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In this article, we revisit the coherent gravitational wave search problem of compact binary coalescences
with multidetector network consisting of advanced interferometers like LIGO-Virgo. Based on the loss of
the optimal multidetector signal-to-noise ratio (SNR), we construct a hybrid statistic as a best of maximum-
likelihood-ratio (MLR) statistic tuned for face-on and face-off binaries. The statistical properties of the
hybrid statistic is studied. The performance of this hybrid statistic is compared with that of the coherent
MLR statistic for generic inclination angles. Owing to the single synthetic data stream, the hybrid statistic
gives few false alarms compared to the multidetector MLR statistic and small fractional loss in the optimum
SNR for a large range of binary inclinations. We demonstrate that, for a LIGO-Virgo network and binary
inclination ϵ < 70° and ϵ > 110°, the hybrid statistic captures more than 98% of the network optimum
matched filter SNR with a low false alarm rate. The Monte Carlo exercise with two distributions of
incoming inclination angles—namely, U½cos ϵ� and a more realistic distribution proposed by B. F. Schutz
[Classical Quantum Gravity 28, 125023 (2011)]—are performed with the hybrid statistic and give
approximately 5% and 7% higher detection probabilities, respectively, compared to the two stream
multidetector MLR statistic for a fixed false alarm probability of 10−5.
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I. INTRODUCTION

On September 14, 2015, the two Advanced LIGO
detectors (LIGO-Livingston and LIGO-Hanford) [1,2]
detected gravitational waves (GWs) for the first time from
a binary black hole merger event [3]. The Advanced Virgo
detector will be ready for observation of the cosmos very
soon [4,5]. The Japanese cryogenic detector KAGRA is
under construction [6,7], and a proposal for a detector in
India—namely, LIGO-India—is in place [8]. Compact
binary coalescences (CBCs) with neutron stars (NSs)
and black holes (BHs) are one of the most promising
GW sources for the Advanced LIGO–Virgo interferometric
GW detectors. The Advanced LIGO detectors have a
proposed distance reach of ∼445 Mpc for binary neutron
star (BNS) events and are expected to detect a few BNS
inspiral events per month [9]. Detection of CBCs would
reveal information about the BHs as well as the NS
equation of state. We expect many more surprises from
nature in the form of GW detections, which would lead to a
new, exciting field of GW astronomy in a few decades.
The detection of GWs in the interferometric data x is a

statistical hypothesis testing problem, where the null
hypothesis—x is purely the noise n—is tested against
an alternative hypothesis—x is the signal s plus the noise n.
The decision is based on construction of a detection
statistic—a real valued function of x—and is compared

with a predefined threshold. When this test statistic crosses
the threshold, the detection is declared. There are various
strategies adopted for setting this threshold. The common
strategy is to fix the false alarm rate (based on the available
prior knowledge of the interferometer noise) and obtain the
threshold value for the statistic.
The Neyman-Pearson lemma [10] says that the likelihood

ratio (LR)—the probability ratio of the data following the
alternative hypothesis and the null hypothesis—is the most
powerful test statistic in cases of simple hypotheses (that is,
the signal is known). However, for the GW detection
problems, e.g., the CBC search or the continuous wave
search (from a periodic source such as Pulsar), the signal
model is known, but the parameters are unknown. Here, the
alternative hypothesis is a composite hypothesis. There are
two approaches to composite hypothesis testing. The first
approach is the maximum-likelihood-ratio (MLR) approach,
where the LR is maximized over the signal parameters. In the
second approach—the Bayesian approach—which includes
the astrophysical priors of the signal parameters, the LR is
marginalized over the signal parameters with a prior dis-
tribution. For a high signal-to-noise ratio (SNR), the LR is
expected to peak at the actual signal values in the multidi-
mensional space of the signal parameters. Thus, most of the
contribution to the marginalized LR is from the maximum.
Therefore, the MLR statistic performs equally as well as the
marginalized statistic in the high SNR regime.
The coherent multidetector search of GWs combines the

incoming GW signal at different interferometers in a phase
coherent way, where the information of the arrival time is
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incorporated into the phase. The MLR based multidetector
approach for the CBC signals is developed in the GW
literature [11–13]. The nonspinning CBC signal is a
function of nine parameters: namely, masses, source
location, amplitude, binary inclination, polarization angle,
phase at the time of arrival, and time of arrival at the
reference detector. The MLR multidetector statistic
obtained by maximizing the multidetector LR over a subset
of four signal parameters (namely, amplitude, binary
inclination, polarization angle, and initial phase) was
shown to be the sum of a MLR statistic of two synthetic
data streams which captures the two GW polarizations in
Einsteinian general relativity. Henceforth, we will refer to
this statistic as a generic MLR statistic. In [14], the authors
investigate the performance of a multidetector MLR sta-
tistic devised for face-on/face-off binaries in the targeted
follow-up of a short gamma ray burst (SGRB) in the GW
window. In [15], the authors explore a Bayesian framework
to address the multidetector CBC detection problem. The
multidetector coherent approach for a continuous wave
search is developed in [16] and [17], and the authors further
compare the performance of the Bayesian vs MLR statistic
in a specific set of amplitude coordinates given in [18].
In this paper, we revisit the MLR based multidetector

CBC statistics. As mentioned above, the generic multi-
detector MLR statistic, L, for the CBC signal is the sum of
two single stream (synthetic data streams) MLR statistics
[Eq. (2.38) of [12] and Eq. (44) of [13]] in the dominant
polarization frame [19]. In this work, we carefully analyze
the statistical properties of the multidetector MLR statistic
for Gaussian noise. Furthermore, we obtain the MLR based
statistics specially targeted for the face-on/face-off binaries
which we denote as L0;π . This is a single data stream MLR
statistic—as opposed to the two stream L statistic—and
gives less false alarm rate as compared to that of L. A
careful study of SNRs of L0;π indicates that either L0 or Lπ

captures most of the multidetector optimum SNR for a wide
range of inclination angles, ϵ, and polarization angles, Ψ.
We have demonstrated that, for ϵ < 70° and ϵ > 110°,
either L0 or Lπ captures more than 98% of the network
optimum matched filter SNR. This is one of the main
results of the paper. We further constructed hybrid statistics,
Lmx ≡maxfL0;Lπg, and studied the statistical properties
of the same for Gaussian noise. Pertaining to the single
stream statistic capturing most of the optimum SNR, the
hybrid statistic shows fewer false alarms than the two
stream MLR statistic L. We perform extensive numerical
simulations to confirm the same. Furthermore, the false
alarm probability (FAP) and the detection probability (DP)
obtained from the simulations agree remarkably well with
the proposed analytical expressions.
In [14], the authors examined the L0;π statistic in the

context of a targeted follow-up of SGRBs in GW windows.
By comparing the inclination angle dependent polarization
contributions to the SNR (i.e., cos ϵ and 1þcos2ϵ

