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We consider the propagation of a chiral spin-3=2 particle in a background medium using the thermal
field theory (TFT) method, in analogy to the cases of a spin-1=2 fermion (e.g., a neutrino) and the photon.
We present a systematic decomposition of the thermal self-energy, from which the dispersion relation of the
modes that propagate in the medium are obtained. We find that there are several modes and in each case we
obtain the equation for the dispersion relation as well as the corresponding spin-3=2 spinor. As an example
of the general procedure and results, we consider a model in which the chiral spin-3=2 particle couples to a
spin-1=2 fermion and a scalar particle, and propagates in a thermal background composed of such particles.
The dispersion relations and corresponding spinors are detemined explicitly in this case from the 1-loop
TFT expression for the self-energy. The results in this case share some resemblance and analogies with the
photon and the chiral fermion cases but, as already noted, there are also differences. The present work
provides the groundwork for considering problems related to the properties of chiral spin-3=2 particles in a
medium, in analogy to the case of neutrinos for example, which can be relevant in physical contexts of
current interest.
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I. INTRODUCTION

It is known that dispersion effects can have significant
impact on the properties of elementary particles when they
propagate through a background medium, such as the
dispersion relation and the induced electromagnetic cou-
plings of electrically neutral particles. The effects on
photons and plasma physics have of course been known
for a long time, and more recently it has been a crucial item
in neutrino physics since the discovery of the Mikheyev-
Smirnov-Wolfenstein effect [1]. From a modern point of
view, the methods of thermal field theory (TFT) [2] have
been useful for studying many problems associated with
such effects in a variety of physical contexts. This view has
been partially stimulated by the original work of Weldon
[3,4] showing the convenience of the covariant TFT
calculations in this kind of problems, in particular in
systems involving chiral fermions at finite temperature.
In the case of neutrinos there is an extensive literature on

the effects of the background medium on their properties
and propagation. Apart from the dispersion relation [5,6],
the medium also induces electromagnetic couplings [7] that
can lead to effects in astrophysical and/or cosmological
settings, as well as neutrino collective oscillations [8] that

have been the subject and significant work in the context of
instabilities in supernovas [9].
Here we consider the propagation of a chiral spin-3=2

particle λμL in a background medium, using the same TFT
techniques. It has been shown recently [10] that the theory
of a gauged massless chiral Rarita-Schwinger (RS) field
[11] is consistent with physical principles (e.g., no super-
luminal propagation and others). Thus it seems useful to
look in a general way at the case of a massless chiral spin-
3=2 particle propagating in a thermal background, in
analogy to the case of a spin-1=2 fermion (e.g., a neutrino)
or the photon, as mentioned above. Our aim is to provide a
useful starting point for considering similar problems in the
spin-3=2 case. Because the chiral λμL field can be thought of
as a combination of a spin-1=2 chiral field and massless
spin-1 field, the problem shares some analogies with both
of those cases, although the details are different.
Our main result is a systematic decomposition of the

thermal self-energy, from which the dispersion relation of
the modes that propagate in the medium are obtained. We
assume that the interactions of the λL particle with the
thermal background particles are such that the thermal self-
energy is transverse to the momentum four-vector of the
propagating mode. A key element of the procedure is a
general expression for the self-energy in terms of a set of
scalar functions, each one corresponding to an independent
tensor, consistent with the transversality condition, con-
structed using the momentum vectors available in the

*nieves@ltp.uprrp.edu
†sarira@nucleares.unam.mx

PHYSICAL REVIEW D 93, 096009 (2016)

2470-0010=2016=93(9)=096009(12) 096009-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.096009
http://dx.doi.org/10.1103/PhysRevD.93.096009
http://dx.doi.org/10.1103/PhysRevD.93.096009
http://dx.doi.org/10.1103/PhysRevD.93.096009


system (the momentum four-vector kμ of the particle and
the background velocity four-vector uμ), as well as the
gamma matrices, the metric tensor and the Levi-Civita
tensor. On the basis of such a decomposition we find that
there is a transverse mode, in the sense that its spin-3=2
spinor is transverse to kμ, and two other modes that involve
the longitudinal polarization vector. In each case we obtain
the equation for the dispersion relation in terms of the self-
energy scalar functions, as well as the corresponding spin-
3=2 spinor. We illustrate the application of the procedure
and the results by considering a model in which the λμL
particle couples to a spin-1=2 fermion and a scalar particle,
and propagates in a thermal background composed of
such particles. From the 1-loop TFT expression for the
self-energy, we determine the scalar functions referred to
above, and in turn from them the dispersion relations and
corresponding spinors. The results in this case share some
resemblance and analogies with the photon and the
chiral fermion case but, as already noted, there are also
differences. Thus, the present work provides the ground-
work for considering problems related to the properties of
chiral spin-3=2 particles in a medium, in analogy to the case
of neutrinos for example. The results presented here can be
useful in problems of current research interest that involve
the thermal production of spin-3=2 particles in cosmologi-
cal (e.g., gravitinos in the early Universe) or astrophysical
contexts [12,13].
The rest of the paper is organized as follows. In Sec. II

we introduce the self-energy function and the λμL effective
equation of motion in a medium. In Sec. III we write down
the decomposition of the thermal self-energy in terms of a
set of independent structure tensors and the corresponding
scalar functions, consistent with the transversality condi-
tion. The tensors are constructed from the momentum of the
particle kμ and the background velocity four-vector uμ, as
well as the gamma matrices, the metric tensor and the Levi-
Civita tensor. In Sec. IV we set down the conventions that
we use for the spin-3=2 basis spinors, in terms of the spin-1
polarization vectors and the spin-1=2 chiral spinors. In
Sec. V the equations for the dispersion relations are
obtained, and finally in Sec. VI the equations are solved
explicitly in the example mentioned above.

