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Future space-borne gravitational wave detectors will require a precise definition of calibration signals to
ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in
the correct understanding and characterization of these instruments. In that sense, methods achieving
optimal experiment designs must be considered as complementary to the parameter estimation methods
being used to determine the parameters describing the system. The relevance of experiment design is
particularly significant for the LISA Pathfinder mission, which will spend most of its operation time
performing experiments to characterize key technologies for future space-borne gravitational wave
observatories. Here we propose a framework to derive the optimal signals—in terms of minimum parameter
uncertainty—to be injected into these instruments during the calibration phase. We compare our results
with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an
initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
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I. INTRODUCTION

LISA Pathfinder [1] is an ESA mission with NASA
contributions designed to test key technologies for the
detection of gravitational waves in space, like the proposed
eLISA [2]. The main scientific goal for the mission is
expressed in terms of a differential acceleration noise
between two test masses in nominally geodesic motion
down to a level of SΔa ¼ 3 × 10−14 m=s2=

ffiffiffiffiffiffi
Hz

p
at 3 mHz.

The relevance of this requirement is not only its demand in
terms of noise reduction but also the very low frequency
measuring band, which introduces technological difficul-
ties that cannot be addressed by ground-based gravitational
wave detectors due to the so-called seismic wall [3].

The LISA Pathfinder mission is currently planned to
have a six-month operation period at the Lagrange point L1
that will be split between the two experiments onboard: the
European LISA Technology Package (LTP) and the
American Disturbance Reduction System (DRS). This
leads to a very short operation period of roughly three
months for the complete characterization and achievement
of the scientific goal for the LTP.
It is worth noticing that, after the demonstration of the

technology readiness, a second—yet not less relevant—
objective of the mission is a detailed characterization of the
noise contributions to the main scientific measurement.
An extensive list of experiments has been put forward by
the scientific team including experiments to characterize
the optical metrology [4], the inertial sensor instrument
[5], the effects of the thermal [6] and magnetic [7]*nofrarias@ice.cat
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environment, and pure free-fall experiments that aim to
measure acceleration noise in a configuration that is even
more representative of eLISA [8]. All these runs need to be
executed via telecommands using a daily eight-hour com-
munication windowwith the satellite. Internal constraints in
preprocessing and validation of telecommands will add a
latency from two to three days between the definition of a
telecommand sequence and its execution on the spacecraft.
The planning of experiments represents therefore a

crucial part of the mission and needs to be optimized
accordingly to make sure that the information obtained
from each experiment is maximized. As part of this effort, a
MATLAB toolbox has been developed with the specific
aim to deal with the LTP data during flight operations [9].
Among the different methods and capabilities of this tool,
much attention has been paid to the improvement of the
methods to obtain precise parameters from the experiments
[10–14]. These have been tested with simulated data, taking
into account the expected noise performance of the LISA
Pathfinder mission, in a series of mock data challenges with
data generated using the analysis software’s built-in mod-
eling and simulation tools. Agreement between methods
was also checked with data generated from an independent
spacecraft simulator developed by the prime industrial
contractor, as was the case in the LISA Pathfinder opera-
tional exercises [15].
These analyses focused on the parameter estimation

strategy and the achievement of an optimal precision in
the parameters obtained, following the heritage of previous
simulated data exercises, like for instance the LISA Mock
Data Challenge [16] that focused on the problem of
astrophysical parameter estimation from LISA data.
Unlike the problem of astrophysical data analysis, in the
LISA Pathfinder case, the measured signal is the response
of the LISA Pathfinder system to some injected input signal
that was specified by the telecommand file. In other words,
there exists the opportunity in LISA Pathfinder to design
the injected signals so that the measurement of the system
parameters is optimized. The operators of ground-based
gravitational-wave detectors have a similar opportunity to
design signals when characterizing the response of their
instruments to various noise sources but, given their easy
access to their instruments, not as much emphasis is placed
on optimizing signal injections. Instead, for a space-borne
gravitational wave observatory, such optimal experiment
designs might prove very important for maximizing science
return for a given mission duration. LISA Pathfinder thus
represents a scenario where careful signal design would
produce the most benefit. In the following, we propose a
general framework which allows the optimization of the
input signals applied to a given system.
Optimal experiment design [17–19] is a long-standing

area of research. In general terms, the main objective is to
adjust the experiment in such a way that the maximal
information is obtained from the data. This general purpose