2
), authors

showed that face-on/face-off MLR statistics perform better
(fewer false alarms) than the generic multidetector MLR
statistic for the SGRB search. Since the focus was on the
follow-up of SGRBs in the GW window, the observational
constraints of the jet opening angle restricts the binary
inclination angle within 30° from 0° or 180°. Thus, the
study was restricted to the above mentioned range of binary
inclinations. On the other hand, in this paper, we address
generic inclination angles for the nonspinning CBC search.
The paper is organized as follows. In Sec. II, we review

the nonspinning CBC signal, the multidetector MLR
statistic L, and the statistical properties of L. In Sec. III,
we construct the targeted face-on/face-off statistic L0;π and
study their statistical properties. We study the signal SNR
in L0;π for arbitrary inclination and polarization angles. In
Sec. IV, we propose the hybrid statistic Lmx and study its
statistical properties. In Sec. V, we summarize the numeri-
cal simulations and discuss the results.

II. REVIEW OF GW CBC COHERENT
MULTIDETECTOR MLR STATISTIC

In this section,we summarize the earlierworks [11–13] on
the coherent multidetector MLR statistic for the detection of
nonspinning CBC signals using advanced interferometers.
For a network of I interferometric detectors, the incom-

ing GW signal from the nonspinning CBC source in the
mth detector is denoted as sm. The signal is represented in
the dominant polarization frame and in the frequency
domain [13],

~smðfÞ¼A ~h0ðfÞeiϕa

��
1þ cos2ϵ

2
cos2χþ icosϵsin2χ

�
Fþm

þ
�
1þ cos2ϵ

2
sin2χ− icosϵcos2χ

�
F×m

�
; ð1Þ

where the signal parameters are the overall amplitude A,
initial phase ϕa (signal phase at the time of arrival in the
fiducial reference detector typically coinciding with Earth’s
center), the binary inclination angle ϵ, and the polarization
angle Ψ ¼ χ − δ=4. The angle δ is a function of source
direction and distribution of detectors on Earth, which
uniquely defines the dominant polarization frame of the
network for a given source direction. The Fm ≡ Fþm þ
iF×m is the complex antenna pattern function of the mth
detector in the dominant polarization frame, which is a
function of the source location and the multidetector
configuration (the location of detectors on Earth’s globe).1
~h0ðfÞ≡ f−

7
6eiφðfÞ defines the frequency evolution of the

signal, with the restricted nonspinning 3.5 post-Newtonian
phase φðfÞ, which is a function of two component masses
of the binary and the time of arrival of the signal in the

1Throughout the paper, we express the signal as well as the
antenna pattern functions in the dominant polarization frame.
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reference detector. Please note: here we assume that we
know the source location (the targeted CBC search), and
hence the signal sm as defined in Eq. (1) is appropriately
compensated for by the delays in the arrival time.
For spatially distributed detectors, the noise in an

individual detector is independent. Thus, the network
matched filter SNR square, ρ2s , is the sum of the squares
of SNRs in the individual detectors and is given by2

ρ2s ¼
XI

m¼1

hsmjsmi: ð2Þ

A. Log-likelihood ratio

For interferometers with independent and additive
Gaussian noise (x ¼ sþ n), the network log-likelihood
ratio (LLR), Λ, is the sum of the LLRs of the individual
detectors [11,12],

2Λ ¼ 2
XI

m¼1

hxmjsmi − hsmjsmi; ð3Þ

where xm is the data stream from the mth detector. In [13],
it is shown that Eq. (3) is the sum of the LLRs of two
effective synthetic streams, zL and zR, of the network:

2Λ ¼ ½2ρLhzLjh0eiΦLi − ρ2L� þ ½2ρRhzRjh0eiΦRi − ρ2R�:
ð4Þ

For a given sky location, the overwhitened synthetic
steams, ~~zL;RðfÞ, are obtained by projecting overwhitened
network data on þ and × polarizations of the complex
network antenna pattern vector in the dominant polarization
frame as follows:

~~zLðfÞ≡
XI

m¼1

Fþm

∥F0þ∥
~~xmðfÞ; ~~zRðfÞ≡

XI

m¼1

F×m
∥F0

×∥
~~xmðfÞ:

ð5Þ

The quantities ∥F0þ;×∥2 ¼
P

I
m¼1 g

2
mF2þ;×m incorporate

the different noise PSDs in different detectors through
g2m ¼ hh0jh0i. gm depicts the difference in individual SNRs
of detectors caused by the difference in the noise PSD.
In this notation, the physical parameters ðA;ϕa; ϵ;ΨÞ

are mapped to a new set of parameters ðρL; ρR;ΦL;ΦRÞ

as shown in Appendix A. Similar to the physical
parameters, the new set of parameters appears to be
carrying the extrinsic nature, as expected. From Eqs. (1),
(2), and (A1), the multidetector matched filter SNR
square is distributed in the individual synthetic stream
SNRs, ρLs and ρRs, as follows:

ρ2s ¼ ρ2Ls þ ρ2Rs; ð6Þ

where the subscript s refers to the signal.

