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Three-dimensional Einstein gravity with a negative cosmological constant admits stationary black holes
that are not necessarily spherically symmetric. We propose boundary conditions for the near-horizon region
of these black holes that lead to a surprisingly simple near-horizon symmetry algebra consisting of two
affine ûð1Þ current algebras. The symmetry algebra is essentially equivalent to the Heisenberg algebra. The
associated charges give a specific example of “soft hair” on the horizon, as defined by Hawking, Perry and
Strominger. We show that soft hair does not contribute to the Bekenstein-Hawking entropy of Bañados-
Teitelboim-Zanelli black holes and “black flower” generalizations. From the near-horizon perspective the
conformal generators at asymptotic infinity appear as composite operators, which we interpret in the spirit
of black hole complementarity. Another remarkable feature of our boundary conditions is that they are
singled out by requiring that the whole spectrum is compatible with regularity at the horizon, regardless of
the value of the global charges like mass or angular momentum. Finally, we address black hole microstates
and generalizations to cosmological horizons.
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I. INTRODUCTION

The Bekenstein-Hawking (BH) entropy formula for
horizons of area A (GN is Newton’s constant),

SBH ¼ A
4GN

; ð1Þ

has been a source of inspiration for approaches to quantum
gravity and has led to derivations of the entropy (1) from
microstate counting [1–5]. Many of these approaches
exploit either the simplicity of (near-)extremal black holes
or the power of conformal symmetries, or both. In generic
situations, however, the horizon is nonextremal, not always
due to a black hole, and the near-horizon symmetries are
not necessarily conformal.
In particular, in flat space both the asymptotic sym-

metries [6–9] and [at least in three dimensions (3d)] the
near-horizon symmetries [10,11] are related to the Bondi-
van der Burg-Metzner-Sachs (BMS) algebra [6,7]. The
importance of near-horizon BMS symmetries as a means to
understand black holes was recently highlighted in [12].
For related works see [13–20].

In this article we explore the spacetime geometry around
nonextremal horizons, which is universally approximated
by the product of two-dimensional Rindler space [21] with
a compact Euclidean manifold. For simplicity we work in
3d. In a corotating frame, the near-horizon metric in
(ingoing) Eddington-Finkelstein coordinates is given by

ds2 ¼ −2ardv2 þ 2dvdrþ γ2dφ2 þ � � � ð2Þ

where the constant a is the Rindler acceleration. The
vanishing of the radial coordinate, r ¼ 0, corresponds to
the location of the horizon, v is the advanced time, and we
assume periodicity of the angular coordinate φ ∼ φþ 2π so
that the horizon is compact and has a total area given by
A ¼ H

dφγ. With no loss of generality we assume that a
and γ are positive, and the ellipsis refers to higher order
terms in the radial coordinate r or to rotation terms (we will
be more explicit below).
One of our main goals is to explore the near-horizon

behavior of the gravitational field. We propose a new set of
boundary conditions consistent with (2), which leads to a
very simple near-horizon symmetry algebra, the
Heisenberg algebra. The associated charges provide a
particular manifestation of “soft hair” in the sense of
[12]. We show that the BH entropy is solely determined
by the zero-mode charges and does not receive a contri-
bution from the soft hair. We then establish how the near-
horizon symmetries are linked to the ones at infinity [9,22]
and interpret our results in the spirit of black hole
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complementarity [23–25]. We conclude with a discussion
of black hole microstates and generalizations to cosmo-
logical horizons.
While some of the technical tools available to us are

specific to 3d, we believe that the general lessons drawn
from our derivations are dimension independent and thus
shed new light on near-horizon symmetries, soft hair,
microstate counting and black hole complementarity.

