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We perform a complete decoupling of the degrees of freedom of quadratic gravity and the generic
fðRμνσρÞ theory about any one of their possible vacua, i.e. maximally symmetric solutions, and find the
masses of the spin-2 and spin-0 modes in explicit forms.
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I. INTRODUCTION

The problem we shall address is simple to state: what is
the perturbative particle spectrum of the generic gravity
theory defined by the action

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
fðgμν; RρσμνÞ; ð1Þ

about any one of its possible maximally symmetric sol-
utions? Here, f is assumed to be an analytic function of its
arguments, the inverse metric and the Riemann tensor. We
shall consider spacetimes dimensions with n ≥ 3 here, but
the n ¼ 2 case as a pure fðRÞ theory can also be included in
the discussion with a redefinition of the cosmological
constant to appear below. The action is assumed to be
diffeomorphism invariant (at least up to a boundary term).
Depending on the powers of the Riemann tensor, the theory
has generically many maximally symmetric solutions
which can be found once the function f is given. For
example, if the highest power is N, there are generically N
vacua, modulo the assumption that the parameters of the
theory satisfy certain constraints so that the effective
cosmological constant of these vacua are real. In any case,
for the discussion to follow, all we need is that the theory
has at least one maximally symmetric solution, (anti)–de
Sitter (A)dS spacetime, with an effective cosmological
constant Λ which is generically nonzero.
The actual identification of the particle content with

explicit expressions for the masses in (A)dS is easier said
than done as we shall work out in this work. The particle
content of quadratic gravity in (A)dS will play a major role
here. It turns out that, rather surprisingly, even though
quadratic gravity has been studied for a long time—it is
almost as old as general relativity—its full perturbative
particle content in (A)dS with explicit expressions for the
masses have not been found. Stelle, in his ground-breaking
works, [1,2] gave the masses in four-dimensional flat
backgrounds. In the next section, more discussion on the
literature will be given. In any case, we will need the
particle spectrum of quadratic theory to answer the question
posed above. The connection of the particle content of

quadratic gravity and the theory (1) will be clear in a
moment. But first let us briefly argue why one would be
interested in this theory.
By now, it is no secret that general relativity needs to be

replaced by a, quantum-corrected, interim theory, below the
Planck scale, with a higher-derivative theory, in general,
having an action of the form I ¼ R

dnx
ffiffiffiffiffiffiffiffiffi
−jgjp

fðgμν; Rμνσ;

ρ;∇Rμνσρ;…Þ with many powers of the Riemann tensor, its
covariant derivatives and contractions in a (most probably)
diffeormophism invariant way. In addition, there might, of
course, appear nonminimally coupled fields, especially
scalar fields, directly taking part in gravitation, ruining
the equivalence principle. For this case, we have not much
to say here, but assuming that gravity is solely described by
a classical pseudo-Riemannian spacetime which solves the
field equations coming from a generic action, we can
inquire the particle content of the theory and the stability of
a given solution. More specifically, one is usually interested
in the linear stability of the maximally symmetric critical
metrics ḡμν (flat, de Sitter or anti–de Sitter spaces) which
are the potential vacua in the absence of sources. As any
physically viable theory should have a stable vacuum,
this puts constraints on the form of possible low-energy
quantum gravity theories.
Moreover, recently, in [3,4], we have answered the

following question in the affirmative: can one construct
higher-order metric-based gravity theories that have only a
single massless spin-2 excitation (no other local degrees of
freedom) and a unique viable vacuum just like Einstein’s
theory? The theory obtained in these works is of the Born-
Infeld type as the uniqueness of the viable vacuum is a very
strong condition. More generally, one can search for
higher-derivative metric-based theories with only a mass-
less spin-2 graviton in their spectrum about (A)dS vacua.
Then, one cannot have derivatives of the Riemann tensor in
the action, since generically these will yield extra degrees
of freedom. Therefore, in this work we shall stick to the
action of the form given in (1) whose field equations are
still fourth order and so generically have a massless spin-2,
a massive spin-2 and a massive spin-0 excitation, just like
quadratic gravity. The connection between the spectra and
vacua of quadratic gravity and (1) are summarized in
Sec. III.*btekin@metu.edu.tr
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II. FULL PARTICLE SPECTRUM OF QUADRATIC
GRAVITY IN (A)DS