B. Maximization of LLR over extrinsic parameters

The multidetector MLR is obtained by maximizing LLR
over the new parameters ðρL; ρR;ΦL;ΦRÞ and is given in
Eq. (44) of [13] as

L≡ 2Λ̂ ¼ hzLjh0i2 þ hzLjhπ=2i2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρ̂2L

þ hzRjh0i2 þ hzRjhπ=2i2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ρ̂2R

: ð7Þ

L can be understood as the sum of power of the synthetic
streams ~zL and ~zR in two quadratures, h0;π=2. In the absence
of noise, L is equal to the multidetector matched filter SNR
square [11–13] and, furthermore,

ρ̂Ljn¼0 ¼ ρLs ρ̂Rjn¼0 ¼ ρRs: ð8Þ

C. False alarm and detecton probabilities

In this section, we summarize the statistical properties of
L. Let p0ðLÞ be the probability distribution of L in the
absence of a signal and p1ðLÞ be the distribution in the
presence of a signal. For a given threshold £, the FAP, Q0,
and the DP, Qd, are given by

Q0ð£Þ ¼
Z

∞

£
p0ðLÞdL; Qdð£Þ ¼

Z
∞

£
p1ðLÞdL: ð9Þ

In the absence of a signal and for uncorrelated Gaussian
noise in the detectors, the four scalar products hzL;Rjh0;π=2i
in L are standard normal variates ∼N ð0; 1Þ. Thus, with L
being a sum square of four standard normal variates, it
follows a χ2 distribution with 4 degrees of freedom [11],
i.e.,

p0ðLÞ ¼
L
4
exp½−L=2�: ð10Þ

The FAP becomes

Q0ð£Þ ¼
Z

∞

£
p0ðLÞdL ¼

�
1þ £

2

�
exp ½−£=2�: ð11Þ

2The scalar product of a and b is defined as

hajbi ¼ 4ℜ
Z

∞

0

~~aðfÞ ~b�ðfÞdf;

where ~~aðfÞ ¼ ~aðfÞ=SnðfÞ is the double-whitened version of the
frequency series ~aðfÞ. The SnðfÞ is the one sided noise power
spectral density (PSD) of a detector.

STUDY OF STATISTICAL PROPERTIES OF HYBRID … PHYSICAL REVIEW D 93, 102002 (2016)

102002-3



In the presence of a signal, L is equal to the sum of the
squares of four random variables following normal dis-
tribution with the unit variance and by individual means.
Using Eq. (8), the sum of the squares of the means is equal
to ρ2s . Thus, the distribution of L follows [see Eq. (7.7)
in [11]]:

p1ðLÞ ¼
1

2

L
ρs

exp

�
−
Lþ ρ2s

2

�
I1ðρs

ffiffiffiffi
L

p
Þ; ð12Þ

where I1 is the modified Bessel function of the first kind with
the order 1. In an asymptotic limit ρs

ffiffiffiffi
L

p
≫ 1, p1ð

ffiffiffiffi
L

p Þ can
be approximated by a Gaussian distribution [11],

p1ð
ffiffiffiffi
L

p
Þ ¼ 1

2π
exp

�
−
ð ffiffiffiffi

L
p

− ρsÞ2
2

�
: ð13Þ

The DP can be approximated as

Qdð£Þ ¼
Z

∞

£
p1ðLÞdL ≈

1

2
erfc

� ffiffiffi
£

p
− ρsffiffiffi
2

p
�
; ð14Þ

where erfc is the complementary error function.

III. MAXIMUM-LIKELIHOOD ANALYSIS
FOR FACE-ON/FACE-OFF SOURCES

In this section, we focus on the two special cases
of the binaries—namely, face-on (ϵ ¼ 0) and face-off
(ϵ ¼ 180°)—and obtain the MLR statistic.
From Eq. (1), the frequency domain signal for the face-

on/face-off binary is given by

~s0mðfÞ ¼ A ~h0ðfÞF�meiðϕaþ2χÞ; ð15aÞ

~sπmðfÞ ¼ A ~h0ðfÞFmeiðϕa−2χÞ: ð15bÞ

The superscript 0 and π correspond to the face-on and face-
off cases, respectively. Please note that the polarization
angle is absorbed in the initial phase. Hence, neither of the
parameters can be estimated individually, which gives
rise to a reduction in the parameter space by one. From
Eq. (A1), the new parameters become

ρL ¼ A∥F0þ∥; ρR ¼ ∥F0
×∥

∥F0þ∥
ρL; ð16aÞ

ΦL ¼ χ þ ϕa; ΦR ¼ ΦL ∓ π

2
: ð16bÞ

The only difference between the face-on and face-off cases
appears in terms of a sign in Eq. (16b). In the expression of
ΦR, the negative sign is for the face-on case and positive for
the face-off case, i.e., the ΦR for the face-off gets shifted by
180° compared to the ΦR in the face-off case. Please note
that, in Eq. (16), ρR andΦR are expressed in terms of ρL and

ΦL. Thus, in the face-on/face-off case, LLR statistic is a
function of two parameters instead of three. Physically, the
face-on/face-off case amounts to the circular polarization,
and hence different polarization angles carry no extra
information and cannot be distinguished from the initial
signal phase, ϕa.
If we substitute Eq. (16) into Eq. (4), the LLR reduces to

2Λ0;π ¼ 2ρhz0;πjh0eiΦLi − ρ2; ð17Þ

with the new parameter ρ≡ A∥F0∥ and

~~z0ðfÞ≡XI

m¼1

Fm
∥F0∥

~~xmðfÞ; ~~zπðfÞ≡XI

m¼1

F�m
∥F0∥

~~xmðfÞ:

ð18Þ

Maximization of Λ0;π over ρ and ΦL gives the MLR
statistic Λ̂0;π as

L0;π ¼ hz0;πjh0i2 þ hz0;πjhπ=2i2: ð19Þ

The statistic is a single data stream statistic of z0;π , which
is constructed in Eq. (18). L0;π can be understood as the
power of z0;π in the two quadratures, h0;π=2. We expect the
multidetector MLR statistic for the face-on/face-off case to
evolve into such a single stream statistic since the signal is
proportional to F� or F [see Eq. (15)]. We note that Eq. (19)
is the same as Eq. (22) of [14].
In the absence of noise, the statistics L0;π becomes equal

to the network matched filter SNR square, i.e.,

L0;πjn¼0 ¼ ρ2s : ð20Þ

A. False alarm and dismissal probabilities

In the absence of a signal, the scaler products hz0;πjh0i
and hz0;πjhπ=2i become standard normal variates. Thus, the
probability distribution of L0 as well as Lπ is χ2, with
2 degrees of freedom, i.e.,

p0ðL0;πÞ ¼ 1

2
exp ½−L0;π=2�: ð21Þ

The FAP with threshold £ becomes

Q0;π
0 ð£Þ≡

Z
∞

£
p0ðL0;πÞdL0;π ¼ exp½−£=2�: ð22Þ

In the presence of a signal, as in Sec. II C, L0;π is equal to
the sum of the squares of two Gaussian random variables
with unit variance and distinct means, such that the sum of
the squares is L0;πjn¼0 ¼ ρ2s . Then the distribution of L0;π is
given by Eq. (2.10) of [10] as

