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General relativity is supported by great experimental evidence. Yet there is a lot of interest in precisely
setting its limits with on going and future experiments. A question to answer is about the validity of the
strong equivalence principle. Ground experiments and lunar laser ranging have provided the best upper
limit on the Nordtvedt parameter σ½η� ¼ 4.4 × 10−4. With the future planetary mission BepiColombo, this
parameter will be further improved by at least an order of magnitude. In this paper we envisage yet another
possible testing environment with spacecraft ranging towards the nearby Sun-Earth collinear Lagrangian
points. Neglecting errors in planetary masses and ephemerides, we forecast σ½η� ¼ 6.4ð2.0Þ × 10−4 (5 yr
integration time) via ranging towards L1 in a realistic (optimistic) scenario depending on current (future)
range capabilities and knowledge of the Earth’s ephemerides. A combined measurement, L1 þ L2, gives
instead 4.8ð1.7Þ × 10−4. In the optimistic scenario a single measurement of one year would be enough to
reach ≈3 × 10−4. All figures are comparable with lunar laser ranging, but worse than BepiColombo.
Performances could be much improved if data were integrated over time and over the number of satellites
flying around either of the two Lagrangian points. We point out that some systematics (gravitational
perturbations of other planets or figure effects) are much more in control compared to other experiments.
We do not advocate a specific mission to constrain the strong equivalence principle, but we do suggest
analyzing ranging data of present and future spacecrafts flying around L1=L2 (one key mission is, for
instance, LISA Pathfinder). This spacecraft ranging would be a new and complementary probe to constrain
the strong equivalence principle in space.
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I. INTRODUCTION

General relativity provides the most satisfying physical
description of gravity with a great experimental evidence
[1]. The equivalence principle (EP) lies at the heart of
general relativity and states the equivalence between
inertial and gravitational mass. According to it, the roles
of inertial and gravitational mass can be mutually inter-
changed without affecting the observed dynamics of test
masses. The universality of free fall is therefore a direct
consequence of this principle. A key observable in general
relativity is the Riemann tensor, which describes the local
gravity’s tidal field between free falling test masses.
Evidently, a difference between inertial and gravitational
mass shows up as a differential acceleration between free
falling test masses. Much like gravitational wave detection
where a differential acceleration is induced between free
falling test masses [2,3], testing the equivalence principle
requires measuring a differential acceleration that would
not otherwise be present if general relativity were the
correct and ultimate theory of gravity. The weak form of the
EP (WEP) can be verified with test masses of different

chemical compositions. However the strong EP (SEP)
extends the validity of the principle to self-gravitating
bodies with different self-energies, and therefore is much
harder to test. The WEP can in fact be tested on ground
with, for instance, torsion balances [4] or in space with low-
earth orbits (e.g. with the future MICROSCOPE mission
[5]), pushing the limits of the equivalence principle down to
σ½δa=a� ≈ 10−15. On the contrary, the SEP requires an
experiment specifically devised in space with much longer
baselines and bigger masses over distances of some AU [6].
Even though lunar laser ranging (LLR) can constrain both
the WEP and SEP with remarkable results over the years
[7], missions in the solar system, like for instance
BepiColombo [8], provide a better framework for the
SEP as the involved self-energies are much bigger. In
addition, the discovery of the triple system J0337þ 1715
[9], made of a pulsar and two white dwarves, has recently
shed new light onto the concrete possibility of testing the
SEP outside the solar system. The very large difference in
binding energies between the neutron star and one of the
two white dwarves makes this system very promising, but a
direct measurement has yet to come. Alternatively, an
interesting, yet indirect, test of the EP can be achieved
via the γ parameter (which enters the post-Newtonian
expression η ¼ 4β − γ − 3) by measuring differences in
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the Shapiro time delay between photons emitted from radio
sources [10,11] or, more recently, between the first ever
detected gravitational wave signal measured at different
frequencies [12].
The simplest form of EP violation for the body i can be

parametrized as follows [8,13]

mG
i ¼ mI

ið1þ δi þ ηΩiÞ; ð1Þ

where mI
i (m

G
i ) is the inertial (gravitational) mass, δi ≠ 0 is

the WEP violation parameter, η ≠ 0 is the SEP violation
parameter, also known as the Nordtvedt parameter, and
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where Eg is the self-gravity potential energy. Therefore, Ωi

