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Ward-Green-Takahashi (WGT) identities play a crucial role in hadron physics, e.g. imposing stringent
relationships between the kernels of the one- and two-body problems, which must be preserved in any
veracious treatment of mesons as bound states. In this connection, one may view the dressed gluon-quark
vertex, Γa

μ, as fundamental. We use a novel representation of Γa
μ, in terms of the gluon-quark scattering matrix,

to develop a method capable of elucidating the unique quark-antiquark Bethe-Salpeter kernel, K, that is
symmetry consistent with a given quark gap equation. A strength of the scheme is its ability to expose and
capitalize on graphic symmetries within the kernels. This is displayed in an analysis that reveals the origin of
H-diagrams inK, which are two-particle-irreducible contributions, generated as two-loop diagrams involving
the three-gluon vertex, that cannot be absorbed as a dressing of Γa

μ in a Bethe-Salpeter kernel nor expressed as
a member of the class of crossed-box diagrams. Thus, there are no general circumstances under which the
WGT identities essential for a valid description of mesons can be preserved by a Bethe-Salpeter kernel
obtained simply by dressing both gluon-quark vertices in a ladderlike truncation; and, moreover, adding any
number of similarly dressed crossed-box diagrams cannot improve the situation.
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I. INTRODUCTION

A natural framework for studying the two valence-body
bound-state problem in quantum field theory is provided by
the Dyson-Schwinger equations (DSEs) [1], with the one-
body gap equation and two-body Bethe-Salpeter equation
(BSE) playing leading roles. The approach is useful in
hadron physics owing to asymptotic freedom in quantum
chromodynamics (QCD), which materially reduces model
dependence in sound nonperturbative applications because
the interaction kernel in each DSE is known for all momenta
within the perturbative domain, i.e. k2 ≳ 2 GeV2. Any
model need then only describe the kernels’ nonperturbative
behavior. That is valuable because DSE solutions are
propagators and vertices, in terms of which all cross sections
are built. The approach thus connects observables with
the long-range behavior of QCD’s running coupling and
masses. Hence, feedback between predictions and exper-
imental tests can be used to refine any model input and
thereby improve understanding of these basic quantities.
This opens the way to addressing questions pertaining to,
e.g., the gluon and quark structure of hadrons, and the
emergence and impact of confinement and dynamical chiral
symmetry breaking (DCSB).
The DSEs are a collection of coupled equations; and a

tractable problem is only obtained once a truncation
scheme is specified. A weak-coupling expansion reprodu-
ces perturbation theory; but, although valuable in the
analysis of large momentum transfer phenomena in

QCD, it cannot yield nonperturbative information. A
symmetry preserving scheme applicable to hadrons was
introduced in Refs. [2,3]. That procedure generates a BSE
from the kernel of any gap equation whose diagrammatic
content is known. It thereby guarantees, inter alia, that all
Ward-Green-Takahashi (WGT) identities [4–7] are pre-
served, without fine-tuning, and hence ensures, e.g. current
conservation and the appearance of Goldstones modes in
connection with DCSB.
The leading-order term in the procedure of Refs. [2,3] is

the rainbow-ladder (RL) truncation. It is widely used and
known to be accurate for light-quark ground-state vector-
and isospin-nonzero-pseudoscalar mesons [8–11], and
properties of ground-state octet and decuplet baryons
[12–15], because corrections in these channels largely
cancel owing to the parameter-free preservation of relevant
WGT identities ensured by this scheme. However, higher-
order contributions do not typically cancel in other chan-
nels [16–18]. Hence studies based on the RL truncation,
or low-order improvements thereof, usually provide poor
results for light-quark scalar- and axial-vector mesons
[19–24], exhibit gross sensitivity to model parameters
for tensor mesons [25] and excited states [26–29], and
are unrealistic for heavy-light systems [30–32].
These difficulties are surmounted by the scheme in