K. HARIS and ARCHANA PAI PHYSICAL REVIEW D 93, 102002 (2016)

102002-4



p1ðL0;πÞ ¼ 1

2
exp

�
−
L0;π þ ρ2s

2

�
I0ðρs

ffiffiffiffiffiffiffiffi
L0;π

p
Þ; ð23Þ

where I0 is the modified Bessel function of the first kind
with the order 0.
Similar to L, in the asymptotic limit ρs

ffiffiffiffiffiffiffiffi
L0;π

p
≫ 1, the

distribution of
ffiffiffiffiffiffiffiffi
L0;π

p
can be approximated by a normal

distribution with a mean equal to ρs and unit variance.
Thus, the DP for the threshold £ can be approximated by
the erfc function as

Q0;π
d ð£Þ ≈ 1

2
erfc

� ffiffiffi
£

p
− ρsffiffiffi
2

p
�
: ð24Þ

Here, we make an important observation that the DP of
L0;π in Eq. (24) is identical with the DP of L in Eq. (14) for
a fixed multidetector optimum SNR ρs.
We remind the reader that now we have three distinct

multidetector MLR statistics, namely, L for an unknown
inclination angle and L0;π targeting face-on/face-off
sources. We note that the main difference between them
is that L is a two data stream statistic, while L0;π is a single
stream statistic [see Eqs. (7) and (19)]. Thus, from the
statistical properties [see Eqs. (11) and (22)], for a fixed
threshold £ and a given signal SNR ρs, the false alarm rate
of L would be higher than that of L0;π.
In other words, to achieve the fixed FAP, the threshold

for L0;π needs to be lower than that of L. Therefore, more
signal events will cross the threshold when the statistic L0;π

is used, as compared to L. This makes L0;π a better statistic
compared to L in the face-on/face-off case. In Fig. 1, we
have plotted the FAPs and DPs ofL andL0;π with respect to
the threshold £ for ρs ¼ 4. For example, when we draw a
fixed FAP of the 10−3 line, the figure shows that the DP of
L0;π is 0.67, while that of L is 0.35, showing a clear
improvement in the DP for L0;π.

B. Performance of L0;π for an arbitrary
inclination angle

In this section, we investigate the performance of L0;π for
an incoming signal from a binary with an arbitrary
inclination. First, we study the fractional optimum SNRs
captured by L0;π.
We note in the previous section thatL0;πjn¼0 ¼ ρ2s for the

face-on/face-off case. However, if we use the same statistic
for an arbitrarily oriented binary, then the z0;π would
capture a fraction of the network matched filter SNR
and it would drop with an increase in ϵ. We denote this
fraction by ω0;π ≡ ffiffiffiffiffiffiffiffi

L0;π
p

=ρs.
In Appendix B, we derive the expression for ω0;π and

show that, for a wide range of ϵ’s, either ω0 or ωπ is close
to one. Specifically, for ϵ ≤ 70°, ω0 ≈ 1, and, for 110 ≤
ϵ ≤ 180°, ωπ ≈ 1. (Please see Appendix B for details.) This
is elaborated in Fig. 2. It shows the behavior of ω0 and ωπ

with respect to ϵ for a network LHV, with Ligo-Livingston
(L), Ligo-Hanford (H), and Virgo (V) as the constituent
detectors. The signal is from a (2 − 10M⊙) NS-BH binary
located at ðθ ¼ 140°;ϕ ¼ 1000Þ. We assume a fixed multi-
detector optimum SNR, ρs ¼ 6. The plots are drawn for
two different values of polarization angle, Ψ ¼ 0° and
Ψ ¼ 45°. We note that, for these values and for a fixed Ψ,
the fraction ω0;π captures most of the SNR for almost all
values of ϵ, except for a window of 40° centered at ϵ ¼ 90°
(edge on case). Please note that the width of this window
has a small variation with respect to Ψ, as shown in the
figure.
In Fig. 3, we further elaborate the same by drawing the

maps of ω0 and ωπ in the (ϵ − ψ) plane [see Figs. 3(a)
and 3(b)]. We draw contours of a constant ω0;π at values
ω0;π ¼ 0.98, 0.9, 0.8. It is clear that ∀ϵ ≤ 70° and, ∀Ψ,

FIG. 1. Variation of the FAPs and the DPs of L and L0;π with
respect to the threshold £ for ρs ¼ 4. For a fixed FAP of 10−3, the
DP of L0;π is 0.67, while that of L is 0.35.

FIG. 2. Variation of ω0 and ωπ with respect to the inclination
angle ϵ for two different values of Ψ in the network LHV. The
signal with the SNR ρs ¼ 6 is from the (2 − 10M⊙) NS-BH
system optimally located at (θ ¼ 140°, ϕ ¼ 100°). We assume
“zero-detuning, high power” Advanced LIGO PSDs for all
detectors [20].
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ω0 ≥ 0.98. Similarly, for 110° ≤ ϵ ≤ 180° and, ∀Ψ,
ωπ ≥ 0.98. A small region of parameters with 70° < ϵ <
110° shows a poor response to both z0 and zπ . The ω0 and
ωπ are minimum at the point (ϵ ¼ 90°, χ ¼ 45°). (Please
note that χ ¼ Ψ − δ=4, as defined in Sec. II.) We expect
that the synthetic streams tuned for the face-on/face-off
would give a poor response to the edge-on binary.
Furthermore, we note that ω0 and ωπ are complementary
in nature about that ϵ ¼ 900. In Fig. 3(c), we draw the map
of maxfω0;ωπg. This shows that, barring a small region
near the edge-on case, either z0 or zπ captures a large
fraction of ρs.
In the rest of the section, we comment on the statistical

properties of L0;π for an arbitrary inclination. The main
difference for an arbitrarily oriented binary from the face-
on/face-off case is that z0;π captures a fraction of ρs instead
of ρs. Thus, in the presence of a signal, the distribution of
L0;π for an arbitrary ϵ is the same as Eq. (23), with ρs
replaced by ω0;πρs:

p1ðL0;πÞ ¼ 1

2
exp

�
−
L0;π þ ðω0;πρsÞ2

2

�
I0
�
ω0;πρs

ffiffiffiffiffiffiffiffi
L0;π

p 	
:

ð25Þ

Furthermore, the DP remains the same as in Eq. (24),
where ρs is replaced by ω0;πρs:

Q0;π
d ð£Þ ≈ 1

2
erfc

� ffiffiffi
£

p
− ω0;πρsffiffiffi

2
p

�
: ð26Þ

Since FAP depends only on a noise model and the
construction of a statistic, the FAP of L0;π for an arbitrary
inclination is the same as in Eq. (22).