II. SOFT HAIRY BLACK HOLES

The behavior of the gravitational field in 3d general
relativity with a negative cosmological constant Λ ¼ −l−2

around a nonextremal horizon can be described by a near-
horizon metric in ingoing Eddington-Finkelstein coordi-
nates [lρ ¼ r and f ≔ 1þ ρ=ð2alÞ],

ds2 ¼ −2alρfdv2 þ 2ldvdρ − 2ωa−1dφdρ

þ 4ωρfdvdφþ
�
γ2 þ 2ρ

al
fðγ2 − ω2Þ

�
dφ2; ð3Þ

where ω and γ are arbitrary functions of φ. The metric
deviates to leading order from (2) in the gρφ component, but
this can always be gauged away. It turns out, however, to be
convenient to keep it as it is.
The line element (3) is an exact solution of Einstein’s

equations in 3d since it has constant curvature. The
geometry possesses an event horizon located at ρ ¼ 0.
Since it is not spherically symmetric, the solution generi-
cally describes a “black flower” [26]. In the case of constant
ω and γ the solution (3) reduces to the Bañados-Teitelboim-
Zanelli (BTZ) black hole [27,28]. The metric (3) does not
obey Brown-Henneaux boundary conditions [22], which
motivates us to propose boundary conditions that accom-
modate these solutions. This task becomes remarkably
simple in the Chern-Simons formulation.

III. EINSTEIN GRAVITY AS A
CHERN-SIMONS THEORY

While the metric formulation is closer to our physical
and geometric intuition, the reformulation of 3d Einstein
gravity as Chern-Simons theory is more powerful at a
technical level, which is why we use it. The bulk action
reads [29,30]

ICS ¼
k
4π

Z �
A∧dAþ 2

3
A∧A∧A

�
: ð4Þ

The coupling constant is given by k ¼ l=ð4GNÞ, and the
connection A decomposes into two slð2;RÞ connections
A� with generators ½Ln; Lm� ¼ ðn −mÞLnþm (n, m ¼ 0,
�1) such that the bilinear form h; i is essentially the
standard one for each slð2;RÞ, hL1; L−1i ¼ −1,

hL�1; L0i ¼ 0, hL0; L0i ¼ 1
2
, with additional minus signs

for A−.
The metric is determined from the connections A� as

gμν ¼
l2

2
hðAþ

μ − A−
μ ÞðAþ

ν − A−
ν Þi: ð5Þ

First, we list the length dimensions that we are using. The
quantities v, γ, ω, l,GN have length dimension one, ρ, φ, k,
A�, Ln are dimensionless, and Rindler acceleration a has
length dimension minus one.

IV. NEW BOUNDARY CONDITIONS

Based on the near-horizon behavior of the metric, one is
naturally led to propose a new set of boundary conditions,
which in terms of the gauge fields reads

A� ¼ b−1� ðdþ a�Þb� ð6Þ

where b� ¼ exp ð� 1
lζ� L1Þ · exp ð� ρ

2
L−1Þ. The auxiliary

connection is given by

a� ¼ L0ð�J �dφþ ζ�dvÞ ð7Þ

with lJ � ≔ γ � ω. The state-dependent functions J � and
the (arbitrary but fixed) chemical potentials ζ� (see e.g.
[31,32]) depend on φ and v in general.
The field equations F ¼ dAþA∧A ¼ 0 hold exactly

and yield ∂vJ � ¼ �ζ�0, where the prime denotes differ-
entiation with respect to φ.
For simplicity, we assume constant chemical potentials.

Then the dynamical fields J � become independent of the
advanced time v, and in the particular case of ζ� ¼ −a,
from (5) one recovers the spacetime metric (3).

V. CANONICAL GENERATORS

Our next step is to determine the canonical generators
Q½ϵþ; ϵ−� ¼ Qþ½ϵþ� −Q−½ϵ−� for arbitrary transformations
ϵ� ¼ ϵ�i Li that preserve the boundary conditions (6)
and (7). In the Regge-Teitelboim approach [33,34] their
variation is

δQ�½ϵ�� ¼∓ k
4π

I
dφη�δJ � ð8Þ

with η� ¼ ϵ�0 . The most general transformations δϵ�a
� ¼

dϵ� þ ½a�; ϵ�� ¼ Oðδa�Þ that preserve the boundary
conditions (7) imply δJ � ¼ �η�0, with ∂vη

� ¼ 0. The
additional components ϵ��1 generate trivial gauge trans-
formations since they neither appear in the transformation
laws of the dynamical fields nor in the variation of the
global charges [35].
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The global charges are obtained from functionally
integrating (8), and they turn out to be finite, integrable
and conserved in (advanced) time,

Q�½η�� ¼∓ k
4π

I
dφη�ðφÞJ �ðφÞ: ð9Þ

We highlight that the surface integrals in (9) do not depend
on the radial coordinate ρ, which implies that the boundary
analysis actually holds for any fixed value ρ ¼ ρ0, regard-
less of whether ρ0 is close to the horizon or infinity. As
explained below, this is the key in order to establish the
relationship between near-horizon symmetries and the ones
at infinity.