has of course applicability in a wide variety of areas
spanning the study of physical, biological or engineering
systems. The reader is referred to reviews covering this
extensive field of research for more insight [20–24]. In
most cases, experiment design is described as an optimi-
zation problem for a given figure of merit, which typically
relates to a scalar of the Fisher information matrix.
Although the description used here applies to a general
case, in the current work we will be mostly interested in the
application to the estimation of the main parameters
governing the combined dynamics of the test mass and
the spacecraft in LISA Pathfinder. Hardware onboard the
satellite imposes us a further limitation which is only to
consider sinusoidal signals as input signals.
This work is organized as follows. In Sec. II, we

introduce the problem of experiment design and the
notation used in this work. Section III describes a numerical
algorithm to optimize the signal to be injected in a given
model and its application to a simple case. In Sec. IV, we
introduce the LISA Pathfinder model used for our analysis,
and in Sec. V we present our conclusions.

II. FISHER MATRIX ANALYSIS

A. Definitions and notation

In the following, we will describe a given system as

~oðωÞ ¼ Hðω;ΘÞ~sðωÞ þ ~nðωÞ; ð1Þ
where ~o is a vector with the measurements being considered,
~s is a vector with injection signals that can be applied to test
the system and Hðω;ΘÞ is the matrix whose components,
Hijðω;ΘÞ, contain the transfer function describing the
dynamics of the system in the frequency domain with a
dependence on a set of parameters Θ ¼ fθ1;…; θNg. ~nðωÞ
describes the noise contribution of our instrument.
The likelihood function is the probability to observe a

measurement for a given set of parameters describing that
system. Assuming that the data are Gaussian distributed,
the likelihood for our system will be

pð~ojΘÞ ¼ ½2πΣ�−1=2

× exp
h
−
1

2
ð~o −HðΘÞ · ~sÞTΣ−1ð~o −HðΘÞ · ~sÞ

i
ð2Þ

where Σ is the noise covariance matrix. Experiment design
is based on the analysis of the Fisher matrix, whose
elements are defined as

Fij ¼
��∂ logðpð~ojΘÞÞ

∂θi
�

T
�∂ logðpð~ojΘÞÞ

∂θj
������

θ0

ð3Þ

which can be used to set limit for an expected covariance
matrix of the parameters known as the Crámer-Rao
bound [25],

MIQUEL NOFRARIAS et al. PHYSICAL REVIEW D 93, 102004 (2016)

102004-2



cov½θi; θj� ≥ F−1: ð4Þ

The decomposition of the Fisher matrix into eigenvalues
and eigenvectors will prove to be very useful in the
following sections. Given a N × N Fisher matrix F, defined
by a set of N parameters, the eigenvectors ~u and eigen-
values λ always fulfill

F~u ¼ λ~u: ð5Þ

The eigenvectors can be used to diagonalize the Fisher
matrix according to the following property,

F ¼ RTΛR; ð6Þ
where the columns of the matrix R are the (normalized)
eigenvectors of F, and Λ is a diagonal matrix with the
eigenvalues in the diagonal. Notice that R can be under-
stood as a rotation matrix that can be used to express the

vector of our initial parameters, ~Θ, in the new diagonal
basis ~u,

~ζ ¼ R~Θ; ð7Þ
from where we obtain our new set of parameters in the

diagonal basis, ~ζ.

B. Fisher matrix tomography

To compute the Fisher matrix, we need to follow Eq. (3).
We notice though that even for this simplified problem the
straightforward application of this expression leads to a
long expression that makes difficult a further analytical
treatment. To avoid cumbersome expressions as much as
possible, we expand the Fisher matrix in its different
composing terms. Following the notation in Eq. (1), we
consider an experiment with M inputs, ~s, and N outputs, ~o.
In such a case, we may write the elements of our Fisher
matrix as

Fij ¼
XM
n;q¼1

XN
m;p¼1

Fmnpq;ij; ð8Þ

where

Fmnpq;ij ¼ fΣ−1gmp½∂θiHmnðΘÞ�T ½∂θjHpqðΘÞ�snsq: ð9Þ

The definition of the Fisher matrix allows us to combine
the information of different experiments by adding their
Fisher matrices. However, in this case, we use this same
property in the opposite direction: to split a single experi-
ment as the combination of simpler independent experi-
ments. This tomography will be particularly useful to
interpret the Fisher matrix since we can split each experi-
ment into the contribution of each transfer function and

study them independently. The Fmnpq;ij term can be
understood as the mp component of a Fisher matrix
corresponding to an experiment which only considers a
sinusoidal input applied to the nq channels. We notice
here that if the noise covariance matrix, fΣ−1gmp, were
diagonal, we could consider each Fmnpn;ij as the contri-
bution corresponding to a given transfer function HmnðΘÞ.
However, cross-couplings between our channels imply a
mixing of the different transfer function contributions.