is the fraction of rest mass that contributes to self-gravity.
For instance, the Sun, Earth, and Moon have respectively
Ω0 ¼ −3.52 × 10−6, Ωe ¼ −4.64 × 10−10, and Ωm ¼
−1.88 × 10−11 [14]. A WEP violation prescribes that
bodies with the same mass but different internal compo-
sition might fall at different rates [modeled by the param-
eter δi in Eq. (1)], while a SEP violation may be induced by
differences in the bodies’ self-gravity [collectively modeled
by ηΩi in Eq. (1)].
With experiments on ground, the typical Ωi can be so

small (≲10−26) that only the WEP can effectively be tested.
The only means by which the SEP can be constrained is
evidently in space where the self-energies are much bigger.
The first measurement of the SEP’s η was proposed by
Nordtvedt [15]. This experiment requires measuring the
differential acceleration between the Earth and the Moon,
both free falling in the Sun’s gravity—the so-called
Nordtvedt effect. This differential acceleration is then

ðδaem=asÞ ¼ δe − δm þ ηðΩe −ΩmÞ≡ δem þ ηΔΩ; ð3Þ

where as is the mean acceleration of the Earth induces by
the Sun’s gravity. We may assume that the Earth and the
Moon have different values of δ and Ω. In principle, they
may be characterized by different chemical compositions
and different matter density distributions. Therefore, by
accurately monitoring the Earth-Moon relative motion is
possible to gain information about both the WEP and
the SEP. Over the last 45 years, the lunar laser ranging
(LLR) project has carried out a long sequence of mea-
surements referred to as normal points [16], with over
17,000 measurements in 2012 [17]. With increasing
precision on these measurements (from 20–30 cm in
the 1970s to currently ≈1 mm [7]), the final achieved
root mean square (RMS) uncertainty was σ½δaem=asÞ ≈
1.3 × 10−13 [14]. In order to subtract the WEP contribu-
tion, an experiment involving test masses with chemical
composition similar to that of Earth and Moon yielded

σ½δaWEP=asÞ ¼ 1.4 × 10−13 [4]. Combining these results,
the best measurement of the RMS error associated to η is
currently σ½η� ¼ 4.4 × 10−4 [4,14,18].
Alternative tests of the SEP were also proposed in the

past. These experiments require the ranging between the
Earth and another object orbiting around the Sun (not
necessarily a planet). The main advantage is twofold: a
longer baseline (≈1 AU vs ≈3 × 10−3 AU) and δa=as ∝
Ω0 instead of ΔΩ. This in turn implies a much bigger
ranging signal amplitude (about three orders of magnitudes
better than the Nordtvedt effect [6,19]) and an increased
precision on η, since Ω0 ≫ ΔΩ. One key mission is
BepiColombo (BC) that will provide radio tracking data
between the Mercury Planet Orbiter and the Earth [8,20].
The expected measurement precision on the SEP is
σ½δa=as� ≈ 10−11, which will be roughly 2 orders of
magnitude worse than WEP measurements achieved by
LLR and torsion balances experiments. However the
parameter η will be constrained with an accuracy of
10−5 − 10−6 [8], better than LLR. In fact, even if the time
span and the precision of the data will be worse, a biggerΩ0

and a stronger signal will certainly allow better measure-
ments of η. Testing of the SEP can also be investigated with
the Earth-Mars [21] or Earth-Phobos [6,18,22] ranging.
The Lagrangian points L4 and L5 were considered in a

number of configurations (e.g. Sun-planet or planet-satellite
[23–25]). However, surprisingly enough, to our knowledge
there has been no work done on the collinear Sun-Earth
Lagrangian points L1 and L2. This paper investigates the
feasibility of using a radio tracking campaign towards one or
more satellites in orbits aroundL1 andL2 to further constrain
the SEP’s η parameter [see Fig. (1)]. The advantages of such a
measurement will be discussed throughout the text. We
anticipate that ameasurement carried out for five yearswould
be enough to reach the LLR constraint. The analysis of
ranging data from current and future missions would also be
able to further improve the constraint.
The structure of this paper is as follows. After some

preliminaries (Sec. II A and Sec. II B), we calculate the
perturbation of the Earth’s heliocentric trajectory due to SEP
violation (Sec. II C), and then we work out the signature of
the SEPviolation on the relativeEarth-spacecraft distance for

�
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L1 L2

j�th
planet

�SC
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X

FIG. 1. Spacecraft ranging towards L1 or L2 as a means by
which to test the SEP (not in scale). We calculate the SEP
signature as a perturbation on the Earth’s orbit around the Sun
(r03) as well as on the spacecraft ranging (r3p). We also include
perturbations from other planets.

