðct; xÞ having its origin of the spatial axes at the barycenter
of the Solar System, and N local charts with coordinates
Xα
A ¼ ðcTA;XAÞ, one for each individual body A ¼ 1;…; N

and having their origins at the barycenter of these massive
bodies and co-moving with them. The local coordinate
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systems are tied to each individual massive body and are
defined very similar to the Geocentric Celestial Reference
System (GCRS) which is in use for the Earth and, therefore,
they are called GCRS-like reference systems. A central result
of the DSX approach is the form of the global metric gμν of
BCRS and the form of the local metric GA

αβ for each GCRS-
like system, and the coordinate transformation among all
these reference systems ðct; xÞ ↔ ðcTA;XAÞ. Another cen-
tral achievement in the DSX formalism is the decomposition
of the global metric in terms of intrinsic mass-multipolesMA

L
and intrinsic spin-multipoles SAL. In this section we will
present a compendium of the DSX theory, which has
become a basic part of IAU resolution B1.3 (2000) [19]
and which are of upmost relevance for our own consid-
erations aiming at applications of the DSX approach in the
astrometrical science.

A. BCRS

The harmonic BCRS coordinates are denoted by
xμ ¼ ðct; xiÞ, where t ¼ TCB is the BCRS coordinate
time; about a practical synchronization of a set of clocks
distributed somewhere in the Solar System we refer to [69].
The origin of the spatial axes of BCRS is located at the
barycenter of the Solar System and covers the entire three-
dimensional space and can therefore be used to model light
trajectories from distant celestial objects to the observer.
The IAU Resolution B2 (2006) [20] recommends the
spatial axes of BCRS to be oriented according to the
spatial axes of the International Celestial Reference System
(ICRS) [70]. Furthermore, according to IAU resolution
B1.3 (2000) [19] the Solar System is assumed to be isolated
and the space-time is asymptotically flat, that means the
BCRS metric gμνðt; xÞ at infinity reads:

lim
r→∞

gμνðt; xÞ ¼ ημν; ð28Þ

where r ¼ jxj. The BCRS is completely characterized by
the form of its metric tensor which, however, is not known
in its exact form. According to the geodesic equation in
1.5PN approximation (25), for our intentions the metric is
required to be known only up to terms of the order Oðc−4Þ,
which are given by [19]:

g00ðt; xÞ ¼ −1þ 2wðt; xÞ
c2

þOðc−4Þ; ð29Þ

g0iðt; xÞ ¼ −
4wiðt; xÞ

c3
þOðc−5Þ; ð30Þ

gijðt; xÞ ¼
�
1þ 2wðt; xÞ

c2

�
δij þOðc−4Þ: ð31Þ

The gravitational potentials in (29)–(31) are given by the
integrals

wðt; xÞ ¼ G
c2

Z
d3x0

t00ðt; x0Þ
jx − x0j þOðc−2Þ; ð32Þ

wiðt; xÞ ¼ G
c

Z
d3x0

t0iðt; x0Þ
jx − x0j þOðc−2Þ; ð33Þ

where the integrals in (32) and (33) run over the entire Solar
System, and tμν is the energy-momentum tensor of the
Solar System in global BCRS coordinates; recall the
components of energy-momentum tensor scale as follows:
t00 ¼ Oðc2Þ, t0i ¼ Oðc1Þ, tij ¼ Oðc0Þ.
The global gravitational potentials in (32)–(33) admit an

expansion in terms of global Blanchet-Damour (BD) mass-
multipoles and spin-multipoles, mL and sL, [33,51–53],
which characterize the multipole structure of the Solar
System as a whole,

wðt; xÞ ¼ G
X∞
l¼0

ð−1Þl
l!

mhLiðtÞ∂hLi
1

r
þOðc−2Þ; ð34Þ

wiðt; xÞ ¼ −G
X∞
l¼2

ð−1Þl
l!

_mhiL−1iðtÞ∂hL−1i
1

r

− G
X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabshbL−1iðtÞ∂haL−1i

1

r

þOðc−2Þ: ð35Þ

The global mass-multipoles and global spin-multipoles in
(34)–(35) are Cartesian symmetric and trace-free (STF)
tensors, and up to order Oðc−2Þ given by (cf. Eqs. (2.34a)
and (2.34b) in [52]):

mhLiðtÞ ¼ STF
L

Z
d3xxL

t00ðt; xÞ
c2

; ð36Þ

shLiðtÞ ¼ STF
L

Z
d3xϵabclxaL−1

t0bðt; xÞ
c

; ð37Þ

where m0 ¼ const is the mass of the entire Solar System,
the mass-dipole mi ¼ 0 because the origin of BCRS is
located at the barycenter of the Solar System, and the
spin-dipole si ¼ const describes the spin of the entire
Solar System which safely can be assumed to be time-
independent. The spatial derivative operator in (34)–(35) is
defined by

∂hLi ¼ STF
i1…il

∂
∂xi1 …

∂
∂xil ; ð38Þ

and a dot means derivative with respect to global coor-
dinate-time. The expansion in (34)–(35) has two specific
features, which do not allow a straightforward application
in our investigations:
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(1) The expansion in (34)–(35) is valid outside a sphere
which encloses the N-body system [51–54,71]. It is
quite obvious that for modeling of light propagation
through the Solar System we need to have a metric
which is valid in spatial domains between these N
massive bodies.

(2) It has already been underlined in the introductory
section that according to the theory of reference
systems [18,19,55–62] physically meaningful multi-
pole moments of some massive body A have to be
defined in the local reference system ðcTA;XAÞ tied
to that body and co-moving with it.

For these reasons, the global gravitational potentials in
(34)–(35) must have to be expressed by intrinsic mass-
multipoles MA

L and intrinsic spin-multipoles SAL, which are
defined in the local reference system ðcTA;XAÞ of each
individual massive body A. The prototype of all these
GCRS-like coordinate systems is the GCRS especially
designed for the Earth and which will be considered now.

B. GCRS

For the description of physical problems nearby the
Earth the GCRS is the appropriate reference system. The
harmonic GCRS coordinates are denoted by Xα ¼ ðcT; XiÞ,
where T ¼ TCG is the GCRS coordinate time. According
to IAU resolution B1.3 (2000) [19], the origin of the spatial
axes of GCRS is located at the center-of-mass of the Earth
and co-moving with it. The spatial axes of GCRS are
kinematically non-rotating with respect to the BCRS, that
means the GCRS is a space-fixed reference system and is
not a local inertial system. The GCRS is completely
characterized by the form of its metric tensor, up to order
Oðc−4Þ given by [19,55,56],

G00ðT;XÞ ¼ −1þ 2WðT;XÞ
c2

þOðc−4Þ; ð39Þ

G0iðT;XÞ ¼ −
4WiðT;XÞ

c3
þOðc−5Þ; ð40Þ

GijðT;XÞ ¼
�
1þ 2WðT;XÞ

c2

�
δij þOðc−4Þ: ð41Þ

The gravitational potentials in (39)–(41) can uniquely be
separated into two components: a local component,
ðWloc;Wi

locÞ which originates from the body A itself and
an external component, ðWext;Wi

extÞ, which is associated
with inertial effects and tidal forces [19,55,56]:

WðT;XÞ ¼ WlocðT;XÞ þWextðT;XÞ; ð42Þ

WiðT;XÞ ¼ Wi
locðT;XÞ þWi

extðT;XÞ: ð43Þ

Explicit expressions for the external potentials are given
in [55,56], while the local potentials are defined by the
following integrals:

WlocðT;XÞ ¼
G
c2

Z
VE

d3X0 T
00ðT;X0Þ
jX − X0j þOðc−2Þ; ð44Þ

Wi
locðT;XÞ ¼

G
c

Z
VE

d3X0 T
0iðT;X0Þ
jX − X0j þOðc−2Þ; ð45Þ

where the integrations run over the entire volume of the
Earth, and where Tμν are the components of the energy-
momentum tensor in GCRS coordinates; recall the com-
ponents of energy-momentum tensor scale as follows:
T00 ¼ Oðc2Þ, T0i ¼ Oðc1Þ, Tij ¼ Oðc0Þ. The local poten-
tials (44)–(45) generated by the Earth can be expanded into
a series of STF multipole moments, ML and SL. In the
harmonic skeletonized gauge they are given by [19,51–55]:

WlocðT;XÞ ¼ G
X∞
l¼0

ð−1Þl
l!

MhLiðTÞDhLi
1

R
þOðc−2Þ;

ð46Þ

Wi
locðT;XÞ ¼ −G

X∞
l¼1

ð−1Þl
l!

_MhiL−1iðTÞDhL−1i
1

R

− G
X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabShbL−1iðTÞDhaL−1i

1

R

þOðc−2Þ; ð47Þ

where R ¼ jXj is the spatial distance from the origin of
GCRS to some field point outside the Earth, and

DhLi ¼ STF
a1…al

∂
∂Xa1

…
∂

∂Xal
; ð48Þ

and a dot in (47) denotes a derivative with respect to GCRS
coordinate time T.
The intrinsic STF multipoles in (46) and (47) can be

approximated by their Newtonian expressions, that means
up to terms of the order Oðc−2Þ they are given by:

MhLiðTÞ ¼ STF
L

Z
VE

d3XXL
T00ðT;XÞ

c2
; ð49Þ

ShLiðTÞ ¼ STF
L

Z
VE

d3XϵabclXaL−1
T0bðT;XÞ

c
; ð50Þ

where the integration runs over the volume of the Earth, and
Tαβ is the energy-momentum tensor in the local system of
the Earth.
The intrinsic mass-monopole term M ¼ const in (49) is

the Newtonian mass of the Earth. Actually, the mass-dipole
vanishes, Mi ¼ 0, because the origin of the GCRS is
assumed to be located at the barycenter of the Earth, but
in real measurements of celestial mechanics the center-of-
mass of massive Solar System bodies cannot be determined
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exactly, so it is meaningful to keep this term and to assume
Mi ¼ const in general. The spin-dipole SiðTÞ of the Earth is
not constant but time-dependent due to inner forces of the
Earth and due to the gravitational interaction of the Earth
with other massive bodies.

C. Metric of Solar System in terms
of intrinsic multipoles

In order to describe the light trajectory through the Solar
System, one needs to introduce one global chart (BCRS)
xμ ¼ ðct; xÞ but expressed in terms of intrinsic multipoles,
MA

L and SAL, of each massive body A ¼ 1;…; N. For being
able to define the multipole structure of each individual
body in a physically meaningful manner, the DSX formal-
ism [55,56] introduces N local GCRS-like reference
systems Xα

A ¼ ðcTA;XAÞ, each one very similar to the
GCRS in Eqs. (39)–(41). These N þ 1 coordinate systems
are linked with each other via coordinate-transformations.
The DSX theory [55–58] provides the theoretical frame-
work for such an approach, and has originally been
established for celestial mechanics and for deriving the
equations of motion of a system of N massive bodies with
full multipole structure. Consequently, one central result of
DSX theory are the coordinate transformations among
these reference systems, which are given by

xμ ¼ xμAðTAÞ þ eμaðTAÞXa
A þOðc−2Þ; ð51Þ

where xμAðTAÞ is the world line of body A in BCRS
coordinates. The inverse coordinate transformations could
be found in [19], but is not of relevance here for our
purposes. The tetrads eμa along the world line of this body
are explicitly given by (cf. Eqs. (2.16) in [55]):

e0aðTAÞ ¼
_xaAðTAÞ

c
þOðc−3Þ; ð52Þ

eiaðTAÞ ¼ δai þOðc−2Þ; ð53Þ

where in (52) a dot means derivative with respect to the
local coordinate time of body A. That means, _xAðTAÞ is
the three-velocity of body A in the global system and given
in terms of the body’s local coordinate time TA, which
could easily be transformed into terms of global BCRS
coordinate-time.
The contravariant components of the BCRS metric

tensor gμνðt; xÞ in Eqs. (29)–(31) and the contravariant
components of the metric tensor GαβðTA;XAÞ in
Eqs. (39)–(41) in the local GCRS-like coordinate system
of body A are related via the following transformation:

gμνðt; xÞ ¼ ∂xμ
∂Xα

A

∂xν
∂Xβ

A

GαβðTA;XAÞ: ð54Þ

Using (51) in virtue of (54), the global potentials ðw;wiÞ in
(32)–(33) can be expressed in terms of intrinsic STF
multipoles MA

L and SAL as follows [19,55,56]:

wðt; xÞ ¼
XN
A¼1

wAðt; xÞ; ð55Þ

wAðt; xÞ ¼ G
X∞
l¼0

ð−1Þl
l!

MA
hLiðTAÞDA

hLi
1

RA
þOðc−2Þ;

ð56Þ

wiðt; xÞ ¼
XN
A¼1

wi
Aðt; xÞ; ð57Þ

wi
Aðt;xÞ¼−G

X∞
l¼1

ð−1Þl
l!

_MA
hiL−1iðTAÞDA

hL−1i
1

RA

−G
X∞
l¼1

ð−1Þl
l!

l
lþ1

ϵiabSAhbL−1iðTAÞDA
haL−1i

1

RA

þGviAðTAÞ
X∞
l¼0

ð−1Þl
l!

MA
hLiðTAÞDA

hLi
1

RA
þOðc−2Þ:

ð58Þ
In (55) and (57) the sum runs over all bodies of the N-body
system, RA ¼ jXAj is the spatial distance from the origin of
local coordinate system to some field point located outside
the massive body, and

DA
hLi ¼ STF

a1…al

∂
∂Xa1

A
…

∂
∂Xal

A
: ð59Þ

The local mass-multipoles and spin-multipoles of some
massive body A in Newtonian approximation, i.e. up to
terms of the orderOðc−2Þ, are given by [cf. Eqs. (49)–(50)]:

MA
hLiðTAÞ ¼ STF

L

Z
VA

d3XAXA
L
T00
A ðTA;XAÞ

c2
; ð60Þ

SAhLiðTAÞ ¼ STF
L

Z
VA

d3XAϵabclX
A
aL−1

T0b
A ðTA;XAÞ

c
; ð61Þ

where the integration runs over the spatial volume of
massive body A, and Tαβ

A is the energy-momentum tensor
of body A in the local coordinate system of that body.
Finally, using coordinate transformations (51), the spa-

tial derivatives in (56) and (58) must be transformed into
the BCRS, where they read as follows:

∂
∂cTA

¼ ∂
∂ctþ

vaAðTAÞ
c

∂
∂xa þOðc−2Þ; ð62Þ

∂
∂Xa

A
¼ ∂

∂xa þ
vaAðTAÞ

c
∂
∂ctþOðc−2Þ; ð63Þ

where the second term in (62) as well as in (63) generate
terms which are beyond the order of Oðc−4Þ in the global
metric, that means these terms will actually not contribute
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in the final results for the light trajectory. From (51) follows
the relation [19,21,55,56]:

RA ¼ jx − xAðtÞj þOðc−2Þ; ð64Þ

where we recall that some massive body Amoves along the
arbitrary world line xAðtÞ, which can later be concretized by
Solar System ephemeris [63] at any stage of the calcu-
lations. Because of the fact that the BCRS coordinate-time
and the coordinate time TA of local system of body A are
related as follows [19,21,55,56],

TA ¼ tþOðc−2Þ; ð65Þ

we obtain for the time-dependence of the intrinsic multi-
poles the following relation:

MA
hLiðTAÞ ¼ MA

hLiðtÞ þOðc−2Þ; ð66Þ

SAhLiðTAÞ ¼ SAhLiðtÞ þOðc−2Þ; ð67Þ

that means the neglected terms in (66) and (67) are beyond
1.5PN approximation for light rays.
Summarizing the conclusions in Eqs. (51)–(67), the

metric perturbation in the near-zone of the Solar System
and expressed in terms of local multipoles is given by:

hð2Þ00 ðt; xÞ ¼
XN
A¼1

hð2ÞA00 ðt; xÞ; ð68Þ

hð2ÞA00 ðt; xÞ ¼ 2G
c2

X∞
l¼0

ð−1Þl
l!

MA
hLiðtÞ∂hLi

1

rAðtÞ
; ð69Þ

hð2Þij ðt; xÞ ¼ hð2Þ00 ðt; xÞδij; ð70Þ

hð3Þ0i ðt; xÞ ¼
XN
A¼1

hð3ÞA0i ðt; xÞ; ð71Þ

hð3ÞA0i ðt; xÞ ¼ 4G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hiL−1iðtÞ∂hL−1i

1

rAðtÞ

þ 4G
c3

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabS

A
hbL−1iðtÞ∂haL−1i

1

rAðtÞ

−
4G
c3

viAðtÞ
X∞
l¼0

ð−1Þl
l!

MA
hLiðtÞ∂hLi

1

rAðtÞ
;

ð72Þ
where the summation in (68) and (71) runs over all massive
bodies of the Solar sSystem, while the metric perturbations
caused by one individual body are given by (69) and (72).
The dot in the first term of expression (72) means here the
derivative with respect to global BCRS coordinate time,
and the spatial derivatives in (68)–(72) are derivatives in the
global system and given by

∂hLi ¼ STF
i1…il

∂
∂xi1 …

∂
∂xil ; ð73Þ

and

rAðtÞ ¼ jx − xAðtÞj; ð74Þ
is the distance between some field-point with spatial
coordinate x and the spatial position xAðtÞ of massive
body A in the global reference system at BCRS time t. The
metric perturbations in (68)–(72) have to be implemented
into the geodesic equation in (20) and, therefore, the field-
point x in (74) will be identified with the photons position
xðtÞ according to Eq. (21). In view of this fact we will
use the same notation for the distance in (74) and for the
absolute value of (B10).
Before going further, we underline the absence of terms

proportional to v2A
c2 M

A
L,

vA
c
_MA
L, M̈A

L,
vA
c S

A
L, _SAL in the DSX

metric tensor (68)–(72). Such terms are of the orderOðc−4Þ
in the metric, that means they are beyond the 1.5PN
approximation for light rays.