III. DESIGN OF INPUT SIGNALS

The experiment design problem can be stated as how to
choose an input signal that allows the optimization of a
given figure of merit, provided some constraints on our
particular experiment. In the literature [23], there are
several options for a scalar figure of merit to use as a
minimization criteria including (i) the minimization of the
trace of the covariance matrix (A-optimality), thus mini-
mizing the average variance of the parameters, (ii) the
minimization of the largest eigenvalue of the covariance
matrix (E-optimality), which implies minimizing the major
axis of the uncertainty ellipsoid in the parameter space or
(iii) minimizing the determinant of the covariance matrix
(D-optimality), which is the equivalent to minimizing the
uncertainty ellipsoid in the parameter space. In the follow-
ing, we will stick to the latter criterion since, among other
advantages, it remains invariant under scale changes in the
parameters.
An analytical solution to the problem, as the one

proposed in the previous section, has a limited applica-
tion and becomes unfeasible for complex systems. The
usual strategy is to describe the problem as a numerical
minimization problem as we show below. For computa-
tional simplicity, the inverse of the Fisher matrix is used
as an approximation of the covariance matrix. Since we
are working in a high SNR regime, it is also a good
approximation.
For mathematical convenience, our description of

the system under study will be in frequency domain.
Hence, recalling Eq. (1), the input to our system will be
described as

χðωÞ ¼ ðjsðω1Þj2…jsðωFÞj2Þ ð10Þ

with bounded energy,

XF
k¼1

jsðωkÞj2 ¼ 1 ð11Þ

where sðωkÞ is the frequency domain representation
of a given input at frequency ωk. Following the literature,
we will call χðωÞ our design. Different conditions can be set
on the design in order to achieve D-optimality. Indeed, it
can be shown that a design maximizing the determinant of
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the Fisher matrix will minimize the maximum of the
quantity [18]

νðωÞ ¼ tr½F−1ðχÞFðωÞ� ð12Þ

where FðχÞ is the information matrix from the design χðωÞ
and FðωÞ is the information matrix from a single frequency
input with normalized power spectrum jXðωÞj2 ¼ 1. The
quantity νðωÞ, known as a dispersion function or response
dispersion, can be understood as the ratio of the variance of
the system transfer function to the noise power.
Based on its mathematical properties, the dispersion

function has been proposed as a tool for input design
optimization. The underline idea is to select a frequency
grid where the power of the input signal is initially
uniformally distributed among the selected frequencies.
The dispersion function is then computed for each fre-
quency in the grid and the power of the signal distributed
proportionally to the value of this function. The optimal
design is achieved by repeating this procedure iteratively.
More precisely, the algorithm steps are [26,27]
(1) Select a set of frequencies fω1;…ωFg within the

frequency band of interest and distribute the power
equally over these frequencies. This constitutes the
initial design.

(2) Compute the dispersion function for the F
frequencies.

(3) Create a new design according to

χiþ1ðωkÞ ¼ χiðωkÞ × νiðωkÞ=Nθ ð13Þ

(4) If maxðνðχi;ωkÞÞ − NθÞ < ϵ for a sufficient small ϵ,
then the optimum design is found. If not, we return
to step 2.

It can be shown that the algorithm converges to a
D-optimal design. [26].
In order to prove the efficiency of the previous numerical

design method, we test it in the case of a harmonic
oscillator. We can analytically compute the Fisher matrix
for this problem to obtain an expression which, as expected,
shows a maximum of the spectrum at the natural frequency
of the oscillator, ω0. This value is, therefore, the one that
minimizes the volume of the error ellipsoid in the parameter
space and, hence, the one that the numerical method
described in the previous section should retrieve.
In order to check the validity of our methodology, we

generated a time series of 10,000 seconds of white noise
with variance σ ¼ 10−5 that we consider as our initial input
design. We choose white noise in order to weight all
frequencies equally. We consider a harmonic oscillator with
damping ratio ξ ¼ 0.01 and natural frequency ω0 ¼ 0.07,
and then we run the algorithm as described above. The
result is shown in Fig. 1 where we show the evolution of the
input signal as proposed by the algorithm. As shown, two

iterations are enough for the algorithm to promote the
natural frequency of the oscillator ω0 among the others.

