
QCD sum rule study of a charged bottom-strange scalar meson

C.M. Zanetti,1 M. Nielsen,2 and K. P. Khemchandani1
1Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, Rod. Presidente Dutra Km 298,

Pólo Industrial, 27537-000 Resende, Rio de Janeiro, Brazil
2Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05389-970 São Paulo,

São Paulo, Brazil
(Received 1 March 2016; published 26 May 2016)

Using the QCD sum rule approach, we investigate the possible four-quark structure for the new observed
B0
sπ

� narrowstructure (D0).Weuse adiquak-antidiquark scalar current andwork to theorder ofms in fullQCD,
without relying on 1=mQ expansion. Our study indicates that although it is possible to obtain a stable mass in
agreement with the state found by the D0 collaboration, more constraint analysis (simultaneous requirement
of the OPE convergence and the dominance of the pole on the phenomenological side) leads to a higher mass.
We also predict the masses of the bottom scalar tetraquark resonances with zero and two strange quarks.
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Recently, the D0 Collaboration reported the observation
of a narrow structure, called Xð5568Þ, in the decay
Xð5568Þ → B0

sπ
� [1]. This is the first observation of a

hadronic state with two quarks and two antiquarks of
four different flavors and, therefore, can only be explained
as a tetraquark or molecular state. The mass and
width of the observed state were reported to be: m ¼
5567.8� 2.9ðstaÞþ0.9−1.9ðsystÞ MeV=c2 and Γ ¼ 21.9�
6.4ðstaÞþ5.0−2.5ðsystÞ MeV=c2. As pointed out in Ref. [1],
considering the large mass difference between the mass of
the Xð5568Þ and the sum of the B0 andK� masses, it can be
difficult to explain the Xð5568Þ as a molecular state.
Therefore, the Xð5568Þ is an excellent candidate for a
tetraquark state. If the B0

sπ
� pair in the Xð5568Þ decay is

produced in S-wave, its quantum numbers are JP ¼ 0þ as
the very narrow Dþ

s0ð2317Þ state, first discovered in the
Dþ

s π
0 decay channel by the BABAR Collaboration [2]. Due

to its low mass, the structure of the D��
s0 ð2317Þ meson has

been extensively debated. It has been interpreted as a
cs̄ state [3–7], two-meson molecular state [8–17], K-D-
mixing [18], four-quark states [19–22], or a mixture
between two-meson and four-quark states [23]. In this
paper, we use the QCD sum rule (QCDSR) approach
[24–28] to investigate the possible four-quark structure for
the Xð5568Þ and, therefore, to test if the Xð5568Þ could be
the isovector bottom partner of the Dþ

s0ð2317Þ.
The QCDSR for scalar mesons are constructed from the

two-point correlation function written in terms of a scalar
current jS,

ΠðqÞ ¼ i
Z

d4xeiq:xh0jT½jSðxÞj†Sð0Þ�j0i: ð1Þ

The key idea of the QCDSR method is to consider that
this correlation function is of dual nature, and it depends on
the value of the momentum q. For large momentum, i.e.,
short distances, the correlation function can be calculated

using perturbative QCD. In this case, the current jS is
written in terms of the quark content of the studied mesons.
However, since we are interested in studying the properties
of hadrons, the relevant energies are lower, and contribu-
tions from quark condensates, gluon condensates, etc., need
to be included in the evaluation of Eq. (1). This can be done
by using the Wilson operator product expansion (OPE) of
the correlation function. In this case, Eq. (1) is expanded in
terms of local condensates and a series of coefficients. The
local operators incorporate nonperturbative long-distance
effects, while the coefficients, by construction, include
only the short-distance domain and can be determined
perturbatively. This way of evaluating the correlation
function is customarily named as the calculation on the
“OPE side.”
At large distances or, equivalently, small momentum, the

currents j†S and jS of Eq. (1) can be interpreted as operators
of creation and annihilation of the scalar mesons. In this
case, the correlation function is obtained by inserting a
complete set of scalar states. This interpretation of the
correlation function is called as the “phenomenological
side.” The assumption made in the QCDSR approach is that
there must be a range of q2 values in which both
descriptions must be equivalent. Calculating the correlation
function of Eq. (1) using these two approaches and
equating them, it is possible to obtain information about
the properties of the hadronic states generated in the
system.
In Ref. [22], the Dþ