Ref. [33] because it enables the use of more realistic
kernels for the gap and Bethe-Salpeter equations, which
possess a sophisticated structure, including Dirac vector ⊗
vector and scalar ⊗ scalar quark-antiquark interactions.
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Significantly, this technique is also symmetry preserving;
but it does not require knowledge of the diagrammatic
content of the gap equation’s kernel, whose complexity
may be expressed in the form chosen for the dressed
gluon-quark vertex, a subject of great interest itself, e.g.
Refs. [34–42]. The gap equation in Fig. 1 is

ΣðkÞ ¼ Z1

Z
Λ

dq
g2Dμνðk − qÞΓa

μðk; qÞSðqÞ
λa

2
γν; ð1Þ

where
R
Λ
dq represents a Poincaré invariant regularization of

the four-dimensional integral, with Λ the regularization
mass-scale, and Z1ðζ2;Λ2Þ, is the vertex renormalization
constant, with ζ the renormalization scale. An additional
strength of the new scheme is its capacity to express DCSB
in the integral equations connected with bound states. It has
therefore enabled elucidation of novel nonperturbative
features of QCD [13,38,43–46] and facilitated material
progress toward the prediction of hadron observables in
continuum QCD [47].
Notwithstanding the existence of this improved scheme,

there is merit in providing a mechanical approach capable of
elucidating that Bethe-Salpeter kernel which is symmetry
consistent with any given gap equation. Possessing such a
tool, one may, e.g. validate any newly proposed Bethe-
Salpeter kernel that is based on a skeleton expansion of the
gap equation, simply by checking whether it ensures
preservation of the WGT identities, and/or expose the full
complexity demanded of the symmetry-consistent kernel by
any concrete statement about the gap equation’s structure.
We describe such an approach herein, delivering our
explanations mainly in terms of diagrams. Naturally, each
one corresponds to a well-defined integral, which could be
written explicitly. In those terms, however, the proliferation
of symbols, nested integrals, etc. would obscure the reason-
ing. In using diagrammatic methods we are capitalizing on
the pedagogical capacity and intuitive strengths which have
led to Feynman diagrams being adopted so widely.

II. INSUFFICIENCY OF VERTEX-DRESSED
LADDER KERNELS

The BSE for a color-singlet vertex, GM, which may
exhibit meson bound states, is depicted in Fig. 2:

½GMðk;PÞ�rs ¼ ZMgM

þ
Z

Λ

dq
½SðqþÞGMðq;PÞSðq−Þ�tuKrs

tuðk; q;PÞ;

ð2Þ

where ZM is a renormalization constant, the total momen-
tum P¼kþ−k−, where kþ ¼ kþ ηP, k− ¼ k − ð1 − ηÞP,
with η ∈ ½0; 1�: no observable can depend on η, i.e. the
definition of the relative momentum.
The scattering kernel, Kðk; q;PÞ in Eq. (2), expresses

all possible interactions that can occur between a dressed
quark and dressed antiquark; and is two-particle irreducible
(2PI), viz. it does not contain quarkþ antiquark to single
gauge-boson annihilation diagrams nor diagrams that
become disconnected by cutting one quark and one
antiquark line. Naturally, this means that K also includes
an enumerable infinity of n ≥ 2PI contributions.
The kernel that ensures preservation of all WGT iden-

tities associated with a given color-singlet vertex may be
expressed as [2,3]

Kðk; q;PÞ ¼ −
δΣðkÞ
δSðqÞ ; ð3Þ

which corresponds to “cutting” each internal fermion line
in all dressing diagrams. This cutting procedure actually
furnishes a kernel in the “diagonal configuration” [48]:
Kðk; q; 0Þ. The general momentum configuration may be
obtained as described following Eq. (44) in Ref. [17], i.e. in
addition to the usual effect of differentiation, the functional
derivative adds P to the argument of every quark line
through which it is commuted when applying the product
rule. One may alternatively generate the full momentum

FIG. 1. Quark self-energy, ΣðkÞ ¼ iγ · k½Aðk2Þ − 1� þ Bðk2Þ,
Eq. (1): solid line with open-circle, dressed-quark propagator
SðqÞ ¼ 1=½iγ · qþ ΣðqÞ�; open-circle “spring,” dressed-gluon
propagator, Dμνðk − qÞ; and (red) shaded circle, dressed
gluon-quark vertex, Γa

μðk; qÞ. A coupling g appears at each
vertex.