GIUSEPPE CONGEDO and FABRIZIO DE MARCHI PHYSICAL REVIEW D 93, 102003 (2016)

102003-2



a spacecraft placed aroundL1 orL2 (Sec. II D). In Sec. III we
do numerical simulations to forecast the figure-of-merit for
the proposed η-measurement towards L1 or L2 and compare
this with themost recent LLRmeasurement and the expected
performance of BC.

II. MEASURING η BY SPACECRAFT RANGING
TOWARDS THE NEARBY LAGRANGIAN POINTS

A. Straw man calculation

Let us make a preliminary estimation of the expected RMS
error of η for a spacecraft (SC) in orbit around the Sun-Earth
L1=L2 points. As masses and self-gravity energies of planets
and SCs are negligible with respect to the Sun, by all means
there is no difference between the dynamics of a SC and that
of a planet. Therefore, the SEP signature is always propor-
tional toΩ0, the self-energy of theSun.The range baseline, on
the contrary, is quite small compared to a planetary mission
where typical range distances are≈1 AUormore. TheL1=L2

points are at about 0.01 AU from the Earth (inward and
outward, respectively), therefore the amplitude of the signal
should be around the same order of the Nordtvedt effect,
which is ≈13 m over the Earth-Moon distance. In fact, as the
expected signal for a planetary mission is 102–103 m, with a
factor≈100 shorter baselinewe foresee a signal of≈1–10 m.
The expected precision on differential acceleration for a SEP
test around L1=L2 is therefore σ½δa=as� ≈ 100 × 10−11 ¼
10−9, which gives, by dividing by Ω0, the final result of
σ½η� ¼ 3.4 × 10−4—incidentally the same order of magni-
tude of LLR. We therefore deduce that a radio tracking
campaign towards a SC orbiting around L1 or L2, despite its
smaller baseline, could be a valid measurement setup for
testing the SEP, which is both alternative to LLR and
complementary to planetary missions.

B. Notation and reference frames

Before going through the actual calculation of the
expected SEP violation signal, it is worth reviewing the
notation, and defining the relevant reference frame.
Hereafter, the index j ¼ 1;…; 8 identifies the jth-planet
of the solar system, j ¼ 0 being the Sun, j ¼ 3 the Earth-
Moon system, and so on. We also assume that the Earth’s
position coincides with the Earth-Moon barycenter as the
motion of the Earth about it is a very small contribution to
our signal: this effect can be affectively neglected without
affecting our results (me ≈ 81mm). We denote Ω3 ¼ Ωe þ
Ωm and m3 ¼ me þmm.
We will work in the heliocentric reference frame, where

the unit vectors for the jth-body are: uj
r for the radial, u

j
t for

the along-track, and uj
z for the out-of-plane components.

We denote the position of the jth body in a certain
coordinate system with rj, and define rij ¼ rj − ri with
rij ¼ ∥rij∥. We assume circular and coplanar orbits for all
bodies. In addition, the orbital frequencies of the planets are
defined as follows (μj ¼ GmG

j )

nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0 þ μj
r30j

s
; ð4Þ

where r0j is the semimajor axis of the jth planet. We also
introduce the orbital phase as a function of time
ΦjðtÞ ¼ njtþ φj, where φj is the phase angle at t ¼ 0.
Finally, for each pair of planets i and j we define the
difference of their orbital frequencies, nji ¼ ni − nj, and
the difference of their orbital phase,ΦjiðtÞ ¼ ΦiðtÞ − ΦjðtÞ.

C. SEP signature on the dynamics of the
Earth around the Sun

Let us begin with calculating the induced SEP effect on
the dynamics of the Earth in orbit around the Sun. The
equation of motion of the Earth in the heliocentric frame,
including all planetary perturbations, is given by [8]