s0ð2317Þ state was considered as a
diquark-antidiquark tetraquark state and was studied by
using the QCDSR approach. A very good agreement with
the experimental mass was obtained. Here, we follow
Ref. [22] to write an analogous but isovector scalar-diquark
scalar-antidiquark tetraquark current for Xð5568Þ,

jS ¼ ϵabcϵdecðuTaCγ5sbÞðd̄dγ5Cb̄Te Þ; ð2Þ
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where a; b; c;… are color indices and C is the charge
conjugation matrix. Of course a scalar-scalar diquark-
antidiquark form is not the only possible choice for a
scalar tetraquark current, and one could use a pseudoscalar-
pseudoscalar, vector-vector, or axial-axial diquark-
antidiquark form. However, it was shown in Ref. [29] that
the scalar-scalar type of current gives more stable results.
Therefore, we use the current given by Eq. (2) for the
Xþð5568Þ.
The coupling of the state, X, to the scalar current, jS, can

be parametrized in terms of the constant fX as
h0jjSjXi ¼ fX; therefore, the phenomenological side of
Eq. (1) can be written as

Πphenðq2Þ ¼ f2X
m2

X − q2
þ � � � ; ð3Þ

where the dots denote the contribution from higher reso-
nances, which is usually parametrized through the intro-
duction of a continuum threshold parameter s0 [30].
On the OPE side, we work at leading order and consider

condensates up to dimension six. We deal with the strange
quark as a light one and consider the diagrams up to order
ms. To keep the bottom quark mass finite, we use the
momentum-space expression for the bottom quark propa-
gator. We follow ref. [31] and calculate the light quark part
of the correlation function in the coordinate space, which is
then Fourier transformed to the momentum space in D
dimensions. The resulting light quark part is combined with
the charm quark part before it is dimensionally regularized
at D ¼ 4.
We can write the correlation function on the OPE side in

terms of a dispersion relation,

ΠOPEðq2Þ ¼
Z

∞

m2
b

ds
ρðsÞ
s − q2

; ð4Þ

where the spectral density is given by the imaginary part of
the correlation function, ρðsÞ ¼ 1

π Im½ΠOPEðsÞ�. After mak-
ing a Borel transform on both sides, and transferring the
continuum contribution to the OPE side, the sum rule for
the scalar meson X can be written as

f2Xe
−m2

X=M
2 ¼

Z
s0

m2
b

dse−s=M2

ρðsÞ; ð5Þ

where M is the Borel mass and ρðsÞ¼ρpertðsÞþρmsðsÞ þ
ρhq̄qiðsÞþρhG2iðsÞþρmixðsÞþρhq̄qi2ðsÞþρhG3iðsÞ, with

ρpertðsÞ ¼ 1

2103π6

Z
1

Λ
dα

�
1 − α

α

�
3

ðm2
b − sαÞ4; ð6Þ

ρmsðsÞ ¼ 0; ð7Þ

ρhq̄qiðsÞ ¼ 1

26π4

Z
1

Λ
dα

1 − α

α
ðm2

b − sαÞ2

×

�
−hq̄qi

�
2ms þmb

1 − α

α

�
þmshs̄si

�
; ð8Þ

ρhG2iðsÞ ¼ hg2G2i
210π6

Z
1

Λ
dαðm2

b − sαÞ
�
m2

b

9

�
1 − α

α

�
3

þ ðm2
b − sαÞ

�
1 − α

2α
þ ð1 − αÞ2

4α2

��
; ð9Þ

ρmixðsÞ ¼ 1

26π4

Z
1

Λ
dαðm2

b − sαÞ
�
−mshs̄gσ:Gsi

6

þ hq̄gσ:Gqi
�
−msð1 − lnð1 − αÞÞ

−mb
1 − α

α

�
1 − 1 − α

2α

���
; ð10Þ

ρhq̄qi2ðsÞ ¼ − 1

24π2

Z
1

Λ
dαð2hq̄qihs̄siðm2

b − sαþmbmsÞ

− hq̄qi2mbmsÞ; ð11Þ

ρhG3iðsÞ ¼ hg3G3i3
2129π6

Z
1

Λ
dα

�
1 − α

α

�
3

ð3m2
b − sαÞ; ð12Þ

where the lower limit of the integrations is given by
Λ ¼ m2

b=s.
In order to compute the mass of the state, mX, we first

take the derivative of Eq. (5) with respect to 1=M2 and then
we divide the result by Eq. (5), obtaining