IV. TRANSFORMATION OF GEODESIC
EQUATION

As it has been discussed above, instead of (20) we
actually may consider the simpler form of geodesic
equation in (25), which is integrated along the unperturbed
light trajectory (1). That means, according to Eq. (26), the
field-point x in Eq. (74) can be approximated by the
unperturbed photon-trajectory xNðtÞ in (1), so that we
get the following expression for the vector pointing from
the center of massive body A toward the spatial position of
the photon at time t:

rNAðtÞ ¼ xNðtÞ − xAðtÞ; ð75Þ
rNAðtÞ ¼ jxNðtÞ − xAðtÞj; ð76Þ

where the unperturbed light ray is given by Eq. (1) or
Eq. (24). It especially means that all derivatives in geodesic
equation (25) and in the metric perturbations in (68)–(72)
act on the unperturbed light ray. In view of this important
fact, it is highly effective to embark on a strategy, where all
expressions in the geodesic equation (25) are expressed in
terms of new parameters which fully characterize the
unperturbed light trajectory from the very beginning of
the integration procedure. This strategy especially implies
that we will transform the spatial derivatives in (73), the
derivatives in the geodesic equation (25), the distance in
(76) and the time-argument of the multipoles in terms of
these new parameters.
The problem and the need for introducing new variables

is namely the following. The variables t and x are field
variables of the gravitational field and, therefore, they are
of course independent of each other. But since the inte-
gration of geodesic equation proceeds along the light ray
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[cf. Eq. (21)] these field variables have to be replaced by the
photon trajectory, xðtÞ, and then these variables become
dependent on each other. A drastic simplification is
achieved in view of Eq. (26) which states that the geodesic
equation in (25) can be integrated along the unperturbed
light ray. Therefore, we are looking for new time-variable
and spatial-variable, which fully parametrize the unper-
turbed light ray and which are independent of each other. In
this way the integration of geodesic equation becomes
feasible. Just for that reason, the following independent
variables τ and ξ have been introduced in [33,40,41]:

cτ ¼ σ · xNðtÞ; cτ0 ¼ σ · xNðt0Þ; ð77Þ
ξi ¼ Pi

jx
j
NðtÞ; ð78Þ

where Pi
j is the operator of projection onto the plane

perpendicular to vector σ,

Pij ¼ δij − σiσj; ð79Þ
where the covariant and contravariant positions of spatial
indices is insignificant: Pi

j ¼ Pij ¼ Pij. According to (78),
the three-vector ξ is the impact vector of the unperturbed
light ray, see also Eq. (B2). Especially, ξ is time-independent
and directed from the origin of global coordinate system
toward the point of closest approach of the unperturbed light
trajectory and the absolute value is denoted by d ¼ jξj. For a
graphical elucidation see Fig. 1.
Another important parameter is the time of closest

approach of unperturbed light ray to the origin of the
global coordinate system, defined by

t� ¼ t0 −
σ · x0
c

; ð80Þ
which differs from (B14) which is the time of closest
approach of the light ray to the origin of the local
coordinate system of some massive body A. Notice that
dt ¼ dτ for the total differentials, because t� is a constant
for each particular light ray, and τ ¼ t − t� and τ0 ¼ t0 − t�.
With the aid of these new variables ξ and τ, the mixed
initial-boundary conditions (22) and (23) take the form

x0 ¼ xðτ0 þ t�Þ; ð81Þ

σ ¼ lim
τ→−∞

_xðτ þ t�Þ
c

; ð82Þ
where a dot means derivative with respect to variable τ.
In the new variables the interpretation of these initial-
boundary conditions remains the same: the first condition
(81) defines the spatial coordinates of the photon at the
moment of emission of light, while the second condition
(82) defines the unit-direction (σ · σ ¼ 1) at infinite past
and infinite distance from the origin of global coordinate
system, that means at the so-called past null infinity.
The unperturbed light ray in (24) transforms as follows

[26,33,34,40,41]:

xNðτ þ t�Þ ¼ ξ þ cτσ; ð83Þ
while its derivative with respect to variable τ reads
_xNðτ þ t�Þ ¼ cσ. The vector pointing from the spatial
position of the arbitrarily moving body toward the unper-
turbed light ray in these new variables transforms as follows:

rNAðτ þ t�Þ ¼ ξ þ cτσ − xAðτ þ t�Þ; ð84Þ
with the absolute value rNAðτ þ t�Þ ¼ jrNAðτ þ t�Þj, and the
impact parameter in (B13) for arbitrarily moving bodies in
these new variables reads:

dAðτ þ t�Þ ¼ σ × ðrNAðτ þ t�Þ × σÞ; ð85Þ

with the absolute value dAðτ þ t�Þ ¼ jdAðτ þ t�Þj.
In virtue of Eqs. (77) and (78) two new variables, τ and ξ,

have been introduced and in addition the auxiliary variable t�
by Eq. (80). As next, the partial derivatives with respect to
space and time in the geodesic equation (25) have to be
expressed in terms of these new variables. In the pioneering
investigations in [33,40,41] it has been shown by chain rule
that these partial derivatives transform in the following way:

∂hðnÞαβ ðt; xÞ
∂xi

����
x¼xNðtÞ

¼
�
Pij ∂

∂ξj þ σi
∂
∂cτ − σi

∂
∂ct�

�
hðnÞαβ ðτ þ t�; ξ þ cτσÞ;

ð86Þ

FIG. 1. A geometrical representation of the light trajectory
through the Solar System (only one massive body A of the N-
body Solar System is depicted) in terms of the new variables ξ
and τ. The impact vector ξ is defined by Eq. (78) and points from
the origin of global system to the point of closest approach of the
unperturbed light ray to that origin, and is time-independent. The
impact vector dAðτ þ t�Þ is defined by Eq. (85) and points from
the origin of local system of body A toward the point of closest
approach of unperturbed light ray to that origin, and is time-
dependent due to the motion of the body. Furthermore, xðτ þ t�Þ
is the global spatial coordinate of the photon of the light
trajectory, while xNðτ þ t�Þ is the unperturbed light ray. The
world line of massive body A in the global system is given by
xAðτ þ t�Þ, and rAðτ þ t�Þ points from the origin of local system
towards the exact photon’s position, while rNAðτ þ t�Þ points from
the origin of local system toward the unperturbed light ray.
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∂hðnÞαβ ðt; xÞ
∂ct

����
x¼xNðtÞ

¼ ∂
∂ct� h

ðnÞ
αβ ðτ þ t�; ξ þ cτσÞ: ð87Þ

Two remarks are in order to interpret these relations
correctly. First, we notice that the explicit time-dependence

of the metric tensor, hðnÞαβ ðt; xÞ, is caused by the time-
dependence of the multipoles MA

LðtÞ; SALðtÞ as well as by
the motions of the massive bodies xAðtÞ. Therefore, the
partial time-derivative on the l.h.s. in (87) acts on the
multipoles as well as on the world lines of the massive
bodies. For the same reason, the time-derivatives on the
r.h.s. in (86) and (87) act on the multipoles, the world
lines of the massive bodies and on the unperturbed
light ray. Note, however, that the unperturbed light ray
xN ¼ ξ þ cτσ does not depend on variable t�, while the
distance-vector rNA ¼ ξ þ cτσ − xAðτ þ t�Þ does because it
depends on the bodie’s world line. Second, it should be
realized, that in the left-hand side in (86) and (87) one
has first to perform the differentiations and afterwards the
field-point x has to be substituted by the unperturbed
lightray xNðtÞ ¼ x0 þ cσðt − t0Þ. Opposite, in the right-
hand side in (86) and (87) one has first to substitute t� þ τ
and xNðτ þ t�Þ ¼ ξ þ cτσ and afterwards to perform the
differentiations.
By means of these relations (86) and (87), the geodesic

equation in 1.5PN approximation in (25) transforms as
follows:

ẍiðτþt�Þ
c2

¼þ1

2
Pij ∂

∂ξjh
ð2Þ
00 −

1

2
σi

∂
∂cτh

ð2Þ
00

þ1

2
σkσlPij ∂

∂ξjh
ð2Þ
kl þ

1

2
σiσjσk

∂
∂cτh

ð2Þ
jk −σj

∂
∂cτh

ð2Þ
ij

−
∂
∂cτh

ð3Þ
0i þσjPik ∂

∂ξkh
ð3Þ
0j þOðc−4Þ; ð88Þ

which agrees with Eq. (36) in [33] and Eq. (19) in [34]; note
that Pabσ

b ¼ 0. The double-dot on the left-hand side in
(88) means twice of the total differential with respect to
the new variable τ. Subject to relation (70), the geodesic
equation in (88) simplifies further:

ẍiðτþ t�Þ
c2

¼Pij∂hð2Þ00 ðτþ t�;ξþcτσÞ
∂ξj

−σi
∂hð2Þ00 ðτþ t�;ξþcτσÞ

∂cτ
−
∂hð3Þ0i ðτþ t�;ξþcτσÞ

∂cτ
þσjPik

∂hð3Þ0j ðτþ t�;ξþcτσÞ
∂ξk þOðc−4Þ: ð89Þ

Let us note that the first two terms are of order Oðc−2Þ and
agree with Eq. (95) in [26], while the last two terms are of
order Oðc−3Þ. This fact implies that if one integrates the
geodesic equation (89) then the first two terms in (89) give
rise to terms of the orderOðc−2Þ as well as to terms of order
Oðc−3Þ, while the last two terms generate only terms of
the order Oðc−3Þ. The mathematical structure of (89) is
considerably simpler than the original form in (25), but of
more decisive importance in the integration procedure is the
fact that the time-variable τ and the space-variable ξ are
independent of each other.
As final step in the transformation, the metric perturba-

tions in (68)–(72) have to be transformed in terms of these
new variables ξ and τ. One obtains

hð2Þ00 ðτ þ t�; ξ þ cτσÞ ¼
XN
A¼1

hð2ÞA00 ðτ þ t�; ξ þ cτσÞ; ð90Þ

with

hð2ÞA00 ðτ þ t�; ξ þ cτσÞ

¼ þ 2G
c2

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

1

rNAðτ þ t�Þ ; ð91Þ

and

hð3Þ0i ðτ þ t�; ξ þ cτσÞ ¼
XN
A¼1

hð3ÞA0i ðτ þ t�; ξ þ cτσÞ; ð92Þ

with

hð3ÞA0i ðτ þ t�; ξ þ cτσÞ ¼ þ 4G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hiL−1iðτ þ t�Þ∂hL−1i

1

rNAðτ þ t�Þ

þ 4G
c3

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabS

A
hbL−1iðτ þ t�Þ∂haL−1i

1

rNAðτ þ t�Þ

−
4G
c3

viAðτ þ t�Þ
X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

1

rNAðτ þ t�Þ ; ð93Þ

where the sum in (90) and (92) runs over all massive bodies of the Solar System. The expressions in Eqs. (91) and (93)
contain the STF spatial derivative operation ∂hLi, which also has to be expressed in terms of these new variables. That issue
is considered in detail in Appendix C and yields the following expression for the STF partial derivative operation in
Eqs. (91) and (93):
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∂hLi ¼ STF
i1…il

Xl

p¼0

l!
ðl − pÞ!p!

Xp
q¼0

ð−1Þq p!
ðp − qÞ!q! σ

i1…σipPipþ1jpþ1…Piljl
∂

∂ξjpþ1
…

∂
∂ξjl

� ∂
∂cτ

�
p−q

� ∂
∂ct�

�
q
: ð94Þ

These expressions in (90)–(94) have to be inserted into the geodesic equation (89), which finally yields the geodesic
equation for light rays which propagate in the gravitational field of one arbitrarily moving body A in terms of these new
variables τ and ξ:

ẍðτ þ t�Þ
c2

¼
XN
A¼1

�
ẍMA ðτ þ t�Þ

c2
þ ẍSAðτ þ t�Þ

c2

�
þOðc−4Þ; ð95Þ

where the indicesM and S stand for mass-multipole and spin-multipole component, respectively. That means, the linearity
of geodesic equation in 1.5PN approximation allows simply to sum over all N arbitrarily moving bodies just straight away.
The contributions due to the mass-multipole structure of one body A is given by

ẍiMA ðτ þ t�Þ
c2

¼ þ 2G
c2

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

1

rNAðτ þ t�Þ

−
2G
c2

σi
∂
∂cτ

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

1

rNAðτ þ t�Þ

−
4G
c3

∂
∂cτ

X∞
l¼1

ð−1Þl
l!

_MA
hiL−1iðτ þ t�Þ∂hL−1i

1

rNAðτ þ t�Þ

þ 4G
c3

∂
∂cτ v

i
Aðτ þ t�Þ

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

1

rNAðτ þ t�Þ

þ 4G
c3

σjPik ∂
∂ξk

X∞
l¼1

ð−1Þl
l!

_MA
hjL−1iðτ þ t�Þ∂hL−1i

1

rNAðτ þ t�Þ

−
4G
c3

σjPik ∂
∂ξk v

j
Aðτ þ t�Þ

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

1

rNAðτ þ t�Þ ; ð96Þ

and the contribution due to the spin-multipole structure of one body A reads

ẍiSA ðτ þ t�Þ
c2

¼ −
4G
c3

∂
∂cτ

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabS

A
hbL−1iðτ þ t�Þ∂haL−1i

1

rNAðτ þ t�Þ

þ 4G
c3

σjPik ∂
∂ξk

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵjabS

A
hbL−1iðτ þ t�Þ∂haL−1i

1

rNAðτ þ t�Þ ; ð97Þ

where the derivative operator is given by (94).
By Eqs. (95)–(97) the transformation of geodesic equa-

tion in 1.5PN approximation in terms of these new
variables τ and ξ has been accomplished, which describes
the propagation of a light-signal through the field of N
massive bodies in arbitrary motion and having arbitrary
shape and inner structure and which can also rotate
arbitrarily. Before we proceed further, three comments
should be in order:

(i) First, let us note that the spatial derivative
operator in (94) depends on time-variables τ and
t�, but in such a way that it does not act on time-
dependent multipoles or the velocity of the body,
that means:

∂hLiMA
hLiðτ þ t�Þ ¼ 0; ð98Þ

∂hLiSAhLiðτ þ t�Þ ¼ 0; ð99Þ

∂hLivAðτ þ t�Þ ¼ 0; ð100Þ

because the construction of the derivative operator
in (94) is such that the derivatives with respect
to variable τ cancel exactly the derivatives with
respect to t� in all those functions which depend
on the combination τ þ t�. But of course
∂hLirNAðτ þ t�Þ ≠ 0.
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(ii) Second, let us also remark that in (96) the STF
notation for the derivative operator has been kept.
But we recall the following relation, which is a
specific example of the more general relation
Eq. (A1) in [72]:

MA
hLi∂hLi

1

rNAðτ þ t�Þ ¼ MA
hLi∂L

1

rNAðτ þ t�Þ ;

ð101Þ

MA
hiL−1i∂hL−1i

1

rNAðτ þ t�Þ ¼ MA
hiL−1i∂L−1

1

rNAðτ þ t�Þ :

ð102Þ

The relation in (101) has allowed us to replace
the STF derivative operator ∂hLi by ∂L in
Eqs. (100)–(102) in [26]. Here, in view of relation
(101) and (102) we may also replace the STF
derivative operator ∂hLi by ∂L in all terms in (96),
and correspondingly in the first integral in (110) and
(111), as well as in the second in (118) and (119). On
the other side, such replacement is not possible for
the spin-multipole terms in (97), because of

SAhbL−1i∂haL−1i
1

rNAðτ þ t�Þ ≠ SAhbL−1i∂aL−1
1

rNAðτ þ t�Þ :

ð103Þ

(iii) Third, it should also be mentioned that in the limit of
one massive body at rest with the origin of the
coordinate-system located at the center-of-mass
and with time-independent multipoles then the
geodesic equation (95)–(97) agrees with the geo-
desic equation given in [32]; notice the comment
in Ref. [73].

V. FIRST INTEGRATION OF GEODESIC
EQUATION

The coordinate velocity of the photon is determined by
the first integral of geodesic equation (89). In terms of the
new variables we may separate the first integral of geodesic
equation (89) into 1PN and 1.5PN terms as follows:

_x1.5PNðτ þ t�Þ
c

¼ σ þ
XN
A¼1

Δ_xA1PNðτ þ t�Þ
c

þ
XN
A¼1

Δ_xA1.5PNðτ þ t�Þ
c

: ð104Þ

That means, according to (95) we may consider the light-
propagation in the field of one arbitrarily moving body A
and finally we have to build the sum over all massive bodies
A ¼ 1;…; N in order to obtain the light trajectory in the
entire Solar System. Furthermore, according to Eq. (95) we

split these expressions into mass-multipole terms and spin-
multipole contributions as follows:

Δ_xA1PNðτ þ t�Þ
c

¼ Δ_xAM1PNðτ þ t�Þ
c

; ð105Þ

Δ_xA1.5PNðτ þ t�Þ
c

¼ Δ_xAM1.5PNðτ þ t�Þ
c

þ Δ_xAS1.5PNðτ þ t�Þ
c

; ð106Þ

where we have taken into account that in (105) there are no
spin-multipoles because they are of the order Oðc−3Þ, hence
they do appear only in (106). We shall consider mass-
multipole and spin-multipoles in the next subsections
separately.

A. First integration for mass-multipoles

The first integral of geodesic equation (95) for the mass-
multipole component of one massive body A reads:

Δ_xAM1PNðτ þ t�Þ
c

þ Δ_xAM1.5PNðτ þ t�Þ
c

¼
Z

τ

−∞
dcτ0

ẍMA ðτ0 þ t�Þ
c2

; ð107Þ

where the integrand up to the required order is given by
Eq. (96). Let us underline that the integration of the first
expression on the r.h.s. in (96) yields terms of the order
Oðc−2Þ as well as terms of the order Oðc−3Þ. For that
reason, the integral in (107) is written as sum of 1PN and
1.5PN terms. In particular, for the integration of geodesic
equation the following rules are important (cf. Eqs. (4.9)
and (4.10) in [40] or Eqs. (4.38) and (4.39) in [41]):Z

dcτ0
∂

∂cτ0 Fðτ
0; ξÞ ¼ Fðτ0; ξÞ þ CðξÞ; ð108Þ

Z
dcτ0

∂
∂ξi Fðτ

0; ξÞ ¼ ∂
∂ξi

Z
dcτ0Fðτ0; ξÞ; ð109Þ

where the function CðξÞ in (108) depends only on
variable ξ, thence disappears in case of definite integrals.
The rules in (108) and (109) are valid if one integrates along
the unperturbed light trajectory where the derivative ∂

∂cτ0
becomes a total derivative with respect to integration
variable τ0, see also the corresponding explanations made
by Eqs. (1.19)—(1.23) in [41].
The integration of the first expression on the r.h.s. in (96)

is shown in more detail in Appendix E, while in view of
relation (108) the integrals of the second, third, and fourth
expression in (96) are straightforward. The fifth term in
(96) can be integrated by parts using relation (D9) and is
shown in more detail in Appendix F, while the integration
of the sixth term goes very similar. Altogether, for the 1PN
terms one obtains:
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Δ_xiMA1PNðτ þ t�Þ
c

¼ −
2G
c2

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

1

rNAðτ þ t�Þ

−
2G
c2

σi
X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

1

rNAðτ þ t�Þ þOðM̈A
LÞ þO

�
vA
c

_MA
L

�
þO

�
v2A
c2

MA
L

�
: ð110Þ

In the first term on the r.h.s. in (110) we have used relation (D5). For the 1.5PN terms one obtains:

Δ_xiMA1.5PNðτ þ t�Þ
c

¼ þ 2G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLi

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

þ 2G
c3

σ · vAðτ þ t�Þ
X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

1

rNAðτ þ t�Þ

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

vAðτ þ t�Þ · dAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

−
4G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hiL−1iðτ þ t�Þ∂hL−1i

1

rNAðτ þ t�Þ

þ 4G
c3

viAðτ þ t�Þ
X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

1

rNAðτ þ t�Þ

−
4G
c3

σj
X∞
l¼1

ð−1Þl
l!