VI. NEAR-HORIZON SYMMETRY ALGEBRA

The algebra of the global charges captures all boundary-
condition-preserving transformations modulo trivial
gauge transformations. It is determined by the relation
δη2Q½η1� ¼ fQ½η1�; Q½η2�g, where f; g denotes Dirac brack-
ets. Expanding in Fourier modes, J�n ¼ k

4π

H
dφeinφJ �ðφÞ

leads to a remarkably simple symmetry algebra

½J�n ; J�m� ¼ � 1

2
knδnþm;0; ½Jþn ; J−m� ¼ 0; ð10Þ

where we made the usual replacement of Dirac brackets by
commutators, if; g → ½; �. The algebra (10) consists of two
ûð1Þ current algebras with levels �k=2.
Changing the basis according to P0 ¼ Jþ0 þ J−0 , Pn ¼

i
kn ðJþ−n þ J−−nÞ if n ≠ 0, Xn ¼ Jþn − J−n , it becomes appar-
ent that the algebra (10) is equivalent to the canonical
commutation relations for Casimir-Darboux coordinates
(we set ℏ ¼ 1)

½Xn; Xm� ¼ ½Pn; Pm� ¼ ½X0; Pn� ¼ ½P0; Xn� ¼ 0; ð11Þ

½Xn; Pm� ¼ iδn;m if n ≠ 0; ð12Þ

where X0 and P0 are the two Casimirs and all other Xn, Pn
form canonical pairs. Equation (12) is the Heisenberg
algebra. Thus, we have obtained a surprisingly simple
kinematical Hilbert space.
The near-horizon symmetry algebra (10) [or equivalently

(11) and (12)] is a key result of our work.

VII. SOFT HAIR

The dynamics is governed by the Hamiltonian, whose
corresponding surface integral is defined by H ≔ Q½ϵ�j∂v �,
with ϵ�j∂v ¼ a�v ¼ L0ζ

� [30]. For the particular choice
ζ� ¼ −a the Hamiltonian is given by H ¼ aP0, which
commutes with all canonical coordinates Xn, Pn, so that we
have trivial dynamics.

We now consider all vacuum descendants jψðqÞi
(labeled by a set q of arbitrary non-negative integer
quantum numbers N�, n�i and m�

i ),

jψðqÞi ¼ NðqÞ
YNþ

i¼1

ðJþ−nþi Þ
mþ

i

YN−

i¼1

ðJ−−n−i Þm
−
i j0i ð13Þ

with a normalization constant NðqÞ such that
hψðqÞjψðqÞi ¼ 1. Since H commutes with all generators
J�n , we obtain the energy of the vacuum, Hj0i ¼ Evacj0i,
for all descendants jψðqÞi.

Eψ ¼ hψðqÞjHjψðqÞi ¼ EvachψðqÞjψðqÞi ¼ Evac: ð14Þ

This implies that all descendants of the vacuum have the
same energy as the vacuum; i.e., they are “soft hair” in the
precise sense of being zero-energy excitations [12]. In
the derivation above we can replace the vacuum state j0i by
any other state with the same conclusions.

VIII. SOFT HAIRY BLACK HOLE ENTROPY

Choosing constant chemical potentials ζ�, the general
solution of the field equations with our boundary con-
ditions (6) and (7) describes a stationary nonspherically
symmetric black hole that carries all of the possible left and
right ûð1Þ charges. The simplest case is the spherically
symmetric one that corresponds to the BTZ black hole,
which only carries zero-mode charges, J�0 ¼ 1

2l ðrþ � r−Þ,
where r� are the values of the surface radius at the outer or
inner horizon [27,28]. Generic soft hairy black hole
solutions can be obtained from the BTZ black hole by
applying a generic “soft boost,” i.e., acting on it with the
full asymptotic symmetry group. Since soft boost gener-
ators commute with the Hamiltonian, they do not change
the energy [36].
Soft hair charges do not contribute to the BH entropy,

which can be readily computed from the Chern-Simons
approach as in [37–40]. In fact, the entropy of a generic soft
hairy black hole is found to be given by

S ¼ 2πðJþ0 þ J−0 Þ ¼
A

4GN
: ð15Þ

This result naturally motivates one to perform a microstate
counting in the spirit of [1,3].