As stated above, to identify the particle spectrum (i.e.
calculate the masses) of generic fðgμν; RρσμνÞ theory, the
best way is to first carry out the procedure for the quadratic
gravity with the action

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

κ
ðR − 2Λ0Þ þ αR2 þ βR2

μν

þ γðR2
μνσρ − 4R2

μν þ R2Þ
�
; ð2Þ

whose source-free field equations read [5]

1

κ

�
Rμν −

1

2
gμνRþ Λ0gμν

�
þ 2αR

�
Rμν −

1

4
gμνR

�

þ ð2αþ βÞðgμν□ −∇μ∇νÞR

þ 2γ

�
RRμν − 2RμσνρRσρ þ RμσρτR

σρτ
ν − 2RμσRσ

ν

−
1

4
gμνðR2

τλσρ − 4R2
σρ þ R2Þ

�
þ β□

�
Rμν −

1

2
gμνR

�

þ 2β

�
Rμσνρ −

1

4
gμνRσρ

�
Rσρ ¼ 0: ð3Þ

We work with the mostly plus signature; therefore, Λ > 0
corresponds to the de Sitter spacetime. Let ḡμν denote a
maximally symmetric solution whose curvatures are
defined as

R̄μρνσ ¼
2Λ

ðn − 1Þðn − 2Þ ðḡμνḡρσ − ḡμσ ḡρνÞ;

R̄μν ¼
2Λ

n − 2
ḡμν; R̄ ¼ 2nΛ

n − 2
: ð4Þ

Then for a vacuum, the field equations reduce to a quadratic
equation that determines the effective cosmological
constant:

Λ − Λ0

2κ
þ kΛ2 ¼ 0;

k≡ ðnαþ βÞ ðn − 4Þ
ðn − 2Þ2 þ γ

ðn − 3Þðn − 4Þ
ðn − 1Þðn − 2Þ : ð5Þ

As noted in the Introduction, for Λ to be real, there is a
constraint on the parameters of the theory, but this will not
be relevant to the ensuing discussion. We assume there is an
(A)dS vacuum. Then considering generic perturbations
about this vacuum defined as hμν ≡ gμν − ḡμν, one can
show that the field equations at the linear order reduce to [5]

cGL
μν þ ð2αþ βÞ

�
ḡμν□̄ − ∇̄μ∇̄ν þ

2Λ
n − 2

ḡμν

�
RL

þ β

�
□̄GL

μν −
2Λ
n − 1

ḡμνRL

�
¼ 0; ð6Þ

where the constant c in-front of the linearized Einstein
tensor reads

c≡ 1

κ
þ 4Λn
n − 2

αþ 4Λ
n − 1

β þ 4Λðn − 3Þðn − 4Þ
ðn − 1Þðn − 2Þ γ: ð7Þ

One cautionary remark is apt here: even though 1=c may
appear like the effective Newton’s constant in this theory, as
we shall see in a moment in the action formulation, this is
not really correct. A further term will be added to c which
will then yield the effective Newton’s constant of the
theory. All the information about the particle content is
in the linearized fourth-order equation (6), but it is clear that
this is a complicated coupled equation of physical degrees
of freedom as well as gauge degrees of freedom.We have to
decouple the physical modes. The linearized version of
the cosmological Einstein tensor is defined as GL

μν≡
ðRμν − 1

2
gμνRþ ΛgμνÞL which reads

GL
μν ¼ RL

μν −
1

2
ḡμνRL −

2Λ
n − 2

hμν:

where the linearized Ricci tensor RL
μν and scalar curvature

RL ¼ ðgμνRμνÞL are given as

RL
μν ¼

1

2
ð∇̄σ∇̄μhνσ þ ∇̄σ∇̄νhμσ − □̄hμν − ∇̄μ∇̄νhÞ;

RL ¼ −□̄hþ ∇̄σ∇̄μhσμ −
2Λ
n − 2

h:

Let us say a few words about what is already known in this
theory: for flat spacetime, as we noted in four dimensions,
8 degrees of freedom were identified in [1]. For the (A)dS
backgrounds, in [6], the scattering amplitude at tree-level
between two sources in this theory (augmented with a
Fierz-Pauli mass term) was computed from which in
principle one can read the masses from the poles, but as
the Lichnerowicz Laplacian is used in that work, it is not
easy to directly see all the masses, even though the
computation is useful for unitarity and discontinuity
analysis. In [7], for n ¼ 3, a specific combination of the
quadratic terms (8αþ 3β ¼ 0) was considered which has a
massive spin-2 excitation and the resulting theory is “New
Massive Gravity” (NMG). In [8], Einstein-Hilbert piece is
amputated from the NMG and the resulting theory has a
massless spin-2 excitation. The most general version of
quadratic gravity in n ¼ 3 was considered in [9]: the mass
spectrum was found after a long computation. Specifically,
hμν was decomposed into its irreducible parts and the
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massive spin-0 and massless spin-2 modes were decoupled
to calculate the masses. In [10] and [11], four- and
n-dimensional versions of this theory for tuned parameters
that eliminate the massive modes were studied; hence, the
“critical gravity” was obtained. Of course what makes the
computation rather tricky is the fact that the background
spacetime is not flat and the curvature contributes to the
masses of the particles. Here we remedy the gap on this and
give a relatively concise derivation of the spectrum in n
dimensions for generic values of the parameters in (A)dS.
Directly extending the quadratic gravity action up to

Oðh2Þ is a very cumbersome task and it is rather a long
exercise to put the final result in an explicitly gauge
invariant form. Therefore, the best way to proceed is to
use “inverse” calculus of variations and get the action that
yields the linearized field equations (6): let that action be
Iðh2Þ ¼ R

dnx
ffiffiffiffiffiffi−gp

L2. Then the second-order Lagrangian
is obtained by first multiplying the linearized field equa-
tions by − 1

2
hμν and integrating the result over spacetime to

arrive at (after dropping the boundary terms)

L2 ¼ −
1

2

�
cþ 2Λβ

ðn − 1Þðn − 2Þ
�
hμνGL

μν þ βGL
μνG

μν
L

þ
�
αþ βð4 − nÞ

4

�
R2
L: ð8Þ

Up to a boundary term, this Oðh2Þ action is invariant under
background diffeomorphisms of the form δξhμν ¼ ∇̄μξν þ
∇̄νξμ since both the linearized Einsten tensor and the
linearized curvature scalar are gauge-invariant. One can
fix the gauge at this stage, but we shall proceed without a
choice of gauge. The minus factor in front of the
Einsteinian piece is important as it is chosen to give the
correct kinetic energy for the massless spin-2 graviton. Or
equivalently, if we couple the theory to matter, that is the
correct sign, from which we can also identify the effective
Newton’s constant as

1

κeff
≡ 1

κ
þ 4Λðnαþ βÞ

n − 2
þ 4Λðn − 3Þðn − 4Þ

ðn − 1Þðn − 2Þ γ; ð9Þ

which has the earlier noted shift from the constant c. In
what follows, we shall make frequent use of integration by
parts and the “Hermitian” property of the operator defined
as GL

μν ≡ ðOhÞμν. So, not to clutter the notation, we work
with the Lagrangian but drop the boundary terms. To be
able to identify the physical modes, let us introduce two
auxiliary fields fμν and φ to recast the Lagrangian as

L2 ¼ −
1

κeff

�
1

2
hμν þ fμν

�
GL
μνðhÞ −

1

4βκ2eff
ðfμνfμν − f2Þ

þ φRL −
b
2
φ2; ð10Þ

where f ≡ ḡμνfμν and the constant b is found as

b≡ 2ðn − 1Þ
4αðn − 1Þ þ βn

: ð11Þ

So, integrating out the auxiliary fields in (10) gives us back
our original action (8). To get rid of the φRL term, let us
define a new field ~fμν as