_MA
hjL−1iðτ þ t�Þ∂hL−1i

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

1

rNAðτ þ t�Þ

þOðM̈A
LÞ þO

�
vA
c

_MA
L

�
þO

�
v2A
c2

MA
L

�
; ð111Þ

where we recall _MA ¼ 0. In the second and sixth term on
the r.h.s. in (111) we have used (D5), while in the first term
on the r.h.s. in (111) we have used relation (D6). For the
third term in (111) one might want to use relation (D7), but
actually it does not simplify that expression significantly.
The derivative operator ∂hLi in (110) and (111) in terms of
the new variables ξ, τ, t� is given by (94).
Let us recall, that in 1PN approximation the derivative

operator in Eq. (94) can be replaced by the expression in
(C6), because the derivatives with respect to variable t�

produce terms of the order Oðc−3Þ; see also text below
Eq. (C5). Then, keeping in mind relation (101), one may
easily show that the 1PN expression in Eq. (110) agrees
with Eq. (111) in [26]. In [26] it has been demonstrated that
in case of bodies at rest (vA ¼ 0) having time-independent
mass-multipoles and located at the origin of coordinate

system (xA ¼ 0) our result in (110) agrees with the time-
derivative of Eqs. (33) and (36) in [32]. It should also be
noticed that the derivative of (111) with respect to variable
cτ yields the expression in (96).

B. First integration for spin-multipoles

The first integral of geodesic equation (95) for the spin-
multipole component of one massive body A reads:

Δ_xAS1.5PNðτ þ t�Þ
c

¼
Z

τ

−∞
dcτ0

ẍSAðτ0 þ t�Þ
c2

; ð112Þ

where the integrand up to the required order is given by
Eq. (97). The integration in (112) can be performed
straightforward and one obtains:

Δ_xiSA1.5PNðτþ t�Þ
c

¼−
4G
c3

X∞
l¼1

ð−1Þll
ðlþ1Þ!ϵiabS

A
hbL−1iðτþ t�Þ∂haL−1i

1

rNAðτþ t�Þ

−
4G
c3

σj
X∞
l¼1

ð−1Þll
ðlþ1Þ!ϵjabS

A
hbL−1iðτþ t�Þ∂haL−1i

diAðτþ t�Þ
rNAðτþ t�Þ−σ · rNAðτþ t�Þ

1

rNAðτþ t�ÞþOð _SALÞþO
�
vA
c
SAL

�
:

ð113Þ
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Let us remark that the second term in (113) is obtained by integration by parts, using (D9) and afterwards making use of
relation (D5). Note that the derivative operator ∂hLi in terms of the new variables ξ, τ, t� is given by (94). In the Appendix H
it is shown that in the limit of bodies at rest and stationary spin-multipoles our result in (113) agrees with Eqs. (32) and (37)
in [32], up to an overall sign which has been clarified [73]. We also note that the derivative of (113) with respect to variable
cτ yields the expression in (97).
Let us remark that neglecting terms of the orderOðM̈A

LÞ,OðvAc _MA
LÞ andOðv2Ac2 MA

LÞ in Eqs. (110) and (111), and neglecting
terms of the order Oð _SALÞ and OðvAc SALÞ in Eq. (113) is consistent with the fact that the DSX metric in Eqs. (68)–(72) does
also not contain such terms because they are beyond 1.5PN approximation.

VI. SECOND INTEGRATION OF GEODESIC EQUATION

The light trajectory of the photon is determined by the second integration of geodesic equation (89), and can be written as
follows:

x1.5PNðτ þ t�Þ ¼ ξ þ cτσ þ
XN
A¼1

ΔxA1PNðτ þ t�; τ0 þ t�Þ þ
XN
A¼1

ΔxA1.5PNðτ þ t�; τ0 þ t�Þ; ð114Þ

where the sum runs over all massive bodies A ¼ 1;…; N of the Solar System. Like in the case of first integration, we split
these expressions into mass-multipole terms and spin-multipole contributions as follows:

ΔxA1PNðτ þ t�; τ0 þ t�Þ ¼ ΔxAM1PNðτ þ t�; τ0 þ t�Þ; ð115Þ

ΔxA1.5PNðτ þ t�; τ0 þ t�Þ ¼ ΔxAM1.5PNðτ þ t�; τ0 þ t�Þ þ ΔxAS1.5PNðτ þ t�; τ0 þ t�Þ; ð116Þ

where in (115) there are no spin-multipoles because they are terms of the order Oðc−3Þ and consequently they do appear
only in (116). We will consider the mass-multipole and the spin-multipole components separately.

A. Second integration for mass-multipoles

The mass-multipole terms in (115) and (116) read

ΔxAM1PNðτ þ t�; τ0 þ t�Þ þ ΔxAM1.5PNðτ þ t�; τ0 þ t�Þ ¼
Z

τ

τ0

dcτ0
�
Δ_xAM1PNðτ0 þ t�Þ

c
þ Δ_xAM1.5PNðτ0 þ t�Þ

c

�
; ð117Þ

where the first and second integrand on the r.h.s. in (117) is given by Eq. (110) and (111), respectively. Let us
underline that the integration of the first integrand yields terms of the order Oðc−2Þ as well as of the order Oðc−3Þ.
Therefore, the integral in (117) is written as sum of 1PN and 1.5PN terms, while after the integration one may separate
the 1PN and 1.5PN terms. Inserting (110) and (111) into (117) yields all in all 8 integrals I3…I10. In favor of clear
arrangement, each of these integrals is considered separately in the Appendix G, and their solutions are given by
Eqs. (G5), (G7), (G9), (G11), (G13), (G15), (G17), (G19). Altogether, for the mass-multipole terms to order Oðc−2Þ we
obtain:

ΔxAM1PNðτ þ t�; τ0 þ t�Þ ¼ ΔxAM1PNðτ þ t�Þ − ΔxAM1PNðτ0 þ t�Þ;

ΔxiMA1PNðτ þ t�Þ ¼ −
2G
c2

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

þ 2G
c2

σi
X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

þOðM̈A
LÞ þO

�
vA
c

_MA
L

�
þO

�
v2A
c2

MA
L

�
: ð118Þ
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For the mass-multipole terms to order Oðc−3Þ one obtains:

ΔxAM1.5PNðτ þ t�; τ0 þ t�Þ ¼ ΔxAM1.5PNðτ þ t�Þ − ΔxAM1.5PNðτ0 þ t�Þ;

ΔxiMA1.5PNðτ þ t�Þ ¼ þ 2G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLidiAðτ þ t�Þ σ · rNAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

−
2G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLidiAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLivAðτ þ t�Þ · dAðτ þ t�Þ σ · rNAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

þ 2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLivAðτ þ t�Þ · dAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

−
2G
c3

σi
X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLi½rNAðτ þ t�Þ þ σ · rNAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ��

þ 2G
c3

σiσ · vAðτ þ t�Þ
X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

þ 2G
c3

σi
X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

vAðτ þ t�Þ · dAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

þ 4G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hiL−1iðτ þ t�Þ∂hL−1i ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

−
4G
c3

viAðτ þ t�Þ
X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

−
4G
c3

σj
X∞
l¼1

ð−1Þl
l!

_MA
hjL−1iðτ þ t�Þ∂hL−1i

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ þOðM̈A

LÞ þO
�
vA
c

_MA
L

�

þO
�
v2A
c2

MA
L

�
. ð119Þ

Notice, that the derivative operator ∂hLi in (118) and
(119) in terms of the new variables ξ, τ, t� is given by
(94). One may demonstrate, that (118) and (119) are
consistent with (110) and (111). That means, the deriva-
tive of (118) and (119) with respect to variable τ
coincides with the expressions in (110) and (111) up to
terms of the order Oðc−4Þ. For such a proof one has to
use the relations (D9) and (D12) and one must take into
account (G3) and (G4).
The 1PN solution in Eq. (118) coincides with Eq. (137)

in [26]. Recall that in 1PN approximation the derivative
operator in Eq. (94) can be replaced by the simplified
expression in Eq. (C6) (cf. Eq. (101) in [26]), because
derivatives with respect to variable t� generate terms of
the order Oðc−3Þ; see also comments below Eq. (C5).
Furthermore, in [26] it has already been shown that in case
of bodies at rest and located at the origin of coordinate

system our result in (118) agrees with Eqs. (33) and (36)
in [32].

B. Second integration for spin-multipoles

The spin-multipole terms in (116) read

ΔxAS1.5PNðτ þ t�; τ0 þ t�Þ ¼
Z

τ

τ0

dcτ0
Δ_xSAðτ0 þ t�Þ

c
;

ð120Þ

where the integrand in (120) is given by the expressions in
Eq. (113). The second expression on the r.h.s. in Eq. (113)
is rewritten by means of relation (D5) and then, by means of
relations (D10) and (D11), we may integrate by parts. We
obtain the following solution:
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ΔxAS1.5PNðτþ t�;τ0þ t�Þ ¼ΔxAS1.5PNðτþ t�Þ−ΔxAS1.5PNðτ0þ t�Þ;

ΔxiSA1.5PNðτþ t�Þ ¼þ4G
c3

X∞
l¼1

ð−1Þll
ðlþ 1Þ!ϵiabS

A
hbL−1iðτþ t�Þ∂haL−1i ln ½rNAðτþ t�Þ− σ · rNAðτþ t�Þ�

−
4G
c3

σj
X∞
l¼1

ð−1Þll
ðlþ 1Þ!ϵjabS

A
hbL−1iðτþ t�Þ∂haL−1i

diAðτþ t�Þ
rNAðτþ t�Þ− σ · rNAðτþ t�ÞþOð _SALÞþO

�
vA
c
SAL

�
;

ð121Þ

where for the second expression we also have used relation
(D6). The derivative operator ∂hLi in terms of the new
variables ξ, τ, t� is given by (94). One may easily check,
that (121) is consistent with (113), in the sense that the
derivative of (121) with respect to variable τ just yields the
expression in (113) up to terms of the order Oðc−4Þ. For
that proof simply apply the relations (D9) and (D12) and
take into account (G3). Furthermore, in Appendix H it is
shown that in the limit of bodies at rest and time-
independent spin-multipoles our result in (121) agrees with
Eqs. (33) and (38) in [32], up to an overall sign which has
been clarified [73].
We underline again that neglecting terms of the order

OðM̈A
LÞ, OðvAc _MA

LÞ and Oðv2Ac2 MA
LÞ in Eqs. (118) and (119),

and neglecting terms of the order Oð _SALÞ and OðvAc SALÞ in
Eq. (121) is in coincidence with the DSX metric in
Eqs. (68)–(72) where such terms do not occur because
they are beyond 1.5PN approximation.

VII. LIGHT TRAJECTORY IN THE FIELD
OF SPIN-DIPOLES

In our previous investigation [26] the light trajectory in
the field of N arbitrarily moving mass-monopoles, mass-
dipoles, and mass-quadrupoles has been considered as
specific examples of the general solution, see Eqs. (139),
(140), and (143)–(148) in [26], respectively. Here we will
consider the light trajectory in the field of N arbitrarily
moving spin-dipoles as specific example of the general
solution. It may also serve as a further instructive example
about how the presented approach runs.

A. Light trajectory in the field of N arbitrarily
moving spin-dipoles

The rotational motion of a real body like the Sun, Earth,
or Jupiter, is a highly complicated physical subject, because
these bodies are not rigid monopoles and the rotational
motion can therefore not be described by a simple spin-
dipole, but must be expressed by the full set of time-
dependent spin-multipoles SALðtÞ with l ¼ 1; 2; 3;…. On
the other side, the main impact among all spin-multipoles
on light deflection is of course given by the first summand
in (121) which is proportional to the intrinsic spin vector
SAðtÞ of body A and which is called spin-dipole. It is also
well-known that for sub-micro-arcsecond astrometry the
light trajectory in the field of a spin-dipole is of specific
importance, because the light deflection caused by the spin-
dipole of a body at rest amounts to be 0.7 μas for grazing
rays at the Sun, 0.2 μas for grazing rays at Jupiter, and
0.04 μas for grazing rays at Saturn [28,36]. Therefore, we
will consider the light trajectory in the field of one
arbitrarily moving body with time-dependent spin-dipole
in more detail in this section.
According to Eq. (114) with (120) and (121), the light

trajectory in the field of N arbitrarily moving spin-dipoles
reads:

xSðτ þ t�Þ ¼ ξ þ cτσ

þ
XN
A¼1

�
ΔxSAðτ þ t�Þ − ΔxSAðτ0 þ t�Þ

�
; ð122Þ

where

ΔxiSA ðτ þ t�Þ ¼ −
2G
c3

ϵiabSAbðτ þ t�Þ∂a ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

þ 2G
c3

σjϵjabSAbðτ þ t�Þ∂a
diAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ : ð123Þ

The derivative operator in terms of the variables ξ; τ; t� is given by (94), which for one index reads:

∂a ¼ Pak ∂
∂ξk þ σa

∂
∂cτ − σa

∂
∂ct� : ð124Þ

By inserting (124) into (123), we encounter the following individual terms:
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Pak ∂
∂ξk ln ½r

N
Aðτ þ t�Þ − σ · rNAðτ þ t�Þ� ¼ daAðτ þ t�Þ

rNAðτ þ t�Þ
1

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ ; ð125Þ

and

σa
� ∂
∂cτ −

∂
∂ct�

�
ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ� ¼ −

σa

rNAðτ þ t�Þ ; ð126Þ

and

Pak ∂
∂ξk

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ ¼ −

daAðτ þ t�ÞdiAðτ þ t�Þ
ðrNAðτ þ t�Þ − σ · rNAðτ þ t�ÞÞ2

1

rNAðτ þ t�Þ

þ Pai

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ ; ð127Þ

and we recall ϵjabσaσj ¼ 0. Inserting (125)–(127) into (123) yields

ΔxSAðτ þ t�Þ ¼ þ 2G
c3

SAðτ þ t�Þ × dAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

1

rNAðτ þ t�Þ þ
2G
c3

σ × SAðτ þ t�Þ
rNAðτ þ t�Þ

−
2G
c3

σ · ðdAðτ þ t�Þ × SAðτ þ t�ÞÞ
ðrNAðτ þ t�Þ − σ · rNAðτ þ t�ÞÞ2

dAðτ þ t�Þ
rNAðτ þ t�Þ −

2G
c3

σ × SAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ ; ð128Þ

where the notation ϵijkajbk ¼ ða × bÞi has been used. The
complete expression for the light trajectory in 1.5PN
approximation in the field of N arbitrarily moving and
time-dependent intrinsic spin-dipoles is finally obtained by
inserting (128) into (122).
As mentioned in the introductory section, in [38] the

light trajectory in post-Minkowskian approximation in the
field of N arbitrarily moving pointlike spin-dipoles has
been determined. That means, the pointlike objects in [38]
may even be in ultrarelativistic motion, while our 1.5PN
solution in (128) is valid for extended bodies with spin-
dipole but in slow-motion along arbitrary world lines. In
Appendix I it is shown that our result in (128) agrees with
the results in [38] for the light trajectory up to terms of the
order Oðc−4Þ. One may also verify that in the limit of time-
independent spin-dipoles, SA ¼ const, and in the limit of
uniform motion, vA ¼ const, our result in (128) agrees with
Eq. (26) in [37] in GR, noticing that constant terms cancel
each other according to Eq. (122).