II. EQUATION OF MOTION AND THE
SELF-ENERGY IN THE MEDIUM

The free-field part of the chiral (massless) RS
Lagrangian in coordinate space is given by

Lð0Þ
λ ¼ −λμLfi∂ λLμ − γμi∂ · λL − i∂μγ · λL þ γμi∂ γ · λLg;

ð2:1Þ

and in momentum space it translates to

Lð0Þ
λ ðkÞ ¼ λμLðkÞLμνλ

ν
LðkÞ; ð2:2Þ

where

Lμν ¼ −½gμνk − kμγν − kνγμ þ γμk γν�: ð2:3Þ

Equations (2.1) and (2.2) can be rewritten in the alternative
forms

Lð0Þ
λ ¼ −ϵμναβλ

μ
Lγ

α∂βλνL; ð2:4Þ

and

Lð0Þ
λ ðkÞ ¼ λμLðkÞlμνλðkÞγλλνLðkÞ; ð2:5Þ

respectively, where we have defined

lμνλðkÞ ¼ iϵμνλρkρ: ð2:6Þ

This follows from the identity [14]

γαγβγγ ¼ ðgαβγγ − gαγγβ þ gβγγαÞ þ iϵαβγλγλγ5; ð2:7Þ

which implies, for example, that

LμνL ¼ lμνλγ
λL; ð2:8Þ

where we have defined as usual L ¼ 1
2
ð1 − γ5Þ.

Chirality implies that, in the presence of the medium, the
effective Lagrangian has a similar gamma matrix structure.
In particular it can be written in the form

LeffðkÞ ¼ λμLðkÞ½lμνλ − πμνλ�γλλνLðkÞ; ð2:9Þ

where πμνλ is a tensor that depends on kμ and the velocity
four-vector of the background medium uμ, but does not
contain any γ matrices. Therefore the thermal self-energy
ΣTμν must have the form

ΣTμν ¼ πμνλγ
λL; ð2:10Þ

which in turn implies the convenient formula

πμνλ ¼
1

2
TrðγλΣTμνÞ: ð2:11Þ

The dispersion relations of the propagating modes then
follow from solving the effective RS equation in the
medium,

½lμνλ − πμνλ�γλψν
LðkÞ ¼ 0; ð2:12Þ

or equivalently

−½gμνk − kμγν − kνγμ þ γμkγν�ψν
LðkÞ − πμνλγ

λψν
LðkÞ ¼ 0:

ð2:13Þ
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Our purpose in what follows is to use this equation as the
starting point to calculate the dispersion relation of the λ
propagating modes in a background medium as previously
described.

III. GENERAL FORM OF πμνα

The tensor πμνλ introduced in Eq. (2.9) depends on the
vectors kμ and uμ, but does not contain any γ matrices, and
since we are assuming that the interactions of the λL particle
are such that the thermal self-energy is transverse, it
satisfies the transversality condition,

kμπμνα ¼ kνπμνα ¼ 0: ð3:1Þ

In analogy with the decomposition of the photon self-
energy in a medium, it is also convenient here to introduce a
similar notation. Thus we define

~gμν ¼ gμν −
kμkν
k2

; ð3:2Þ

the transverse vector

~uμ ¼ ~gμνuν; ð3:3Þ

and the tensors

Rμν ¼ ~gμν −Qμν;

Qμν ¼
~uμ ~uν
~u2

;

Pμν ¼
i
κ
ϵμναβkαuβ; ð3:4Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
; ð3:5Þ

with

ω ¼ k · u: ð3:6Þ

The variables ω and κ are simply the energy and magnitude
of the three-dimensional momentum vector, respectively, in
the frame in which the medium is at rest, i.e., the frame in
which uμ ¼ ð1; 0Þ.
With this notation at hand, it is clear that, aside from a

term ∼ϵμναβkβ of similar form to the vacuum kinetic energy
term, πμνα can be written as a combination of terms of the
following form:

Tμνaα; Tμα ~uν; Tαν ~uμ; ϵμναβkβ; ð3:7Þ

where T can be either R, Q or P, defined in Eq. (3.4), and
aα can be either kα or uα. Therefore we write

πμνα ¼ π0lμνα þ π0μνα; ð3:8Þ

with

π0μνα ¼ πR1Rμνkα þ πR2Rμνuα þ πR3Rμα ~uν þ πR4Rαν ~uμ

þ πP1Pμνkα þ πP2Pμνuα þ πP3Pμα ~uν þ πP4Pαν ~uμ

þ πQ1Qμνkα þ πQ2Qμνuα; ð3:9Þ

where we have used the fact that the termsQμα ~uν andQαν ~uμ
are of the same form as those as the πQ1;2 terms above, and
lμνα is defined in Eq. (2.6).