fμν ¼ ~fμν −
2κeff
n − 2

φḡμν; f ¼ ~f −
2nκeff
n − 2

φ; ð12Þ

which then reduces (10) to

L2 ¼ −
1

κeff

�
1

2
hμν þ ~fμν

�
GL
μνðhÞ −

1

4βκ2eff
ð ~fμν ~fμν − ~f2Þ

−
n − 1

ðn − 2Þβκeff
φ ~f þ

�
nðn − 1Þ
βðn − 2Þ2 −

b
2

�
φ2: ð13Þ

As φ appears without derivatives, we can integrate it out to
arrive at

L2 ¼ −
1

κeff

�
1

2
hμν þ ~fμν

�
GL
μνðhÞ

−
1

4βκ2eff
ð ~fμν ~fμν − ~f2Þ − 1

4βκ2eff
ξ ~f2; ð14Þ

where the constant ξ is given as

ξ≡ 4αðn − 1Þ þ βn
4ðαnþ βÞ : ð15Þ

A further field definition is needed to decouple hμν and ~fμν.
By inspection one observes that the following definition
does the job

hμν ≡ ~hμν − ~fμν: ð16Þ

With this, our second-order Lagrangian reduces to the
decoupled form

L2 ¼ −
1

2κeff
hμνGL

μνðhÞ þ
1

2κeff
fμνGL

μνðfÞ

−
1

4βκ2eff
ðfμνfμν − f2Þ − 1

4βκ2eff
ξf2; ð17Þ

where we removed all the tildes for notational simplicity.
As the first term is just the linearized Einstein theory with
an effective Newton’s constant, as long as κeff > 0, it
describes a massless unitary spin-2 excitation, which is
the Einsteinian mode, that is the massless graviton.
Immediately, it is also clear that the second term has the
wrong sign, so there will be a massive ghost. It is also clear
that when ξ ¼ 0, the fμν part is just the Fierz-Pauli massive
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gravity (with the wrong kinetic sign of course). For ξ ≠ 0 as
in our case, there is an additional massive mode which we
have to decouple. To be able to read the masses, let us vary
the action with respect to fμν to get

GL
μνðfÞ −

1

2βκeff
ðfμν − ḡμνfÞ −

1

2βκeff
ξḡμνf ¼ 0; ð18Þ

whose trace yields

RLðfÞ þ
1

ðn − 2Þβκeff
ð1 − nþ nξÞf ¼ 0: ð19Þ

GL
μνðfÞ satisfies the background Bianchi identity, hence

double-divergence of (18) yields

ðξ − 1Þ□̄f þ ∇̄μ∇̄νfμν ¼ 0: ð20Þ
Making use of this in the trace equation and using the
definition of RL, one arrives at a massive scalar wave
equation satisfied by the trace of the f field:

�
ξ□̄þ 2Λ

n − 2
−

1 − nþ nξ
ðn − 2Þβκeff

�
f ¼ 0; ð21Þ

from which we can read the mass of the scalar mode as

m2
s ¼ −

1

ξ

�
2Λ
n − 2

−
1 − nþ nξ
ðn − 2Þβκeff

�
; ð22Þ

which of course decouples from the spectrum for the Fierz-
Pauli tuning ξ ¼ 0. It is then easy to see that the trace-free
part of (18) yields the usual Fierz-Pauli massive graviton
with the mass-square

m2
g ¼ −

1

βκeff
: ð23Þ

Let us summarize the particle content of n-dimensional
quadratic gravity in (A)dS: there is a unitary massless spin-
2 mode, that is the usual graviton, there is a massive spin-
zero mode whose mass-square is given as (22) which
should satisfy the Breitenlohner-Freedman bound in AdS,
namely m2

s ≥ n−1
2ðn−2ÞΛ to be nontachyonic, and there is a

massive spin-2 ghost with the mass-square given as (23).
All together in n dimensions the quadratic gravity has
nðn−3Þ

