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In this work we present some new results that we have obtained in a study of the phase diagram of
charged compact boson stars in the theory involving massive complex scalar fields coupled to the U(1)
gauge field and gravity in a conical potential in the presence of a cosmological constant Λ, which we
treat as a free parameter taking positive and negative values and thereby allowing us to study the theory
in de Sitter and anti de Sitter spaces, respectively. We obtain four bifurcation points (the possibility of
more bifurcation points not being ruled out) in the de Sitter region. We present a detailed discussion of
the various regions in our phase diagram with respect to four bifurcation points. Our theory is seen to
have rich physics in a particular domain for positive values of Λ, which is consistent with the
accelerated expansion of the Universe.
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Introduced long ago [1–3], boson stars represent local-
ized self-gravitating solutions, which are studied very
widely in the literature [4–23]. Such theories are being
considered in the presence of positive [14–16] as well as
negative [17–20] values of the cosmological constant Λ.
The theories with positive values of Λ [corresponding to de
Sitter (dS) space] are relevant from an observational point
of view, as they describe a more realistic description of the
compact stars in the Universe since all the observations
seem to indicate the existence of a positive cosmological
constant. Such theories are also being used to model the
dark energy of the Universe. However, the theories with
negative values of Λ [corresponding to anti-de Sitter (AdS)
space] are meaningful in the context of AdS=CFT corre-
spondence [24–26].
In fact, the cosmological constant, the value of the

energy density of the vacuum of space, is the simplest
form of dark energy and it provides a good fit to many
cosmological observations. A positive vacuum energy
density resulting from a positive cosmological constant
(implying a negative) pressure gives an accelerated expan-
sion of the Universe consistent with the observations. Our
theory is seen to have rich physics in a particular domain
for positive values of Λ.
In a recent paper [15], we have studied the boson stars

and boson shells in a theory of a complex scalar field
coupled to a Uð1Þ gauge field Aμ and gravity in the
presence of a fixed positive cosmological constant Λ
(i.e., in de Sitter space). In the present work we study this
theory of a complex scalar field coupled to a Uð1Þ

gauge field Aμ and gravity in the presence of a potential:
VðjΦjÞ ≔ ðm2jϕj2 þ λjϕjÞ (where m and λ are constant
parameters) and a cosmological constant Λ, which we treat
as a free parameter and which takes positive as well as
negative values, thereby allowing us to study the theory in
dS as well as in AdS space. We investigate the properties of
the solutions of this theory and determine their domains of
existence for some specific values of the parameters of the
theory. Similar solutions have also been obtained by
Kleihaus, Kunz, Laemmerzahl, and List, in a V-shaped
scalar potential.
We construct the boson star solutions of this theory

numerically, and we study their properties. We investigate
in detail the phase diagram of the theory for the scalar and
the vector fields. We obtain four bifurcation points (the
possibility of more bifurcation points not being ruled out)
in the dS region. We present a detailed discussion of the
various regions in our phase diagram with respect to three
bifurcation points.
We study the theory defined by the action

S ¼
Z �

R − 2Λ
16πG

þ LM

� ffiffiffiffiffiffi
−g

p
d4x;

LM ¼ −
1

4
FμνFμν − ðDμΦÞ�ðDμΦÞ − VðjΦjÞ;

DμΦ ¼ ð∂μΦþ ieAμΦÞ; Fμν ¼ ð∂μAν − ∂νAμÞ: ð1Þ

Here R is the Ricci curvature scalar, G is Newton’s
gravitational constant, and Λ is the cosmological constant.
Also, g ¼ detðgμνÞ, where gμν is the metric tensor and the
asterisk in the above equation denotes complex conjuga-
tion. Using the variational principle, equations of motion
are obtained as
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Gμν ≡ Rμν −
1

2
gμνR ¼ 8πGTμν − Λgμν;

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ −ie

ffiffiffiffiffiffi
−g

p ½Φ�ðDνΦÞ − ΦðDνΦÞ��;

Dμð
ffiffiffiffiffiffi
−g

p
DμΦÞ ¼ 2m2 ffiffiffiffiffiffi

−g
p

Φþ λ

2

ffiffiffiffiffiffi
−g

p Φ
jΦj ;