FIG. 2. Upper panel. BSE for a color-singlet vertex, GMðk;PÞ.
The channel is defined by the inhomogeneity, e.g. with gM ¼
1
2
τiγ5γμ one gains access to all states that communicate with an

isovector axial-vector probe, such as the pion and a1 meson. The
interaction between the dressed valence constituents is com-
pletely described by the scattering kernel, K. Lower panel. For
I ≠ 0 mesons, the Bethe-Salpeter kernel is a sum of two terms,
Eq. (4). The interaction content of both is completely determined
by that of the dressed gluon-quark vertex, explicitly for KS and
implicitly for KΓ, Eq. (5).

DANIELE BINOSI et al. PHYSICAL REVIEW D 93, 096010 (2016)

096010-2



arguments by beginning with the effective action A½S�
expressed in coordinate space [49,50], obtaining the
dressed-quark propagator as the solution of δA½S�=δS ¼ 0,
and subsequently employing Eq. (3).
For systems with nonzero isospin, I ≠ 0, quark propa-

gators appearing in gluon vacuum-polarization diagrams
may be neglected and the kernel can be expressed as a sum
of just two terms [3,17,18,33,51,52]:

KI≠0ðk; q;PÞ ¼ KSðk; q;PÞ þKΓðk; q;PÞ; ð4Þ

as depicted in the lower panel of Fig. 2, where the content
of the vertex Λμ is completely determined by the functional
derivative of the dressed gluon-quark vertex:

Λa
μðk; q;PÞ ∼

δΓa
μðk; qÞ
δSðqÞ : ð5Þ

Extending our reasoning to I ¼ 0 systems is not difficult in
principle; but many extra diagrams arise and one must also
allow for the possibility that contributions of a topological
nature may play an important role [53].
In some exceptional circumstances, as when Γa

μ is
expressed via a recursion relation and the dressed-gluon
propagator has negligible support at nonzero momenta, e.g.
the model in Ref. [54], Λa

μ ≡ 0 in the pseudoscalar channel
[17,18]. In this case the Bethe-Salpeter kernel that pre-
serves the axial-vector WGT identity for a given gap
equation with dressing defined by Γa

μ, is obtained by
including the specified dressing on only one of the vertices
in a ladderlike kernel, viz. KSðk; q;PÞ. That is not true in
any other channel and, in general, false in all channels; a
fact emphasized by the dashed (blue) curve in Fig. 3, which
displays the pion mass obtained using a Ball-Chiu (BC)
vertex Ansatz [56] ðt ¼ ½kþ q�=2Þ:

iΓa
μðk; qÞ ¼

λa

2
½ςAiγμ þ δA

i
2
tμγ · tþ δBtμID�; ð6Þ

ςF¼½Fðk2ÞþFðq2Þ�=2, δF ¼ ½Fðk2Þ − Fðq2Þ�=ðk2 − q2Þ,
for the dressed vertex in Fig. 1 and K ¼ KS in the upper
panel of Fig. 2. (Here F ¼ A, B are the scalar functions
characterizing the quark propagator, Fig. 1.) Plainly,
although the gap equation guarantees DCSB, the BSE
does not produce a pion with the nature of a
Goldstone boson.
One might imagine that if dressing only one vertex fails,

then, perhaps, dressing both vertices, to obtain a dressed-
vertex ladderlike kernel, KL−ΓΓ, will be sufficient to
produce a symmetry-consistent system. It is known from
Refs. [3,17,18,33] that this is false in general: the simplest
Abelian-like one-loop gluon correction to the gluon-quark
vertex (generated by the diagram labeled “Ab” in Fig. 4)
demands the presence of crossed-box contributions to the
symmetry-consistent kernel.