2
þ ðnþ1Þðn−2Þ

2
þ 1 ¼ nðn − 2Þ degrees of freedom. As

concrete examples let us consider the three- and four-
dimensional cases.
n ¼ 3: The masses of the spin-2 and spin-0 modes,

respectively, read

m2
g ¼ −

1

κβ
− 4

�
1þ 3

α

β

�
Λ;

m2
s ¼

1

ð8αþ 3βÞκ −
4ð3αþ βÞ
ð8αþ 3βÞΛ; ð24Þ

which are the same as the ones found with the canonical
method in [9]. Note that, altogether, these are the 3 degrees
of freedom in three dimensions since there is no massless
graviton in the generic theory. On the other hand, the choice
8αþ 3β ¼ 0 leads to the decoupling of the scalar mode,
yielding the NMG theory [7] with a massive graviton.
n ¼ 4: The masses of the spin-2 and spin-0 modes,

respectively, read

m2
g ¼ −

1

κβ
− 2

�
1þ 4

α

β

�
Λ; m2

s ¼
1

2ð3αþ βÞκ : ð25Þ

Together with the massless spin-2 graviton, these modes
exhaust the 8 degrees of freedom whose flat space versions
in four dimensions were given by Stelle [1]. It is interesting
to note that, four dimensions is rather unique in the sense
that it is the only dimension for which the mass of the scalar
field is not shifted due to the cosmological constant. Also, it
is clear that for 3αþ β ¼ 0, the scalar mode decouples,
which corresponds to the Weyl-square corrected Einstein’s
theory. It is a little cumbersome-looking, but it pays to write
the masses in generic n dimensions in terms of the
parameters of the Lagrangian: the massive spin-2 mode
has the mass-square

m2
g ¼ −

1

βκ
− 4Λ

ðn − 1Þðβ þ αnÞ þ γðn − 4Þðn − 3Þ
βðn − 2Þðn − 1Þ ;

ð26Þ

while the massive spin-0 has

m2
s ¼

n − 2

κð4αðn − 1Þ þ βnÞ

þ 4Λðn − 4Þððn − 1Þðβ þ αnÞ þ γðn − 3Þðn − 2ÞÞ
ðn − 1Þðn − 2Þð4αðn − 1Þ þ βnÞ ;

ð27Þ

from which one can study various specific theories. For
example, as n → ∞, both masses remain intact. For the
pure Einstein-Gauss-Bonnet theory, they become infinite
and decouple, leaving only the Einsteinian massless mode
as expected, since the Einstein-Gauss-Bonnet theory is a
second-order theory.
As we have seen in the above construction, the massive

spin-2 mode is a ghost; therefore, as long as it is in the
spectrum, the theory is problematic at the linear level.
Namely, the vacuum is not stable against the copious
production of these states which lower the energy. For
the tuned case of letting both masses go to infinity, one
arrives at the “critical gravity” [10,11] in AdS. But at
exactly this point of the parameter space, there arise
asymptotically non-AdS logarithmic modes [12,13].
These solutions are of the wave type, and they are
valid both as exact and as perturbative solutions, and as
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perturbative modes, they are ghosts [14]. There is no
consistent truncation of them that yields a nontrivial theory.
There is an important digression that we would like to make
here: in some theories, a perturbative solution cannot be
obtained from the linearization of an exact solution, a
phenomenon called “linearization instability.” If lineariza-
tion instability exists, one might have a hope of obtaining a
consistent theory as the log modes can be truncated as is the
case in three-dimensional chiral gravity [15–17]. This says
that the dangerous perturbative log modes of chiral gravity
do not come from the linearization of exact solutions. This
is not the case in critical gravity as these modes are also
exact solutions. Therefore, for n ≥ 4, one must have β ¼ 0
to avoid the massive spin-2 ghost. Let us now study the
generic gravity.

III. FULL PARTICLE SPECTRUM
OF f ðRμνσρÞ GRAVITY IN (A)DS

The first thing to note is that taking the Lagrangian
density as a function of the Riemann tensor with two up and
two down indices is better as one can do away with the
inverse metric:

L ¼ fðRμν
ρσÞ: ð28Þ

Now the usual route to the particle spectrum of this theory
is again to find the OðhÞ2 expansion of this action about
any one of its potential vacua ḡμν. But as we have shown in
sufficient detail in [18–21], for this purpose and for finding
the vacua of the theory, it is actually best to construct a
quadratic action that has the same vacua and the spectrum is
this theory. Namely, we need to construct the following
action,

fquad-equalðRμν
ρσÞ ¼ 1

κ
ðR − 2Λ0Þ þ αR2 þ βRμ

νRν
μ

þ γðRμν
ρσR

ρσ
μν − 4Rμ

νRν
μ þ R2Þ; ð29Þ

whose vacua and degrees of freedom match the theory we
want to explore (28). Namely, we have to relate the
parameters in this theory to the values of the f function
and its derivatives. As explained in detail in the above
quoted works, this can be done by the following Taylor
series expansion:

fquad-equalðRμν
ρσÞ≡

X2
i¼0

1

i!