̈r03 ¼ −
μ⋆
r203

u3
r þ

X
j≠0;3

μj

�
r3j
r33j

−
r0j
r30j

�

þ η
X
j≠0;3

μj

�
Ω3

r3j
r33j

− Ω0

r0j
r30j

�
; ð5Þ

where μ⋆ ¼ μ0 þ μ3 þ ηðμ3Ω0 þ μ0Ω3Þ. In the above
equation of motion, the first sum, which is a planetary
tidal contribution, does not depend on η at first order.
However, as the planets’ trajectories and masses are
affected by measurement uncertainty, this term turns
out to be crucial for parameters estimation, and in
particular for this particular ranging measurement. In
this work we will neglect any planetary term as it is
second order, and also any planetary uncertainty propa-
gated onto our SEP forecast—we reserve to quantify this
in the future.
As Ω3 ≪ Ω0, we also neglect the term ∝ Ω3 in the

second sum. We seek a solution—the heliocentric position
of the Earth as a function of η and time—for the above
equation of motion in the form

r03 ¼ ðRþ ηδx3Þu3
r þ ηδy3u3

t þOðη2Þ; ð6Þ

where R ¼ 1 AU (we neglect the orbital eccentricity) and
δx3 and δy3 are evidently the radial and along-track
components of the orbital perturbation due to the SEP
violation. Linearizing Eq. (5) for small perturbations gives
the following system of Hill-Clohessy-Wiltshire [26] per-
turbed equations

δẍ3 − 2n3δ_y3 − 3n23δx3 ¼ −Ω0

X
j≠0;3

μj
r20j

cosΦj3; ð7aÞ

δÿ3 þ 2n3δ_x3 ¼ Ω0

X
j≠0;3

μj
r20j

sinΦj3: ð7bÞ
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Solutions of the above equations can be cast in the
following general form

δr3¼δr̂3þΩ0

X
j≠0;3

μj
r20j

½Rj3cosΦj3u3
rþT j3 sinΦj3u3

t �: ð8Þ

In other words, the solution is the sum of a homogeneous
solution, δr̂3 ¼ ðδx̂3; δŷ3Þ [27] plus an inhomogeneous
solution that is expressed as a series of sine/cosine
functions that depend on the gravitational interaction
with the other planets. Their amplitudes are Ω0μj=r20j×
fRj3;T j3g, where the coefficients

Rj3 ¼
1þ 2n3=nj3
n2j3 − n23

; ð9aÞ

T j3 ¼ −
1þ 2n3=nj3 þ 3n23=n

2
j3

n2j3 − n23
; ð9bÞ

depend only on the Earth’s orbital frequency and its
difference with the planets’ orbital frequencies.
Numerical values for all these amplitudes, Ω0μj=r20j×
fRj3;T j3g, which once multiplied by η give the observable
SEP signal in the Earth’s dynamics, are reported in Table I.

D. SEP signature on the spacecraft ranging

We now go through the calculation of the signal due to
SEP violation in the SC ranging. We place a spacecraft on a
Lissajous orbit around one of the two nearby Lagrangian

points of the Sun-Earth system and we calculate the
perturbation on the relative motion between Earth and
the SC.
The position, X, of a collinear Lagrangian point

(L1, L2, or L3) is given by the equilibrium between
the real gravitational forces of the Sun and Earth, and
the inertial forces (essentially, a centrifugal force). In the
Earth’s reference frame, this equilibrium is given by the
following equation

−
μ0

jR − Xj3 ðR − XÞ þ μ3

�
X
jXj3 −

1

R2

�
þ n23ðR − XÞ ¼ 0;

ð10Þ

which has three solutions: X1;2 ≈�0.01 AU that corre-
spond to L1 and L2, and X3 ≈ 2 AU that corresponds to L3.
We will consider only the case of L1 and L2 as these are the
spots where many missions fly to.
Consider a SC, hereafter identified with the index p, near

L1 (or L2). Its mass and self-gravity energy are negligible
with respect to those of the Sun and all planets. We are
interested in deriving the trajectory of the SC relative to
Earth and see how this is affected by a SEP violation
at first order. First, we write the SC’s equation of motion
relative to the Sun [see Eq. (5) where we substitute
ðΩ3; μ3; r03; r3jÞ → ð0; 0; r0p; rpjÞ], and then we subtract
it from the Earth’s equation of motion to finally derive the
relative motion, r3p, between the SC and Earth, which is
given by

̈r3p ¼ −μ0
�
r0p
r30p

−
r03
r303

�
− μ3

r3p
r33p

þ
X
j≠0;3

μj

�
rpj
r3pj

−
r3j
r33j

�
þ ηΩ3

X
j≠3

μj
rj3
r3j3

; ð11Þ

where r0p ¼ r03 þ r3p. It is worth noting that we are solving
the equation of motion for the observed SC ranging, r3p. In
turn, this will depend explicitly on η through the last sum in
the equation, but also implicitly through the relative distance
between Earth and Sun, r03, which is given by Eq. (6). It is
this implicit term that will dominate the forecast of the SEP
measurement, not the explicit one, which is proportional to
Ω3 ≪ Ω0. Much like before, the first sum represents the tidal
interaction with the other planets, which we neglect in this
case. We introduce the following constants