m2
X ¼

R s0
m2

b
dse−s=M2

sρðsÞR s0
m2

b
dse−s=M2

ρðsÞ : ð13Þ

This expression is used to evaluate the mass of the state.
The numerical values for the quark masses and con-

densates are listed in Table I [26,32–34].
The remaining input to the calculation is the continuum

threshold parameter, which, in general, is related to the
mass of the state to be studied (Xð5568Þ, in the present

TABLE I. QCD input parameters.

Parameters Values

ms ð0.13� 0.03Þ GeV
mb ð4.24� 0.06Þ GeV
hq̄qi −ð0.23� 0.03Þ3 GeV3

hs̄si ð0.8� 0.2Þhq̄qi
m2

0 ¼ hq̄gσ:Gqi=hq̄qi 0.8 GeV2

hg2G2i ð0.88� 0.25Þ GeV4

hg3G3i ð0.58� 0.18Þ GeV6
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case) as s0 ∼ ðmX þ 0.5 GeVÞ2. Therefore, to start our
analysis, we choose

ffiffiffiffiffi
s0

p ∼ 6.0 GeV.
In order to determine the values of the Borel mass

parameter, we analyze the pole contribution, the OPE
convergence, and the Borel stability. In the QCDSR
approach, we extract information only from the ground
state; therefore, we must ensure that the pole contribution is
greater that the continuum contribution. Here, we fix the
Borel mass in such a way that the pole contribution is
always between 80% and 50% of the total contribution.
From Fig. 1, we can see that this condition is satisfied for
values of the Borel mass in the range of 2.2 GeV2 ≤
M2 ≤ 3.0 GeV2.
In Fig. 2, we plot the ground state mass as a function of

M2, considering three different values of the threshold
parameter. We can see that there is a good M2 stability for
the Borel window considered. Using the central values of
the parameters in Table I and s0 ¼ 36 GeV2, we get

mX ∼ 5.58 GeV: ð14Þ

To evaluate the uncertainties inherent to the QCD sum
rule approach, we consider the variation of the mass in the
Borel window as a function of the continuum threshold
changed within a small range (5.9 ≤ ffiffiffiffiffi

s0
p ≤ 6.1 GeV) and

the quark masses and condensates errors indicated in
Table I. Considering these uncertainties we get

mX ¼ ð5.58� 0.17Þ GeV; ð15Þ

which is in excellent agreement with the experimental mass
of the X(5568) determined by the D0 Collaboration [1].
The result in Eq. (15) was obtained considering only the

pole dominance and the stability with the Borel mass.
There is, however, a stronger constraint to the lower bound
of theM2 that comes from imposing the OPE convergence.
We analyze the convergence of the OPE by comparing the
relative contribution of each term given by Eqs. (6)–(12), to
the right-hand side of Eq. (5). The requirement of a good
convergence sets a lower limit to M2. This analysis in
shown in Fig. 3.
As can be seen from Fig. 3, there is no OPE convergence

in any region allowed by the upper bound given by pole/
continuum analysis, M2 ≤ 3.0 GeV2. This means that the
lower bound given by OPE convergence will be higher than
the upper bound, and there is no valid “sum rule window”
where we can completely trust the results for this current.
To overcome this problem, we can consider higher-

dimension condensates in the OPE side and test if the series
starts converging with such contributions. We include the
condensates of dimension seven and eight whose expres-
sions are given below:

FIG. 1. The pole (solid line) and the continuum (dashed line)
contribution for

ffiffiffiffiffi
s0

p ¼ 6.0 GeV.

FIG. 2. The X mass as a function of the Borel mass for different
values of the continuum threshold:

ffiffiffiffiffi
s0

p ¼ 5.9 GeV (solid line),ffiffiffiffiffi
s0

p ¼ 6.0 GeV (dashed line),
ffiffiffiffiffi
s0

p ¼ 6.1 GeV (dotted line).