IV. BASIS SPINORS

A. Spin-1 polarization vectors

It is useful to introduce the following notation, borrowed
from the analogous discussions in the case of the photon
propagating in a medium. Adopting the rest frame of the
medium,

uμ ¼ ð1; ~0Þ; ð4:1Þ

and writing the momentum vector in the form

kμ ¼ ðω; ~kÞ; ð4:2Þ

we introduce the spin-1 polarization vectors in the usual
way,

ϵμ1;2 ¼ ð0; ê1;2Þ;

ϵμ� ¼ 1ffiffiffi
2

p ðϵμ1 � iϵμ2Þ; ð4:3Þ

where ê1;2 are such that

ê1;2 · ~k ¼ 0; ê2 ¼ ~k × ê1: ð4:4Þ

In addition we define

ϵμl ¼ 1ffiffiffiffiffiffiffiffi
− ~u2

p ~uμ; ð4:5Þ

where ~uμ has been defined in Eq. (3.3), which in the rest
frame of the medium is given by

ϵμl ¼ −
1ffiffiffiffiffi
k2

p ðκ;ωk̂Þ; ð4:6Þ

with κ defined in Eq. (3.5). These vectors are mutually
orthogonal and satisfy the following relations:

ϵl · k ¼ ϵ� · k ¼ ϵ� · u ¼ 0; ð4:7Þ

which in turn imply
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Rμνϵ
ν
� ¼ ϵ�μ;

Qμνϵ
ν
l ¼ ϵlμ;

Pμνϵ
ν
� ¼ �ϵ�μ;

Rμνϵ
ν
l ¼ Qμνϵ

ν
� ¼ Pμνϵ

ν
l ¼ 0: ð4:8Þ

Rμν and Pμν have the representation

Rμν ¼ −ðϵμþϵν− þ ϵμ−ϵ
νþÞ;

Pμν ¼ −ðϵμþϵν− − ϵμ−ϵ
νþÞ; ð4:9Þ

and also useful are the relations

ϵμναβkαϵ
β
� ¼ ∓iκffiffiffiffiffiffiffiffi

− ~u2
p ðϵ�μϵlν − ϵlμϵ�νÞ: ð4:10Þ

They can be verified as follows. Consider for example,
ϵμναβkαϵ

β
þ. Since it is an antisymmetric tensor and is

transverse to kμ and ϵμþ, it must be proportional to the
term given in the right-hand side of Eq. (4.10). The
proportionality factor can be verified by multiplying both
sides with uν and reducing the resulting expressions using
the multiplication rules of the polarization vectors.
It should be kept in mind that in Eq. (4.5), and wherever

ϵμl appears, the assumption is that we are considering
situations in which kμ is such that

k2 ≠ 0: ð4:11Þ

B. Dirac spinors

Regarding the Dirac spinors we adopt, once and for all,
the Weyl representation of the gamma matrices,

γ0 ¼
�
0 1

1 0

�
; ~γ ¼

�
0 −~σ
~σ 0

�
: ð4:12Þ

We denote by uL− the left-handed chiral spinor,

uL− ¼
�

0

ξ−

�
; ð4:13Þ

where ξ− is the Pauli spinor with negative helicity; i.e., it
satisfies

k̂ · ~σξ− ¼ −ξ−: ð4:14Þ

Using the same notation, it is useful to introduce also the
spinor

uLþ ¼
�

0

ξþ

�
; ð4:15Þ

where,

k̂ · ~σξþ ¼ ξþ; ð4:16Þ

and similarly,

uR� ¼
�
ξ�
0

�
: ð4:17Þ

The spinors satisfy the following relations (the right-
handed counterparts satisfy analogous relations, but we
will not need them in what follows)

kuL� ¼ ðω� κÞuR�;
uuL� ¼ uR�; ð4:18Þ

and

ðϵ− · γÞuL− ¼ ðϵþ · γÞuLþ ¼ 0

ðϵ� · γÞuL∓ ¼
ffiffiffi
2

p
uR�: ð4:19Þ

From Eqs. (4.9) and (4.19) we can obtain other useful
formulas, for example

ðRμ
αγ

αÞuL� ¼ −
ffiffiffi
2

p
ϵμ�u

ð∓Þ
R ;

ðPμ
αγ

αÞuL� ¼ ∓ ffiffiffi
2

p
ϵμ�u

ð∓Þ
R : ð4:20Þ

V. DISPERSION RELATIONS

A. Transverse mode

Let us consider the spin-3=2 spinors

Uμ
L� ¼ ϵμ�uL�: ð5:1Þ

Equations (4.7) and (4.19) imply that they satisfy

k ·UL� ¼ u · UL� ¼ γ · UL� ¼ 0; ð5:2Þ

which in turn can be used together with Eq. (2.8) to obtain

lμναγ
αUν

L� ¼ −gμν kUν
L�: ð5:3Þ

We now consider π0μνα given in Eq. (3.9). With the help of
Eqs. (4.8) and (4.19) it follows simply

ðπ0μναγαÞUν
L� ¼ gμν½ðπR1 � πP1Þkþ ðπR2 � πP2Þu�Uν

L�:

ð5:4Þ

Combining this with Eqs. (3.8) and (5.3) we obtain

ðπμναγαÞUν
L� ¼ −gμνða�kþ b�uÞUν

L�; ð5:5Þ

where
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a� ¼ π0∓πP1 − πR1;

b� ¼ ∓πP2 − πR2: ð5:6Þ

Thus, if we set ψμ
L ¼ Uμ

L− in the equation of motion
Eq. (2.12), using the above relations the equation becomes

VUμ
L− ¼ 0; ð5:7Þ

or equivalently

VuL− ¼ 0; ð5:8Þ

where

Vα ¼ ð1 − a−Þkα − b−uα: ð5:9Þ

Recalling Eq. (4.18), Eq. (5.8) requires that ω satisfies

½1 − a−ðκ;ωÞ�ðω − κÞ − b−ðκ;ωÞ ¼ 0; ð5:10Þ

or equivalently

ω ¼ κ þ b−ðκ;ωÞ
1 − a−ðκ;ωÞ

; ð5:11Þ

where we have explicitly indicated the arguments of a− and
b− to emphasize that these are implicit equations for ωðκÞ.
Another solution is ψμ