nz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0
ðR − XÞ3 þ

μ3
jXj3

r
; ð12aÞ

Q ¼ μ0
ðR − XÞ3 −

μ0
R3

: ð12bÞ

Analogously to what we have done before, we seek for a
solution as follows

TABLE I. Planetary contributions to the perturbation of a SC’s
orbit around L1, due to a SEP violation. We report the typical
period (col. 2), the radial and along-track signals for the
perturbation of the Sun-Earth distance [see Sec. II C] (cols 3
and 4), and the radial and along-track signals for the perturbation
of the Earth-SC ranging [see Sec. II D] (cols 5 and 6). Jupiter
contributes to much of the radial signal with ≈3.7 m. Note that
the actual observable is the series of the coefficients Ω0a

j
x cosΦj3

along the radial component, where the measurement error is small
enough to test the SEP. Along-track components have much
bigger measurement errors.

Planet Period Sun-Earth Earth-SC (L1)

Ω0μj=r20j× Ω0×

2π=jnj3j Rj3 T j3 ajx bjy
[d] [m] [m] [m] [m]

Mercury 115.9 −0.0239 0.0436 0.0002 −0.0004
Venus 582.9 −8.8829 −22.0822 0.0850 −0.2126
Mars 747.3 0.4649 −1.6115 −0.0047 0.0158
Jupiter 398.8 366.257 −777.6860 −3.6544 7.6681
Saturn 378.1 76.0374 −155.6470 −0.7582 1.5439
Uranus 369.7 7.9818 −16.0921 −0.0796 0.1601
Neptune 367.5 7.4410 −14.9426 −0.07419 0.1488
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r3p ¼ ð−X þ ηδxÞu3
r þ ηδyu3

t þOðη2Þ; ð13Þ

which yields, with a bit of mathematics [Eqs (8), (10), and
(11)], the equations for the radial and along-track SC
positions relative to Earth

δẍ − 2n3δ_y − ðn23 þ 2n2zÞδx ¼ 2Qδx3 þDr ð14aÞ

δÿþ 2n3δ_x − ðn23 − n2zÞδy ¼ −Qδy3 þDt; ð14bÞ

where the direct terms are given by

Dr ¼ Ω3

μ0
R2

þΩ3

X
j≠0;3

μj
R − r0j cosΦj3

r3j3
; ð15aÞ

Dt ¼ Ω3

X
j≠0;3

μj
r0j sinΦj3

r3j3
; ð15bÞ

which, as said earlier, are evidently small as Ω3 ≪ Ω0. It is
worth mentioning that, among all, the solar term is the
biggest one, but it leads to an unobservable radial “perma-
nent tide” with a DC amplitude of ≈8η. From Eq. (14), we
deduce that the motion of the SC relative to Earth consists of
a set of perturbed Lissajous orbits (see e.g. Ref. [28]), the
perturbation being indirectly generated by the displacement
δr3 of Eq. (8) in the Earth’s position due to the SEP
violation.
We now search for a solution of Eq. (14) in the form

δx ¼ δx0 þ δx̂þΩ0

X
j≠0;3

ajx cosΦj3; ð16aÞ

δy ¼ δy0 þ δŷþ Ω0

X
j≠0;3

bjy sinΦj3; ð16bÞ

where δx0 and δy0 are the homogenous solutions of Eq. (14),
which depend on the initial position r3pð0Þ, and velocity
_r3pð0Þ of the SCwith respect to Earth. Instead, δx̂ and δŷ are
the homogeneous solutions, δr̂3, for the perturbation of the
Earth’s orbit in Eq. (8). Analytical details about the solution
of Eq. (14) are reported in Appendix.
The numerical values for the coefficientsΩ0 × fajx; bjyg of

the inhomogeneous solution are reported in Table I and
represent the orbital perturbations due to the other planets.
Therefore, as a SEP violation affects directly the Earth
dynamics and this is included in the SC ranging, in turns
the SC-Earth relative distance is a physical observable for a
SEP violation, even though the SC itself is by all means
considered as a test mass (pointlike source with no self-
energy).
It is also worth mentioning that as L1 and L2 are placed

approximately at the same distance from Earth and
jXj ≪ r03, the factor Q in Eq. (14) can be approximated
as follows

Q ≈ 3
μ0
R4

X: ð17Þ

Therefore we get the interesting result that the SEP signature
on the range signals towards L1 andL2 are quasi-identical in
shape, but with opposite sign (since X changes sign between
L1 and L2). In Fig. 2 we show an example of a SEP
perturbation on the ranging towards L1 and L2.