½Dμð
ffiffiffiffiffiffi
−g

p
DμΦÞ�� ¼ 2m2 ffiffiffiffiffiffi

−g
p

Φ� þ λ

2

ffiffiffiffiffiffi
−g

p Φ�

jΦj : ð2Þ

The energy-momentum tensor Tμν is given by

Tμν ¼
��

FμαFνβgαβ −
1

4
gμνFαβFαβ

�

þ ðDμΦÞ�ðDνΦÞ þ ðDμΦÞðDνΦÞ�

− gμνððDαΦÞ�ðDβΦÞÞgαβ − gμνVðjΦjÞ
�
: ð3Þ

To construct spherically symmetric solutions we adopt the
static spherically symmetric metric with Schwarzschild-
like coordinates:

ds2 ¼ ½−A2Ndt2 þ N−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�: ð4Þ

This leads to the components of the Einstein tensor (Gμν),

Gt
t ¼

�
−½rð1 − NÞ�0

r2

�
; Gr

r ¼
�
2rA0N − A½rð1 − NÞ�0

Ar2

�
;

Gθ
θ ¼

�
2r½rA0N�0 þ ½Ar2N0�0

2Ar2

�
¼ Gφ

φ: ð5Þ

Here the arguments of the functions AðrÞ and NðrÞ have
been suppressed. For solutions with a vanishing magnetic
field, the Ansätze for the matter fields have the form

ΦðxμÞ ¼ ϕðrÞeiωt; AμðxμÞdxμ ¼ AtðrÞdt: ð6Þ

We redefine ϕðrÞ and AtðrÞ as

hðrÞ ¼ ð
ffiffiffi
2

p
eϕðrÞÞ=m; bðrÞ ¼ ðωþ eAtðrÞÞ=m: ð7Þ

We introduce new dimensionless constant parameters:

α ¼ 4πGm2

e2
; ~λ ¼ λeffiffiffi

2
p

m3
; ~Λ ¼ Λ

m2
: ð8Þ

Introducing a dimensionless coordinate r̂ defined by r̂ ¼
mr (implying d

dr ¼ m d
dr̂), Eq. (7) reads

hðr̂Þ ¼ ð
ffiffiffi
2

p
eϕðr̂ÞÞ=m; bðr̂Þ ¼ ðωþ eAtðr̂ÞÞ=m: ð9Þ

Equations of motion in terms of hðr̂Þ and bðr̂Þ [where the
primes denote differentiation with respect to r̂ and signðhÞ
denotes the usual signature function] read

ðANr̂2h0Þ0 ¼ r̂2

AN
½A2Nðhþ ~λsignðhÞÞ − b2h�; ð10Þ

½ðr̂2b0Þ=A�0 ¼ ½ðr̂2h2bÞ=ðANÞ�: ð11Þ

We obtain

h00 ¼
�
αr̂h0

A2N
ðA2h2 þ 2A2h~λþ b02Þ − h0ð1þ N − ~Λr̂2Þ

r̂N

þ A2Nhþ A2N ~λsignðhÞ − b2h
A2N2

�
; ð12aÞ

b00 ¼
�

α

A2N2
r̂b0ðA2N2h02 þ b2h2Þ − 2b0

r̂
þ bh2

N

�
;

A0 ¼
�
αr̂
AN2

ðA2N2h02 þ b2h2Þ
�
; ð12bÞ

N0 ¼
�
1 − N − ~Λr̂2

r̂
−

αr̂
A2N

ðA2N2h02 þ Nb02 þ b2h2

þ A2Nh2 þ 2A2Nh~λÞ
�
: ð12cÞ

For the metric function Aðr̂Þ we choose the boundary
condition Aðr̂oÞ ¼ 1, where r̂o is the outer radius of the star.
For constructing globally regular ball-like boson star
solutions, we choose

Nð0Þ ¼ 1; b0ð0Þ ¼ 0;

h0ð0Þ ¼ 0; hðr̂oÞ ¼ 0; h0ðr̂oÞ ¼ 0: ð13Þ

For the positive and negative ~Λ we match, in the exterior
region r̂ > r̂o, the Reissner-Nordström–de Sitter and
Reissner-Nordström–anti-de Sitter solutions, respectively.
The conserved Noether current is given by

jμ ¼ −ie½ΦðDμΦÞ� − Φ�ðDμΦÞ�; Dμjμ ¼ 0: ð14Þ

The charge Q of the boson star is given by

Q ¼ −
1

4π

Z
r̂o

0

jt
ffiffiffiffiffiffi
−g

p
drdθdϕ; jt ¼ −

h2ðr̂Þbðr̂Þ
A2ðr̂ÞNðr̂Þ :

For all the gravitating solutions we obtain the mass
parameter M (in the units employed):