IX. LINKING NEAR-HORIZON AND
ASYMPTOTIC SYMMETRIES

So far we have taken the perspective of a near-horizon
observer. Here we translate our findings into the language
of an asymptotic observer. Since the global charges (9) and
their algebra (10) do not depend on the radial coordinate,
the same structure arises at infinity. We clarify below how
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our analysis manifests itself in terms of the standard
variables in the asymptotic region.
Our near-horizon boundary conditions (6) and (7) are

written such that the auxiliary connections a� are in
diagonal gauge, while the standard asymptotic analysis
uses the so-called highest weight gauge. Therefore, we
transform the gauge fields in (6) and (7) to gauge fields Â in
the highest weight gauge [41].
For a generic choice of an unspecified chemical potential

μ, the asymptotic form of the connection in the highest
weight gauge is given by [32,40]

Â ¼ b̂−1ðdþ âÞb̂; âφ ¼ L1 −
1

2
LL−1;

b̂ ¼ eρL0 ; ât ¼ μL1 − μ0L0 þ
�
1

2
μ00 −

1

2
Lμ

�
L−1;

ð16Þ
where L and μ are arbitrary functions of t, φ.
The problem reduces to finding a gauge transformation

generated by a group element g, such that â ¼ g−1ðdþ aÞg,
followed by renaming the advanced time coordinate as
v ¼ t. We find g ¼ exp ðxL1Þ · exp ð− 1

2
JL−1Þ, where

x ¼ xðv;φÞ fulfills ∂vx − ζx ¼ μ and x0 − J x ¼ 1, whose
on-shell consistency implies

μ0 − J μ ¼ −ζ: ð17Þ
Therefore, the asymptotic chemical potential μ depends not
only on the near-horizon chemical potential ζ but also on
the near-horizon charge J . The connections a and â are
mapped to each other provided that

L ¼ 1

2
J 2 þ J 0: ð18Þ

We now rephrase the gravity result (18) algebraically.
If η stands for the parameter generating an arbitrary ûð1Þ

transformation, δJ ¼ η0, then Eq. (17) implies that the
corresponding parameter ε in the highest weight gauge
depends on the global charges and fulfills ε0 − J ε ¼ −η.
Hence, according to (18), the transformation law of L reads
δL ¼ 2Lε0 þ L0ε − ε000. Expanding in Fourier modes,
Eq. (18) yields

kLn ¼
X
p∈Z

Jn−pJp þ iknJn: ð19Þ

This is a standard (twisted) Sugawara construction [42].
The generators Ln fulfill the Virasoro algebra with the
Brown-Henneaux central extension [22]

½Ln; Lm� ¼ ðn −mÞLnþm þ 1

2
kn3δnþm;0: ð20Þ

What we have shown above is that the asymptotic
symmetry algebra discovered in [22] is composite from

the near-horizon perspective, which can be interpreted as an
algebraic manifestation of black hole complementarity
[23–25], in the sense that the same physics is most naturally
described in very different terms for an asymptotic and a
near-horizon observer.
Even though the spin-2 currents fulfill the Virasoro

algebra (20), the corresponding global charges actually
span the ûð1Þ current algebra, which we now show
explicitly. From the point of view of an observer at infinity,
by virtue of Eqs. (17) and (18), the variation of the global
charges reads

δQ ¼ −
k
4π

I
dφεδL ¼ −

k
4π

I
dφηδJ : ð21Þ

The global charges satisfy the near-horizon symmetry
algebra (10). Thus, in spite of the fact that the asymptotic
conditions are written in the highest weight gauge, the
global charges do not fulfill the Virasoro algebra with the
Brown-Henneaux central extension because the chemical
potential μ fulfills Eq. (17) for our boundary conditions,
instead of being fixed at infinity without variation. In other
words, in our case μ explicitly depends on the global
charges, while what remains fixed at infinity is our
chemical potential ζ.
One remarkable feature of our boundary conditions

is that they are singled out by requiring that the whole
spectrum is compatible with regularity of the fields,
regardless of the value of the global charges. Indeed, if
the chemical potential ζ is assumed to be constant, and the
topology of the Euclidean manifold is that of a solid torus,
where the contractible cycle corresponds to Euclidean time,
regularity of the gauge field means that its holonomy
around that cycle has to be trivial, implying