III. EXPERIMENTAL FORECAST

In the previous section we set up our mathematical
framework, we are now ready to forecast the figure-of-
merit for a ranging experiment towards L1 or L2. The SEP
signature is contained in the perturbation of the Sun-Earth
distance, δx3, and in the perturbation of the Earth-SC
ranging, δx. We calculated these two quantities in the
previous section, specifically with Eqs (8) and (16). We
report all the planetary contributions to both δx3 and δx in
Table I. A plot of δx is shown in Fig. 2, where it is clear that
the effects of L1 and L2 have opposite signs. The largest
amplitude is due to Jupiter and corresponds to
Ω0a5x ≈ 3.7 m. By contrast, the Nordtvedt effect on the
lunar orbit gives ≈13 m [13] and its frequency is about 10
times larger than the frequencies that are typically involved
in our measurement setup.
We refer the reader to Appendix for the SC’s equation of

motion relative to Earth, and its general solutions.
According to the unstable dynamical behavior of the
collinear Lagrangian points, the complete homogeneous
solutions of Eq. (14) are divergent. In practice, this is
compensated by correcting the SC’s orbit from time to time
by pushing it back roughly along the radial position. Since
accurate modeling of feedback-controlled orbital dynamics
is far beyond the scope of this paper, we decided to avoid
drifts by imposing that all coefficients of real exponentials
should be zero [the constraint A1, A2 ≡ 0 in Eq. (A3)].

FIG. 2. Expected perturbation to the range signal towards a
spacecraft in orbit around L1 (solid line) and L2 (dashed line) due
to the SEP violation. The two signals have opposite sign.
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Consequently, there are two initial conditions that are
linearly dependent on the other two. In calculating the
expected perturbation to the SC ranging, we keep free the
following set of parameters: (i) the SEP’s η parameter,
(ii) the initial position and velocity of the Earth relative to
the Sun, r3ð0Þ, _r3ð0Þ, and (iii) the initial position of the SC
relative to Earth, r3pð0Þ. As each of the two relative
motions has two degrees of freedom, this makes 1þ 6
parameters in total, and we collect those parameters in the

following vector ~a ¼ fη; ~θg, where the η parameter is the

focus of our analysis and ~θ ¼ fr3ð0Þ; _r3ð0Þ; r3pð0Þg is
the set of all initial conditions that are evidently a nuisance
for our analysis. The model of the perturbation of the
ranging towards L1 can therefore be written as the
analytical function ρ≡ ηδxðt; ~aÞ.
We can now calculate the expected RMS error on η,

marginalized over the nuisance. We assume we have N
equally-spaced observations of the SC’s range distance,
over a total observation of T ¼ 5 yr, sampling interval
δt ¼ T=N ¼ 1 h, and range error σi (1 h integration time).
Therefore, the expected Fisher information matrix, the
so-called normal matrix, is by definition

Fjk ¼
XN−1

i¼0

1

σ2i

∂ρðti; ~aÞ
∂aj

∂ρðti; ~aÞ
∂ak þ σ−2½aj�δjk: ð18Þ

This has to be evaluated at some fiducial values ~a0—we
assume η0 ¼ 0 (SEP is valid), initial position and velocity
of the Earth at a given epoch [29], and some arbitrary initial
position for the SC. Whenever available, we apply
Gaussian priors independently on each of the initial
conditions, σ2½aj�, and include these in the Fisher matrix.
The marginalized error on η is therefore given by σ½η� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þ00

p
.

In order to make our forecast, we distinguish between
two possible scenarios. In the realistic scenario (A) we use
a nominal range error typical for two-way ranging in
the X-band, σi ¼ 0.1 m (1 h integration time) [30].