M ¼
�
1 − Nðr̂oÞ þ

αQ2

r̂2o
−

~Λ
3
r̂2o

�
r̂o
2
: ð15Þ

We now study the numerical solutions of Eqs. (12a)–
(12c) with the boundary conditions defined by Aðr̂oÞ ¼ 1
and Eq. (13), and we determine their domain of existence
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for some specific values of the parameters of the theory.
Our theory has three parameters: α, ~λ, and ~Λ. We study the
theory for different values of ~Λ, giving it positive as well as
negative values, keeping α and ~λ fixed (namely, α ¼ 0.2
and ~λ ¼ 1.0), and we discuss the corresponding physics as
it is observed in our phase diagram.
We study the phase diagram of the theory involving the

vector and scalar fields at the center of the boson star for
different values of the cosmological constant ~Λ. We observe
some interesting phenomena near some specific values of ~Λ
where the system is seen to have bifurcation points B1, B2,
B3, and B4 which correspond to four different values of the
cosmological constant ~Λ: ~Λc1 ≃ 0.22521, ~Λc2 ≃ 0.52605,
~Λc3 ≃ 0.54076, and ~Λc4 ≃ 0.541250, respectively (the pos-
sibility of more bifurcation points not being ruled out).
The theory is seen to have rich physics in the domain ~Λ ¼
þ0.500 to ~Λ≃þ0.62.
For a meaningful discussion, we divide our phase

diagram into four regions denoted by IA, IB, IIA, and
IIB in the vicinity of B1 [as seen in Fig. 1(a)]. The asterisks
seen in Fig. 1(a). coinciding with the axis bð0Þ [i.e.,
corresponding to hð0Þ ¼ 0], represent the transition points
from the boson stars to boson shells.
Regions IA, IB, and IIA do not have any bifurcation

points; however, region IIB is seen to contain rich physics
evidenced by the occurrence of more bifurcation points in
this region. For better detail, region IIB is also plotted in
Fig. 1(b). Region IIB is further divided into the regions
IIB1, IIB2, and IIB3 in the vicinity of B2 as seen in
Fig. 1(b).
Region IIB3 is seen to have a further bifurcation point

B3. In the vicinity of B3 we further subdivide the phase
diagram into the regions IIB3a, IIB3b, and IIB3c as seen in
Fig. 1(b). Region IIB3b is seen to have closed loops, and
the behavior of the phase diagram in this region is akin to
that of region IIB2. Also, the insets in Figs. 1(b) and 1(c)
represent part of the phase diagram with better precision.
Region IIB3c is again seen to have a further bifurcation

point B4, and in the vicinity of B4, we again subdivide the
phase diagram into the regions IIB3c1, IIB3c2, and IIB3c3
as seen in Fig. 1(c). Region IIB3c2 is again seen to have
closed loops, and the behavior of the phase diagram in this
region is akin to that of regions IIB2 and IIB3b. On the
other hand, region IIB3c3 could, in principle, contain
further bifurcation points, and the behavior of the phase
diagram in this region is akin to that of regions IIB1, IIB3a,
and IIB3c1.
Regions IA and IB could be divided into two subregions

corresponding to positive and negative values of ~Λ,
implying the dS and AdS regions corresponding to positive
and negative values of ~Λ. In region IA, as we change the
value of ~Λ in the AdS region from ~Λ ¼ 0.000 to
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FIG. 1. (a) The phase diagram of the theory for the vector field
at the center of the star bð0Þ and the scalar field at the center of the
star hð0Þ for different values of the cosmological constant ~Λ in the
range ~Λ ¼ −2.000 to ~Λ ¼ þ1.000. The points B1, B2, B3, and
B4 represent the four bifurcation points. The entire region
depicted in the phase diagram in panel (a) is divided into four
regions: IA, IB and IIA, IIB in the vicinity of B1. The region IIB
of the phase diagram shown in (a) is separately depicted in detail
in panels (b) and (c). The region IIB of the phase diagram is
subdivided into three regions: IIB1, IIB2, and IIB3 in the vicinity
of B2. The region IIB3 is further subdivided into the regions
IIB3a, IIB3b, and IIB3c in the vicinity of B3. Similarly, the region
IIB3c is subdivided into the regions IIB3c1, IIB3c2, and IIB3c3
in the vicinity of B4 as depicted in panel (c). The asterisks shown
in (a), corresponding to hð0Þ ¼ 0, represent the transition points
from the boson stars to the boson shells. The inset in panel
(b) represents part of the phase diagram with better precision.
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~Λ ¼ −2.000, we observe a continuous deformation of the
curves in the phase diagram. In region IB, as we change the
value of ~Λ in the domain ~Λ ¼ 0.000 to ~Λ≃ −0.02,
the theory is seen to have solutions for the boson stars
only, without having transition points from boson stars to
boson shells, and the curves corresponding to the solutions
disappear in the phase diagram of the theory for the
values ~Λ≲ −0.02.
As we change the value of ~Λ in the dS region from ~Λ ¼