L ¼ Uμ
Lþ, provided that

V 0uLþ ¼ 0; ð5:12Þ

where

V 0
α ¼ ð1 − aþÞkα − bþuα: ð5:13Þ

Using Eq. (4.18) as before, this yields a dispersion relation
ωðκÞ ¼ −ωðκÞ, with ωðκÞ satisfying

½1 − aþðκ;−ωÞ�ωþ bþðκ;−ωÞ ¼ ½1 − aþðκ;−ωÞ�κ
ð5:14Þ

or equivalently

ω ¼ κ −
bþðκ;−ωÞ

1 − aþðκ;−ωÞ
: ð5:15Þ

This solution corresponds to the antiparticle propagating in
the medium with a dispersion relation ωðκÞ.
These equations for the dispersion relations [e.g.,

Eqs. (5.8) and (5.10)] resemble the corresponding formulas
obtained for the neutrino (or more generally a chiral
spin-1=2 fermion) case [3,6]. As we will see below, the
equations involving the longitudinal spinor are more
complicated.

B. Longitudinal modes

We seek the longitudinal solution as a combination of the
spinors

Uμ
L1 ¼ ϵμluL−;

Uμ
L2 ¼ ϵμ−uLþ: ð5:16Þ

We thus write the solution in the form

ψμ
L ¼

X
a¼1;2

αaU
μ
La; ð5:17Þ

with coefficients α1;2 to be determined. The next step is to
derive the formulas for lμναγ

αUν
L1;2 and πμναγ

αUν
L1;2, the

details of which are given in the Appendix. The results
given there in Eqs. (A2), (A4), (A6) and (A7) can be
summarized in a compact form by introducing the right-
handed spinors

Uμ
R1 ¼ ϵμluR−;

Uμ
R2 ¼ ϵμ−uRþ: ð5:18Þ

Thus,

ðlμναγ
αÞUν

La ¼
X
b

LbaURbμ;

ðπμναγαÞUν
La ¼

X
b

ΠbaURbμ; ð5:19Þ

where

L11 ¼ 0;

L12 ¼ L21 ¼
ffiffiffiffiffiffiffi
2k2

p
;

L22 ¼ ωþ κ; ð5:20Þ

and

Π11 ¼ ðω − κÞπQ1 þ πQ2;

Π12 ¼
ffiffiffiffiffiffiffiffiffiffiffi
−2~u2

p
ðπR4 − πP4Þ þ

ffiffiffiffiffiffiffi
2k2

p
π0;

Π21 ¼
ffiffiffiffiffiffiffiffiffiffiffi
−2~u2

p
ðπR3 − πP3Þ þ

ffiffiffiffiffiffiffi
2k2

p
π0;

Π22 ¼ ðωþ κÞðπ0 þ πR1 − πP1Þ þ ðπR2 − πP2Þ: ð5:21Þ
The equation for the coefficients α1;2 introduced in
Eq. (5.17) is then obtained by substituting that expression
in Eq. (2.12) and using Eq. (5.19), which yields

X
b

ðLab − ΠabÞαb ¼ 0: ð5:22Þ

Therefore, the dispersion relations are obtained by solving

DetðL − ΠÞ ¼ 0: ð5:23Þ
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This yields in principle two dispersion relations with the
coefficients α1;2 obtained for each of them from Eq. (5.22)
and the corresponding spinors given by Eq. (5.17).
We obtain the antiparticle modes in a similar fashion by

seeking the solution in the form

ψ 0μ
L ¼

X
a¼1;2

α0aU
0μ
La; ð5:24Þ

where

U0μ
L1 ¼ ϵμluLþ;

U0μ
L2 ¼ ϵμþuL−: ð5:25Þ

As in the previous case, the next step is to obtain the
formulas for lμναγ

α and πμναγα acting on the spinors U0μ
L1;2,

the details of which are given in the Appendix. Introducing
the right-handed spinors

U0μ
R1 ¼ ϵμluRþ;

U0μ
R2 ¼ ϵμþuR−; ð5:26Þ

the formulas analogous to Eq. (5.19) in the present case are

ðlμναγ
αÞU0ν

La ¼
X
b

L0
baU

0
Rbμ;

ðπμναγαÞU0ν
La ¼

X
b

Π0
baU

0
Rbμ; ð5:27Þ

where

L0
11 ¼ 0;

L0
12 ¼ L21 ¼ −

ffiffiffiffiffiffiffi
2k2

p
;

L0
22 ¼ ðω − κÞ; ð5:28Þ

and

Π0
11 ¼ ðωþ κÞπQ1 þ πQ2;

Π0
12 ¼

ffiffiffiffiffiffiffiffiffiffiffi
−2~u2

p
ðπR4 þ πP4Þ −

ffiffiffiffiffiffiffi
2k2

p
π0;

Π0
21 ¼

ffiffiffiffiffiffiffiffiffiffiffi
−2~u2

p
ðπR3 þ πP3Þ −

ffiffiffiffiffiffiffi
2k2

p
π0;

Π0
22 ¼ ðω − κÞðπ0 þ πR1 þ πP1Þ þ ðπR2 þ πP2Þ: ð5:29Þ

The equation for the coefficients α0a is

X
b

ðL0
ab − Π0

abÞα0b ¼ 0; ð5:30Þ

and in particular the dispersion relations are obtained by
solving

DetðL0 − Π0Þ ¼ 0: ð5:31Þ

C. Discussion

Besides the dispersion relation, a quantity that is physi-
cally relevant is the proper normalization factor of the
spinor solutions. In principle such factors can be deter-
mined by mimicking the procedure followed in the spin-
1=2 case [3,6]. For the transverse mode the analogy with
the spin-1=2 case is close, but for the longitudinal mode the
treatment must take into account the fact that it involves
two spinor solutions. In this work we have not considered
the calculation of such normalization factors.