μμ00 −
1

2
μ02 − μ2L ¼ −2π2=β2; ð22Þ

where β is the length of the thermal cycle. The regularity
condition (22) is solved automatically by virtue of the
equations that define our boundary conditions, (17)
and (18), provided that ζ2 ¼ 4π2=β2. This last condition
is easily obtained from solving the regularity condition
directly in the diagonal gauge (7), and for ζ2 ¼ a2 it
amounts to the Unruh temperature T ¼ 1=β ¼ a=ð2πÞ [43].
Remarkably, no global charges are involved in this
relationship.

X. CONCLUDING REMARKS

One can use our near-horizon algebra (10) to provide a
microstate counting of the entropy (15) [44]. Entropy can
alternatively be calculated from composite algebras like the
Virasoro algebra that we obtained in the last section.
Indeed, in terms of the Virasoro zero modes L�

0 , using
(19) entropy (15) can be written in Cardy form [45,46] as
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S ¼ 2π
ffiffiffiffiffiffiffiffiffi
kLþ

0

p þ 2π
ffiffiffiffiffiffiffiffi
kL−

0

p
. Another way to perform a

microstate counting through a composite algebra based
on our near-horizon algebra (10) is to use the warped
conformal algebra found in [10] [their Eq. (9)], which
consists of a Virasoro and a ûð1Þ current algebra.
Introducing generators Jn and Kn as J�n ¼ 1

2
ðJn � KnÞ,

the two algebras are related nonlinearly through Yn ∼P
p∈ZJn−pKp and Tn ¼ Jn. Using known results pertain-

ing to two-dimensional field theories invariant under a
single Virasoro and a ûð1Þ current algebra, called warped
conformal field theories [47], the cylinder partition function
written as Zðβ; θÞ ¼ Tre−βHþiθJ, with H ¼ Q∂v and
J ¼ Q∂φ , enjoys the modular property Zðβ; θÞ ¼ Zð2πβ=θ;
−4π2=θÞ, which allows us to project the partition function
on the ground state at small imaginary θ [47], yielding an
entropy S ¼ 2πβHvac=θ þ i8π2Jvac=θ. Assuming the vac-
uum state has no angular momentum, Jvac ¼ 0, and using
H ¼ −∂ lnZ=∂β ¼ 2πHvac=θ establishes

S ¼ βH ¼ A
4GN

¼ SBH: ð23Þ

Interestingly, this result is independent of Hvac. With β ¼
2π=a and H ¼ aP0 ¼ a

8πG

H
dφγ ¼ aA

8πG, we recover the BH
entropy law (1). This provides a microscopic explanation
for the observation [10] that H is the product of black hole
entropy and temperature.
Our results easily extend to the case of general relativity

in 3d without a cosmological constant (l → ∞) [44]. In
particular, the flat limit of the metric (3) describes an
interesting class of “soft hairy cosmological spacetimes”
that contains the solutions discussed in [48]. Also in that
case, we find that soft hair charges do not contribute to the
entropy, which in turn agrees with the asymptotic state
counting in [49,50]. The asymptotically flat structure can
be recovered in the limit along the lines of [51–54]. We find
the near-horizon symmetry algebra

½Jn; Jm� ¼ ½Kn; Km� ¼ 0; ½Jn; Km� ¼ knδnþm;0: ð24Þ

The Hamiltonian again commutes with all the generators
and therefore with all descendants of the vacuum. The
centrally extended BMS currents [8,9] are recovered as
composite operators constructed from (24).
It is clear that the specifics of our construction, including

soft hair and black hole complementarity, certainly apply to
different 3d gravity theories whose field equations are
solved for constant curvature spacetimes, as is the case of
the massive gravity theories discussed in [55–58], con-
formal gravity [52,59,60] and generalizations thereof, as
well as for higher spin gravity in AdS [32,40,61–63] or in
flat space [53,54,64,65]. It will be interesting to recover
these physical features in four dimensions [6,7,10,12,66].
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