FIG. 3. The OPE convergence in the region 2.0 ≤ M2 ≤
7 GeV2 for s0 ¼ 36 GeV. We start with the relative perturbative
contribution (the perturbative contribution divided by the total
contribution), and each subsequent line represents the addition of
the relative contribution of a condensate of higher dimension in
the expansion.
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ρhs̄sihG2iðsÞ ¼ mshs̄sihg2G2i
2932π4

�
3

Z
1

Λ
dαþ

−
Z

1

0

dα
2m2

bα

ð1 − αÞ2 δ
�
s − m2

b

1 − α

��
; ð16Þ

ρhq̄qihG2iðsÞ¼−hq̄qihg2G2i
2832π4

�
msþ

Z
1

Λ
dα

�
ð4mbþ3msÞ

þ3ð1−αÞ
α

�
mbð1−αÞ

α
−3mb

��

þ
Z

1

0

dα
m2

bα

ð1−αÞ2
�
1

2
− mbα

1−α

�
δ

�
s− m2

b

1−α

��
;

ð17Þ

ρhq̄qihq̄GqiðsÞ ¼ mbmshq̄qihq̄gσ:Gqi
243π2

�Z
1

0

dα
1

1 − α

× δ

�
s − m2

b

1 − α

�
− 2δðs −m2

bÞ
�
; ð18Þ

ρhs̄sihq̄GqiðsÞ ¼ − hs̄sihq̄gσ:Gqi
253π2

�
2 −mbmsδðs −m2

bÞ

þ
Z

1

0

dα
mbms

1 − α
δ

�
s − m2

b

1 − α

��
; ð19Þ

ρhq̄qihs̄GsiðsÞ ¼ − hq̄qihs̄gσ:Gsi
2532π2

ð6þ δðs −m2
bÞÞ; ð20Þ

ρhg4G4iðsÞ ¼ − hg4G4i
2143π6

�Z
1

Λ
dαþ 2

3
m2

b

Z
1

0

dα
α

ð1 − αÞ2

× δ

�
s − m2

b

1 − α

��
: ð21Þ

On continuing with our analysis, we find that even after
considering condensates up to dimension eight a valid
“sum rule window” exists only for values of s0 ≥ 46 GeV2.
In Figs. 4 and 5, we show the OPE convergence and the
pole versus continuum contribution for s0 ≥ 46 GeV2.
From Fig. 4, we can see that there is an OPE con-

vergence; the dimension eight condensate contribution is
smaller than 20% of the total contribution, only for values
ofM2 ≥ 4.4 GeV2. On the other hand, from Fig. 5, we can
see that the pole contribution is bigger than the continuum
contribution for values of M2 ≤ 4.5 GeV2. Although very
small, there exists a valid Borel window in the region of
4.4 GeV2 ≤ M2 ≤ 4.5 GeV2, which provides a good “sum
rule” to extract a reliable value for the mass of the state.
In Fig. 6, we show the resulting value for the mass of the

state, as a function of the Borel mass, for three different
values of the continuum threshold. The crosses in the figure
indicate the “sum rule window”.

Finally, considering all the restrictions described above
we get

mX ¼ ð6.39� 0.10Þ GeV; ð22Þ

which is not in agreement with the experimental mass of the
Xð5568Þ determined by the D0 Collaboration [1]. As a
matter of fact, recently, the LHCb Collaboration has not
confirmed the observation of the Xð5568Þ. In their
preliminary analysis [35], no structure is found in the
B0
sπ

� mass spectrum from the B0
sπ

þ threshold up to
MB0

sπ
þ ≤ 5700 GeV. More analyses are required to clarify

this situation. Our work predicts a tetraquark state decaying
in this channel with a mass around 6.39 GeV.

FIG. 4. The OPE convergence in the region 3.5 ≤ M2 ≤
5.5 GeV2 for s0 ¼ 46 GeV. We start with the relative perturba-
tive contribution (the perturbative contribution divided by the
total contribution), and each subsequent line represents the
addition of the relative contribution of a condensate of higher
dimension in the expansion.