B. Light trajectory in the field of N bodies
at rest with spin-dipole

In this section we will consider the case of light
propagation in the field of N spin-dipoles at rest and
compare with results in the literature. For time-independent
spin-dipole SA ¼ const and for one body at rest located at
xA ¼ const in the global reference system we have
rNAðτ þ t�Þ → rNA ¼ ξ þ cτσ − xA and dAðτ þ t�Þ → dA ¼
rNA − σðσ · rNAÞ where dA is the time-independent impact
vector defined by Eq. (B2). From (122) we obtain the light

trajectory in the field of N bodies at rest with time-
independent spin-dipoles:

xSðτ þ t�Þ ¼ ξ þ cτσ þ
XN
A¼1

ðΔxSAðτÞ − ΔxSAðτ0ÞÞ; ð129Þ

where from (128) we obtain the following expression for
the correction-term:

ΔxSAðτÞ ¼
2G
c3

SA × dA
d2A

σ · rNA
rNA

þ 2G
c3

σ × SA
rNA

−
2G
c3

σ · ðdA × SAÞ
dA
d4A

ðrNA þ σ · rNAÞ2
rNA

−
2G
c3

σ × SA
rNA þ σ · rNA

d2A
; ð130Þ

where a time-independent term 2G
c3

SA×dA
d2A

¼ const has been

omitted because this term will be canceled in view of (129).
The time-dependence of (129) and (130) is solely caused by
the time-dependence of the unperturbed light ray in (83). In
order to obtain the form of the expression in (130) we have
also used d2A ¼ ðrNA − σ · rNAÞðrNA þ σ · rNAÞ. The expression
in (129)–(130) agrees with the solution in Eq. (56) in [36],
where the trajectory of a photon as function of time has
been determined in the field of N bodies at rest in post-
Newtonian approximation for the light rays. It is straight-
forward to show that the time-derivative ∂cτΔxSAðτÞ
coincides with Eq. (59) in [36].
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VIII. TIME-DELAY

In the previous sections we have determined the light
trajectory of a light-signal which propagates through the
metric field of the Solar System, that means through the
gravitational field of N arbitrarily moving massive bodies.
However, the light trajectory is not an observable at all. In
real astrometric measurements one of the most important
observable quantity concerns the time delay of some light-
signal propagating in the Solar System. The considerations
here are similar to what has been discussed in [26] about
observable effects, but with the extension to 1.5PN
approximation. Especially, we will assume that the light
source is located at x0 ¼ xðt0Þ where t0 is the moment of
emission of the light-signal, and the observer is located
at x1 ¼ xðt1Þ where t1 is the moment of reception of the
light-signal by the observer. Furthermore, both the light
source and the observer are assumed to be at rest with
respect to the global reference system.
In the pioneering work [74], Shapiro has considered the

general-relativistic effect of time delay of a light-signal
which propagates through the gravitational field of a static
and spherically symmetric massive body. Especially,
Shapiro has drawn the attention to the fact about the
measurability of that additional test of relativity by radar
technology. In fact, the Shapiro time delay was discovered
soon afterwards [75]. It might be useful to realize that the
reason for the time delay is not only laying upon the fact

that the light-trajectory is curved but also because the speed
of a photon is decelerated in the gravitational field of a
monopole at rest. While the classical Shapiro effect is
originally related to a time delay of a light-signal in the
monopole-field, it became a matter of common knowledge
to call the time delay of a light-signal in any gravitational
field just Shapiro effect.
For describing the Shapiro-effect, we introduce a vector

pointing from the light source at the moment of emission
towards the observer at the moment of reception, which in
terms of the new variables reads

R ¼ xðτ1 þ t�Þ − xðτ0 þ t�Þ; ð131Þ

k ¼ R
R
; ð132Þ

where k is just the corresponding unit vector with R ¼ jRj
being the absolute value of R. Using very similar steps as in
[33], we obtain from Eq. (114) the following expression for
the time delay in the gravitational field of N arbitrarily
moving massive bodies in 1.5PN approximation that means
up to terms of the order Oðc−4Þ:
cðτ1 − τ0Þ ¼ Rþ Δcτ1PN þ Δcτ1.5PN; ð133Þ

Δcτ1PN ¼ −
XN
A¼1

k · ½ΔxA1PNðτ1 þ t�; τ0 þ t�Þ�; ð134Þ

Δcτ1.5PN ¼ −
XN
A¼1

k · ½ΔxA1.5PNðτ1 þ t�; τ0 þ t�Þ�; ð135Þ

where the sum runs over all massive bodies and the
expressions for ΔxA1PN and ΔxA1.5PN are given by Eqs. (115)
and (116) with (118), (119) and (121), respectively. The
1.5PN relation (133) generalizes the 1PN relation (154)
in [26].
We will consider the time delay in (133) of a light-signal

caused by N arbitrarily moving bodies in some more detail,
but will restrict ourselves on the case of N moving bodies
with monopole-structure (M), quadrupole-structure (J2),
and spin-dipole-structure (S). Higher multipoles are so tiny
that they are negligible in the time delay effect. These first
terms in the general formula (133) read

cðt1 − t0Þ ¼ Rþ ΔctM1PN þ ΔctJ21PN þ ΔctM1.5PN þ ΔctS1.5PN;

ð136Þ

which are instructive examples and do allow for a cross-
check with known results in the literature.
Furthermore, as mentioned in the introductory section,

there are several proposals to ESA for future space-based
missions, like ASTROD [8,9], LATOR [10,11], ODYSSEY
[12], SAGAS [13], TIPO [14], which aim at time-transfer
accuracies of two separated clocks within the Solar System
of up to 10 ps. The question arises about the ability of such

TABLE I. Numerical parameters for massMA, radius PA, actual
coefficients of zonal harmonics JAn , distance between observer
and body r1A, orbital velocity vA of Sun, Jupiter, and Saturn [63].
The value for JA2 for the Sun is taken from [65], while JAn with
n ¼ 2, 4, 6 for Jupiter and Saturn are taken from [66], while JAn
with n ¼ 8, 10 for Jupiter and Saturn are taken from [67] and
[68], respectively. The spin angular momenta SA are determined
from the moment of inertia IA with the ratio

IA
MAP2

A
¼ 0.059, 0.254,

0.210 for Sun, Jupiter, Saturn, respectively from NASA planetary
fact sheets. For the distance between light-source and body we
assume r0A ¼ 1013 m so that the light-source is within the near-
zone of the Solar System, while r1A is computed under assumption
that the observer (spacecraft) is located at Lagrange point L2, i.e.
1.5 × 109 m from the Earth’s orbit.

Parameter Sun Jupiter Saturn

GMA=c2 [m] 1476 1.4 0.4
PA [m] 696 × 106 71.5 × 106 60.3 × 106

JA2 2 × 10−7 14.696 × 10−3 16.291 × 10−3

JA4 − −0.587 × 10−3 −0.936 × 10−3

JA6 − 0.034 × 10−3 0.086 × 10−3

JA8 − −2.5 × 10−6 −10.0 × 10−6

JA10 − 0.21 × 10−6 2.0 × 10−6

SA [kgm2=s] 1.64 × 1041 4.15 × 1038 7.13 × 1037

r1A [m] 0.147 × 1012 0.59 × 1012 1.20 × 1012

vA=c 4 × 10−8 4.4 × 10−5 3.2 × 10−5
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extremely precise astrometry missions, especially designed
for tests of relativity in the Solar System, to detect some
1.5PN terms in the Shapiro effect which will be discussed
in this section.
In general, the light-signal will be assumed to be emitted

at a space-time point with BCRS coordinates x0; t0 and
received by an observer at a space-time point with BCRS
coordinates x1; t1. We also introduce the following nota-
tions: r0A ¼ x0 − xAðt0Þ, r1A ¼ x1 − xAðt1Þ, R ¼ jx0 − x1j,
v0A ¼ vAðt0Þ, v1A ¼ vAðt1Þ, d0A ¼ dAðt0Þ, d1A ¼ dAðt1Þ.
Furthermore, we notice that σ ¼ kþOðc−2Þ according
to Eq. (167) given below, that means we may replace the
vector σ in favor of vector k whenever it is reasonable.

A. Moving mass-monopole

We will consider the time delay in (133) of a light-signal
caused by an arbitrarily moving monopole.

1. In terms of coordinate time

From Eqs. (118) and (119) we obtain in the field of
arbitrary-moving monopoles (l ¼ 0) the expressions ΔxAM1PN
and ΔxAM1.5PN, respectively. According to Eqs. (133)–(135)
and using t0 ¼ τ0 þ t� and t1 ¼ τ1 þ t� we obtain up to
terms of the order Oðc−4Þ:

ΔctM ¼ ΔctM1PN þ ΔctM1.5PN; ð137Þ

ΔctM1PN ¼ −
XN
A¼1

k · ΔxAM1PNðt1; t0Þ

¼ −
XN
A¼1

2GMA

c2
ln
r1A − σ · r1A
r0A − σ · r0A

; ð138Þ

ΔctM1.5PN ¼ −
XN
A¼1

k · ΔxAM1.5PNðt1; t0Þ

¼ þ
XN
A¼1

2GMA

c3
ðσ · v1AÞ ln ðr1A − σ · r1AÞ

−
XN
A¼1

2GMA

c3
ðσ · v0AÞ ln ðr0A − σ · r0AÞ

−
XN
A¼1

2GMA

c3

�
v1A · d1A

r1A − σ · r1A
−

v0A · d0A
r0A − σ · r0A

�
:

ð139Þ

In the limit of monopoles at rest only the term in Eq. (138)
remains which then represents the well-known classical
Shapiro effect [17,18,21,22] which is growing logarithmi-
cally with R, while in our result (139) the argument of the
logarithm depends on the world line of the arbitrary-
moving body xAðtÞ.

One may verify that our result for the Shapiro delay for
arbitrarily moving monopoles in Eq. (138)–(139), agrees in
the limit of uniform motion with Eq. (20) in [76], with
Eq. (45) in [39], and with Eq. (33) in [43] up to terms of the
order Oðc−4Þ. In this respect we recall that the term in the
last line in (139) can be written as follows:

v1A · d1A
r1A − σ · r1A

−
v0A · d0A

r0A − σ · r0A

¼ v1A · r1A − r1Aðσ · v1AÞ
r1A − σ · r1A

−
v0A · r0A − r0Aðσ · v0AÞ

r0A − σ · r0A
þ σ · ðv1A − v0AÞ; ð140Þ

where the term in the last line is proportional to the
acceleration of the massive body A and vanishes in case
of uniform motion. The neglect of this term, as suggested in
[34], is well-justified because a simple estimate reveals that
such terms are extremely small and far out of detectability
even for future astrometry missions. An estimate of the
absolute value of the 1PN time delay formula in Eq. (138)
for one body A and assuming an astrometric configuration
with σ · r0A ≃ −r0A and σ · r1A ≃ r1A, is given by [22]:

jΔtM1PNj ≤
2GMA

c3
ln
4r1Ar

0
A

ðd1AÞ2
: ð141Þ

A very similar estimate of the absolute value of the 1.5PN
correction in Eq. (139) for one body A and same configu-
ration yields

jΔtM1.5PNj ≤
vA
c
jΔtM1PNj þ

4GMA

c3
vA
c
r1A
d1A

: ð142Þ

The second term in (142) is proportional to ∼r1A=d1A,
which for grazing rays becomes a large quantity. For
instance, for Jupiter we would get r1A=d

1
A ∼ 104 which

spoils the effect of the tiny factor vA=c ∼ 10−5 which is
typical for 1.5PN corrections. This large term is solely
caused by the term in the last line in Eq. (139). Below, we
will consider the expressions for light deflection where we
will encounter this large term again, cf. text below Eq. (34)
in [28]. As we will show in the next subsection, this large
factor r1A=d

1
A is related to the retardation of gravitational

action.

2. In terms of retarded time

Gravitational action travels with the finite speed of light
and this effect cannot be ignored in high-precision astrom-
etry, as it has been outlined long time ago [28,31,34,35,38].
In order to take account for that effect we follow the
arguments of the investigations in [28,34,35,38,77], which
have shown that the position of the massive body must not
be taken at the time of observation, xAðt1Þ, but at the
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retarded time-moment, xAðtret1 Þ. In general, the retarded
time is defined by an implicit relation,

tret ¼ t −
jxðtÞ − xAðtretÞj

c
; ð143Þ

where t is the coordinate time. For the special case where t
is the time of emission t0 or the time of reception t1 see
Eq. (149). Actually, the retarded time is a function of the
position of body under consideration and, therefore, an
index A should also be attached at tret but for simpler
notation such label is omitted. According to Eqs. (47)–(48)
in [78], the retarded position can be series-expanded and
leads to the following relations for any instant of time:

rAðtretÞ ¼ rAðtÞ þ rAðtÞ
vAðtÞ
c

þOðc−2Þ; ð144Þ

rAðtretÞ ¼ rAðtÞ þ
rAðtÞ · vAðtÞ

c
þOðc−2Þ: ð145Þ

These relations allow one to rewrite identically the expres-
sions in (137)–(139) into the following form up to terms of
the order Oðc−4Þ:

ΔctM ¼ ΔctM1PN þ ΔctM1.5PN; ð146Þ

ΔctM1PN ¼ −
XN
A¼1

2GMA

c2
ln
rAðtret1 Þ − σ · rAðtret1 Þ
rAðtret0 Þ − σ · rAðtret0 Þ ; ð147Þ

ΔctM1.5PN ¼ þ
XN
A¼1

2GMA

c3
ðσ · vAðtret1 ÞÞ

× ln ðrAðtret1 Þ − σ · rAðtret1 ÞÞ

−
XN
A¼1

2GMA

c3
ðσ · vAðtret0 ÞÞ

× ln ðrAðtret0 Þ − σ · rAðtret0 ÞÞ; ð148Þ

where [cf. Eq. (143)]:

tretn ¼ tn −
jrAðtretn Þj

c
; n ¼ 0; 1: ð149Þ

The solution for the time delay in (146)–(148) agrees with
Eq. (51) in [34]. Especially, we notice that the term in the
last line of Eq. (139) has been absorbed in (147).
Consequently, if one uses the expression for the time delay
in terms of retarded time, Eqs. (146)–(148), then one
obtains the following correct estimate for the time delay
in 1.5PN approximation:

jΔtM1PNj ≤
2GMA

c3
ln
4rAðtret0 ÞrAðtret1 Þ

d2Aðtret1 Þ ; ð150Þ

jΔtM1.5PNj ≤
vA
c
jΔtM1PNj: ð151Þ

For numerical values of the upper bound in Eq. (150) and
Eq. (151) see Table II.

B. Moving spin-dipole

Now let us consider the time delay in (133) of a light-
signal caused by N arbitrarily moving spin-dipoles.

1. In terms of coordinate time

From (121) we obtain in the field of arbitrary-moving
spin-dipoles (l ¼ 1) the expression for ΔxAS1.5PN, as given by
Eq. (128). According to Eq. (135) we obtain for the Shapiro-
delay the following expression up to terms of the order
Oðc−4Þ:

ΔctS1.5PN ¼ −
XN
A¼1

k · ΔxAS1.5PNðt1; t0Þ

¼ −
2G
c3

XN
A¼1

�
σ · ðS1A × d1AÞ

ðd1AÞ2
σ · r1A
r1A

−
σ · ðS0A × d0AÞ

ðd0AÞ2
σ · r0A
r0A

�
; ð152Þ

where S1A ¼ SAðt1Þ and S0A ¼ SAðt0Þ are the spin-dipoles of
body A at time observation-time t1 and at emission-time t0
respectively. It can be checked that in the limit of bodies
at rest our result in (152) agrees with Eq. (72) in [36].
Furthermore, by very similar steps as used inAppendix I one
may verify an agreement of our solution in Eq. (152) with
Eqs. (48)–(50) in [38] in case of slow motion; note that the
global spin-tensor in [38] has to be reexpressed in terms of
intrinsic spin-dipole, for instance by means of the relations
Eqs. (B.8) and (C.10) in [78] and the retarded time has to be
series-expanded in terms of global coordinate-time. An
estimate of the upper bound of Eq. (152) yields

jΔtS1.5PNj ≤
4G
c4

S1A
d1A

; ð153Þ

which agrees with the estimate in Eq. (75) in [36] for grazing
rays and spin-dipoles at rest.

2. In terms of retarded time

In view of relations (144)–(145) and up to terms of the
order Oðc−4Þ one may perform the following replacements
in Eq. (152):

rnA → rAðtretn Þ; n ¼ 0; 1; ð154Þ

SnA → SAðtretn Þ; n ¼ 0; 1; ð155Þ

dnA → dAðtretn Þ; n ¼ 0; 1: ð156Þ
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The upper bound is then given by

jΔtS1.5PNj ≤
4G
c4

SAðtret1 Þ
dAðtret1 Þ : ð157Þ

For numerical values of the upper bound in Eq. (157) see
Table II.

C. Time-delay for moving mass-quadrupole

1. In terms of coordinate time

From Eqs. (118) and (119) we obtain in the field of
arbitrary-moving quadrupoles (l ¼ 2) the expressions
ΔxAJ21PN and ΔxAJ21.5PN, respectively. Then, according to
Eqs. (133)–(135) we obtain for the time delay:

ΔctJ2 ¼ ΔctJ21PN þ ΔctJ21.5PN; ð158Þ

ΔctJ21PN ¼ −
XN
A¼1

k · ΔxAJ21PNðt1; t0Þ; ð159Þ

ΔctJ21.5PN ¼ −
XN
A¼1

k · ΔxAJ21.5PNðt1; t0Þ: ð160Þ

Actually, the expressionΔxJ21PN has already been presented in
its explicit form by Eq. (144) in [26]. Inview of their involved
structure,ΔxJ21PN aswell asΔx

J2
1.5PN will not be given here. The

estimate of (159) and (160) proceeds very similarly to what
has been done in detail in [79]. For an axisymmetric body one
obtains after some amount of algebra:

jΔtJ21PNj ≤ 3jJA2 j
GMA

c3
; ð161Þ

jΔtJ21.5PNj ≤
vA
c
jΔtJ21PNj þ 6jJA2 j

GMA

c3
vA
c
r1A
d1A

; ð162Þ

where JA2 is the actual coefficient of second zonal harmon-
ics. The estimate in (161) agrees with the estimate for
quadrupoles at rest, cf. Eq. (26) in [79]. Like in (142), we
encounter in (162) we encounter a large term which is
proportional to ∼r1A=d1A.

2. In terms of retarded time

With the aid of relations (144)–(145) one rewrites
ΔxJ21PNðtÞ and ΔxJ21.5PNðtÞ in terms of retarded time.
Formally, one may also replace MA

abðtnÞ by MA
abðtretn Þ,

n ¼ 0, 1, but the impact of such replacement on time
delay is negligible. Then, after a considerable amount of
algebra, one obtains the correct estimates in 1.5PN cor-
rection, which are given by:

jΔtJ21PNj ≤ 3jJA2 j
GMA

c3
; ð163Þ

jΔtJ21.5PNj ≤
vAðtret1 Þ

c
jΔtJ21PNj: ð164Þ

The numerical magnitude of the 1PN correction in (163) is
given in Table II, while the 1.5PN correction in (164) is by
far much below the detectability of future astrometry
missions and will not be given in Table II.
In view of the tininess of ΔtJ21PN it becomes obvious that

higher multipole terms are negligible in the time delay and,
therefore, will not be considered here.

IX. LIGHT DEFLECTION

The light deflection is of fundamental importance in
astrometric measurements. Like in the previous section, we
assume the light source to be located at x0 ¼ xðt0Þ where t0
is the moment of emission of the light-signal, and the
observer is located at x1 ¼ xðt1Þ where t1 is the moment of
reception of the light-signal by the observer. Both the light
source and the observer are assumed to be at rest with
respect to the global reference system.
The light deflection is defined by the angle φ between unit

vector k and the unit tangent vector n of the light ray at the
observers position:φ ¼ arcsin jk × nj [28]. In 1.5PNapproxi-
mation the unit tangent vector at the observer is given by

n1.5PNðτ1 þ t�Þ ¼ _x1.5PNðτ1 þ t�Þ
j_x1.5PNðτ1 þ t�Þj : ð165Þ

By inserting Eq. (104) into (165), we obtain

TABLE II. The numerical magnitude for time delay in the field
of one Solar System body (either Sun, Jupiter, or Saturn)
according to the upper limits given by Eqs. (150), (151),
(157), and (163). The parameters for Sun and giant planets
Jupiter and Saturn are summarized in Table I. The given
numerical values are determined for grazing light rays, that
means the impact parameter equals the radius of the massive
body: dA ¼ PA. The given magnitude for time delay should be
compared with the aimed accuracies of future astrometry mis-
sions proposed to ESA like ASTROD [8,9], LATOR [10,11],
ODYSSEY [12], SAGAS [13], or TIPO [14], which aim at an
accuracy in the determination of time delay for a light-signal
better than Δt ∼ 0.1 ns. Accordingly, 1.5PN effects in time delay
will surely not be detectable even within the very next generation
of high-precision space-based astrometry missions.