VI. EXAMPLE

A. Model

As a specific application of the previously developed
formalism, here we consider a background medium com-
posed of a spin-1=2 particle f and a scalar particle A, that
interact with the λ particle with the interaction Lagrangian

Lint ¼ hAfRσμν∂μλLν þ H:c: ð6:1Þ

where the coupling parameter h is inversely proportional to
some mass scale. With the conventions specified in Fig. 1
this interaction gives a term iVμðkÞL in the Feynman
diagrams, where

VμðkÞ ¼ ihσμαkα: ð6:2Þ

Lint is invariant under the transformation λLμ → λLμ þ ∂μϵ,
where ϵ is a Dirac field, which manifests in the fact that

k · VðkÞ ¼ 0: ð6:3Þ

As a consequence of this, the λ self-energy is transverse, as
we will confirm explicitly in the calculation below.
Before entering the details of the calculation we mention

the following. The model interaction given in Eq. (6.1) is
not renormalizable. Our attitude here is the usual one,
namely that such an interaction can arise as an effective
interaction due to the exchange of heavier particles in a
more fundamental theory in which the heavier fields are
integrated out. This is analogous, for example, to the Fermi
four-fermion interaction for neutrinos. In that case the
resulting effective theory is presumed to be valid for

FIG. 1. Vertex diagram for the spin-3=2 particle λLμ with the
spin-1=2 fermion f and the scalar particle A. The vertex function
VμðkÞ is given in Eq. (6.2).
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calculating tree-level amplitudes for external momenta
much smaller than the heavy particle mass, including the
lowest order thermal loops which are just tree-level
amplitudes weighted by the appropriate thermal distribu-
tions. The results obtained this way are valid in environ-
ments in which the thermal distributions of the heavy
particles (e.g., the W gauge bisons in the neutrino case) are
negligible. In the case of neutrinos this approach leads to
the Wolfenstein formula for the neutrino index of refrac-
tion. Our expectation is that similar considerations apply to
the model interaction of Eq. (6.1) as well, and that the the
lessons learned by considering this example will serve to
guide the application to more general and/or fundamental
interactions of the spin-3=2 particle.

B. One-loop thermal self-energy

Our problem at hand is to compute the thermal self-
energy diagram depicted in Fig. 2 and then determine the
dispersion relations for the λLμ. In what follows we
consider only the real part of the dispersion relation, for
which we need to determine only the dispersive part of the
thermal self-energy ΣTμν. In the real-time formulation of
TFT, which we will use, the f and A thermal propagators as
well as the self-energy Σμν in Fig. 2 are 2 × 2 matrices. The
dispersive part of ΣTμν can be determined from the diagonal
elements of the self-energy matrix, in particular from the 11
element,

−iΣ11μν ¼
Z

d4p
ð2πÞ4 iΔF11ðp − kÞiRVμðkÞiSF11ðpÞiVνðkÞ:

ð6:4Þ

In Eq. (6.4) the vertex function Vμ has been defined in

Eq. (6.2) and V ¼ γ0V
†
μγ0 while the propagators in

Eq. (6.4) are given by

SF11ðpÞ ¼ SF0ðpÞ þ STðpÞ;
ΔF11ðpÞ ¼ ΔF0ðpÞ þ ΔTðpÞ; ð6:5Þ

where SF0 and ΔF0 stand for the vacuum propagators

SF0ðpÞ ¼
1

p −mf þ iϵ
;

ΔF0ðpÞ ¼
1

p2 −m2
A þ iϵ

; ð6:6Þ

and the background-dependent parts are given by

STðpÞ ¼ 2πiδðp2 −m2
fÞηfðp · uÞ;

ΔTðpÞ ¼ −2πiδðp2 −m2
AÞηAðp · uÞ; ð6:7Þ

with

ηfðxÞ ¼
θðxÞ

eβx−αf þ 1
þ θð−xÞ
e−βxþαf þ 1

;

ηAðxÞ ¼
θðxÞ

eβx−αA − 1
þ θð−xÞ
e−βxþαA − 1

: ð6:8Þ

Here 1=β is the temperature and αf;A are the chemical
potentials of the fermion and scalar thermal background,
respectively.
The substitution of Eq. (6.5) in Eq. (6.4) gives several

contributions to the self-energy. The term that contains both
ST and ΔT contributes only to the absorptive part of the
self-energy, which we discard because we are considering
only the real part of the dispersion relation as already
mentioned. The term that contains neither ST nor ΔT
corresponds to the pure vacuum contribution, which is
not calculable in this model, but we neglect it assuming that
it is unimportant relative to the background-dependent part.
The remaining ones, that contain either ST or ΔT, are
precisely the contributions to ΣTμν that we are after. In this
way we then obtain