Suppose though, that one neglects Abelian-like dressings
of Γa

μ; namely, all terms generated by the Ab diagram in
Fig. 4 and its analogues in other relevant kernels. (Abelian-
like contributions may be subdominant [18,35,57].) One

FIG. 3. Pion mass-squared vs current-quark mass, obtained
with the BC Ansatz, Eq. (6), for Γa

μ in the gap equation, Fig. 1:
dashed (blue) curve, Bethe-Salpeter kernel in Fig. 2 is K ¼ KS;
dot-dashed (red) curve, kernel is KL−ΓΓ, the dressed-vertex
ladderlike kernel; and solid (black) curve, complete BC-
vertex-consistent kernel constructed following Refs. [33,55].
Evidently, only the complete kernel is sufficient to ensure the
existence of a Nambu-Goldstone pion. (Results obtained with the
dressed-gluon line represented by the interaction in Ref. [28]:
D ¼ 0.5 GeV2, ω ¼ 0.5 GeV, τ → ∞.)

FIG. 4. Upper panel. DSE for the dressed gluon-quark vertex,
Γa
μ. Only selected contributions are shown. The complete equa-

tion is depicted, e.g. in Fig. 2.6 of Ref. [1]. The shaded (blue)
circle at the junction of three-gluon lines is the dressed three-
gluon vertex. Lower panel. Some of the contributions to the
quark-antiquark scattering kernel, K, generated by the gap
equation expressed in terms of the dressed gluon-quark vertex
depicted in the upper panel. The last diagram drawn explicitly is
an example of an H diagram. It is 2PI; but cannot be expressed as
a correction to either vertex in a ladder kernel nor as a member of
the class of crossed-box diagrams.
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then arrives at the diagrams in the second line of Fig. 4.
Inserting this vertex into Fig. 1 and using Eq. (3), it is
apparent that the first contribution (bare gluon-quark
vertex) generates the RL truncation, which is the first term
depicted on the right-hand side (rhs) of the lower panel in
Fig. 4. It is evident, too, that the second diagram in the
second line of Fig. 4 produces a sum of two terms inK, viz.
a three-gluon vertex correction on the quark line and
another on the antiquark line. These are the second two
terms in the lower panel of Fig. 4; therefore, at this point it
might seem plausible that a vertex-dressed ladder kernel
can provide a symmetry preserving framework for the
study of mesons.
However, the third diagram drawn in the second line

of Fig. 4 has not yet been considered. Amongst others, it
generates an H diagram, viz. the last image drawn in the
lower panel of Fig. 4. Kindred contributions to Γa

μ produce
an enumerable infinity of similar terms in K. Such con-
tributions cannot be expressed as a correction to either
vertex in a ladder kernel and neither are they members
of the class of crossed-box diagrams. H diagrams are a
distinct class of essentially non-Abelian 2PI contributions
to K. If they are omitted from the kernel, then the BSE
obtained thereby cannot produce color-singlet vertices that
satisfy WGT identities involving a dressed-quark propa-
gator generated by the vertex in Fig. 4, whether or not
Ab-type diagrams are neglected.
It is notable that H-type diagrams produce an infrared

divergence in the perturbative calculation of the static-
quark potential, i.e. a contribution which exhibits
unbounded growth as the distance between the source
and sink increases [58]. One might view this as a sign that
the inclusion of H-type diagrams in the quark-antiquark
scattering kernel could be important if one seeks to recover
an area law in the static-quark limit [59].
The general insufficiency of the vertex-dressed ladder

kernel (KL−ΓΓ) is also highlighted by Fig. 3: with the BC
vertex, Eq. (6), one obtains the dot-dashed (red) curve.
Plainly, this kernel generates far too much attraction. That
is not surprising, given the dashed (blue) curve in the same
figure, which shows that KS provides attraction in the
pseudoscalar kernel; and, in dressing both vertices, one has
not obviously added any repulsion. Importantly, however,
there is actually destructive interference amongst the
various contributions in the BSE obtained with KL−ΓΓ:
whereas the ς2A terms produce attraction, those involving δB
generate net repulsion.
Consider therefore, a modified Ansatz, viz. Eq. (6)

with δB → 2δB. In this case, weakening the interaction
strength: D ¼ 0.5 → 0.29 GeV2 produces m2

π ¼ 0 at
mq ¼ 0. Evidently, one can tune the interaction strength
to achieve a massless pion; but securing that numerical
outcome is not equivalent to ensuring preservation of the
axial-vector WGT identity. This is readily seen by checking
the quark-level Goldberger-Treiman relation [60,61]:

Eπðk2; k · P ¼ 0;P2 ¼ 0Þ ∝
mq¼0

Bðk2Þ; ð7Þ
a corollary of the axial-vector WGT identity, where Eπ is
the leading term in the pion’s Bethe-Salpeter amplitude.
Using the δB → 2δB Ansatz, both in the gap equation and
to generate KL−ΓΓ, one finds that Eq. (7) is violated: an
accurate interpolation of the monotonically decreasing
ratio is provided by Eπðk2Þ=Bðk2Þ ¼ ð1þ 0.02xÞ=
ð1þ 0.08xþ 0.01x2Þ, x ∈ ½0; 50�, x ¼ k2=B2ð0Þ, where
Bðk2 ¼ 0Þ ¼ 0.28 GeV. (We normalized the ratio to unity
at k2 ¼ 0. It is 0.47 at x ¼ 9.) On the other hand, Eq. (7) is
preserved without fine-tuning when K is constructed
according to Ref. [33]. It follows that there exist gap
equation kernels, too numerous to count, for which KL−ΓΓ
yields m2

π ¼ 0 at mq ¼ 0; but the pairing nevertheless fails
to preserve the axial-vector identity.
The preceding discussion invalidates claims made in

Ref. [62], e.g., referring now to diagrams therein, under no
circumstances can the BSE in Fig. 12 be symmetry
consistent with the gap equation generated by Fig. 5.

III. SYMMETRY-CONSISTENT
BETHE-SALPETER KERNEL

In order to generalize the discussion in Sec. II, we first
observe that the common manner of expressing the
quark self-energy, Fig. 1, is grossly asymmetric with
respect to the two gluon-quark vertices: one vertex is
fully dressed, whereas the other has its tree-level form.
This can be remedied by changing the way one looks at
the dressed gluon-quark vertex. Namely, instead of
considering the vertex from the gluon’s perspective, it
is advantageous to adopt the antiquark’s view, depicted
in Fig. 5, and write a DSE for this vertex in terms of the
gluon-quark scattering amplitude C, which is 1PI in the s
channel:

Γa
μðp; qÞ ¼

λa

2
γμ þ ΓQ

μ ≕ Γð0Þ
μ �M; ð8Þ

(a) (b)

FIG. 5. Upper panel. DSE for the dressed gluon-quark vertex,
Γa
μ, expressed with the antiquark providing the reference line and

involving the s-channel 1PI gluon-quark scattering amplitude C.
Lower panel. In terms of the gluon-quark vertex, the equation for
the quark self-energy is manifestly symmetric when expressed
using C: (a) rainbow term; and (b) all corrections.
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ΓQ
μ ¼

Z
Λ

dl

λb

2
γρSðlþÞDρσðl−ÞCbaσμðl; q;pÞ; ð9Þ

where Γð0Þ
μ ¼ λa

2
γμ is the tree-level contribution, ΓQ

μ

expresses all (quantum) corrections, and the sum is
represented by the operation of the transition matrix
M, defined implicitly in Eq. (8). Inserting Eq. (9) into
Eq. (1), one obtains the manifestly symmetric expression
for the quark self-energy depicted in the lower panel
of Fig. 5.
Equation (3) can now be used to obtain that kernel in

Eq. (2) which ensures preservation of all WGT identities
relevant to the channel considered. For I ≠ 0, the differ-
entiation produces the series in Fig. 6. Once more, the
rainbow-ladder truncation appears as the simplest contri-
bution, arising from diagram (a) in Fig. 5; but it is
augmented in general by a series of complex corrections.
Denoting the third diagram in line (b) of Fig. 6 by ΣCðkÞ,
viz. the image with C itself being cut, and represents its
contribution in the BSE by KC, then it is evident from
Fig. 6 that