As we discussed earlier, L0 captures more than 98% of
ρs for ϵ ≤ 70°, while Lπ captures more than 98% of ρs for
ϵ ≥ 110°. Furthermore, Fig. 3 shows the complementary
behavior of the two statistics L0 and Lπ. In addition, both
L0 and Lπ are constructed out of a single synthetic stream,
as opposed to the L statistic (two streams). This motivates
us to construct a hybrid statistic out of L0 and Lπ , which
would capture most of the multidetector SNR for a large
range of binary inclinations for the CBC search.

IV. PROPOSAL OF HYBRID STATISTIC Lmx

In this section we propose a hybrid statistic as Lmx ≡
maxfL0;Lπg and study its statistical properties.
In the absence of a signal, both L0 and Lπ follow a χ2

distribution with 2 degrees of freedom [see Eq. (21)]. Let
PðL0;LπÞ be the joint probability distribution of L0 and
Lπ . The probability distribution of Lmx can then be written

p0ðLmxÞ ¼ 2

Z
Lmx

0

PðL0 ¼ Lmx;LπÞdLπ: ð27Þ

Please note that here L0 and Lπ have nonzero covari-
ance, i.e., they are not independent of each other.
In Eq. (B2), L0;π is expressed in terms of zL;R as

L0;π ¼
�
∥F0þ∥
∥F0∥

hzLjh0i �
∥F0

×∥
∥F0∥

hzRjhπ=2i
�

2

þ
�
∥F0þ∥
∥F0∥

hzLjhπ=2i ∓ ∥F0
×∥

∥F0∥
hzRjh0i

�
2

: ð28Þ

In the absence of a signal, each hzL;Rjh0;πi follows an
independent Gaussian distribution with zero mean and unit
variance. This ensures that the terms inside the two brackets
in Eq. (28) follow a Gaussian distribution with zero mean
and unit variance. This implies that

FIG. 3. (a) Map of ω0 in the ðε;ΨÞ plane for a network LHV. (b) Map of ωπ . (c) Map of maxfω0;ωπg. The signal is from the
(2 − 10M⊙) NS-BH system optimally located at (θ ¼ 140°, ϕ ¼ 100°). The multidetector matched filter SNR, ρs ¼ 6. We assume zero-
detuning, high power Advanced LIGO PSDs [20] for all detectors.
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L0 ≡ n21 þ n22; Lπ ≡ n33 þ n24; ð29Þ

with n1;2;3;4 as standard normal variates,

Covðn1; n3Þ ¼ Covðn2; n4Þ ¼
∥F0þ∥2 − ∥F0

×∥2

∥F0∥2
≡ c;

Covðn1; n2Þ ¼ Covðn3; n4Þ ¼ 0: ð30Þ

Then the joint distribution of
ffiffiffiffiffiffi
L0

p
and

ffiffiffiffiffiffi
Lπ

p
is a two-

dimensional generalized Rayleigh distribution and is given
by Eq. (2.1) of [21] as

Pð
ffiffiffiffiffiffi
L0

p
;

ffiffiffiffiffiffi
Lπ

p
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
L0Lπ

p

c
e
−L0þLπ

2ð1−c2ÞI0

�
c

1 − c2
ffiffiffiffiffiffiffiffiffiffiffi
L0Lπ

p �
:

ð31Þ

This implies that

PðL0;LπÞ ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffi
L0Lπ

p Pð
ffiffiffiffiffiffi
L0

p
;

ffiffiffiffiffiffiffiffi
Lcπ

p
Þ

¼ 1

4c
e
−L0þLπ

2ð1−c2ÞI0

�
c

1 − c2
ffiffiffiffiffiffiffiffiffiffiffi
L0Lπ

p �
: ð32Þ

The substitution of Eq. (32) into Eq. (27) gives the
distribution of Lmx in the absence of a signal as

p0ðLmxÞ ¼ 1

2c
e
− Lmx

2ð1−c2Þ

×
Z

Lmx

0

e
− Lπ

2ð1−c2ÞI0

�
c

1 − c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LmxLπ

p �
dLπ: ð33Þ

In the presence of a signal, for a high multidetector
matched filter SNR ρs, as discussed in Sec. III B, the
distribution of

ffiffiffiffiffiffiffiffi
L0;π

p
can be approximated by a Gaussian

distribution with a mean ω0;πρs and unit variance. However,
for a high ρs, Lmx ¼ L0 in the region 0° ≤ ϵ ≤ 70°, and
Lmx ¼ Lπ in the region 110° ≤ ϵ ≤ 180°. Thus, the dis-
tribution of Lmx in the presence of a signal can be
approximated as

p1ðLmxÞ ≈


p1ðL0Þ; 0 ≤ ϵ < 70°;
p1ðLπÞ; 110° < ϵ ≤ 180°:

The FAP and the DP of Lmx can be obtained by
numerically integrating p0ðLmxÞ and p1ðLmxÞ.
In the next section, we carry out numerical simulations to

study the statistical properties of L, L0;π and the hybrid
statistic Lmx. Furthermore, we study the performance of all
four statistics in terms of the receiver operator characteristic
(ROC) curve for various signal configurations.

V. SIMULATIONS AND DISCUSSION

In this section, we carry out numerical simulations for a
three detector network LHV. All of the detectors are
assumed to have Gaussian, random noise, with the noise
PSDs following a zero-detuning, high power Advanced
LIGO noise curve [20]. The GW signal from a nonspinning
NS-BH (2 − 10M⊙) binary system is injected with the
SNR ρs ¼ 6. We assume that the masses are fixed and
known for this comparison study. Of course, in a real
situation, the masses are unknown and then one needs to
place templates in mass space and perform the search. We
know that a template based search increases the false
alarms. However, this applies to the search based on both
the hybrid statistic Lmx and the MLR statistic L, and,
further owing to a single stream, we expect to get fewer
false alarms for the hybrid statistic compared to the MLR
statistic. As mentioned in Sec. I, based on simple arguments
on a gravitational wave follow-up of short gamma ray
bursts of IPN triggers, in [14] authors used a face-on/face-
off tuned MLR statistic (single stream) for nearly on-axis
GRBs. This was a targeted search with templates in mass
parameter space in LIGO-Virgo data. They did show a
similar improvement in the false alarm rates compared to
the generic MLR statistic that we got in the fixed mass
simulations of the hybrid described below.
The simulation results are as follows. First, we compare

the theoretical and numerically evaluated FAPs and DPs for
all four statistics, L, Lmx, L0, and Lπ , and then the
performance of the hybrid statistic is compared to the
generic MLR statistic, L. This performance is quantified by
drawing the ROC plots, i.e, the plot between the FAP and
the DP. In each of the plots, the L statistic is represented by
a cyan (solid) line, Lmx by a black (solid) line, L0 by a red
(dashed) line, and Lπ by a blue (dash-dotted) line.