Term Sun Jupiter Saturn

ΔtM1PN 160 μs 0.2 μs 0.06 μs

ΔtJ21PN 3.3 × 10−3 ns 0.2 ns 0.07 ns

ΔtM1.5PN 6 × 10−3 ns 9 × 10−3 ns 2 × 10−3 ns
ΔtS1.5PN 8 × 10−3 ns 2 × 10−4 ns 4 × 10−5 ns
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n1.5PNðτ1 þ t�Þ ¼ σ þ
XN
A¼1

σ ×

�
Δ_xA1PNðτ1 þ t�Þ

c
× σ

�

þ
XN
A¼1

σ ×

�
Δ_xA1.5PNðτ1 þ t�Þ

c
× σ

�
;

ð166Þ

where Δ_xA1PN and Δ_xA1.5PN are given by (105) and (106),
respectively, with the expressions in Eqs. (110), (111) and
(113). The 1.5PN relation (166) generalizes the 1PN relation
(156) in [26].
The expression in (166) for the unit tangent vector along

the light trajectory at observers position is valid in case of
stars, which means in case of light sources which are at far
distances from the observer. For astrometry within the Solar
System we need to obtain an expression which is valid for
light sources at finite distances from the observer. In order
to obtain such an expression we use the following relation
among the vectors k and σ,

σ ¼ k −
1

R

XN
A¼1

½k × ðΔxA1PNðτ1 þ t�; τ0 þ t�Þ × kÞ�

−
1

R

XN
A¼1

½k × ðΔxA1.5PNðτ1 þ t�; τ0 þ t�Þ × kÞ�; ð167Þ

where ΔxA1PN and ΔxA1.5PN are given by Eqs. (115) and
(116), respectively, with the expressions in Eqs. (118),
(119) and (121).
The relation follows from the definitions (131) and (132)

and with the aid of the expression for the light trajectory in
(114) and for the Shapiro effect in (133). The 1.5PN
expression in (167) generalizes the 1PN relation (157) in
[26]. We also notice that the first line in (167) agrees with
Eq. (66) in [28]. By inserting (167) into (166) we finally
arrive at the following expression for the unit tangent vector
at the observers position:

n1.5PNðτ1 þ t�Þ

¼ k −
1

R

XN
A¼1

½k × ðΔxA1PNðτ1 þ t�; τ0 þ t�Þ × kÞ�

þ
XN
A¼1

k ×

�
Δ_xA1PNðτ1 þ t�Þ

c
× k

�

−
1

R

XN
A¼1

½k × ðΔxA1.5PNðτ1 þ t�; τ0 þ t�Þ × kÞ�

þ
XN
A¼1

k ×

�
Δ_xA1.5PNðτ1 þ t�Þ

c
× k

�
: ð168Þ

The 1.5PN relation in (168) generalizes the 1PN relation
(158) in [26]. The formula (168) is valid for light sources at

finite distance. In the limit of infinite spatial distances,
R → ∞, the relation (168) changes into the expression
in (166).
In summary of this section, the expression for the time

delay in (133) and for the unit tangent vector in (168) are
valid for a light-signal which has been emitted by a source
located at finite spatial distances, and which propagates
through the Solar System, that means through the gravi-
tational field of N arbitrarily moving bodies and having
arbitrary shape and inner structure and which can be in
arbitrary rotational motion.
If the light-source is located at infinity, i.e. R → ∞ and in

a good approximation realized by stars or quasars, then the
light deflection angle of a light-signal in the field of N
arbitrarily moving bodies in 1.5PN approximation is
determined by

φ ¼ jσ × n1.5PNj; ð169Þ

where n1.5PN is given by Eq. (166). If the light-source is
located at finite distance, i.e. R is finite and in a good
approximation realized by Solar System objects, then the
light deflection angle of a light-signal in the field of N
arbitrarily moving bodies in 1.5PN approximation is
defined by

φ ¼ jk × n1.5PNj; ð170Þ

where n1.5PN is given by Eq. (168). The relation (169) is of
simpler structure than (170), but which equation can be
utilized depends on how far the light-source is. For our
preliminary considerations here it will be sufficient to
consider light-source at infinity, that means to apply just
relation (169). Like in case of Shapiro delay, we will
consider the light deflection caused byN arbitrarily moving
bodies in some more detail, by considering bodies with
mass-multipole structure and spin-dipole-structure. An
estimate is also given for spin-octupole. The terms which
are of relevance for nas-accuracy read

φ ¼ φM
1PN þ

X10
n¼2

φJn
1PN

þ φM
1.5PN þ φJ2

1.5PN þ φS
1.5PN þ φSO

1.5PN: ð171Þ

In what follows we will consider these terms in some detail
and give some estimates of their magnitude.

A. Light deflection for moving mass-monopole

1. In terms of coordinate time

From (110) and (111) we obtain for the coordinate
velocity of the photon in the field of N arbitrarily moving
monopoles:
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Δ_xM1PNðt1Þ
c

¼ −
2G
c2

XN
A¼1

MA

r1A

�
d1A

r1A − σ · r1A
þ σ

�
; ð172Þ

Δ_xM1.5PNðt1Þ
c

¼þ2G
c2

XN
A¼1

MA

r1A

σ · v1A
c

d1A
r1A−σ · r1A

þ4G
c2

XN
A¼1

MA

r1A

v1A
c

−
2G
c2

XN
A¼1

MA

r1A−σ · r1A

σ× ðv1A×σÞ
c

þ2G
c2

XN
A¼1

MA

ðr1A−σ · r1AÞ2
d1A · v

1
A

c
d1A
r1A

: ð173Þ

In the limit of uniformly moving bodies our result in
(172)–(173) agrees with Eq. (6.3) and (6.5) in [24] and with
Eq. (20) in [37] up to terms of the order Oðv2A=c2Þ. By
inserting (172)–(173) into (165) and then into (169) we
obtain the light deflection angle, which for one massive
body A can be estimated as follows:

φM
1PN ¼

����σ ×
Δ_xM1PNðt1Þ

c

���� ≤ 4GMA

c2d1A
; ð174Þ

φM
1.5PN ¼

����σ ×
Δ_xM1.5PNðt1Þ

c

����
≤ φM

1PN
vA
c
þ 8GMA

c2dA

vA
c
r1A
d1A

: ð175Þ

Like in Eqs. (142) and (162), we encounter again the
typical large term in (175) which is proportional to ∼r1A=d1A
and originates from the last two terms in (173). This large
term is solely caused by the retardation of gravitational
action. That means, the use of the time-moment of
reception at the body’s position, xAðt1Þ in Eq. (172) causes
a significant error in the determination of light deflection
for moving bodies. This peculiarity has been recognized
long time ago, for instance see text below Eq. (34) in [28].
Especially, this issue has thoroughly and comprehensively
been solved for moving pointlike bodies in the investiga-
tions [28,34,35,38]. In the next subsection we will further
elucidate this fact.

2. In terms of retarded time

From the physical point of view, it is obvious that instead
of t1 one has to use the retarded time-moment for the
position of the massive body in (172). That means, with
the aid of relations (144)–(145) one may show that
Eqs. (172)–(173) can be rewritten as follows:

Δ_xM1PNðt1Þ
c

¼ −
2G
c2

XN
A¼1

MA

rAðtret1 Þ
�

dAðtret1 Þ
rAðtret1 Þ − σ · rAðtret1 Þ þ σ

�
;

ð176Þ

Δ_xM1.5PNðt1Þ
c

¼ þ 2G
c2

XN
A¼1

MA

rAðtret1 Þ
σ · vAðtret1 Þ

c
dAðtret1 Þ

rAðtret1 Þ − σ · rAðtret1 Þ

þ 4G
c3

XN
A¼1

MA

rAðtret1 Þ
vAðtret1 Þ

c

−
2G
c3

σ
XN
A¼1

MA

rAðtret1 Þ
rAðtret1 Þ · vAðtret1 Þ

rAðtret1 Þ

−
2G
c3

XN
A¼1

MA

rAðtret1 Þ
dAðtret1 Þ

rAðtret1 Þ − σ · rAðtret1 Þ
rAðtret1 Þ · dAðtret1 Þ

rAðtret1 Þ :

ð177Þ

The last two terms in (173) do not explicitly appear in
(177), because they are absorbed in (176). Accordingly,
instead of (175) we obtain the following correct estimates
for the 1PN and 1.5PN corrections in (176) and (177),
respectively:

φM
1PN ≤

4GMA

c2dAðtret1 Þ ; ð178Þ

φM
1.5PN ≤ φM

1PN
vAðtret1 Þ

c
: ð179Þ

The given upper limit in (179) agrees with Eq. (42) and (46)
in [77], and with the results in [28]. For numerical values of
the upper bound in Eq. (178) and (179) see Table III.

B. Light deflection for moving spin-dipole

1. In terms of coordinate time

The coordinate velocity of a light-signal propagating in
the field of arbitrarily moving spin-dipoles can either be
obtained from (113) using (124), or simply by time-
differentiation of Eq. (128), and reads:

Δ_xS1.5PNðt1Þ
c

¼−
2G
c3

XN
A¼1

σ ×S1A
ðr1AÞ3

ðσ · r1AÞ

þ 2G
c3

XN
A¼1

S1A× d1A
ðr1AÞ2

1

r1A− σ · r1A

�
1−

σ · r1A
r1A

�

þ 2G
c3

XN
A¼1

d1A½σ · ðd1A×S1AÞ�
σ · r1A
ðr1AÞ3

1

ðr1A − σ · r1AÞ2

−
4G
c3

XN
A¼1

d1A½σ · ðd1A×S1AÞ�
1

ðr1AÞ2
1

ðr1A − σ · r1AÞ2

−
2G
c3

XN
A¼1

σ ×S1A
r1A

1

r1A − σ · r1A
: ð180Þ
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One may verify that in the limit of bodies at rest our result
agrees with Eq. (59) in [36]. An upper bound for the
magnitude of the light deflection is given by

φS
1.5PN ¼

����σ ×
Δ_xS1.5PNðt1Þ

c

���� ≤ 4GS1A
c3ðd1AÞ2

; ð181Þ

in agreement with the estimate given by Eq. (65) in [36] for
light rays which propagate in the equatorial plane of a
rotating body at rest.

2. In terms of retarded time

Following the same arguments as in the above consid-
erations, we may replace all expression in (180) by their
retarded expressions according to Eqs. (154)–(156) for
n ¼ 1. Then the estimate of light deflections yields:

φS
1.5PN ≤

4GSAðtret1 Þ
c3ðdAðtret1 ÞÞ2 ; ð182Þ

which formally agrees with the estimate in Eq. (181). For
numerical values of the upper bound in Eq. (182) see
Table III.

C. Light deflection for moving mass-quadrupole

1. In terms of coordinate time

The 1PN correction to the coordinate velocity of the light
ray in the field N arbitrarily-moving bodies with quadru-
pole structure, Δ_xJ21PNðtÞ, has already been given Eq. (117)
in [26] and can also be deduced from Eq. (110), while the
1.5PN correction Δ_xJ21.5PNðtÞ from Eq. (111). In view of the
complexity of these terms, we will not present these
expressions in their explicit form. We just mention that
the estimation of these terms proceeds similar to the
procedure performed in [79]. After some considerable
amount of algebra one obtains:

φJ2
1PN ¼

����σ ×
Δ_xJ21PNðt1Þ

c

���� ≤ 4GMA

c2
jJA2 j

ðPAÞ2
ðd1AÞ3

; ð183Þ

φJ2
1.5PN ¼

����σ ×
Δ_xJ21.5PNðt1Þ

c

����
≤ φJ2

1PN
vA
c
þ 8GMA

c2
jJA2 j

vA
c
ðPAÞ2
ðd1AÞ3

r1A
d1A

: ð184Þ

The estimate of the 1PN quadrupole term in (183) is equal
to the much simpler case of quadrupoles at rest, cf. Eq. (41)
in [36] and Eq. (13) in [79]. The second term in (184) is
proportional to ∼r1A=d1A which for grazing rays becomes
large. Like in Eqs. (142), (162), and (175), this term is
caused by the finite speed of gravitational action.

2. In terms of retarded time

One may rewrite the expression for Δ_xJ21PNðtÞ and
Δ_xJ21.5PNðtÞ in terms of retarded time by means of
Eqs. (144) and (145), and formally one may also replace
Mabðt1Þ → Mabðtret1 Þ. Then the estimation of the 1PN and
1.5PN correction terms in the quadrupole light deflection
becomes

φJ2
1PN ≤

4GMA

c2
jJA2 j

ðPAÞ2
ðdAðtret1 ÞÞ3 ; ð185Þ

φJ2
1.5PN ≤ φJ2

1PN
vAðtret1 Þ

c
; ð186Þ

which agrees with Eqs. (44) and (46) in [77]. The numerical
magnitude of these upper bounds (185) and (186) can be
found in Table III.

D. Light deflection for higher mass-multipoles

The 1PN solution (110) and the 1.5PN solution (111) for
moving bodies with full mass-multipole structure allow us
to determine the light deflection in the field of moving
mass-multipoles to any order in l. However, the expressions
for Δ_xJn1PN and Δ_xJn1.5PN (Jn are the actual zonal harmonic
coefficients of the massive body) become more and more

TABLE III. The numerical magnitude for light deflection in the
field of one Solar System body (either Sun, Jupiter, or Saturn)
according to the upper limits given by Eqs. (178), (179), (182),
(185), (186), and (187). The parameters for Sun and giant planets
Jupiter and Saturn are summarized in Table I. The given
numerical values are determined for grazing light rays, that
means the impact parameter equals the radius of the massive
body: dA ¼ PA. For the light deflection in the field of spin-
octupole, φSO

1.5PN, we take the results of Ref. [64] where the light
deflection in the field of one rotating body at rest and having
constant mass density has been determined. Blank entries
indicate that the effect is smaller than 1 nas. In view of the fact
that astrometry on sub-μas-level implies an accuracy for φ at least
better than 0.1 μas, the 1.5PN effects in light deflection become
detectable within the very next generation of high-precision
space-based astrometry missions.

Term Sun [μas] Jupiter [μas] Saturn [μas]

φM
1PN 1.75 × 106 16.3 × 103 5.8 × 103

φJ2
1PN

1 240 95

φJ4
1PN

− 9.6 5.46

φJ6
1PN

− 0.56 0.50

φJ8
1PN

− 0.04 0.06

φJ10
1PN

− 0.003 0.01

φM
1.5PN 0.1 0.8 0.2

φJ2
1.5PN

− 0.011 0.003

φS
1.5PN 0.7 0.2 0.04

φSO
1.5PN − 0.015 0.006
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involved the higher the order of the mass-multipoles are
and imply a considerable amount of algebra. The inves-
tigation of these terms will be postponed for awhile.
Meanwhile let us consider an educated guess that the light
deflection in the field of higher mass-multipoles is deter-
mined by the following relation:

φJn
1PN ¼

����σ ×
Δ_xJn1PNðt1Þ

c

���� ≤ 4GMA

c2
jJAn jðPAÞn

ðdAðtret1 ÞÞnþ1
; ð187Þ

φJn
1.5PN ¼

����σ ×
Δ_xJn1.5PNðt1Þ

c

���� ≤ φJn
1PN

vAðtret1 Þ
c

; ð188Þ

which in case of n ¼ 2 agrees with Eqs. (185)–(186). The
suggestion in Eqs. (187)–(188) is based on the consider-
ations above and triggered by the fact that in the limit of
bodies at rest formula (187) agrees with the results in [42].
Numerical values for (187) are presented in Table III, while
(188) yields values below1nas forn ≥ 3. A detailed proof of
(187) and (188) and a comparison of formula (188)with [39]
will be presented in a subsequent investigation.

X. SUMMARY AND OUTLOOK

During the last 25 years, astrometric measurements have
made an impressive advancement frommilli-arcsecond level
of accuracy by the ESA astrometry mission Hipparchos
[1,2] toward micro-arcsecond level of accuracy by the ESA
astrometry mission Gaia [5]. Ever since, applied relativity
has evolved into one of the basic components of modern
astrometry, the branch of science which includes the whole
machinery of advanced astrometric measurements, espe-
cially: (1) theory of reference systems, (2) precise descrip-
tion of light trajectory from the celestial light source toward
the observer, (3) relativistic modeling of real observations,
(4) determination of the metric of the Solar System in
post-Newtonian approximation (weak-field slow-motion
approximation) or post-Minkowskian approximation
(weak-field approximation) and beyond, (5) multipole
expansion of metric tensor of the Solar System, (6) relativ-
istic data reduction of astrometric measurements, and
(7) determination of ephemeris of the Solar System bodies
and of the observer accurate enough for a given accuracy.
But for all that stunning progress, the step from micro-

arcsecond toward nano-arcsecond astrometry will be a
long-term ambition, which implies many challenges on
the theoretical as well as technological side. While a few of
these issues have been mentioned in the introductory
section, most of these challenges and especially their
elaborated details cannot be foreseen at present. But for
any actual ambitions about sub-micro-arcsecond astrom-
etry two of these problems are of decisive importance: first
to establish a set of accurate reference systems and
reference frames for exact data reduction, and second to
provide an accurate modeling of light trajectory from the

celestial light source through the Solar System toward the
observer. As it has been mentioned in the introductory
section, especially these two highly important issues have
also been emphasized by the ESA-Senior-Survey-
Committee (SSC) in response to the selection of science
themes for future space-based astrometry missions [16].
The presented investigation is mainly devoted to these two
specific subjects. Especially, in order to arrive at a precise
modeling of light-propagation through the Solar System,
two difficult aspects have carefully to be treated:
(1) First, in compliance with the requirements of the

IAU recommendations [19,20], one has to introduce
one global reference system (BCRS) and N local
reference systems (GCRS-like), one for each mas-
sive body, which allow us to describe the global
metric of the Solar System in terms of intrinsic mass-
multipoles and intrinsic spin-multipoles the massive
bodies, that means for the metric perturbations
hαβðMA

L; S
A
LÞ, as mentioned by Eq. (15).

(2) Second, for sub-micro-arcsecond or even nano-
arcsecond-astrometry one has to describe the light
trajectory in the field of arbitrarily moving massive
bodies, that means as a function of their world lines
xAðtÞ, because a series expansion like in Eq. (16) is
unsuitable for several reasons discussed in the
introductory section. The world lines can be con-
cretized by Solar System ephemeris [63] at any stage
of the calculations.