IV. LISA PATHFINDER MODEL

In order to apply this methodology to LISA Pathfinder,
we will need first to define a model for the experiment. In
the following, we introduce the notation to describe the
combined dynamics of the two test masses and the satellite
required for the analysis. The same description with small
variations can also be found in [10,11,13].

A. Equation of motion

The measurement onboard the satellite is usually
expressed as

~o ¼ ðD · S−1 þ CÞ−1ð−C~oi þ ~gn þD · S−1~onÞ; ð14Þ

where D is the dynamical matrix, C is the controller, and S
stands for the sensing matrix, which translates the physical
position of the test masses into the interferometer readout,
~o. Subindex n stands for noise quantities, either sensing
noise (~on) or force noise (~gn), and subindex i stands for the
injected signals (~oi). Restricting ourselves to linear motion
along the axis between the two test masses (the degree of
freedom that is measured by the interferometer), each of the
dynamical variables in Eq. (14) can be expressed as two-
dimensional vectors with components referring to the x1
and xΔ channels, respectively,

~o ¼
�
o1
oΔ

�
; ~oi ¼

�
oi1
oiΔ

�
;

~on ¼
�
on1
onΔ

�
; ~gn ¼

�
gn1 − gN
gn2 − gn1

�
;

FIG. 1. Evolution of the algorithm to optimize the input signal
for the harmonic oscillator case. The algorithm promotes the
natural frequency of the oscillator ω0 ¼ 0.07.
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where subindices 1 and 2 refer to the first and second test
mass, subindex Δ refers to differences between the first and
second test mass, and capitalized subindices (such as force
noise on the spacecraft, gN) refer to the spacecraft. The last
equation in Eq. (15) shows how gN is only measured in the
first channel. On the other hand, the differential channel is
sensitive to any differential force noises applied to the first
and the second test masses.
The matrices describing the dynamics of the LISA

Pathfinder system are

D ¼
 
s2 þ ω2

1 þ
m1

mSC
ω2
1 þ

m2

mSC
ω2
2

m2

mSC
ω2
2

ω2
2 − ω2

1 s2 þ ω2
2

!
;

C ¼
�
Hdf 0

0 Hsus

�
; S ¼

�
S11 S12
S21 S22

�
; ð15Þ

where ω1 and ω2 are the stiffnesses—the steady force
gradient across the test mass housing per unit mass [28]—
coupling the motion of each test mass to the motion of the
spacecraft; Hdf and Hsus are the drag-free and suspension
loops controllers, respectively. For the remainder of this
work, it is assumed that Hdf and Hsus are known since they
represent software control loops already tested on ground.
For our current analysis we will assume some approx-

imations in these expressions in order to keep the main
scientific information and, at the same time, keep the
expressions as simple as possible. For that reason, in the
following we will eliminate the back reactions terms,
m1 ¼ m2 ≪ mSC, consider that the sensing matrix cross-
couplings are zero S12 ¼ S21 ¼ 0. For convenience, we will
take the calibrations S11 ¼ S22 ¼ 1. Taking into account
these assumptions we can derive expressions for the
transfer functions describing the system. We consider input
signals injected at the guidance input port which we
expressed as oi in Eq. (14); hence, the transfer function
is defined by

H ¼ ðD · S−1 þ CÞ−1ð−CÞ · ~oi
¼
�
H11ðΘÞ H12ðΘÞ
H21ðΘÞ H22ðΘÞ

��
oi1
oiΔ

�
; ð16Þ

where the transfer functions are given by

H11 ¼
Hdf

ω2 − ω2
1 þHdf

ð17Þ

H12 ¼ 0 ð18Þ

H21 ¼
Hdfðω2

2 − ω2
1Þ

ðω2 − ω2
1 þHdfÞðω2 − ω2

2 þHlfsÞ
ð19Þ

H22 ¼
Hlfs

ω2 − ω2
2 þHlfs

; ð20Þ

where we realize that H12 is zero because this is propor-
tional to the parameter S12, which is considered to be zero.
At the same time, we see that the cross-coupling from drag-
free to differential channel, H21, is proportional to the
differential stiffness, ω2

2 − ω2
1.