FIG. 5. The pole (solid line) and the continuum (dashed line)
contribution for s0 ¼ 46.0 GeV2.
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The uncertainty given in Eq. (22) is only related with the
range of values of the Borel mass window, a small variation
in the continuum threshold, 46 ≤ s0 ≤ 50 GeV2, and the
quark masses and condensates errors indicated in Table I.
The difference between the values in Eqs. (15) and (22) can
be associated mainly with the change in the value of the
continuum threshold. However, as discussed above, there is
no allowed Borel window for values of s0 ≤ 46 GeV2.
Therefore, the result obtained with s0 ∼ 36 GeV2 given in
Eq. (15), although being obtained in a Borel region where
one has pole dominance, cannot be trusted. This result
illustrates very well how we can reproduce the mass of a
given state and then after a more careful analysis conclude
that the state is not the particle associated with the chosen
current. We also point out that the difference betweenffiffiffiffiffi
s0

p ¼ ffiffiffiffiffi
48

p
GeV and the result in Eq. (22) is about

0.5 GeV, as the general supposition of the QCDSR
approach for the start of the continuum threshold. It is
also important to notice that the difference

ffiffiffiffiffi
s0

p −mX
increases with the value of the continuum threshold. As
an example, for s0 ∼ 64 GeV2, we get mX ∼ 6.7 GeV,
which implies

ffiffiffiffiffi
s0

p −mX ∼ 1.3 GeV, much larger than
0.5 GeV. This could be an indication that there is a
contribution from higher resonances below the continuum
threshold and, therefore, once again, the estimated mass
cannot be trusted. Therefore, to fix a “good range” of the
values of s0, we test if it provides an allowed Borel window
(where both constraints of the pole dominance and the OPE
convergence are satisfied) and that the value of the obtained
mass falls within the range from 0.4 GeV to 0.6 GeV
smaller than

ffiffiffiffiffi
s0

p
. Using these criteria, we have obtained s0

in the range of46 ≤ s0 ≤ 50 GeV2.
It is important to recall here that there exist other possible

corrections to QCD sum rule calculations of tetraquark. For
example, tetraquark can couple to two (colorless) mesons

in the intermediate state, and such excitations can contrib-
ute to the continuum. Such contributions (two pion
intermediate states) have been studied in Refs. [36–38]
when dealing with light scalar mesons. Also contributions
of an intermediate meson-baryon state have been consid-
ered to study a light pentaquark [39]. Similar investigations
should be carried out for tetraquark states like those studied
here. However, including such terms is beyond the scope
of the present article, and we shall consider it as a future
project.
We can extend the current formalism to study bottom

scalar mesons states that contain zero and two strange
quarks. In order to calculate the correlation function for
these states, we use the following interpolating fields for
these states (zero and two strange quarks, respectively):

j0 ¼ ϵabcϵdecðuTaCγ5qbÞðd̄dγ5Cb̄Te Þ;
jss ¼ ϵabcϵdecðuTaCγ5sbÞðs̄dγ5Cb̄Te Þ; ð23Þ

where q represents the quark u or d according to the charge
of the meson. The expression for the resulting spectral
densities are given in the Appendix.

We call Bð0sÞ
0 and Bð2sÞ

0 the scalar bottom tetraquark
mesons represented by j0 and jss, respectively (Eq. (23). In
Figs. 7 and 8, we show the masses of the states as a function
of the Borel mass for different values of the continuum
threshold, and as the previous case, there is good M2

stability in the allowed Borel window, represented by the
crosses in these figures.
The values obtained for the masses of the states are

mB0s
0
¼ 6.10� 0.16 GeV; ð24Þ

mB2s
0
¼ 6.39� 0.17 GeV: ð25Þ

FIG. 6. The X mass as a function of the Borel mass for different
values of the continuum threshold: s0 ¼ 46 GeV2 (solid line),
s0 ¼ 48 GeV2 (dashed line), s0 ¼ 50 GeV2 (dotted line). The
crosses in the figure indicate the allowed Borel window.