In a previous investigation [26] we have obtained a
solution in 1PN approximation for the light trajectory
through the Solar System in full agreement with these
both requirements (1) and (2). As outlined in more detail in
[26] and also mentioned in the introductory section, for
high-precision astrometry on sub-μas-level or nas-level of
accuracy the 1PN approximation is not sufficient at all.
Instead, it is inevitable to determine the light trajectory
through the Solar System in 1.5PN approximation and to
reconcile the entire approach with the important require-
ments (1) and (2). Such an approach has been developed
here in the presented investigation. Accordingly, the main
results of our investigation are given by the first integration
of geodesic equation in Eq. (104) and by the second
integration of geodesic equation in Eq. (114):

_x1.5PN ¼ cσ þ Δ_x1PN þ Δ_x1.5PN; ð189Þ

x1.5PN ¼ ξ þ cτσ þ Δx1PN þ Δx1.5PN; ð190Þ

where the time-argument τ þ t� has been omitted here for
simpler notation. The terms in (189) for one body A are
given by Eqs. (110), (111), and (113), respectively, and the
terms in (190) for one body A are given by Eqs. (118),
(119), and (121), respectively.
In view of the complexity of the solution in (189) and

(190), several cross-checks have been performed:
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(i) time-derivative of (104) yields (95).
(ii) time-derivative of (114) yields (104).
(iii) our results agree with [32] for bodies at rest

and time-independent mass-multipoles in 1PN
approximation.

(iv) our results agree with [32] for bodies at rest and
time-independent spin-multipoles in 1.5PN approxi-
mation.

(v) our results agree with [38] for arbitrarily moving
bodies with spin-dipole in 1.5PN approximation.

(vi) our results agree with [36] for bodies at rest with
spin-dipole.

Further cross-checks in 1PN approximation have already
been done in [26] for the case of light-propagation in the
field of bodies with mass-monopole, mass-dipole, mass-
quadrupole structure and bodies at rest with full mass-
multipole structure.
The numerical magnitude about the impact of mass-

multipoles and spin-multipoles on light deflection, pre-
sented in Table III, reveal that the first mass-multipoles up
to order l ¼ 10 and the first spin-multipoles up to order
l ¼ 3 have to be taken into account for astrometry on nano-
arcsecond level of accuracy. This fact is important in view
of the complexity of the 1.5PN solution for the light
trajectory, because it allows to simplify that solution
considerably. However, more detailed investigations are
very necessary in order to simplify the massive computa-
tions in astrometric data reduction as much as possible.
The approach presented has further to be developed into

several directions before the conditions are complied for a
complete modeling of light-propagation through the Solar
System on sub-μas or nas-level of accuracy. In particular,
the following issues may serve as minimal supplement to
the list of aspects which have already been mentioned in the
introductory section:
(A) The model for the light trajectory has to implement

some terms in 2PN approximation, which can
formally be written as follows:

_x2PN ¼ cσ þ Δ_x1PN þ Δ_x1.5PN þ Δ_x2PN; ð191Þ

x2PN ¼ ξ þ cτσ þ Δx1PN þ Δx1.5PN þ Δx2PN;

ð192Þ

where (191) and (192) represents the coordinate
velocity and the trajectory of the light-signal,
respectively. The 2PN corrections have been
determined for the case of monopoles at rest
[18,27] and later recalculated in progressing in-
vestigations in [24,45,46] and also within this
work, see Appendix J. It is clear that for a
comprehensive theory of light propagation aiming
at sub-μas-level of accuracy it needs to be care-
fully scrutinized which 2PN corrections beyond

the monopole part are of relevance for such
extremely-precise astrometry.

(B) A fundamental prerequisite in order to gain further
progress in the theory of light propagation in 2PN
approximation, one necessarily needs to determine
the space-space part of the BCRS as well as of the
GCRS metric tensor including all terms of the order
Oðc−4Þ. However, an extension of these global and
local reference systems to the post-post-Newtonian
order is a highly involved assignment of a task and is
presently an active field of research [80–83] and far
from being completed.

(C) In the first instance, the post-Newtonian approach of
the DSX formalism allows for astrometry in the
near-zone of the Solar System. However, astrometric
measurements of stars or extragalactic celestial
objects are subject to far-zone astrometry, which
requires a matching procedure of two asymptotic
solutions: the near-zone solution and the far-zone
solution for the light trajectory [21]. Such matching
approach has been proposed in [24,25], which has to
be further developed in such a way to be in line with
the requirements of nas-astrometry.

(D) The unique interpretation of observational data
implies a hierarchy of several reference systems
[18,21]:
(a) BCRS ðx0; x1; x2; x3Þ for description of the light

trajectory in the Solar System,
(b) GCRS-like ðX0

A; X
1
A; X

2
A; X

3
AÞ, one for each body

A ¼ 1;…; N of the Solar System in order to
define the intrinsic multipoles,

(c) CoMRS ðX0;X1;X2;X3Þ which is co-moving
with the observer,

(d) ToRS ðz0a; z1a; z2a; z3aÞ, one for each ground-
station a ¼ 1;…; n on Earth which are involved
in data reduction,

where CoMRS stands for co-moving reference
system and ToRS denotes topocentric reference
system. The light trajectory in our investigation is
given in the BCRS, but that is of course not
sufficient for a comprehensive astrometric model
of light propagation. In particular, the presented
solution has to be transformed into the reference
system which is co-moving with a free-falling
observer (CoMRS) [84]. This transformation takes
account for aberrational effects. Especially, it has to
be clarified whether or not the CoMRS in [84],
which was primarily intended for the Gaia mission,
is also sufficient for the requirements on nas-level of
accuracy.

(E) The basic assumption of post-Newtonian expansion
is that all retardations of the gravitational actions are
small. In the model presented the effect of retarda-
tion has been implemented in a more or less heuristic
manner, in order to provide a proper estimation for
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the upper limit of time delay and light deflection.
This procedure needs to be scrutinized in consid-
erably more detail. Especially, it has to be clarified
how the retardation of gravitational action has to be
implemented based on clear theoretical foundation
in the entire approach. The solution of this problem
is related to the far-zone astrometry about how the
presented solution in the near-zone can be matched
with the solution for the light ray in the far-zone of
the Solar System [21,24].

In summary, a precise determination of light trajectory
up to a given accuracy is of fundamental importance in the
theory of any astrometric measurements. Besides consid-
erable effort which has still to be done in near future, we
come to the conclusion that a complete modeling of light
trajectory from celestial light sources through the Solar
System toward the observer is accomplishable also for
extremely high-precision astrometry on sub-μas and even
on nano-arcsecond level of accuracy.

ACKNOWLEDGMENTS

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG).

APPENDIX A: NOTATIONS

Throughout the article the following notations are in use:
(i) G is the Newtonian constant of gravitation.
(ii) c is the vacuum speed of light in flat Minkowski

space.
(iii) Lower case Latin indices a; b;…, i; j;… take

values 1,2,3.
(iv) Lower case Greek indices α; β;…, μ; ν;… take

values 0, 1, 2, 3.
(v) δij ¼ δij ¼ diagðþ1;þ1;þ1Þ is Kronecker delta.
(vi) The three-dimensional coordinate quantities (“three-

vectors”) referred to the spatial axes of the corre-
sponding reference system are set in boldface: a.

(vii) The contravariant components of “three-vectors”
are ai ¼ ða1; a2; a3Þ.

(viii) The contravariant components of “four-vectors”
are aμ ¼ ða0; a1; a2; a3Þ.

(ix) Repeated indices imply the Einstein’s summation
irrespective of their positions (e.g. aibi¼a1b1þ
a2b2þa3b3 and aαbα¼a0b0þa1b1þa2b2þa3b3).

(x) The absolute value (Euclidean norm) of a “three-
vector” a is denoted as jaj or, simply, a and can be
computed as a ¼ jaj ¼ ða1a1 þ a2a2 þ a3a3Þ1=2.

(xi) The scalar product of any two “three-vectors” a and
b with respect to the Euclidean metric δij is denoted
by a · b and can be computed as a · b ¼ δijaibj ¼
aibi.

(xii) The vector product of any two “three-vectors” a and
b is designated by a × b and can be computed as

ða × bÞi ¼ εijkajbk, where εijk ¼ ði − jÞðj − kÞ×
ðk − iÞ=2 is the fully antisymmetric Levi-Civita
symbol.

(xiii) The global coordinate system is denoted by lower-
case letters: ðct; xÞ.

(xiv) The local coordinate system of a massive body A is
denoted by upper-case letters: ðcTA;XAÞ.

(xv) The photon trajectory is denoted by xðtÞ. In order to
distinguish the photon’s spatial coordinate xðtÞ from
the spatial coordinate x of the global system, the
time-dependence of photon’s spatial coordinate will
everywhere be shown explicitly throughout the
article.

(xvi) The world line of massive body A is denoted by
xAðtÞ or xAðTAÞ.

(xvii) Partial derivatives in the global coordinate system:
∂μ ¼ ∂

∂xμ or ∂i ¼ ∂
∂xi.

(xviii) Partial derivatives in the local coordinate system of
body A: DA

α ¼ ∂
∂Xα

A
or DA

a ¼ ∂
∂Xa

A
.

(xix) n! ¼ nðn − 1Þðn − 2Þ…2 · 1 is the faculty for pos-
itive integer; 0! ¼ 1.

(xx) L ¼ i1i2…il is a Cartesian multi-index of a given
tensor T, that means TL ≡ Ti1i2…il , and each index
i1; i2;…; il runs from 1 to 3 (i.e. over the Cartesian
coordinate label).

(xxi) Two identical multi-indices imply summation,
e.g.: ∂LTL ≡P

i1…il∂i1…ilTi1…il .
(xxii) The symmetric tracefree (STF) part of a tensor TL is

defined by Eq. (A2) in [26] and denoted by ThLi.

APPENDIX B: NOTATION OF IMPACT
VECTORS

Before we distinguish between the case of massive
bodies at rest and massive bodies in motion, we consider
the unperturbed light ray in flat Minkowskian space-time,
which in Cartesian coordinates is given by the expression
in (1),

xNðtÞ ¼ x0 þ cðt − t0Þσ; ðB1Þ

which describes a straight line and where the subscript N
stands for Newtonian limit. By Eq. (78) we have introduced
the following impact vector:

ξ ¼ σ × ðxNðtÞ × σÞ ¼ σ × ðx0 × σÞ; ðB2Þ

d ¼ jξj: ðB3Þ

The impact vector in (B2) points from the origin of the
global system (BCRS) toward the point of closest approach
of the unperturbed light ray to that origin. The impact
vector in (B2) is time-independent, both in case of massive
bodies at rest as well as in case of massive bodies in motion.
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1. Massive bodies at rest

Massive bodies at rest means their positions remain
constant with respect to the global reference system:
xA ¼ const. We will make use of the following notation
for the vector from the massive body at rest toward the
photon propagating along the exact light trajectory:

rA ¼ xðtÞ − xA; ðB4Þ

with the absolute value rA ¼ jrAj. The vector from the
massive body at rest toward the photon along the unper-
turbed light trajectory reads:

rNA ¼ xNðtÞ − xA

¼ x0 þ cðt − t0Þσ − xA; ðB5Þ

with the absolute value rNA ¼ jrNA j, and obviously
rA ¼ rNA þOðc−2Þ. We also need the vector from the
massive body at rest toward the photon at the moment
of signal-emission:

r0A ¼ x0 − xA; ðB6Þ

with the absolute value r0A ¼ jr0Aj. Note that in the case of
massive bodies at rest there will be no time-argument in rA
and rNA , irrespective of the fact that the distance between the
photon and the body actually depends on time due to the
propagation of the photon. In the case of massive bodies at
rest we introduce the following impact-vector:

dA ¼ σ × ðrNA × σÞ; dA ¼ jdAj: ðB7Þ

The impact-vector in (B7) is time-independent, _dA ¼ 0, and
points from the origin of local coordinate system of massive
body A toward the unperturbed light ray at the time of
closest approach to that origin, defined by

t�A ¼ t0 −
σ · ðx0 − xAÞ

c
þOðc−2Þ; ðB8Þ

¼ t1 −
σ · ðx1 − xAÞ

c
þOðc−2Þ: ðB9Þ

Notice that the term weak gravitational field implies
dA ≫ GMA

c2 .

2. Massive bodies in motion

In case of massive bodies in motion, their positions
become time-dependent: xAðtÞ. Then we will make use of
the following notation for the vector from the massive body
toward the photon propagating along the exact light
trajectory:

rAðtÞ ¼ xðtÞ − xAðtÞ; ðB10Þ

with the absolute value rAðtÞ ¼ jrAðtÞj. The vector from the
massive body in motion toward the photon along the
unperturbed light trajectory reads:

rNAðtÞ ¼ xNðtÞ − xAðtÞ
¼ x0 þ cðt − t0Þσ − xAðtÞ; ðB11Þ

with the absolute value rNAðtÞ ¼ jrNAðtÞj and obviously
rAðtÞ ¼ rNAðtÞ þOðc−2Þ. We also will need the vector from
the massive body toward the photon at the time-moment of
emission of the light-signal, given by

r0A ¼ x0 − xAðt0Þ; ðB12Þ

with the absolute value r0A ¼ jr0Aj. In case of massive bodies
in motion we introduce the following impact vector:

dAðtÞ ¼ σ × ðrNAðtÞ × σÞ; ðB13Þ

with the absolute value dAðtÞ ¼ jdAðtÞj. The impact-vector
in (B13) is time-dependent, _dA ≠ 0, and points from the
origin of local coordinate system of massive body A toward
the unperturbed light ray at the time of closest approach to
that origin. The time-dependence of the impact-vector in
(B13) is solely caused by the motion of the massive body,
that means a time-derivative of (B13) is proportional to the
orbital velocity of this body, _dAðtÞ ¼ σ × ðσ × vAðtÞÞ. The
term weak gravitational field implies dAðt�AÞ ≫ GMA

c2 for the
time of closest approach of the light ray to the massive
body, which are given by

t�A ¼ t0 −
σ · ðx0 − xAðt�AÞÞ

c
þOðc−2Þ; ðB14Þ

¼ t1 −
σ · ðx1 − xAðt�AÞÞ

c
þOðc−2Þ; ðB15Þ

and which slightly differ from the expressions (B8) and
(B9) by the time-argument of the spatial coordinates of the
massive body.

APPENDIX C: PARTIAL DERIVATIVE
OPERATOR

The spatial derivative in terms of the new variables τ and
ξ has been given by relation (86) which is valid for any
smooth function Fðt; xÞ, that means

∂Fðt; xÞ
∂xi

����
x¼xNðtÞ

¼
�
Pij ∂

∂ξj þ σi
∂
∂cτ − σi

∂
∂ct�

�

× Fðt� þ τ; ξ þ cτσÞ: ðC1Þ
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According to the metric perturbations in (68)–(72) we have
to consider the STF partial derivative operation in Eq. (73),
which reads

∂hLi ¼ STF
i1…il

∂
∂xi1 …

∂
∂xil : ðC2Þ

In order to express the spatial derivative operation in (C2)
in terms of these new variables, we apply the binomial
theorem:

ðaþ bþ cÞl ¼
Xl

p¼0

�
l

p

�
al−p

Xp
q¼0

�
p

q

�
bp−qcq; ðC3Þ

where the binomial coefficients are defined by

�
l

p

�
¼ l!

ðl − pÞ!p! ;
�
p

q

�
¼ p!

ðp − qÞ!q! : ðC4Þ

In virtue of the binomial theorem in (C3), we obtain for the
STF partial derivative operator in (C2) in terms of the new
variables τ and ξ the following expression:

∂hLi ¼ STF
i1…il

Xl

p¼0

l!
ðl − pÞ!p!

Xp
q¼0

ð−1Þq p!
ðp − qÞ!q!

× σi1…σipPipþ1jpþ1…Piljl
∂

∂ξjpþ1
…

∂
∂ξjl

×

� ∂
∂cτ

�
p−q

� ∂
∂ct�

�
q
: ðC5Þ

The same expression for ∂hLi has been used in [41]
[cf. Eqs. (4.42)—(4.43) ibid.]; note the symmetry p − q ↔
q of the expression in (C5). The derivatives with respect to
variable ct� act only on MA

Lðτ þ t�Þ and xAðτ þ t�Þ, hence
the partial derivatives ð ∂

∂ct�Þq produce terms of the order
Oðc−qÞ. For that reason it was possible to neglect all
derivatives with respect to variable ct� in 1PN approxima-
tion which has been investigated in [26]. If one neglects
such derivatives [i.e., take only the terms with q ¼ 0 in
Eq. (C5)], then we would obtain the simpler derivative
operator:

∂q¼0

hLi ¼ STF
i1…il

Xl

p¼0

l!
ðl − pÞ!p! σ

i1…σipPipþ1jpþ1…Piljl

×
∂

∂ξjpþ1
…

∂
∂ξjl

� ∂
∂cτ

�
p
; ðC6Þ

which coincides with the expression as given by Eq. (24) in
[32] or by Eq. (101) in [26] where it was allowed to omit
the STF operation because of relation (101).

APPENDIX D: DERIVATIVES

In this appendix we will summarize some useful spatial-
derivatives and time-derivatives. Throughout this appendix
all time arguments are omitted in order to simplify the
notations, that means

rNA ≡ rNAðτ þ t�Þ; ðD1Þ

rNA ≡ rNAðτ þ t�Þ; ðD2Þ

dA ≡ dAðτ þ t�Þ; ðD3Þ

vA ≡ vAðτ þ t�Þ: ðD4Þ

1. Spatial-derivatives

In this appendix some relevant relations for spatial-
derivatives are summarized. The vector rNA depends only on
the variables ξ, τ and xAðτ þ t�Þ. Since variable ξ is
independent of τ and xAðτ þ t�Þ, we consider partial
derivatives with respect to variable ξ. We obtain the
following relations:

Pij ∂
∂ξj ln ðr

N
A − σ · rNAÞ ¼

diA
rNA

1

rNA − σ · rNA
: ðD5Þ

Pij ∂
∂ξj ½r

N
A þ σ · rNA ln ðrNA − σ · rNAÞ� ¼

diA
rNA − σ · rNA

: ðD6Þ

Pij ∂
∂ξj

dA · vA
rNA − σ · rNA

¼ −
diAðdA · vAÞ

rNAðrNA − σ · rNAÞ2

þ viA − σiðσ · vAÞ
rNA − σ · rNA

: ðD7Þ

Pij ∂
∂ξj ðdA · vAÞ ln ðrNA − σ · rNAÞ

¼ ðdA · vAÞ
rNA − σ · rNA

diA
rNA

þ ½viA − σiðσ · vAÞ� ln ðrNA − σ · rNAÞ:

ðD8Þ

Notice that ∂
∂ξj ðσ · rNAÞ ¼ 0.