B. Noise model

Our study of the injection scheme in LISA Pathfinder
relies on the Fisher matrix which, in turn, depends on the
noise model used for those noise sources identified in
Eq. (14). These are interferometer read-out noise for both
channels—on1 and onΔ—force noise applied to the test
masses—gn1 and gn2—and force noise applied to the
spacecraft—gN . Following [13], we will characterize each
of these with the five parameters p1…5 in the expression

SnðωÞ ¼ p1

�
1þ 1

ð ω
2πp2

Þp3
þ 1

ð ω
2πp4

Þp5

�
1=2

: ð21Þ

Applying the parameters in Table I, we obtain the
models in Fig. 2 for the noise spectra of the two main

TABLE I. LPF noise model parameters. p2 and p4 parameters
correspond to frequencies in [Hz] and p1 to amplitude spectral
densities in [m=

ffiffiffiffiffiffi
Hz

p
] and [N=

ffiffiffiffiffiffi
Hz

p
] for read-out noise and force

noise, respectively.

NOISE PARAMETERS

Parameter on1=onΔ gn1=gn2 gN

p1 3.6 × 10−12 7 × 10−15 2.5 × 10−10

p2 10 × 10−3 5 × 10−3 12 × 10−3

p3 4.2 3 3.8
p4 1.8 × 10−3 4 × 10−4 1 × 10−3

p5 8 8 8

FIG. 2. Comparison of the noise spectra for the two main
interferometer channels for an analytical simple model (dashed
line) and a noise data stream generated via a LPF state-space
model (solid line).
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interferometer channels. We can compare the predictions
from this simplified model to simulations coming from a
detailed state-space simulator containing a much elaborate
model of the instrument, for instance delays, actuators, and
component noise models [29]. As seen in Fig. 2, our simple
parametric model agrees well with the noise obtained from
the state-space model.

V. CALIBRATION SIGNALS FOR LISA
PATHFINDER DYNAMICS

During operations, LISA Pathfinder will run an exhaus-
tive characterization campaign with the objective of cali-
brating the instrument and identifying the main noise
contributions. Here we consider one set of experiments
targeting the calibration of the dynamical parameters
governing the combined motion of the two test masses
and the satellite. For these particular set of experiments, the
calibration procedure consists of the injection of a sequence
of sinusoids—the only available waveform in the flight
software—at different frequencies at a number of input
ports. For this work, we will focus on injection in one of the
two main interferometer channels. However, the method-
ology can be easily applied to the remaining degrees of
freedom.

A. The F2121 term

In order to demonstrate our method, we consider an
injection applied to the drag-free channel. In our frame-
work, this experiment would be completely described by
the sum

Fij ¼
X
m;p

Fm1p1;ij; ð22Þ

where the indices i and j run over the parameters. The most
general case (7 degrees of freedom) correspond to 49 terms.
This is not approachable analytically so we focus our
attention on one term with particular relevance, the F2121,
which can be expressed as

F2121;ij ¼ fΣ−1g22 × ½∂θiH21ðωÞ�T ½∂θjH21ðωÞ�jo1ðωÞj2:
ð23Þ

This term quantifies the effect of the injection in the first
channel as measured by the highly sensitive differential
channel. Under the assumptions discussed in sec. IVA, the
only parameters that impact this term are the two test mass
stiffnesses, which enter through the term in Eq. (19). Due to
this simplification, we can describe this problem in ana-
lytical terms. Equation (23) turns into a 2 × 2 matrix that
we can easily decompose in the related eigenvectors,

~u1 ¼

2
64 αðω1Þβðω1Þ
αðω2Þβðω2Þ

1

3
75 ~u2 ¼

2
64−

αðω2Þβðω2Þ
αðω1Þβðω1Þ

1

3
75; ð24Þ

where

αðxÞ ¼ HdfðωÞ − x2 þ ω2 ð25Þ

βðxÞ ¼ HlfsðωÞ − x2 þ ω2 ð26Þ

and associated eigenvalues,

λ1 ¼ 0

λ2 ¼ fΣ−1g22H2
dfðωÞ

α2ðω1Þβ2ðω1Þα2ðω2Þβ2ðω2Þ
α4ðω1Þβ4ðω2Þ

: ð27Þ

FIG. 3. Left: evaluation of the eigenvalue λ2 of the F2121 term for a single frequency injection. Right: Output of the numerical algorithm
for the optimization of input signals based on the dispersion function applied to a LISA Pathfinder state-space model after 25 iterations.
In this case, white noise was injected into the drag-free channel. In both cases (analytical and numerical), the analysis is repeated by
rescaling by a factor of 25 and 50 the value of the second test mass stiffness, which is originally considered to be ω2