ΣTμν ¼ RðΣðfÞ
μν þ ΣðAÞ

μν ÞL; ð6:9Þ

where

ΣðfÞ
μν ¼ −

Z
d4p
ð2πÞ3

δðp2 −m2
fÞηfðp · uÞ

ðp − kÞ2 −m2
A

× VμðkÞðpþmfÞVνðkÞ;

ΣðAÞ
μν ¼

Z
d4p
ð2πÞ3

δðp2 −m2
AÞηAðp · uÞ

ðpþ kÞ2 −m2
f

× VμðkÞðpþ kþmfÞVνðkÞ: ð6:10Þ

The fact that the vertex satisfies Eq. (6.3), in turn implies
that

kνΣTμν ¼ 0 ð6:11Þ

as well, as we had already anticipated. In the following
section we use the general decomposition of the self-energy

FIG. 2. Diagram for the self-energy of the spin-3=2 particle λL
in the background of the spin-1=2 fermion f and the scalar
particle A.
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introduced in Sec. III and calculate the corresponding
coefficients.

C. Calculation of the coefficients

In correspondence with Eq. (6.9) we write

πμνα ¼ πðfÞμνα þ πðAÞμνα; ð6:12Þ

where

πðf;AÞμνα ¼ 1

2
TrðγαΣðf;AÞ

Tμν Þ; ð6:13Þ

with Σðf;AÞ
Tμν given in Eq. (6.10). The resulting formulas

πðf;AÞμνα can be written in the form

πðfÞμνα ¼ −h2tμναβI
β
f;

πðAÞμνα ¼ h2tμναβ½IβA þ CAkβ�; ð6:14Þ

where

tμναβ ¼
1

2
kλkρTrLγασμλγβσνρ; ð6:15Þ

and

CA ¼
Z

d3p
ð2πÞ32EA

�
fAðpÞ

ðpþ kÞ2 −m2
f

þ fAðpÞ
ðp − kÞ2 −m2

f

�

IμA ¼
Z

d3p
ð2πÞ32EA

pμf fAðpÞ
ðpþ kÞ2 −m2

f

−
fAðpÞ

ðp − kÞ2 −m2
f

g

Iμf ¼
Z

d3p
ð2πÞ32Ef

pμ

�
ffðpÞ

ðp − kÞ2 −m2
A
−

ffðpÞ
ðpþ kÞ2 −m2

A

�
:

ð6:16Þ

In these integrals fA;fðpÞ are the thermal distribution
functions

fAðpÞ ¼
1

eβEA−αA − 1
;

ffðpÞ ¼
1

eβEf−αf þ 1
; ð6:17Þ

and the antiparticle counterparts fA;f are obtained from
them by making replacements αA;f → −αA;f.
The integrals IμA;f can be expressed in the form

IμX ¼ AXkμ þ BXuμ ðX ¼ f; AÞ; ð6:18Þ

where the coefficients AA;f, BA;f can be expressed in terms
of scalar integrals by inverting the equations

k · IX ¼ k2AX þ ωBX;

u · IX ¼ ωAX þ BX; ð6:19Þ

implied by Eq. (6.18). This procedure yields the formulas

AX ¼ 1

κ
Lð1Þ
X ;

BX ¼ Lð2Þ
X −

ω

κ
Lð1Þ
X ; ð6:20Þ

where

Lð1Þ
f ¼

Z
d3p

ð2πÞ32Ef
k̂ · ~p

�
ffðpÞ

ðp−kÞ2−m2
A
−

ffðpÞ
ðpþkÞ2−m2

A

�
;

Lð2Þ
f ¼ 1

2

Z
d3p
ð2πÞ3

�
ffðpÞ

ðp−kÞ2−m2
A
−

ffðpÞ
ðpþkÞ2−m2

A

�
;

ð6:21Þ

while the analogous formulas for Lð1;2Þ
A are obtained from

Eq. (6.21) by making the replacements k → −k, ff;f →
fA;A and mA → mf on the right-hand side.
Substituting Eq. (6.18) in Eq. (6.14), πμνα is then

given by

πμνα ¼ h2ðCA þ AA − AfÞtμναβkβ þ h2ðBA − BfÞtμναβuβ:
ð6:22Þ

Straightforward evaluation of the trace in Eq. (6.15) yields

tμναβ ¼ −k2 ~gμα ~gνβ − k2 ~gμβ ~gαν þ k2 ~gμν ~gαβ − kαkβ ~gμν

− i½kαϵμνβρkρ þ kβϵμναρkρ�: ð6:23Þ

Rewriting this expression in terms of Rμν, Qμν and lμνα by
means of Eqs. (2.6) and (3.4), and then substituting the
result in Eq. (6.22) we obtain the one-loop result for πμνα in
the form given in Eqs. (3.8) and (3.9), with the coefficients

π0 ¼ −h2k2ðCA þ AA − AfÞ − h2ωðBA − BfÞ;
πR1 ¼ −h2k2ðCA þ AA − AfÞ − 2h2ωðBA − BfÞ;
πQ1 ¼ −h2k2ðCA þ AA − AfÞ;
πP1 ¼ h2κðBA − BfÞ;
πR3 ¼ πR4 ¼ πQ2 ¼ −πR2 ¼ −h2k2ðBA − BfÞ;
πP2 ¼ πP3 ¼ πP4 ¼ 0: ð6:24Þ

D. Discussion

As a specific example let us consider the situation in
which the mass of the scalar boson is much greater than the
other relevant energy scales, i.e.,
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T; μ;ω; κ; mf ≪ mA; ð6:25Þ

so that, in particular, there are no A scalars in the back-
ground. Thus in this case,