FIG. 7. The B0s
0 mass as a function of the Borel mass for

different values of the continuum threshold: s0 ¼ 43 GeV2 (solid
line), s0 ¼ 45 GeV2 (dashed line), s0 ¼ 47 GeV2 (dotted line).
The crosses in the figure indicate the allowed Borel window.
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The sources of errors are the same that were used for the
bottom-strange scalar meson. The mass of the state with no
strange quark (Eq. (24)) is in excellent agreement with the
recently discovered Bð5970Þ0 by the CDF collaboration in
the Bþπ− mass spectrum [40]. The spin-parity of this state
is not known. Our work indicates 0þþ quantum numbers
for Bð5970Þ0.
Comparing the results of the masses in Eqs. (22) and

(25), we can see that the X (the state with one strange
quark) and Bð2sÞ

0 resonance masses are basically degener-
ated, while the mass of Bð0sÞ

0 is around 300 MeV smaller
than the others. The same behavior is observed for the
scalar mesons in the charm sector, as was pointed out in
Ref. [22]. The increase in the mass is expected with the
inclusion of one strange quark (from zero to one strange
quarks). The fact this is not observed when one goes from
one to two strange quarks can be traced when we compare
the contribution of the quark condensate term that is smaller
for the Bð2sÞ

0 , but this is compensated by the inclusion of a
term ρms (Eq. (A8).
In summary, we have presented a QCD sum rule study for

a bottom scalar meson considered as a diquark-antidiquark
state. The motivation of the study is to look for a possible
state associatedwith the recently claimedXð5568Þby theD0
Collaboration. We find that it is possible to obtain a stable
mass in agreement with the state found by the D0
Collaboration, while satisfying the condition of the pole
dominance on the phenomenological side but sacrificing the
simultaneous constraint of the OPE convergence. This last
missing ingredient casts doubt on the reliability of the result,
leading us to conclude that the Xð5568Þ state cannot be
represented by the scalar tetraquark current. We find that a
rigorous application of QCD sum rule constraints leads to a
higher mass. Thus, we predict the existence of a scalar

bottom-strange tetraquark statewith amass around 6.4 GeV.
We also have obtained the masses for the resonances with
zero and two strange quarks, which we call B0s

0 and B2s
0 .

These resonances have also not been observed yet, but our
calculations show that they should exist.
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APPENDIX: SPECTRAL DENSITIES
FOR RESONANCES WITH ZERO
AND TWO STRANGE QUARKS

The expressions (6), (9), and (12) are common to the
three resonances. Next, we list the other terms that are not
common.
From j0, we get

ρmsðsÞ ¼ 0; ðA1Þ

ρhq̄qiðsÞ ¼ −mbhq̄qi
26π4

Z
1

Λ
dα

�
1 − α

α

�
2

ðm2
b − sαÞ2; ðA2Þ

ρmixðsÞ ¼ mbhq̄gσ:Gqi
26π4

�
1

2

Z
1

Λ
dα

�
1 − α

α

�
2

ðm2
b − sαÞ þ

−
Z

1

Λ
dα

1 − α

α
ðm2

b − sαÞ
�
; ðA3Þ

ρhq̄qi2ðsÞ ¼ − hq̄qi2
12π2

Z
1

Λ
dαðm2

b − sαÞ; ðA4Þ

ρhq̄qihG2iðsÞ ¼ 0; ðA5Þ

ρhs̄sihG2iðsÞ ¼ hs̄sihg2G2i
2832π4

�
−
Z

1

0

dα
m3

bα
2

ð1 − αÞ3

þ
Z

1

Λ
dα

�ð1 − αÞð12α − 3Þmb

α2
− 8mb

2

��
;

ðA6Þ

ρhG4iðsÞ ¼ hg4G4i
21332π6

�
3

2

Z
1

Λ
dα −

Z
1

0

dα
m2

bα

ð1 − αÞ2

× δ

�
s − m2

b

1 − α

��
: ðA7Þ

From jss, we get

ρmsðsÞ ¼ −msmb

283π6

Z
1

Λ
dα

�
1 − α

α

�
3

ðm2
b − sαÞ3; ðA8Þ

ρhq̄qiðsÞ ¼ 1

26π4

Z
1

Λ
dα

1 − α

α
ðm2

b − sαÞ2

×

�
hs̄si

�
2ms −mb

1 − α

α

�
− 2mshq̄qi

�
; ðA9Þ

FIG. 8. The B2s
0 mass as a function of the Borel mass for

different values of the continuum threshold:
ffiffiffiffiffi
s0

p ¼ 46 GeV2

(solid line), s0 ¼ 48 GeV2 (dashe line), s0 ¼ 50 GeV2 (dotted
line). The crosses in the figure indicate the allowed Borel
window.
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