KI≠0 ¼ −g2½Γð0Þ
μ DμνΓ

ð0Þ
ν þ Γð0Þ

μ DμνΓ
Q
ν þ ΓQ

μDμνΓ
ð0Þ
ν � þKC

ð10Þ

¼ −g2ΓμDμνΓν|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
KL−ΓΓ

þ g2ΓQ
μDμνΓ

Q
ν þKC: ð11Þ

Plainly, KL−ΓΓ in Eq. (11) is a dressed-vertex ladderlike
subcomponent of the symmetry-consistent kernel (already
considered in Sec. II); but there is much more in the
complete kernel. To elucidate, we focus onKC and consider
the nature of C. This amplitude contains infinitely many

diagrams; and although an infinite number of them contain
no internal quark line, that collection cannot contribute to
KC. The relevant contributions to C are those which contain
at least one quark line; and hence, for I ≠ 0, KC has the
expansion depicted in Fig. 7.
The lower panel of Fig. 7 focuses on the first term

on the rhs of the upper panel, which produces the following
contribution to the quark-antiquark kernel: ð−g2ÞΓQ

μDμνΓ
Q
ν .

All remaining terms generate n ≥ 2PI contributions toKI≠0

that are structurally inequivalent to those contained in
KL−ΓΓ, as illustrated by Fig. 8. Denoting these terms by
KL, one arrives finally at

(a)

(b)

FIG. 6. In I ≠ 0 channels, Eq. (3) produces this series of
diagrams for the 2PI kernel of the symmetry-consistent BSE. The
dashed (red) lines represent the act of functional differentiation
and the arrows direct attention to the resulting kernel contribu-
tion, when that can be depicted simply.

FIG. 7. Upper panel. In I ≠ 0 channels, KC has the expansion
depicted here, where the dashed (red) lines indicate the quark line
that reacts to the functional differentiation in Eq. (3). The
expansion necessarily involves gþ q → ðmþ 1Þgþ q, m ≥ 1,
transition matrices, M1, etc. Lower panel. A focus on the first
diagram on the rhs in the upper panel reveals the simple nature of
its contribution to K.

FIG. 8. Explicating the origin of H-diagrams and crossed-box
terms in the quark-antiquark scattering kernel, KI≠1. Left:
elements in the gluon-quark scattering matrix, C; and right:
contributions they generate in KC.

SYMMETRY PRESERVING TRUNCATIONS OF THE GAP … PHYSICAL REVIEW D 93, 096010 (2016)

096010-5



KI≠0 ¼ KL−ΓΓ þKL: ð12Þ
That it is impossible for KL−ΓΓ alone to serve as a
symmetry-consistent quark-antiquark scattering kernel is
also evident here. Amongst infinitely many others, the
second and third images drawn explicitly in the expression
for KC in Fig. 7 contain the contributions in Fig. 8: the top-
left image expresses a correction to the gluon-quark vertex,
so its influence is felt within KL−ΓΓ; but it must simulta-
neously contribute to KL, as displayed in Fig. 7, producing
the H diagram depicted Fig. 8.

IV. EPILOGUE

Working with a simple Ansatz for the dressed gluon-
quark vertex, Γa

μ, we considered the capacity of vertex-
dressed ladderlike Bethe-Salpeter kernels to preserve WGT
identities relevant to meson bound states; and found that
whilst they can readily be tuned to produce a massless pion
in the chiral limit, they nevertheless fail to preserve the
axial-vector WGT identity and are thus incomplete. We
generalized these observations using a novel representation
of Γa

μ in terms of the gluon-quark scattering amplitude,
which enabled us to show that whilst a dressed-vertex
ladderlike truncation is the simplest term in the complete
Bethe-Salpeter kernel,K, it is insufficient in general, owing

to the presence of, inter alia, H diagrams, viz. two-loop
terms, involving the three-gluon vertex, that cannot be
absorbed into K as a part of Γa

μ nor expressed as a member
of the class of crossed-box diagrams. Consequently, the
WGT identities essential for a valid description of mesons
cannot generally be preserved whenK is obtained merely by
dressing both gluon-quark vertices in a ladderlike truncation;
and, moreover, adding any number of similarly dressed
terms in the class of crossed-box diagrams cannot improve
the situation. Fortunately, sophisticated alternatives exist
[33], are in practical employment [38,43–47] and are being
refined [55].
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