A. Comparison of analytical and numerical
FAPs and DPs

In Sec. IV, we obtain the analytical expression for
distributions of Lmx in the presence and the absence of a
signal, i.e., p0ðLmxÞ and p1ðLmxÞ. Theoretical FAPs and
DPs for different thresholds are computed by integrating
p0;1ðLmxÞ. Here, we compare the theoretical FAPs and DPs
with those obtained by numerical simulations.
We generate the network data with 2 × 106 noise

realizations with a fixed signal from the NS-BH system
located at (θ ¼ 140°, ϕ ¼ 100°) (one of the best locations
for a LHV network based on the joint antenna power
response), with ϵ ¼ ψ ¼ 45°. For each noise realization, all
four L, Lmx, L0, and Lπ statistics are computed. For a given
threshold £, we count the number of times each of the
statistics crosses the threshold value when the data contains
only the noise (gives FAP) as well as when the data
contains a signal plus noise (gives DP).
Figure 4(a) represents the FAP vs £ for all four

statistics. The open circles denote FAPs computed through
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simulations, as detailed above, whereas the continuous
lines denote the theoretically obtained FAPs. We observe a
remarkable agreement of the analytical result with the
numerical simulation. The main result derived and under-
stood from Fig. 4(a) is the difference in the FAP values
corresponding to a given threshold for various statistics.
Owing to two data streams, L gives the maximum FAP
amongst all four. Since L0;π are constructed out of a single
synthetic stream, the FAPs of both are identical and are the
least amongst the four. Since the hybrid statistic is
constructed as L0;π , its FAP is slightly higher than that
of L0;π .
Figure 4(b) represents the DP vs £ for all four statistics.

The open circles denote the DPs from simulations, whereas
the continuous lines denote the theoretical DPs. Since the
DPs for all four statistics depend on the fractional optimal
SNRs captured by the individual statistic, the DP of L is
maximum as it captures ρs in the no noise case. For the
signal with ϵ ¼ 45°, Lmx is L0 most of the time; thus, the
DPs of Lmx and L0 overlap. The statistic Lπ captures a
small fraction of the ρs (see Fig. 3) and hence shows the
least DP. Once again, we see remarkable agreement
between the numerically computed DPs and the analyti-
cally integrated DPs for all of the statistics.

B. Performance of hybrid statistic
for a single injection

In this subsection, we study the performance of Lmx

against the rest of the statistics—most importantly, the
generic multidetector MLR statistic L.
We generate the network data with 2 × 106 noise

realizations and a fixed signal from a NS-BH system
optimally located at (θ ¼ 140°, ϕ ¼ 100°), with an arbi-
trary ψ ¼ 45° but varying binary inclination. We select six
binary inclination angles—namely, ϵ ¼ 0°; 45°; 70°; 90°;

135°, and 180°—and obtain the ROC curves numerically,
as shown in Figs. 5(a)–5(e), and 5(f), respectively. We
summarize the results below.
For the ϵ ¼ 0 or π case, Lmx (being optimized for the

face-on/face-off case) is expected to perform better than the
generic MLR statistic. Figures 5(a) and 5(e) show the same.
As discussed earlier, this improvement is primarily due to
the reduction in the FAP of Lmx. For a fixed FAP of 10−5,
the subsequent improvement in the DP is 6%, which
translates to an increase in the detection rate of 6%.
For the ϵ ¼ 45° or 135° case (symmetrically located from

the 0 and π cases, respectively), as seen in Figs. 5(b)
and 5(e), the improvement in the ROC of Lmx compared to
that of L is similar. This improvement is due to the drop in
the FAP of Lmx. As shown in Appendix B, at ϵ ¼ 45°, the
Lmx captures the entire optimum SNR. Thus, the improve-
ment in the DP remains close to 6%, similar to the face-on/
face-off case.
Following the above argument, as ϵ approaches the edge-

on case, the fractional SNR captured in Lmx reduces. Thus,
the ROC of Lmx starts approaching the ROC of L, as seen
in Fig. 5(c). Here, the improvement of Lmx is 2% over
the L.
For the ϵ ¼ 90° case, the fractional optimal SNR

captured by Lmx is very small as Lmx is optimized for
the face-on/face-off case. Thus, the MLR statistic performs
better than the Lmx at the edge-on case, as shown in
Fig. 3(d)

C. Performance of the hybrid statistic for injections
sampled from a distribution

In this simulation, we generate the network data with
2 × 106 noise realizations and signals from a NS-BH
system with masses (2 − 10M⊙) and multidetector SNR
ρs ¼ 6. We randomly draw the binary inclination angle ϵ,

FIG. 4. (a) Variation in FAP of different statistics with respect to the threshold £. (b) Variation in DP of different statistics with respect
to the threshold £ for a signal from a (2 − 10M⊙) nonspinning NS-BH binary system with ρs ¼ 6 optimally located at (θ ¼ 140°,
ϕ ¼ 100°), with an arbitrary ϵ ¼ 45° and Ψ ¼ 45°. The curves are generated from the theory and circles are from simulations.
We assume zero-detuning, high power Advanced LIGO PSDs [20] for all detectors.
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polarization angle Ψ, and source location ðθ;ϕÞ from a
given distribution. We perform this exercise for two distinct
distributions, Dist. 1 and Dist. 2 of inclination angle ϵ. In
both cases, cos θ, ϕ, and Ψ are sampled uniformly from the
intervals [−1; 1], [0°, 360°], and [0°, 90°], respectively.
Dist. 1 draws cosðϵÞ uniformly from [−1; 1] and is

denoted by a green (solid) line in Fig. 6(a). As seen
in the figure, the population of random samples drawn
from this distribution contains more edge-on sources than
face-on ones.