Additionally, we assume the following prior uncertainties
on the orbital initial conditions: (i) 2 m and 3 × 10−5 m=s
for the Earth’s heliocentric radial position and velocity,
from a great abundance of radio tracking data [31];
(ii) 145 m for the Earth’s heliocentric along-track position
as this is less well constrained [31]; (iii) no prior both on the
Earth’s heliocentric along-track velocity as this is very
weakly constrained by current data, and on the parameters
of the SC’s orbit relative to Earth. In the optimistic scenario
(B) we use the range error typical of the Ka band, σi ¼
0.04 m (1 h integration time), as well as a factor 10
improvement in the knowledge of the Earth’s initial
position and velocity, 0.2 m and 3 × 10−6 m=s, which is
likely to be achieved in the near future.
Our predicted figure-of-merit in both measurement

scenarios is reported in Table II, where we compare these
figures with the current best measurement from LLR and
the expected performance of BC. In the realistic scenario
and integrated for 5 years, we forecast σ½η� ¼ 6.4 × 10−4

for a single SC around L1 and 4.8 × 10−4 for a combined
measurement of two SCs around L1 and L2. This is just
above 4.4 × 10−4 achieved by LLR measurements over
more than 40 years. In the optimistic scenario, the forecast
yields 2.0 × 10−4 and 1.7 × 10−4 respectively for L1 and
L1 þ L2, again integrated over 5 years. It is also worth
mentioning that a time span of one year would already be
enough to get ≈3 × 10−4. The expected performance of BC
is of course at least an order of magnitude better [8,32,33],
but we do envisage here the difficulties related to such a
measurement as compared to a relatively simple measure-
ment towards the collinear Lagrangian point and a fairly
easy integration of the signal over time thanks to the many
SCs that could possibly fly around L1 and L2.
In doing this exercise, we identified two major sources of

performance degradation. The first one is the range error
that mostly depends on the frequency band of the SC
transponder used for the modulation and integration of the
Doppler signal. As Ka frequencies are typically 2–3 times
larger than in the X band and the range error scales

TABLE II. SEP testing performances for the ranging towards L1=L2, compared with LLR and BC. Our forecast figure-of-merit is the
uncertainty on the SEP’s parameter, η, for L1 alone, L2 alone, and L1 and L2 combined (this work); LLR (current best measured); BC
(expected upper limit). For the ranging towards L1=L2, we assume a realistic scenario (A) with current range error capabilities (0.1 m)
and current knowledge of the Earth’s initial radial position and velocity (2 m and 3 × 10−5 m=s), and an optimistic scenario (B) with
improved range capabilities (0.04 m) and a factor 10 improvement in the knowledge of the Earth’s initial radial position and velocity.
The ranging towards L1=L2 would allow us to reach the performances of LLR in both scenarios. We mention possibilities for further
improvement in the final discussion.

Experiment Range baseline [AU] Range error [m] Time span [y] σ½η�=10−4 Note Ref.

L1 0.01 0.1A, 0.04B 5 6.4A, 2.0B forecast this work
L2 0.01 0.1A, 0.04B 5 7.0A, 2.1B forecast this work
L1 þ L2 0.01 0.1A, 0.04B 5 4.8A, 1.7B forecast this work
LLR 2.6 × 10−3 0.2-0.001 46 4.4 current best measured [4,14,18]
BepiColombo 0.6-1.4 0.24 1 < 0.1 expected upper limit [32,33]
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inversely with frequency, we get a similar improvement
factor in the range error. It is worth noting that a number of
satellites are now adopting Ka for their tracking. The
second source of degradation is the knowledge of the
Earth’s ephemerides. These are determined through space-
craft tracking of the many missions in the solar system and
through observation of reference astrophysical sources (e.g.
quasars), therefore the Earth’s ephemerides are better and
better constrained over time. We realized that the Earth’s
position, compared to velocity, had the dominant effect on
the figure-of-merit—the effect of velocity was indeed
negligible.

IV. DISCUSSION

We investigated the feasibility of a radio tracking
campaign towards the two nearby Lagrangian points
(L1 or L2) to test the SEP. Our figure-of-merit is the
measurement uncertainty on the SEP parameter, η, that
serves as the predicted 1-σ upper limit on the SEP. We
assumed a nominal measurement of five years, with
cadence of one sample per hour, and nominal range error
of 0.10 m or 0.04 m depending on the range precision. In
our forecast analysis we included also the initial conditions
of the Earth’s orbit and the SC’s orbit, we applied some
prior knowledge of their values coming from independent
measurements (essentially the Earth’s radial position and
velocity), and marginalized over these. The expected
marginalized uncertainty on η, via ranging towards L1,
gives σ½η� ¼ 6.4ð2.0Þ × 10−4 (5 years integration time), in a
realistic (optimistic) scenario, but it improves to σ½η� ¼
4.8ð1.7Þ × 10−4 for a combined measurement towards L1