2. Time-derivatives

In this appendix some relations of time-derivatives are
summarized which are of relevance for integrations by part.
Since the position of massive body depends on time-
variable, xAðτ þ t�Þ, this vector is not independent of τ.
Therefore, in order to perform integration by parts, we need
to consider the derivatives with respect to variable τ. Taking
into account rNA ¼ dA þ σðσ · rNAÞ, we find the following
relations:
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∂
∂cτ ln ðr

N
A − σ · rNAÞ ¼ −

1

rNA
þ σ · vA

c
1

rNA
−
vA · dA
crNA

1

rNA − σ · rNA
: ðD9Þ

∂
∂cτ

1

rNA

1

rNA − σ · rNA
¼ 1

ðrNAÞ3
−

1

ðrNAÞ3
σ · vA
c

þ 1

ðrNAÞ3
dA · vA

cðrNA − σ · rNAÞ
þ 1

ðrNAÞ2
dA · vA

cðrNA − σ · rNAÞ2
: ðD10Þ

∂
∂cτ ðr

N
A þ σ · rNA ln ðrNA − σ · rNAÞÞ ¼ ln ðrNA − σ · rNAÞ −

σ · vA
c

ln ðrNA − σ · rNAÞ −
dA · vA

c
1

rNA − σ · rNA
: ðD11Þ

∂
∂cτ

1

rNA − σ · rNA
¼ 1

rNA

1

rNA − σ · rNA
þ 1

ðrNA − σ · rNAÞ2
vA · dA
crNA

−
1

rNA

1

rNA − σ · rNA

σ · vA
c

: ðD12Þ

2

rNA − σ · rNA
¼ ∂

∂cτ
σ · rNA

rNA − σ · rNA
−

∂
∂cτ ln ðr

N
A − σ · rNAÞ þ 2

σ · vA
c

1

rNA − σ · rNA
−

vA · dA
cðrNA − σ · rNAÞ2

: ðD13Þ

APPENDIX E: THE INTEGRAL I1

The first integration of the expression in the first line in Eq. (96) reads:

I1ðτ þ t�Þ ¼ þ 2G
c2

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

−∞
dcτ0MA

hLiðτ0 þ t�Þ∂ 0
hLi

1

rNAðτ0 þ t�Þ ; ðE1Þ

where ∂ 0
hLi is given by Eq. (C5) where cτ is formally replaced by the integration variable cτ0. In order to solve that integral,

we use relation (D9) and obtain

I1ðτ þ t�Þ ¼ −
2G
c2

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

−∞
dcτ0MA

hLiðτ0 þ t�Þ∂ 0
hLi

∂
∂cτ0 ln ½r

N
Aðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�

þ 2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

−∞
dcτ0MA

hLiðτ0 þ t�Þ∂ 0
hLiσ · vAðτ0 þ t�Þ 1

rNAðτ0 þ t�Þ

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

−∞
dcτ0MA

hLiðτ0 þ t�Þ∂ 0
hLi

vAðτ0 þ t�Þ · dAðτ0 þ t�Þ
rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ

1

rNAðτ0 þ t�Þ ; ðE2Þ

where we also have used that rNA ¼ dA þ σðσ · rNAÞ. Note that Eq. (E2) is an exact expression for the integral in Eq. (E1).
Now the expression in the first line in (E2) will be integrated by parts. For the integral in the second line in (E2) we use
relation (D9) again, while for the integral in the third line in (E2) we will use relation (D12) and obtain by means of
integration by parts:

I1ðτ þ t�Þ ¼ −
2G
c2

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

þ 2G
c3

Pij ∂
∂ξj

X∞
l¼1

ð−1Þl
l!

Z
τ

−∞
dcτ0 _MA

hLiðτ0 þ t�Þ∂ 0
hLi ln ½rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLiσ · vAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

vAðτ þ t�Þ · dAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ þO

�
vA
c

_MA
L

�
þO

�
v2A
c2

MA
L

�
: ðE3Þ

By means of relation (C5) in [26] one may show that the lower integration limit τ → −∞ in the first line of Eq. (E2)
vanishes. In order to determine the integral in the second line in (E3), we use relation (D11), and obtain finally:

LIGHT PROPAGATION IN THE GRAVITATIONAL FIELD … PHYSICAL REVIEW D 93, 103010 (2016)

103010-33



I1ðτ þ t�Þ ¼ −
2G
c2

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

þ 2G
c3

Pij ∂
∂ξj

X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLi½rNAðτ þ t�Þ þ σ · rNAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ��

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLiσ · vAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

vAðτ þ t�Þ · dAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ þO

�
vA
c

_MA
L

�
þOðM̈A

LÞ þO
�
v2A
c2

MA
L

�
:

ðE4Þ

In general, terms of the orderO
�
v2A
c2 M

A
L

�
,OðvAc _MA

LÞ, orOðM̈A
LÞ have to be neglected in order to be consistent with the DSX

metric in Eqs. (68)–(72), where such terms are absent because they would be beyond 1.5PN approximation for the light ray
metric, cf. text at the end of Sec. III C. This fact is also valid for all subsequent calculations but will not be mentioned
explicitly in what follows.

APPENDIX F: THE INTEGRAL I2

The integration of the fifth term in Eq. (96) reads as follows:

I2ðτþ t�Þ ¼ þ 4G
c3

σjPik ∂
∂ξk

X∞
l¼1

ð−1Þl
l!

Z
τ

−∞
dcτ0 _MA

hjL−1iðτ0 þ t�Þ∂ 0
hL−1i

1

rNAðτ0 þ t�Þ

¼ −
4G
c3

σjPik ∂
∂ξk

X∞
l¼1

ð−1Þl
l!

Z
τ

−∞
dcτ0 _MA

hjL−1iðτ0 þ t�Þ∂ 0
hL−1i

∂
∂cτ0 ln ðr

N
Aðτ0 þ t�Þ − σ · rNAðτ0 þ t�ÞÞ

þ 4G
c3

σjPik ∂
∂ξk

X∞
l¼1

ð−1Þl
l!

Z
τ

−∞
dcτ0 _MA

hjL−1iðτ0 þ t�Þ∂ 0
hL−1i

σ · vAðτ0 þ t�Þ
c

1

rNAðτ0 þ t�Þ

−
4G
c3

σjPik ∂
∂ξk

X∞
l¼1

ð−1Þl
l!

Z
τ

−∞
dcτ0 _MA

hjL−1iðτ0 þ t�Þ∂ 0
hL−1i

vAðτ0 þ t�Þ · dAðτ0 þ t�Þ
crNAðτ0 þ t�Þ

1

rNAðτ0 þ t�Þ− σ · rNAðτ0 þ t�Þ ;

ðF1Þ

where we have used relation (D9). We recognize that the last two terms in (F1) are terms of the orderOðvAc _MA
LÞ, hence they

are neglected. Accordingly, integration by parts of the remaining integral in (F1) results in

I2ðτ þ t�Þ ¼ −
4G
c3

σjPik ∂
∂ξk

X∞
l¼1

ð−1Þl
l!

_MA
hjL−1iðτ þ t�Þ∂hL−1i ln ðrNAðτ þ t�Þ − σ · rNAðτ þ t�ÞÞ

þO
�
vA
c

_MA
L

�
þOðM̈A

LÞ þO
�
v2A
c2

MA
L

�
: ðF2Þ

Finally, by means of relation (D5), we just obtain the expression in the last line of Eq. (111).

APPENDIX G: INTEGRALS OF SECOND INTEGRATION OF MASS-MULTIPOLE TERMS

By inserting (110) and (111) into (117) we obtain the following integrals, each of which will be considered separately.

1. Integral I3
The integral I3, using relation (D5), reads

I3ðτ þ t�; τ0 þ t�Þ ¼ −
2G
c2

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

τ0

dcτ0MA
hLiðτ0 þ t�Þ∂ 0

hLi ln ½rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�: ðG1Þ
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We insert relation (D11) into (G1) and obtain:

I3ðτþ t�; τ0 þ t�Þ ¼ −
2G
c2

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτþ t�Þ∂hLiðrNAðτþ t�Þ þ σ · rNAðτþ t�Þ ln ½rNAðτþ t�Þ− σ · rNAðτþ t�Þ�Þ

þ 2G
c2

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ0 þ t�Þ∂hLiðrNAðτ0 þ t�Þ þ σ · rNAðτ0 þ t�Þ ln ½rNAðτ0 þ t�Þ− σ · rNAðτ0 þ t�Þ�Þ

þ 2G
c3

X∞
l¼1

ð−1Þl
l!

Z
τ

τ0

dcτ0 _MA
hLiðτ0 þ t�Þ∂ 0

hLi
diAðτ0 þ t�Þ

rNAðτ0 þ t�Þ− σ · rNAðτ0 þ t�Þ

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

τ0

dcτ0MA
hLiðτ0 þ t�Þ∂ 0

hLiσ · vAðτ0 þ t�Þ ln ½rNAðτ0 þ t�Þ− σ · rNAðτ0 þ t�Þ�

−
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

τ0

dcτ0MA
hLiðτ0 þ t�Þ∂ 0

hLi
dAðτ0 þ t�Þ · vAðτ0 þ t�Þ

rNAðτ0 þ t�Þ− σ · rNAðτ0 þ t�Þ : ðG2Þ

In order to get the expression in (G2), we have performed an integration by parts which results in the expressions in the first
and second line. Furthermore, for the expression in the third line we have used relation (D6). Consequently, (G2) represents
an exact expression for the integral in (G1).
Now we are going to proceed with the consideration of the remaining three integrals in the third, fourth, and fifth line in

(G2). For the integral in the third and fifth line we will use relation (D13) and integrate by parts; note that we also need
relation (D9) and the facts that

∂
∂cτ dAðτ þ t�Þ ¼ σ ×

�
σ ×

vAðτ þ t�Þ
c

�
; ðG3Þ

∂
∂cτM

A
hLiðτ þ t�Þ ¼

_MA
hLiðτ þ t�Þ

c
: ðG4Þ

For the integral in the fourth line we use relation (D11) and integrate by parts and afterwards we apply relation (D6).
Altogether, we obtain:

I3ðτ þ t�; τ0 þ t�Þ ¼ I3ðτ þ t�Þ − I3ðτ0 þ t�Þ; where

I3ðτ þ t�Þ ¼ −
2G
c2

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLi

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

þ G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLidiAðτ þ t�Þ σ · rNAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

−
G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLidiAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

−
2G
c3

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLiσ · vAðτ þ t�Þ diAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

−
G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLidAðτ þ t�Þ · vAðτ þ t�Þ σ · rNAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

þ G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLidAðτ þ t�Þ · vAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

þO
�
vA
c

_MA
L

�
þOðM̈A

LÞ þO
�
v2A
c2

MA
L

�
; ðG5Þ

where in the first line we have used relation (D6).
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2. Integral I4
The integral I4 reads

I4ðτ þ t�; τ0 þ t�Þ ¼ −
2G
c2

σi
X∞
l¼0

ð−1Þl
l!

Z
τ

τ0

dcτ0MA
hLiðτ0 þ t�Þ∂ 0

hLi
1

rNAðτ0 þ t�Þ : ðG6Þ

The evaluation of that integral goes very similar to the determination of the integral I1 as given in Appendix E. Accordingly
we obtain:

I4ðτþ t�; τ0 þ t�Þ ¼ I4ðτþ t�Þ− I4ðτ0 þ t�Þ; where

I4ðτþ t�Þ ¼ þ2G
c2

σi
X∞
l¼0

ð−1Þl
l!

MA
hLiðτþ t�Þ∂hLi ln ½rNAðτþ t�Þ− σ · rNAðτþ t�Þ�

−
2G
c3

σi
X∞
l¼1

ð−1Þl
l!

_MA
hLiðτþ t�Þ∂hLi½rNAðτþ t�Þ þ σ · rNAðτþ t�Þ ln ½rNAðτþ t�Þ− σ · rNAðτþ t�Þ��

þ 2G
c3

σi
X∞
l¼0

ð−1Þl
l!

MA
hLiðτþ t�Þ∂hLiσ · vAðτþ t�Þ ln ½rNAðτþ t�Þ− σ · rNAðτþ t�Þ�

þ 2G
c3

σi
X∞
l¼0

ð−1Þl
l!

MA
hLiðτþ t�Þ∂hLi

vAðτþ t�Þ · dAðτþ t�Þ
rNAðτþ t�Þ− σ · rNAðτþ t�Þ þO

�
vA
c

_MA
L

�
þOðM̈A

LÞ þO
�
v2A
c2

MA
L

�
:

ðG7Þ

3. Integral I5
The integral I5 reads

I5ðτ þ t�; τ0 þ t�Þ ¼ þ 2G
c3

X∞
l¼1

ð−1Þl
l!

Z
τ

τ0

dcτ0 _MA
hLiðτ0 þ t�Þ∂ 0

hLi
diAðτ0 þ t�Þ

rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ : ðG8Þ

In order to perform that integral we need relation (D13). Integration by parts and by inspection of relations (G3) and (G4)
one obtains:

I5ðτ þ t�; τ0 þ t�Þ ¼ I5ðτ þ t�Þ − I5ðτ0 þ t�Þ; where

I5ðτ þ t�Þ ¼ þ G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLidiAðτ þ t�Þ σ · rNAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

−
G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hLiðτ þ t�Þ∂hLidiAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ� þO

�
vA
c

_MA
L

�
þOðM̈A

LÞ:

ðG9Þ

4. Integral I6
The integral I6, using relation (D5), reads

I6ðτ þ t�; τ0 þ t�Þ ¼ þ 2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

τ0

dcτ0MA
hLiðτ0 þ t�Þσ · vAðτ0 þ t�Þ∂ 0

hLi ln ½rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�:

ðG10Þ

Integration by parts using relation (D11), and recalling relation (G4), yields:
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I6ðτþ t�;τ0þ t�Þ ¼ I6ðτþ t�Þ− I6ðτ0þ t�Þ; where

I6ðτþ t�Þ ¼þ2G
c3

X∞
l¼0

ð−1Þl
l!

MA
hLiðτþ t�Þσ · vAðτþ t�Þ∂hLi

diAðτþ t�Þ
rNAðτþ t�Þ− σ · rNAðτþ t�ÞþO

�
vA
c

_MA
L

�
þO

�
v2A
c2

MA
L

�
:

ðG11Þ

In (G11) we have also used relation (D6).

5. Integral I7
The integral I7 reads

I7ðτ þ t�; τ0 þ t�Þ ¼ −
2G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

Z
τ

τ0

dcτ0MA
hLiðτ0 þ t�Þ∂ 0

hLi
vAðτ0 þ t�Þ · dAðτ0 þ t�Þ

rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ : ðG12Þ

Inserting relation (D13) and integration by parts, recalling relations (G3) and (G4), yields:

I7ðτ þ t�; τ0 þ t�Þ ¼ I7ðτ þ t�Þ − I7ðτ0 þ t�Þ; where

I7ðτ þ t�Þ ¼ −
G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLivAðτ þ t�Þ · dAðτ þ t�Þ σ · rNAðτ þ t�Þ

rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ

þ G
c3

Pij ∂
∂ξj

X∞
l¼0

ð−1Þl
l!

MA
hLiðτ þ t�Þ∂hLivAðτ þ t�Þ · dAðτ þ t�Þ ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ�

þO
�
vA
c

_MA
L

�
þO

�
v2A
c2

MA
L

�
: ðG13Þ

6. Integral I8
The integral I8 reads

I8ðτ þ t�; τ0 þ t�Þ ¼ −
4G
c3

X∞
l¼1

ð−1Þl
l!

Z
τ

τ0

dcτ0 _MA
hiL−1iðτ0 þ t�Þ∂ 0

hL−1i
1

rNAðτ0 þ t�Þ : ðG14Þ

Integration by parts using relation (D9), and recalling relation (G4), yields:

I8ðτ þ t�; τ0 þ t�Þ ¼ I8ðτ þ t�Þ − I8ðτ0 þ t�Þ; where

I8ðτ þ t�Þ ¼ þ 4G
c3

X∞
l¼1

ð−1Þl
l!

_MA
hiL−1iðτ þ t�Þ∂hL−1i ln ½rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ� þOðM̈A

LÞ: ðG15Þ

7. Integral I9
The integral I9 reads

I9ðτ þ t�; τ0 þ t�Þ ¼ þ 4G
c3

X∞
l¼0

ð−1Þl
l!

Z
τ

τ0

dcτ0viAðτ0 þ t�ÞMA
hLiðτ0 þ t�Þ∂ 0

hLi
1

rNAðτ0 þ t�Þ : ðG16Þ

Integration by parts using relation (D9), and recalling relation (G4) yields:

I9ðτþ t�;τ0þ t�Þ ¼ I9ðτþ t�Þ− I9ðτ0þ t�Þ; where

I9ðτþ t�Þ ¼−
4G
c3

viAðτþ t�Þ
X∞
l¼0

ð−1Þl
l!

MA
hLiðτþ t�Þ∂hLi ln ½rNAðτþ t�Þ− σ · rNAðτþ t�Þ�þO

�
vA
c

_MA
L

�
þO

�
v2A
c2

MA
L

�
:

ðG17Þ
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8. Integral I10
The integral I10, using relation (D5), reads

I10ðτ þ t�; τ0 þ t�Þ ¼ −
4G
c3

σjPik ∂
∂ξk

X∞
l¼1

ð−1Þl
l!

Z
τ

τ0

dcτ0 _MA
hjL−1iðτ0 þ t�Þ∂ 0

hL−1i ln ½rNAðτ0 þ t�Þ − σ · rNAðτ0 þ t�Þ�: ðG18Þ

Integration by parts using relation (D11) and using relation (G4) yields

I10ðτ þ t�; τ0 þ t�Þ ¼ I10ðτ þ t�Þ − I10ðτ0 þ t�Þ; where

I10ðτ þ t�Þ ¼ −
4G
c3

σj
X∞
l¼1

ð−1Þl
l!

_MA
hjL−1iðτ þ t�Þ∂hL−1i

diAðτ þ t�Þ
rNAðτ þ t�Þ − σ · rNAðτ þ t�Þ þOðM̈A

LÞ þO
�
vA
c

_MA
L

�
:

ðG19Þ

In (G19) we have also used relation (D6).