In Dist. 2, the ϵ follows the distribution proposed in
Eq. (28) of [22] [see the green (dashed) line in Fig. 6(a)],

PðϵÞ ¼ 0.076076ð1þ 6cos2ϵþ cos4ϵÞ3=2 sin ϵ: ð34Þ

Dist. 2 is a realistic distribution of ϵ, where the SNR
information is folded into the distribution, along with the
geometric prior. Since we know that the edge-on sources
have a lower SNR than face-on sources, we expect to see a
lesser number of edge-on systems than face-on ones. As a

FIG. 6. (a) Plot of two sampling distributions of ϵ. (b) ROC plots for four different statistics corresponding to a network LHV when the
injected signal’s inclination angle, ϵ drawn from Dist. 1. (c) ROC plots for injections with ε drawn from Dist. 2. In both cases, sky
location and polarization angle are sampled uniformly. The injections are with the SNR ρs ¼ 6 and are from the (2 − 10M⊙) NS-BH
system. We assume zero-detuning, high power Advanced LIGO PSDs [20] for all detectors.

FIG. 5. ROC plots of the four statistics corresponding to a network LHV for fixed injections with different values of ε; (a) ε ¼ 0∘, (b)
ε ¼ 45∘, (c) ε ¼ 70∘, (d) ε ¼ 90∘, (e) ε ¼ 135∘, and (f) ε ¼ 180∘. The signal with the SNR ρs ¼ 6 is from the (2 − 10M⊙) NS-BH
system optimally located at (θ ¼ 140°, ϕ ¼ 100°), with an arbitrary polarization angle ψ ¼ 45°. We assume zero-detuning, high power
Advanced LIGO PSDs [20] for all detectors.
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result, there would be a dip in the curve (the dashed line)
with respect to the Dist. 1 (the solid line).
Figures 6(b) and 6(c) summarize the results in terms of

the ROC curves using Dist. 1 and Dist. 2, respectively. The
ROC curve summarizes the performance of the MLR
statistic compared to the hybrid statistic averaged over
all of the source locations and the polarizations.
Figure 6(b) shows that, for Dist. 1, the average perfor-

mance of Lmx is better than that of L in spite of a greater
number of sources located around the edge-on source.
Quantitatively, DP improves by ∼5% for the FAP 10−5.
However, Fig. 6(c) shows a more realistic performance,

as we expect the inclination angle distribution to be more
realistic in this case. We note that, for Dist. 2, the hybrid
statistic performs much better than the MLR statistic L.
Quantitatively, for a FAP of 10−5, Lmx improves the DP by
7% over L.

D. Conclusion and future directions

In this article, we revisit the CBC GW search problem
with a multidetector network consisting of advanced inter-
ferometers like LIGO-Virgo in a coherent approach. We
show that the hybrid statistic constructed from two statistics;
namely, coherent MLR statistics tuned for face-on and face-
off binaries captures most of the multidetector optimum
SNR for a large fraction of the binary inclination angles,
except for a small window centered around the edge-on
case. The statistical properties of this hybrid statistic are
studied in detail. The performance of this hybrid statistic is
comparedwith that of the coherentMLR statistic for generic
inclination angles. Being constructed from the single
synthetic data stream, the hybrid statistic gives fewer false
alarms compared to the two stream generic multidetector
MLR statistic and a very small fractional loss in the
optimum SNR for a large range of binary inclinations.
We have demonstrated the performance by using the

noise model as Gaussian with zero-detuning, high power
Advanced LIGO PSDs [20] in a LHV network for the NS-
BH system of masses (2 − 10M⊙) for a fixed SNR of 6.
The ROC curves are used as a tool for this demonstration.
The simulations are performed for two cases.
Case 1.—The source is optimally located in the LHV

network and is oriented with various binary inclination
angles. The ROC curves show that the hybrid statistic
performs better than the generic MLR statistic for all
inclination angles less then 70° and greater than 110°.
The improvement in each of them corresponds to two
factors. First, the hybrid statistic captures most of the
optimum SNR for a large region of inclination and
polarization parameter space. Thus, we do not lose much
in the DP for a given multidetector matched filter SNR ρs.
Furthermore, by construction, the hybrid statistic is out of a
single stream. Thus, the FAP of the hybrid statistic is better
than that of the two stream generic MLR statistic (of course,
it is slightly worse than the pure single streams L0 and Lπ).

Case 2.—The source location as well as the orientation
and the polarization are sampled from a distribution. The
source location is sampled uniformly from the sky sphere.
The polarization angle follows a uniform distribution. The
inclination angles are drawn from two distributions,
namely, U½cosðϵÞ� and a more realistic distribution pro-
posed in [22]. The ROC curve shows that the performance
of the hybrid statistic gives an improvement of ∼5% and
∼7%, respectively, in DP compared to the generic multi-
detector MLR statistic for a fixed FAP of 10−5.
In [14], the authors applied a similar statistic for the

SGRB follow-up search for very small inclination angles.
However, this study and its performance in Gaussian noise
clearly shows that the hybrid statistic would give a better
performance for a wide range of inclination angles, barring
a small window around the edge-on case. Since we expect
that the source population would have a bias towards the
face-on/face-off cases due to the relative difference in
the SNRs, this statistic would play a crucial role in the
multidetector CBC search in the advanced era.
We plan to apply this to the S6 noise of the science run of

LIGO detectors and to test the performance of the statistic
for generic inclination angles. We also plan to extend the
study to a larger network, which includes LIGO-India
and KAGRA.
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APPENDIX A: RELATION BETWEEN fA;ϕa;ϵ;Ψg
AND fρL;ρR;ΦL;ΦRg

The new parameters fρL; ρR;ΦL;ΦRg are related to the
physical parameters fA;ϕa; ϵ;Ψg as

ρLeiΦL ¼ A∥F0þ∥eiϕa

�
1þ cos2ϵ

2
cos 2χ þ i cos ϵ sin 2χ

�
;

ρReiΦR ¼ A∥F0
×∥eiϕa

�
1þ cos2ϵ

2
sin 2χ − i cos ϵ cos 2χ

�
:

ðA1Þ

The absolute values and the phases of the above equations
are fρL; ρR;ΦL;ΦRg and are explicitly given in Eq. (B1)
of [13].