� ∂if
∂ðRμν

ρσÞi
�
R̄μν
ρσ

ðRμν
ρσ − R̄μν

ρσÞi: ð30Þ

Therefore, given fðRμν
ρσÞ defining the theory, and denoting

the background Riemann tensor as

R̄μν
ρσ ¼ 2Λ

ðn − 1Þðn − 2Þ ðδ
μ
ρδνσ − δμσδνρÞ; ð31Þ

one has to compute the following two derivatives and
contractions,

� ∂f
∂Rμν

ρσ

�
R̄μν
ρσ

Rμν
ρσ ≡ ζR; ð32Þ

1

2

� ∂2f

∂Rμν
ρσ∂Rαβ

λγ

�
R̄μν
ρσ

Rμν
ρσR

αβ
λγ

≡ αR2 þ βRλ
σRσ

λ þ γðRμν
ρσR

ρσ
μν − 4Rμ

νRν
μ þ R2Þ; ð33Þ

which determine the constants ζ, α, β, γ. The constant ζ
appears in the bare Newton’s constant of the equivalent
quadratic theory as

1

κ
¼ ζ −

�
4Λ
n − 2

ðnαþ βÞ þ 4Λðn − 3Þ
n − 1

γ

�
; ð34Þ

while the bare cosmological constant of the equivalent
theory reads as (see [18–21] for further details)

Λ0

κ
¼ −

1

2
fðR̄μν

ρσÞ þ Λn
n − 2

ζ −
2Λ2n

ðn − 2Þ2 ðnαþ βÞ

−
2Λ2nðn − 3Þ
ðn − 1Þðn − 2Þ γ: ð35Þ

So, these parameters are sufficient to determine the quad-
ratic theory that has the same particle spectrum as the
fðRμν

σρÞ theory and since we found the spectrum of the
former, we can simply read the spectrum of the latter. Given
a generic fðRμν

σρÞ, let us summarize the recipe: compute the
first and second derivative with respect to Rμν

σρ and use (33)
to obtain ζ, α, β and γ, then use (34) to determine κ.
Compute fðR̄μν

ρσÞ and use (35) to determine Λ0. Now, one
can use (5) to determine the possible effective cosmological
constants. Once this is done, the masses given in the
previous section for quadratic gravity yield the masses of
the massive spin-2 and massive spin-0 modes in the generic
fðRμν

σρÞ gravity. What is rather remarkable is that one
actually has to do three basic computations: the value of
the Lagrangian density and the first and second derivatives
of the Lagrangian density with respect to the up-up
down-down Riemann tensor evaluated at the (A)dS
background.

IV. CONCLUSIONS

Using auxiliary fields, we have decoupled the free
particle spectrum of general quadratic gravity in n-
dimensional constant curvature backgrounds and calculated
the masses of the massive spin-2 and massive spin-0 modes
whose special forms only have appeared before, even
though quadratic gravity has been of interest for a long
time. Then finding a quadratic action that has the same free
particle spectrum and vacuum equation as the generic
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fðRμν
σρÞ gravity, we found the particle spectrum of the latter

theory. Therefore, once an explicit form of the action is
given, no matter how complicated the action is, as long as it
depends on the powers of the Riemann tensor (and its
contractions, the Ricci tensor and the scalar curvature) our
formulas give the masses of the gravitons about the (A)dS
backgrounds. Perturbative stability of vacuum of the
generic theory is similar to the quadratic case that we
have discussed in the text: the massive spin-2 mode is a
ghost hence it should not appear in the spectrum. We have
given an example of a nontrivial theory in the Born-Infeld

form in [3,4] which does not also have the spin-0 mode, see
also another recent example [22].
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