CA ¼ Lð1Þ
f ¼ Lð1;2Þ

A ≃ 0; ð6:26Þ

while

Lð2Þ
f ¼ −1

4m2
A
ðnf − nfÞ; ð6:27Þ

and therefore,

BA ¼ Af ¼ AA ≃ 0;

Bf ¼ −1
4m2

A
ðnf − nfÞ: ð6:28Þ

From Eq. (6.24),

π0 ¼
1

2
πR1 ¼ h2Bfω;

πR3 ¼ πR4 ¼ πQ2 ¼ −πR2 ¼ h2Bfk2;

πP1 ¼ −h2Bfκ;

πQ1 ¼ πP2 ¼ πP3 ¼ πP4 ¼ 0; ð6:29Þ

from which we can now determine the dispersion relations.

1. Transverse mode

For the transverse modes, the parameters a�, b� defined
in Eq. (5.6) are then

a� ¼ −h2Bfðω∓κÞ;
b� ¼ h2Bfk2: ð6:30Þ

Substituting Eq. (6.30) into the dispersion relation equation
for the transverse modes, Eqs. (5.10) and (5.14), the Bf

term cancels in both cases and the solutions are

ω ¼ κ;

ω ¼ κ; ð6:31Þ

for the particle and antiparticle, respectively. Therefore the
dispersion relation for the transverse mode is not modified
in the presence of the background. However, it should be
remembered that this result holds under the conditions
stated in Eq. (6.25), and for other conditions and/or regimes
(e.g., ω, κ ≫ mA;f) the dispersion relation is in general
modified. In the spirit of our presentation of this model
being for illustrative purposes, here we do not pursue this
further and turn instead to the longitudinal mode.

2. Longitudinal mode

For the longitudinal mode, using Eq. (5.29) the matrix Π
defined in Eq. (5.21) is given by

Π ¼ h2Bfðωþ κÞ
�
ω − κ

ffiffiffiffiffiffiffi
2k2

p
ffiffiffiffiffiffiffi
2k2

p
2ðωþ κÞ

�
: ð6:32Þ

Using Eqs. (5.20) and (6.32), the equation [Eq. (5.23)] for
the longitudinal dispersion relation is

−k2xð1 − 2xÞ − 2k2ð1 − xÞ2 ¼ 0; ð6:33Þ

where we have defined

x ¼ h2Bfðωþ κÞ: ð6:34Þ

The solution with k2 ≠ 0 is x ¼ 2=3, which gives the
dispersion relation

ωκ ¼ M − κ; ð6:35Þ

where

M ≡ 2

3h2Bf
: ð6:36Þ

For completeness we note that going back to Eqs. (5.17)
and (5.22), the corresponding spinor is

ψμ
Ll ¼ α1ϵ

μ
luL− þ α2ϵ

μ
−uLþ; ð6:37Þ

where, up to a normalization factor,

α1 ¼
1ffiffiffi
2

p ;

α2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2κ

M

r
: ð6:38Þ

In a similar fashion, from Eq. (5.29),

Π0 ¼ h2Bfðω − κÞ
�

ωþ κ −
ffiffiffiffiffiffiffi
2k2

p

−
ffiffiffiffiffiffiffi
2k2

p
2ðω − κÞ

�
: ð6:39Þ

Equations (5.30) and (5.31) have the solution

ω0
κ ¼ M þ κ; ð6:40Þ

with the corresponding spinor

ψ 0μ
Ll ¼ α01ϵ

μ
luLþ þ α02ϵ

μ
þuL−; ð6:41Þ

where again, up to a normalization factor
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α01 ¼
1ffiffiffi
2

p ;

α02 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2κ

M

r
: ð6:42Þ

The proper interpretation of these branches in terms of
particle-antiparticle or hole-antihole modes depends on the
sign of M and the relative size of κ and M. For a specific
example, suppose that the medium is such that nf > nf.
From Eqs. (6.28) and (6.36) it follows thatM < 0. Then for
κ > jMj the dispersion relations

ω0
κ ¼ κ − jMj;

ωκ ¼ −κ − jMj≡ −ωκ ð6:43Þ

resemble the dispersion relations for the neutrino (ω0
κ) and

antineutrino (ωκ) in an electron background [5,6].
Finally we mention the following. Consistency with the

conditions stated in Eq. (6.25) imposes some requirements
for this solution to be valid, but it is easy to see that they can
be satisfied in this model example. For instance, remember-
ing that h is inversely proportional to some mass scale,
suppose that h ∼ 1=mf. The above result then gives
ωκ∼Oðm2

Am
2
f=nfÞ. Assuming that T≫mf, so that nf ∼ T3,

Eq. (6.25) is satisfied for

ðmAm2
fÞ1=3 ≪ T ≪ mA: ð6:44Þ

It has not been our intention in this section to study the
model exhaustively. Rather, our purpose in going through
these details has been to show that the solutions given
above give results that are analogous to other well-studied
systems and consistent with the assumptions that we have
made in the model.