0.000 to ~Λ ¼ 1.000, we observe a lot of new rich physics.
While going from ~Λ ¼ 0.000 to some critical value
~Λ ¼ ~Λc1 , we observe that the solutions exist in two separate
domains IA and IB [as seen in Fig. 1(a)]. However, as we
increase ~Λ beyond ~Λ ¼ ~Λc1 , the solutions of the theory are
seen to exist in regions IIA and IIB (instead of regions IA
and IB).
As we increase the value of ~Λ from one critical value

~Λ ¼ ~Λc1 to another critical value ~Λ ¼ ~Λc2 , we notice that
region IIA in the phase diagram shows a continuous
deformation of the curves, and region IIB is seen to have
its own rich physics as explained in the foregoing.
As we increase ~Λ beyond ~Λc2 , we observe that in region

IIA there is again a continuous deformation of the curves all
the way up to ~Λ ¼ 1.000. However, in the region IIB, we
encounter another bifurcation point which divides region
IIB into IIB1, IIB2, and IIB3. We observe that in region
IIB1 there is a continuous deformation of the curves, and
region IIB2 contains closed loops of the curves. Region
IIB3 is subdivided into regions IIB3a, IIB3b, and IIB3c.
Region IIB3a would have a continuous deformation of the
curves, and region IIB3b is seen to contain closed loops.
Region IIB3c (subdivided into regions IIB3c1, IIB3c2, and
IIB3c3) has its own rich physics as depicted in Figs. 1(b)
and 1(c) and as discussed in detail in the foregoing. Region
IIB3c3 has its own rich physics in the sense that this region
could, in principle, have further bifurcation points.
A plot of the vector field at the center of the star bð0Þ

versus the radius r̂o of the boson star is depicted in
Fig. 2(a). As before, the point B1 corresponds to the
bifurcation point, and the entire region depicted in
Fig. 2(a) is divided into four regions, IA, IB and IIA,
IIB, in the vicinity of the bifurcation point B1. Region IIB,
shown in Fig. 2(a), is separately depicted in detail in
Fig. 2(b). The asterisks shown in Fig. 2(a) represent the
transition points from the boson stars to the boson shells.
The spiral behavior of the solutions is visible in regions IA
and IIB. The inset in Fig. 2(b) represents part of region IIB
with better precision.
In conclusion, we have studied a theory of a massive

complex scalar field coupled to the U(1) gauge field and
gravity with a conical potential in the presence of a
cosmological constant Λ which takes positive as well as
negative values. The theory is seen to have rich physics in

the domain ~Λ ¼ 0.5 to ~Λ≃ 0.62. Four bifurcation points,
B1, B2, B3, and B4, have been obtained in the phase
diagram, and the physical behavior of the phase diagram
has been discussed in the various regions of the phase
diagram. We have observed interesting physics near the
four bifurcation points which correspond to the positive
values of ~Λ.
Towards the end we make some interesting observations.

Our theory has three free parameters. If we fix any two of
them at some appropriate values and vary the third care-
fully, then we notice that the bifurcation phenomenon
occurs, suggesting that the bifurcation phenomenon seems
to be generic. In the present study we have fixed α ¼ 0.2
and ~λ ¼ 1.0 and have studied the theory by varying the
value of ~Λ from −2.0 to 1.0 in the phase diagram.
We wish to emphasize that, in particular, if we fix

~Λ ¼ 0.541, α ¼ 0.2, and ~λ ¼ 1.0, for example, then we
obtain closed loops in the phase diagram, and if we vary
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FIG. 2. (a) Plot of the vector field at the center of the star bð0Þ
versus the radius r̂o of the boson star. The point B1 corresponds to
the bifurcation point, and the entire region depicted in panel (a) is
divided into the four regions IA, IB and IIA, IIB in the vicinity of
B1. The region IIB shown in (a) is separately depicted in detail in
panel (b). The asterisks shown in (a) represent the transition
points from the boson stars to the boson shells. The spiral
behavior of the solutions is visible in regions IA and IIB. The
inset in panel (b) represents part of region IIB with better
precision.
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any one of the parameters, keeping the other two param-
eters fixed, then we obtain bifurcation points between these
closed loops as seen in Fig. 1(b) for the variation of ~Λ.
The results of our preliminary investigations suggest

that, in particular, if we fix ~Λ ¼ 0 and α ¼ 0.2 and vary ~λ
carefully, then we notice the bifurcation phenomenon in a
manner analogous to our present studies. Following the
same logic, if we fix ~Λ and ~λ appropriately and vary α
carefully, then we again expect to obtain a bifurcation
phenomenon. These investigations are currently in
progress, and the detailed results will be reported later in
a separate communication. Nevertheless, we feel that the

occurrence of the bifurcation phenomenon should be a
generic feature of the theory.
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