and L2. In the optimistic scenario, a single measurement of
one year would already be enough to reach ≈3 × 10−4. All
these figures are comparable with LLR, and just an order of
magnitude below the expected performance of the future
mission towards Mercury, BC. However, the limits of our
forecast boil down to the current knowledge of the Earth
radial position and the SC range error that determine our
realistic and optimistic scenarios. Moreover, in this work
we did not consider a possible degradation of our forecast
owing to uncertainties in planetary masses and ephemeri-
des. These errors might introduce spurious signals that
would correlate with the SEP signal we are looking for.
However, given the small baseline (0.01 AU) as compared
to distances between planets, these signals are expected to
be very small. A detailed calculation to include these effects
will be done in future work.
We point out that there are some key experimental

advantages of L1=L2 over other experiments. We list them
as follows. (i) From the dynamical point of view, the SC’s
orbit would appear from Earth quasistatic in both the radial
and along-track components. (ii) The SC is by all means a
test mass with no self-gravity, no figure effects are present
and the dynamical modeling is much easier. (iii) From the
point of view of radio tracking, the SC would be always

visible from Earth and the measurement range would again
be in more control, again helping a lot with the systematics.
(iv) As there is no potential limit to the experiment duration
T as long as the SC is kept in a stable orbital configuration
around the Lagrangian point, the SEP signal will integrate
as ∝ 1=

ffiffiffiffi
T

p
. (v) With a number of missions flying around

the Lagrangian points, information from different SCs,
even at different epochs, can be combined and the perfor-
mances will scale as the inverse square root of the number
of experiments involved. (vi) The radio tracking technology
keeps improving with time and it is very likely that the
range error will improve by at least an order of magnitude
in the future. (vii) Missions towards the Lagrangian points
are generally cheaper than interplanetary ones.
Finally, we do not advocate a dedicated experiment to

test the SEP, rather we do suggest using current data and
equipping future missions with radio transponders that are
accurate enough for the purpose of testing the SEP. One
critical aspect of such a measurement might be the ability to
compensate for the radiation pressure from the Sun that
would otherwise perturb the SC orbit and therefore degrade
the SEP measurement. Employing an on-board acceler-
ometer would definitely benefit the subtraction of this
unwanted noise source. At the time of writing this paper, a
mission that would match this requirement is LISA
Pathfinder [36], currently in science operations around
L1. As a concluding remark, the ranging towards L1=L2

would serve as a direct test of the SEP, potentially less
prone to systematic errors and independent from other
experiments, and at least comparable in terms of perfor-
mances achieved in a relatively short time span.
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APPENDIX: SOLUTION FOR THE SPACECRAFT
TRAJECTORY RELATIVE TO EARTH

We consider the system of equations

δẍ − 2n3δ_y − ðn23 þ 2n2zÞδx ¼ fr; ðA1Þ

δÿþ 2n3δ_x − ðn23 − n2zÞδy ¼ ft; ðA2Þ

which admit the following homogeneous solutions [28]

δx̂ ¼ A1eλt þ A2e−λt þ A3 cos nxytþ A4 sin nxyt; ðA3Þ

δŷ¼ qA1eλt−qA2e−λtþkA3 sinnxyt−kA4 cosnxyt; ðA4Þ
with

nxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n23 − n2z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9n4z − 8n23n

2
z

p
2

s
; ðA5Þ

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2n23 þ n2z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9n4z − 8n23n

2
z

p
2

s
; ðA6Þ

q ¼ λ2 − n23 − 2n2z
2λn3

; k ¼ −
n2xy þ n23 þ 2n2z

2nxyn3
: ðA7Þ

The coefficients A1;…; A4 depend, of course, on the initial
conditions. The exponential terms in Eq. (A3) imply that in
general orbits are not closed and therefore they become
unstable. Homogeneous solutions can be forced to be stable
with a particular choice of initial conditions that produce
A1 ¼ A2 ¼ 0 (Lissajous orbits).
We report, for the sake of completeness, the analytic

expression of the coefficients ajx and bjy of the inhomo-
geneous solution corresponding to the planetary
perturbations

ajx ¼ −2Q
μj
r20j

Rj3ðn2j3 − n2z þ n23Þ þ T j3n3nj3
ðn2j3 þ n23Þn2z þ ðn23 − n2j3Þ2 − 2n4z

; ðA8Þ

bjy ¼ Q
μj
r20j

4Rj3n3nj3 þ T j3ðn2j3 þ 2n2z þ n23Þ
ðn2j3 þ n23Þn2z þ ðn23 − n2j3Þ2 − 2n4z

: ðA9Þ
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