APPENDIX H: LIGHT TRAJECTORY IN THE FIELD OF SPIN-MULTIPOLES AT REST

1. First integration

The contribution of the spin-multipoles in the first integration of geodesic equation for the light trajectory in the field of
arbitrarily moving bodies with time-dependent spin-multipoles is given by Eq. (113). In [32] the light trajectory has been
determined in the field of motionless bodies located at the origin of coordinate system (xA ¼ 0) and with time-independent
mass-multipoles and spin-multipoles. Accordingly, in order to compare our results with [32], we have to consider the
following limits in our solution:

SAhLiðτ þ t�Þ → SAhLi; ðH1Þ

dAðτ þ t�Þ → ξ; ðH2Þ

dAðτ þ t�Þ → d ¼ jξj; ðH3Þ
rNAðτ þ t�Þ → r ¼ ξ þ cτσ; ðH4Þ

rNAðτ þ t�Þ → r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ c2τ2

p
; ðH5Þ

where

rNAðτ þ t�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ c2τ2 þ x2Aðτ þ t�Þ − 2cτσ · xAðτ þ t�Þ − 2ξ · xAðτ þ t�Þ

q
: ðH6Þ

In these limits the expression in Eq. (113) simplifies to

Δ_xiSA ðτÞ
c

¼ −
4G
c3

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabS

A
hbL−1i∂haL−1i

1

r
−
4G
c3

σj
X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵjabS

A
hbL−1i∂haL−1i

ξi

d2

�
1þ cτ

r

�
; ðH7Þ

up to terms Oðc−4Þ. In (H7) we have used σ · r ¼ cτ and 1
r

1
r−σ·r ¼ 1

d2 ð1þ cτ
r Þ. The derivative operator has been given by

Eq. (C5) and simplifies as follows:

∂haL−1i ¼ STF
ai1…il−1

PabPi1j1…Pil−1jl−1
∂
∂ξb

∂
∂ξj1 …

∂
∂ξjl−1

þ STF
ai1…il−1

Xl

p¼1

l!
ðl − pÞ!p! σ

i1…σipPabPipþ1jpþ1…Pil−1jl−1
∂
∂ξb

∂
∂ξjpþ1

…
∂

∂ξjl−1
� ∂
∂cτ

�
p
; ðH8Þ

because there is no dependence on variable t� any longer, and the expression in (H8) has been subdivided into one summand
p ¼ 0 and all other terms with p ≥ 1. By inserting the expression (H8) into (H7) we confirm an agreement with Eq. (37) in
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[32], up to an overall sign which has been clarified by private communication [73]. For such a comparison it may be useful
to note the relations

� ∂
∂cτ

�
p 1

r
¼ −

� ∂
∂cτ

�
p−1 cτ

r3
; ðH9Þ

� ∂
∂cτ

�
p
�
1þ cτ

r

�
¼ þ

� ∂
∂cτ

�
p−1 d2

r3
; ðH10Þ

while d is here time-independent.

2. Second integration

The contribution of the spin-multipoles in the second integration of geodesic equation for the light trajectory in the field
of arbitrarily moving bodies with time-dependent spin-multipoles is given by Eq. (121). In [32] the light trajectory has been
determined in the field of motionless bodies located at the origin of coordinate system (xA ¼ 0) and with time-independent
mass-multipoles and spin-multipoles. Accordingly, we consider the limits (H1)–(H5) in our solution (121) and obtain

ΔxSAðτ; τ0Þ ¼ ΔxSAðτÞ − ΔxSAðτ0Þ; ðH11Þ

with

ΔxiSA ðτÞ ¼ 4G
c3

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabS

A
hbL−1i∂haL−1i ln ðr − cτÞ − 4G

c3
σj

X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵjabS

A
hbL−1i∂haL−1i

ξi

d2
ðrþ cτÞ; ðH12Þ

up to terms of the order Oðc−4Þ, and the derivative operator is given by

∂haL−1i ¼ STF
ai1…il−1

PabPi1j1…Pil−1jl−1
∂
∂ξb

∂
∂ξj1 …

∂
∂ξjl−1 þ STF

ai1…il−1
lσi1PabPi2j2…Pil−1jl−1

∂
∂ξb

∂
∂ξjpþ1

…
∂

∂ξjl−1
∂
∂cτ

þ STF
ai1…il−1

Xl

p¼2

l!
ðl − pÞ!p! σ

i1…σipPabPipþ1jpþ1…Pil−1jl−1
∂
∂ξb

∂
∂ξjpþ1

…
∂

∂ξjl−1
� ∂
∂cτ

�
p
; ðH13Þ

where the expression has been subdivided into three pieces: one term p ¼ 0, one term p ¼ 1, and all other terms with
p ≥ 2. By inserting (H13) into (H12), we have found an agreement with Eq. (38) in [32], up to an overall sign which
has been clarified by private communication [73]. For such comparison, it might be useful to recall ln r−cτ

r0−cτ0
¼ − ln rþcτ

r0þcτ0
and to note the following relations:

∂
∂cτ ln ðr − cτÞ ¼ −

1

r
; ðH14Þ

∂
∂cτ ðrþ cτÞ ¼ 1þ cτ

r
; ðH15Þ

as well as

� ∂
∂cτ

�
p
ln ðr − cτÞ ¼

� ∂
∂cτ

�
p−2 cτ

r3
; ðH16Þ

� ∂
∂cτ

�
p
ðrþ cτÞ ¼

� ∂
∂cτ

�
p−2 d2

r3
: ðH17Þ

We also note that time-independent terms cancel each other in view of relation (H11).
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APPENDIX I: LIGHT PROPAGATION
IN THE FIELD OF ARBITRARILY

MOVING BODIES IN 1PM
APPROXIMATION

In [38] the light trajectory in the field of N bodies with
spin-dipole in post-Minkowskian approximation has been
determined. That solution is given by Eq. (39) in [38] and
reads:

xSðτ þ t�Þ ¼ ξ þ cτσ þ ΞðτÞ − Ξðτ0Þ; ðI1Þ

where according to Eq. (41) in [38]

ΞiðτÞ ¼ þ 1

2
σασβ∂̂iD

αβ
S ðτÞ − σαBαi

S ðτÞ

−
1

2
σiB00

S ðτÞ þ 1

2
σiσpσqB

pq
S ðτÞ; ðI2Þ

with σα ¼ ð−1; σiÞ and σi ¼ σi. The expressions for Bαβ
S

and ∂̂iD
αβ
S were given by Eqs. (C16) and (C17) in [38],

respectively (note a missing factor 4 in the last term in
Eq. (C17) in [38]). Inserting these expressions into (I2)
yields

ΞiðτÞ ¼ −
2G
c4

Pijrj

r − v · r=c
σασβ

rγSγðαuβÞ

ðr − σ · rÞ2 þ
2G
c4

Pijrj

1 − σ · v=c
σασβ

σγSγðαuβÞ

ðr − σ · rÞ2 þ
2G
c4

Pijvj=c

ð1 − σ · v=cÞ2 σασβ
σγSγðαuβÞ

r − σ · r

þ 2G
c4

PijσασβSjðαuβÞ

1 − σ · v=c
1

r − σ · r
−
4G
c4

σα
rγSγðαuiÞ

r − σ · r
1

r − v · r=c
þ 4G

c4
σα

σγSγðαuiÞ

r − σ · r
1

1 − σ · v=c

−
2G
c4

σi
rγSγð0u0Þ

r − σ · r
1

r − v · r=c
þ 2G

c4
σi
σγSγð0u0Þ

r − σ · r
1

1 − σ · v=c
þ 2G

c4
σiσpσq

rγSγðpuqÞ

r − σ · r
1

r − v · r=c

−
2G
c4

σiσpσq
σγSγðpuqÞ

r − σ · r
1

1 − σ · v=c
; ðI3Þ

where SγðαuβÞ ¼ ðSγαuβ þ SγβuαÞ=2 means the symmet-
rization with respect to the indices α and β. Thereby,
uβ ¼ γvðc; vÞ where γ−1v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
is the Lorentz

factor, and all time-dependent quantities depend on
the retarded time-variable τret, that means for the
global spin-tensor Sαβ ¼ SαβðτretÞ, for the four-velocity
uα ¼ uαðτretÞ and for the three-velocity v ¼ vðτretÞ.
Furthermore, rα ¼ ð−r; rÞ with r ¼ jrj and r being
the vector pointing from the spatial position of the
body at retarded time, xAðtretÞ, toward the spatial
position of the photon at global coordinate-time,
xðtÞ. That means, in (I3) we may replace the new
variables ξ; τret by the old variables x; tret [see also text
below Eq. (128)]:

r≡ rðt; tretÞ ¼ x0 þ cðt − t0Þσ − xAðtretÞ; ðI4Þ

where the retarded time in terms of the old variables is
given by Eq. (143); see also Eq. (11) in [34] or Eqs. (12)
in [38]. The solution in (I3) is valid for the light
trajectory in post-Minkowskian approximation in the
gravitational field of an arbitrarily moving pointlike
body carrying a spin-dipole, while our result in
Eq. (122) and Eq. (128) is valid for the light trajectory
in post-Newtonian approximation in the gravitational field
of an arbitrarily moving extended body carrying a spin-
dipole. In order to compare both results we have to
expand all expressions in (I3) with respect to variable

v=c ≪ 1 and neglect all terms of the order Oðc−4Þ, and
afterwards we have to express the global spin-tensor Sαβ

in terms of the intrinsic spin-vector S. Especially, we find

rðt; tretÞ ¼ rNAðtÞ þOðc−1Þ; ðI5Þ

vðtretÞ ¼ vAðtÞ þOðc−1Þ; ðI6Þ

SαβðtretÞ ¼ SαβðtÞ þOðc−1Þ; ðI7Þ

where in (I5) and (I6) we have attached an index A in
order to indicate that actually the body A is meant here,
while the spin-tensor in (I7) describes still the global
spin, besides the fact that this spin-tensor originates from
the intrinsic spin SA of that single body. Let us consider
one specific example by performing a series-expansion of
the first term in (I3), for which we obtain:

−
2G
c4

Pijrj

r − v · r=c
σασβ

rγSγðαuβÞ

ðr − σ · rÞ2

¼ −
2G
c4

Pijrj

r − v · r=c
σασβ

rγSγαuβ

ðr − σ · rÞ2

¼ þ 2G
c3

diAðtÞ
rNAðtÞ

σα
rNγ ðtÞSγαðtÞ

ðrNAðtÞ − σ · rNAðtÞÞ2
þOðc−1Þ; ðI8Þ

where in the second line we have determined the
symmetrization, while in the third line we have used

SVEN ZSCHOCKE PHYSICAL REVIEW D 93, 103010 (2016)

103010-40



(I5)–(I7) and Pijr
j
NðtÞ ¼ diAðtÞ. Very similar steps for the

other terms in (I3) yield the following expression:

ΞiðtÞ ¼ þ 2G
c3

diAðtÞ
rNAðtÞ

σα
rNγ ðtÞSγαðtÞ

ðrNAðtÞ − σ · rNAðtÞÞ2

−
2G
c3

Pijσα
SjαðtÞ

rNAðtÞ − σ · rNAðtÞ

þ 2G
c3

rNγ ðtÞSγiðtÞ
rNAðtÞ − σ · rNAðtÞ

1

rNAðtÞ

−
2G
c3

σγSγiðtÞ
rNAðtÞ − σ · rNAðtÞ

−
2G
c3

σi
rNγ ðtÞSγ0ðtÞ

rNAðtÞ − σ · rNAðtÞ
1

rNAðtÞ

þ 2G
c3

σi
σγSγ0ðtÞ

rNAðtÞ − σ · rNAðtÞ
þOðc−4Þ; ðI9Þ

where we have used σασγSγα ¼ 0 because the spin-tensor
is antisymmetric, Sγα ¼ −Sαγ , and we have introduced
rNγ ðtÞ ¼ ð−rNAðtÞ; rNAðtÞÞ. In order to compare (I9) with
our result in (128) we have to express the global spin-
tensor Sαβ in (I9) in terms of the intrinsic spin-vector SA,
where the index refers to body A. Recalling relations (24)
and (C.10) in [78] we have

Si0ðtÞ ¼ Oðc−1Þ; ðI10Þ

SijðtÞ ¼ ϵijkSkAðtÞ þOðc−1Þ: ðI11Þ

By inserting (I10)–(I11) into (I9) we arrive at

ΞiðtÞ ¼ þ 2G
c3

diAðtÞ
rNAðtÞ

σj
rNk ðtÞϵkjlSlAðtÞ

ðrNAðtÞ − σ · rNAðtÞÞ2

−
2G
c3

σkϵikl
SlAðtÞ

rNAðtÞ − σ · rNAðtÞ

þ 2G
c3

rNj ðtÞϵjilSlAðtÞ
rNAðtÞ − σ · rNAðtÞ

1

rNAðtÞ

−
2G
c3

σjϵjil
SlAðtÞ

rNAðtÞ − σ · rNAðtÞ
þOðc−4Þ: ðI12Þ

Finally, using rNAðtÞ ¼ dAðtÞ þ σðσ · rNAðtÞÞ we obtain

ΞðtÞ ¼ −
2G
c3

σ · ðdAðtÞ × SAðtÞÞ
ðrNAðtÞ − σ · rNAðtÞÞ2

dAðtÞ
rNAðtÞ

−
2G
c3

σ × SAðtÞ
rNAðtÞ − σ · rNAðtÞ

þ 2G
c3

SAðtÞ × dAðtÞ
rNAðtÞ − σ · rNAðtÞ

1

rNAðtÞ

þ 2G
c3

σ × SAðtÞ
rNAðtÞ

; ðI13Þ

where the last two terms in (I13) comprise the last two
terms in (I12). The expression in (I13) agrees with our
result in (128); note that all derivatives according to (124)
have been performed, hence the replacement τ þ t� → t
in (128) is possible.

APPENDIX J: LIGHT TRAJECTORY IN
POST-POST-NEWTONIAN APPROXIMATION

FOR MONOPOLES AT REST

In this appendix we briefly summarize the 2PN solution
for the light ray (in harmonic gauge) in the field of one
monopole at rest, located at xA ¼ const. The 2PNmetric for
one monopole at rest reads [18,27,46,79]:

hð2Þ00 ðxÞ ¼ þ 2mA

rA
; ðJ1Þ

hð2Þij ðxÞ ¼ þ 2mA

rA
δij; ðJ2Þ

hð4Þ00 ðxÞ ¼ −
2m2

A

r2A
; ðJ3Þ

hð4Þij ðxÞ ¼ þm2
A

r2A
δij þ

m2
A

r4A
riAr

j
A; ðJ4Þ

where mA ¼ GMA=c2 is the Schwarzschild radius of body
A and rA ¼ x − xA. Using the constraint for light rays,
ds ¼ 0, the geodesic equation can be written in the
following form [18,27,45,46]:

ẍ2PN ¼ −2mAc2
rA
r3A

þ 4mA _x
rA · _x
r3A

− 2m2
A _x

rA · _x
r4A

þ 8m2
Ac

2
rA
r4A

þ 2m2
ArA

ðrA · _xÞ2
r6A

: ðJ5Þ

The solution of geodesic equation (J5) has been found at
the first time in [18,27]. This solution has been confirmed
within several investigations, e.g. [24,45,46] and has also
been recalculated in this work.
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1. Light trajectory in Newtonian approximation for monopole at rest

The light trajectory in Newtonian approximation (N) reads:

xNðtÞ ¼ x0 þ cðt − t0Þσ: ðJ6Þ

2. Light trajectory in 1PN approximation for monopole at rest

The light trajectory in post-Newtonian approximation (1PN) reads:

x1PNðtÞ ¼ x0 þ cðt − t0Þσ − 2mA

�
dA

rNA − σ · rNA
−

dA
r0A − σ · r0A

�
þ 2mAσ ln

rNA − σ · rNA
r0A − σ · r0A

; ðJ7Þ

where rNA ¼ xNðtÞ − xA and r0A ¼ xðt0Þ − xA. The expression in (J7) corrects some typos in Eq. (B6) in [26].

3. Light trajectory in 2PN approximation for monopole at rest

The light trajectory in post-post-Newtonian approximation (2PN) reads:

x2PNðtÞ ¼ x0 þ cðt − t0Þσ þmA½B1ðr1PNA Þ − B1ðr0AÞ� þm2
A½B2ðrNAÞ − B2ðr0AÞ�; ðJ8Þ

where r1PNA ¼ x1PNðtÞ − xA. The vectorial functions B1 and B2 are given by (cf. Eqs. (3.2.41) and (3.2.42) in [18] or
Eqs. (50) and (51) in [45]):

B1ðr1PNA Þ ¼ −2
σ × ðr1PNA × σÞ
r1PNA − σ · r1PNA

þ 2σ ln ðr1PNA − σ · r1PNA Þ; ðJ9Þ

B2ðrNAÞ ¼ þ4
σ

rNA − σ · rNA
þ 4

dA
ðrNA − σ · rNAÞ2

þ 1

4

rNA
ðrNAÞ2

−
15

4

σ
dA

arctan

�
σ · rNA
dA

�
−
15

4
dA

σ · rNA
d3A

�
π

2
þ arctan

�
σ · rNA
dA

��
:

ðJ10Þ

It should be mentioned that in B1 the coordinate of the photon in 1PN approximation, x1PN, can be replaced by the exact
coordinate x of the photon, and in B2 the coordinate of the photon in Newtonian approximation, xN, can be replaced by the
exact coordinate x, because such replacements are correct up to terms of the order Oðc−6Þ.
Sometimes it is useful to perform a series-expansion of the vectorial function B1 in terms of the small parameter mA and

to express the 2PN solution (J8) in terms of unperturbed light ray as follows:

x2PNðtÞ ¼ x0 þ cðt− t0Þσ − 2mA

�
dA

rNA − σ · rNA
−

dA
r0A − σ · r0A

�
þ 2mAσ ln

rNA − σ · rNA
r0A − σ · r0A

−
15

4

m2
A

d3A
dA

�
ðσ · rNAÞ

�
π

2
þ arctan

σ · rNA
dA

�

− ðσ · r0AÞ
�
π

2
þ arctan
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�
; ðJ11Þ

where we recall that rNA ¼ dA þ σðσ · rNAÞ and r0A ¼ dA þ σðσ · r0AÞ. The expression in (J11) corrects some typos in
Eq. (37) in [26]. Let us notice that in the terms proportional to mA in Eq. (J11) it is not allowed to replace the
coordinate of the photon in Newtonian approximation, xN, by the exact coordinate of the photon, x, because such a
replacement would cause an error of the order Oðc−4Þ. This is the reason for the fact that the form in (J11) is usually
not in use in favor of the expression in Eqs. (J8)–(J10).
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