APPENDIX B: L0;π IN THE ABSENCE OF NOISE

In this section we derive the expression for the fraction of
the multidetector matched filter SNR captured by the
statistics L0 and Lπ .
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From Eqs. (5) and (18), z0;π can be reexpressed in terms
of zL;R as

~~z0;πðfÞ ¼ ∥F0þ∥
∥F0∥

~~zLðfÞ � i
∥F0

×∥
∥F0∥

~~zRðfÞ; ðB1Þ

where þ corresponds to z0 and − corresponds to zπ. By
substituting back into Eq. (19), L0;π can be expanded in
terms of the four terms hzL;Rjh0;πi:

L0;π ¼
�
∥F0þ∥
∥F0∥

hzLjh0i �
∥F0

×∥
∥F0∥

hzRjhπ=2i
�

2

þ
�
∥F0þ∥
∥F0∥

hzLjhπ=2i ∓ ∥F0
×∥

∥F0∥
hzRjh0i

�
2

: ðB2Þ

Using Eqs. (1) and (A1), the scalar products in the above
equation in the absence of noise can be written

hzLjh0ijn¼0 ¼ ℜ½ρLeiΦL �; hzLjhπ=2ijn¼0 ¼ −ℑ½ρLeiΦL �;
hzRjh0ijn¼0 ¼ ℜ½ρReiΦR �; hzRjhπ=2ijn¼0 ¼ −ℑ½ρReiΦR �:

ðB3Þ

Substituting in Eq. (B2) gives

L0;πjn¼0 ¼
���� ∥F

0þ∥
∥F0∥

ρLseiΦLs � i
∥F0

×∥
∥F0∥

ρRseiΦRs

����2: ðB4Þ

We further expand Eq. (B4) in terms of the physical
parameters to obtain the explicit dependence on ϵ for a
fixed SNR case:

L0;πjn¼0 ¼
A2

∥F0∥2

����∥F0þ∥2
�
1þ cos2ϵ

2
cos2χþ icosϵsin2χ

�

� i∥F0
×∥2

�
1þ cos2ϵ

2
sin2χ− icosϵcos2χ

�����2

¼ A2

∥F0∥2

�
T1

�
1þ cos2ϵ

2

�
2

þT2cos2ϵ

�T3

1þ cos2ϵ
2

cosϵ

�
; ðB5Þ

where the three terms T1, T2, and T3 are defined as

T1 ≡ ∥F0þ∥4cos22χ þ ∥F0
×∥4sin22χ;

T2 ≡ ∥F0þ∥4sin22χ þ ∥F0
×∥4cos22χ;

T3 ≡ 2∥F0þ∥2∥F0
×∥2: ðB6Þ

To obtain a fixed multidetector matched filter SNR ρs,
face-on binaries should be kept at a larger distance than the
edge-on binaries. This is because the face-on binaries carry
more polarization power than the edge-on ones. This is
reflected in the derived amplitude, A, in Eq. (B5) as

A2 ¼ ρ2s
R1ð1þcos2ϵ

2
Þ2 þ R2cos2ϵ

; ðB7Þ

with

R1 ¼ ∥F0þ∥2cos22χ þ ∥F0
×∥2sin22χ;

R2 ¼ ∥F0þ∥2sin22χ þ ∥F0
×∥2cos22χ: ðB8Þ

A substitution of Eq. (B7) into Eq. (B5) gives the fraction
ω0;π of ρs, captured by the L0;π statistic in the absence of
noise:

ðω0;πÞ2 ≡ L0;πjn¼0

ρ2s

¼ T1ð1þcos2ϵ
2

Þ2 þ T2cos2ϵ� T3
1þcos2ϵ

2
cos ϵ

∥F0∥2½R1ð1þcos2ϵ
2

Þ2 þ R2cos2ϵ�
: ðB9Þ

Please note that, for the face-on/face-off case, ω0;π ¼ 1.
However, as we see in Fig. 3, we expect the ω0 to drop as
the signal ϵ increases from 0 and, similarly, we expect ωπ to
drop as the signal ϵ drops from π.
In Eq. (B9), the inclination angle ϵ appears in terms of

cos ϵ and 1þcos2 ϵ
2

. If we expand cos ϵ about ϵ ¼ 0 up to
fourth order, then

cos ϵ ≈ 1 −
ϵ2

2
þ ϵ4

24
≡ Ce;

1þ cos2ϵ
2

≈ 1 −
ϵ2

2
þ 4ϵ4

24
: ðB10Þ

A substitution of Eq. (B10) into the expression for ω0 gives

ðω0Þ2 ¼
�
1þ T1 þ T3=2

4∥F0∥4Ce
ϵ4
���

1þ R1

4∥F0∥2Ce
ϵ4
�

≈
�
1þ T1 þ T3=2

4∥F0∥4Ce
ϵ4
��

1 −
R1

4∥F0∥2Ce
ϵ4
�

≈ 1þ ϵ4

Ce∥F0∥4
ðT1 þ T3=2 − ∥F0∥2R1Þ; ðB11Þ

Here, we make use of the identities T1 þ T2 þ T3 ¼ ∥F0∥4
and R1 þ R2 ¼ ∥F0∥2 from Eqs. (B6) and (B8). Again,
from Eqs. (B6) and (B8),

T1 þ T3=2 − ∥F0∥2R1 ¼ 0: ðB12Þ

This implies that

ω0 ¼ 1: ðB13Þ
The fourth order approximation of the cos ϵ given in

Eq. (B10) is valid for a wide range of ϵ’s. For ϵ ≤ 70°, the
error in this approximation is less than 1.5%. Thus, we can
safely assume that ω0 ≈ 1 for 0° ≤ ϵ ≤ 70°. For example,
Table I gives the minimum values of ωo over Ψ for various
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ϵ’s in a network LHV for a signal from the (2 − 10M⊙)
NS-BH system located at (θ ¼ 140°, ϕ ¼ 100°).
Similarly, by expanding cos ϵ about π, it can be easily

shown that for 110° ≤ ϵ ≤ 180°, ωπ ≈ 1. Figures 2 and 3
justify the above claim.

For edge-on binaries at χ ¼ 45° (please note that
χ ¼ Ψ − δ=4, as defined in Sec. II), from Eq. (B9) the
SNR fraction captured by L0;π becomes

ω0;π ¼ ∥F0
×∥

∥F0∥
: ðB14Þ

In other words, at this point ρL vanishes and the entire
network SNR is accumulated in the SNR, ρR of the
subdominant stream zR. Since, by construction of the
dominant polarization frame, ∥F0

×∥ is less than ∥Fþ0∥,
this results in a minimum ω0;π.
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