0 ¼ −22 × 10−6 s−2.
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Since eigenvalues are directly related to the inverse of the
expected uncertainty on the associated parameter, we
conclude that this measurement can only constrain param-
eters in the ~u2 direction, while the direction ~u1 has an
associated uncertainty that tends to infinity.
It is important to notice at this point that the analysis we

perform in the frequency domain implicitly assumes a
unique frequency, i.e. an input signal which is a sinusoid at
a given frequency. In the following section, we explore
which information can be obtained in such a case.

1. Single tone input: Undetermined solution

If we assume that the content of our input signal is a
sinusoid with a fixed frequency, we know from the previous
eigendecomposition that we will not be able to solve the
problem since we have only one valid eigenvector for a
two-dimensional problem. Nonetheless, we explore the
single frequency solution in order to determine how much
information can we get from the system in such a case.
We proceed to diagonalize the Fisher matrix as in Eq. (6),

F ¼ RTΛR;

from which we obtain a diagonal system with a unique
eigenvalue, λ2, given by Eq. (27). In Fig. 3, we explore this
expression as a function of the frequency of the injection.
We see that the eigenvalue has a peak when the input is
injected at a frequency around f ¼ 1.25 mHz. This
becomes more evident if we increase the value of ω2

2, as
shown in the figure.
The value of f ¼ 1.25 mHz is therefore the best fre-

quency for a signal composed with a unique frequency
component for the experiment under study. Indeed, by
maximizing the Fisher matrix we are reducing the error on

the parameter space. However, it must be noted that this is
not necessarily an optimal solution since we are dealing
with a single frequency injection scheme that leads to
singular Fisher matrix.
A second consideration to take into account is that when

diagonalizing our system, our parameters are expressed in a
new basis which corresponds to applying a rotation matrix

R to the original vector of parameters ~Θ ¼ fω2
1;ω

2
2g. In

doing so, we obtain a new set of parameters ~ζ ¼ R · ~Θ. For
the configuration under study, the combination of param-
eters corresponding to the nonzero eigenvalue is propor-
tional to the sum of stiffness, i.e.

ζ2 ∝ ω2
1 þ ω2

2; ð28Þ

confirming that a single frequency signal is not able to break
the degeneracy between the two parameters in our system.
We are now prepared to compare the results obtained

analytically with the prediction of the numerical algorithm
based on the dispersion function, Eq. (12). To do so, we
inject a white noise data stream to the input channel
under consideration, which for the analysis of the F2121

term is the drag-free channel. In this particular case, we
consider as our initial input a white noise time series of
105 s and σ ¼ 10−6 m2.
In the right panel of Fig. 3, we show the resulting

normalized power spectrum of the input signal as retrieved
after 25 iterations of the numerical optimization algorithm.
The algorithm promotes the same frequencies that maxi-
mized the eigenvalue of the Fisher matrix F2121 as can be
seen in the left-hand figure. Moreover, we performed the
analysis by rescaling the ω2

2 value as in the study of the
eigenvalues. Here we observe again how the numerical
algorithm selects the f ¼ 1.25 mHz frequency when

FIG. 4. Determinant of the F2121 term for an injected signal with two independent frequencies. The determinant is evaluated for the
case ω2

2 ¼ −22 × 10−7 s−2 (left) and ω2
2 ¼ 50 × ð−22 × 10−7Þ s−2 (right). The values on the legend are the logðdet½F2121�Þ.
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approaching the case where ω2
2 is rescaled by a factor of 50,

proving the consistency between the analytical and the
numerical approach. The former is derived from Eq. (14),
while the latter has its roots in the numerical computation of
the dispersion function Eq. (12) using a state-space
representation of LISA Pathfinder.