VII. CONCLUSIONS

In the present work we have used the methods of TFT to
treat the propagation of a chiral spin-3=2 particle λμL in a
background medium using the methods of TFT, in analogy
with the familiar cases of a photon or a neutrino propa-
gating in a matter background. The essential ingredient of
the method is the general decomposition of the self-energy
in terms of a set of scalar functions, each one corresponding
to an independent tensor constructed using the momentum
vectors available in the system (the momentum of the
particle kμ and the background velocity four-vector uμ), as
well as the gamma matrices, the metric tensor and the Levi-
Civita tensor. Throughout this work we have assumed that
the interactions of the λL particle with the thermal back-
ground particles are such that the thermal self-energy is
transverse to kμ. On the basis of such decomposition we
showed that there is a transverse mode in which the spin-
3=2 spinor is transverse to k, and two other modes that

involve the longitudinal polarization vector. In each case we
obtained the equation for the dispersion relation in terms of
the self-energy scalar functions, as well as the correspond-
ing spin-3=2 spinor. Finally, we illustrated the application
of the formalism by computing the 1-loop TFT expression
for the self-energy in a model in which the λμL propagates in
a thermal background composed of spin-1=2 fermion and a
scalar particle, and applying the general results to deter-
mine the dispersion relations and corresponding spinors.
As we showed, the results so obtained share some resem-
blance and analogies with the photon and the chiral spin-
1=2 fermion case, but there are some differences as well.
The present work provides the groundwork for consid-

ering problems involving a chiral spin-3=2 particle propa-
gating in a medium, which can be relevant in cosmological
or astrophysical contexts of current research interest. This
work also opens the path to consider the effects of the
medium on the electromagnetic properties of a massless
chiral spin-3=2 particle, in analogy with the neutrino case
[15]. Such induced electromagnetic couplings can have
effects in the cosmological or astrophysical contexts in
which the electromagnetic couplings are involved.
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APPENDIX: FORMULAS FOR THE
LONGITUDINAL SPINOR

1. Derivation of Eqs. (5.20) and (5.21)

From the equations satisfied by the spinorsUμ
L1;2 defined

in Eq. (5.16) we derive the formulas for lμναγ
αUν

L1;2 and
πμναγ

αUν
L1;2. We consider each of them one by one.

Consider ϵμluL− first. From the definition of lμνα; Pμν

and ϵμl in Eqs. (2.6), (3.4) and (4.5),

lμναϵ
ν
l ¼

ffiffiffiffiffi
k2

p
Pμα; ðA1Þ

and using Eq. (4.20),

ðlμναγ
αÞϵνluL− ¼

ffiffiffiffiffiffiffi
2k2

p
gμνϵν−uRþ: ðA2Þ

Using the orthonormality relations of ϵμl [e.g., Eq. (4.8)],

π0μναϵνl ¼ πQ1ϵlμkα þ πQ2ϵlμuα −
ffiffiffiffiffiffiffiffi
− ~u2

p
πR3Rμα

−
ffiffiffiffiffiffiffiffi
− ~u2

p
πP3Pμα; ðA3Þ

and from Eqs. (4.18) and (4.20)

ðπ0μναγαÞϵνluL− ¼ f½ðω − κÞπQ1 þ πQ2�ϵlμuR−
þ

ffiffiffiffiffiffiffiffiffiffiffi
−2~u2

p
ðπR3 − πP3Þϵ−μuRþg: ðA4Þ

For ϵμ−uLþ, using Eq. (4.10),
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lμναγ
αϵν− ¼ −κffiffiffiffiffiffiffiffi

− ~u2
p ðϵ−μϵl · γ − ϵlμϵ− · γÞ; ðA5Þ

and from Eqs. (4.18) and (4.19)

ðlμναγ
αÞϵν−uLþ ¼

n
ðωþ κÞϵ−μuRþ þ

ffiffiffiffiffiffiffi
2k2

p
ϵlμuR−

o
:

ðA6Þ
In a similar fashion, using Eqs. (4.7), (4.8), (4.18)
and (4.19)

ðπ0μναγαÞϵν−uLþ¼
n
½ðωþκÞðπR1−πP1ÞþðπR2−πP2Þ�ϵ−μuRþ

þ
ffiffiffiffiffiffiffiffiffiffiffi
−2~u2

p
ðπR4−πP4ÞϵlμuR−

o
: ðA7Þ

The results given in Eqs. (A2), (A4), (A6) and (A7) are
summarized in Eq. (5.19).

2. Derivation of Eqs. (5.28) and (5.29)

In a similar fashion we derive the formulas for
lμναγ

αU0ν
L1;2 and πμναγ

αU0ν
L1;2. Thus, using Eqs. (4.20)

and (A1),

ðlμναγ
αÞϵνluLþ ¼ −

ffiffiffiffiffiffiffi
2k2

p
ϵþμuR−; ðA8Þ

and using Eqs. (4.10), (4.18) and (4.19)

ðlμναγ
αÞϵνþuL− ¼ ðω − κÞϵþμuR− −

ffiffiffiffiffiffiffi
2k2

p
ϵlμuRþ: ðA9Þ

From Eq. (A3), and using Eqs. (4.18) and (4.20)

ðπ0μναγαÞϵνluLþ ¼
n
½ðωþ κÞπQ1 þ πQ2�ϵlμuRþ

þ
ffiffiffiffiffiffiffiffiffiffiffi
−2~u2

p
ðπR3 þ πP3ÞϵþμuR−

o
; ðA10Þ

and finally from Eqs. (4.7), (4.8), (4.18) and (4.19),

ðπ0μναγαÞϵνþuL−¼
n
½ðω−κÞðπR1þπP1ÞþðπR2þπP2Þ�ϵþμuR−

þ
ffiffiffiffiffiffiffiffiffiffiffi
−2~u2

p
ðπR4þπP4ÞϵlμuRþ

o
: ðA11Þ

The above results are summarized in Eq. (5.27).
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