2. Two-tone input: Full-rank solution

Herewe take advantage of the analytical solution to go one
step further and explore the case of an input signal composed
by two sinusoids. In order to combine the information of
more than one sinusoid frequency in the input signal, we add
the Fisher matrices corresponding to each frequency. Our
experiment will therefore be described by

F2121;ij ¼
XN¼2

k

F̄2121;ijðωkÞ; ð29Þ

where each F̄2121;ijðωkÞ corresponds to the contribution of a
single sinusoid injection to the final experiment’s Fisher
matrix.
We first explore the rank of the F2121 matrix when

evaluated for different combinations of these two input
frequencies. Given that F2121 depends on two parameters,
results show that most combinations of frequencies are
able to reach the condition rankðF2121Þ ¼ 2. In fact, only

when the two frequencies are equal—and we come back
to our previous case—will we not be in a full-rank
situation. This allows us to go one step further and explore
which combination of frequencies are optimal, in the sense
of maximizing the Fisher matrix, i.e. minimizing the
ellipsoid error volume in the parameters space. Figure 4
shows the value for the determinant of the F2121 term as a
function of the two injection frequencies. We explore the
determinant for two different configurations of the experi-
ment: the standard with ω2

2 ¼−22×10−7 s−2 and, as
before, rescaling ω2

2¼ 50× ð−22×10−7Þ s−2. As expected,
the determinant shows symmetry since the two injection
frequencies in Eq. (29) can be interchanged producing the
same output. The determinant drops to zero at the diagonal
since, as commented above, an injection with two equal-
frequency sinusoids does not lead to a full-rank solution. It
is interesting to see that when we set 50 × ω2

2, a notch
appears at the frequency f ¼ 1.25 mHz that we found as a
maximum in the single injection case.
In the standard configuration, the maximum of the F2121

determinant appears for frequencies in the very low
frequency regime (f < 1 mHz). If, for practical reasons,
we set one of the two injections to be f1 ¼ 0.1 mHz, the
maximum of the function displayed in Fig. 4 appears for a
second injection at f2 ¼ 0.3 mHz. With these two values,
we can proceed to estimate the expected errors on the
parameters by evaluating the Fisher matrix in Eq. (29). By

FIG. 5. Expected error on parameters for an injection in the drag-free channel considering ω2
1 and ω2

2 as the only relevant parameters.
Black corresponds to the initial proposal of a white noise input, blue represents the expected error for the input signal as obtained with
the proposed numerical algorithm after 25 iterations. Histograms are computed based on 5000 samples of a multivariate Gaussian
distribution with the covariance matrix obtained by the numerical algorithm.
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assuming two sinusoid injections with two cycles each at
the obtained frequencies f1 ¼ 0.1 and f1 ¼ 0.3 mHz with
and amplitude of 10−7 m, we can evaluate our expression
for the Fisher matrix term F2121, obtaining a 7 × 10−3% and
6 × 10−3% relative error estimate for the two stiffness
parameters ω2

1 and ω2
2, respectively. It is worth noting here

that these are optimal errors representing the contribution of
the F2121 term of the Fisher matrix to the overall experi-
ment. We consider it as a useful example to show the
capability of the framework here proposed to disentangle
the different contributions to the experiment. However, the
precise determination of the expected error for a given
parameter requires the evaluation of the full Fisher matrix,
which is composed in the analytical description of 49
components for the drag-free injection experiment. Hence,
analysis considering the whole system is, in most cases,
more suited to a numerical approach.
In order to evaluate the improvement on the estimate of the

parameters, we run the analysis using the numerical algo-
rithm introduced in Sec. III assuming an injection in the
drag-free channel and considering only the two stiffness ω2

1

and ω2
2 as relevant parameters. As described above, the

algorithm evaluates the Fisher matrix at each step so we can
trace how the expected errors for each parameter improve by
modifying the input signal. The improvement in the error, as
given by the Fisher matrix, is shown in Fig. 5, where we
compare the expected error on the parameters at the 1st and at
the 25th iteration. The input signals associated with these
two cases correspond to a white noise injection for the first
iteration that turns into a signal focusing all the power at
f ¼ 1.25 mHz after 25 iterations. The results show a clear
improvement in the expected error on the parameters which
decreases roughly by an order of magnitude.

VI. ROBUSTNESS ANALYSIS

A last consideration that has to be taken into account in
the design of experiments is that of the robustness of the
analysis. A key issue of the experiment design framework
is that it relies on the evaluation of the Fisher matrix, which
depends on the true values of the system under study,
precisely the unknowns that the experiment aims to
identify. In most cases, some reasonable estimates for
the expected values exist and therefore the experiment is
designed on the basis of this a priori knowledge. The
assumption is thus that the design obtained will not show a
strong dependence on the values being considered.
However, this raises the question if the experiment being
defined in such a way is merely reinforcing our previous
knowledge about the system [30]. This difficulty has been
recognized in the literature, and several approaches have
been proposed in order to achieve a robust optimal design
scheme [31], although methods that are robust with respect
to uncertainties in the system parameters are a wide-open
research field [22].

In the particular case of LISA Pathfinder, we focus on the
sequential design scheme [27,32,33] which proposes to
overcome the circular reasoning above by iteratively switch-
ing from parameter estimation to experiment design using
the most recent parameter estimates from the previous step
to define the next experiment. Indeed, this experiment
design strategy fits particularly for our mission scenario
since it includes in a natural way the process of improving
the knowledge of our system parameters that will occur
during the mission. Moreover, the sequential design can be
already tested against the mission simulators that we have
previously introduced, as we show in the following.
Let us consider a LISA Pathfinder state-space model,

where instead of the 2 degrees of freedom considered
before, we increase now the complexity of the problem to
include five unknown parameters in the system, corre-
sponding to the parameter set fGdf ; Glfs;ω2

1;ω
2
2; S21g in

Eq. (14). That way, we allow our system to explore a wider
parameter space.
In order to quantify the robustness of our experiment

design strategy, we run a Monte Carlo analysis allowing the
parameters of our model to be uniformly distributed as

Gdf ∼Glfs ∼ U½0.9; 0.2�;
ω2
1 ∼ ω2

1 ∼ U½1.9 × 10−6; 1.1 × 10−6�;
S21 ∼ U½1.55 × 10−4; 1.45 × 10−4�: ð30Þ

It is worth noticing here that the allowed range of
discrepancy in the parameters is orders of magnitude higher
than the expected uncertainty in the parameters. Indeed,
previous studies [10–14] have shown that the order of
magnitude of expected error on the parameters considered
in our analysis is σGdf

≃ σGlfs
≃ 10−5 for the control gains,

σω2
1
≃ σω2

2
≃ 10−10 s−2 for the stiffnesses and σS21 ≃ 10−8

for the sensing cross-coupling.

FIG. 6. Normalized input spectrum for a Monte Carlo analysis
running the experiment design algorithm, considering two input
channels and five parameters. The solid line represents the mean,
for each channel, of the 1000 runs while the grey shadow is the
corresponding standard variation.
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We run 1000 analyses of the algorithm described in
Sec. III. Each of the individual runs computes the
dispersion function in a 100-frequency bin grid spanning
0.1 mHz to 1 Hz. The input spectrum is built iteratively
using the dispersion function as a figure of merit. Each
individual input spectrum of the Monte Carlo analysis was
computed based on 50 iterations of the algorithm. The
result of the Monte Carlo run is shown in Fig. 6. The solid
line represents, for each channel, the mean of all the input
spectrum while the shadow area stands for the standard
deviation from all the runs. As clearly shown, in the LISA
Pathfinder mission framework and considering a scenario
of high uncertainty in the parameters, the methodology
described is still robust. Results show a clear convergence
around an input power spectrum for both channels and
guarantee that in a mission-realistic scenario—with
unknown parameter values—the methodology described
here is a valid protocol to define the calibration signals that
will help us get the maximum information from the
experiments and, hence, to optimize the mission time line.

VII. CONCLUSIONS

LISA Pathfinder and future space-borne gravitational
wave detectors will require precise calibration of their
dynamical systems in order to operate at their design
sensitivities. Given the operational constraints for such
missions, the design of injection signals used for calibration
is a key aspect for efficient characterization of the
instrument.
We have introduced amethodology to design experiments

for these instruments based on the minimization of the
uncertainty ellipsoid in parameter space. This methodology
allows one to decompose the Fisher informationmatrix in its
different contributions, each related to a unique physical
coupling—or transfer function—of the experiment. By

studying these contributions, we can evaluate the expected
error for a given spectrum of the injected test signal.
We have compared this with a numerical algorithm

capable of generating an optimal input signal by iteratively
improving a proposed input spectrum. The algorithm uses
the dispersion function of the system to promote those
frequencies which minimize the error on the parameters
under study. We have applied both techniques to one
example of LISA Pathfinder injection experiments,
obtaining agreement in the injection signals obtained with
both approaches.
As an example, we have considered the contributions to

the expected error for a given term of the Fisher matrix
decomposition: the F2121, which describes the coupling of
the x1 (the drag-free channel) and the x12 (the differential
channel) for the case when a signal is injected in the former.
The methodology proposed here is, however, general and
can be equally applied to other instruments requiring an
accurate calibration in terms of parameter uncertainties,
such as ground-based gravitational wave detectors.
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