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One-loop Standard Model observables produced by virtual heavy Kaluza-Klein fields play a prominent
role in the minimal model of universal extra dimensions. Motivated by this aspect, we integrate out all the
Kaluza-Klein heavy modes coming from the Yang-Mills theory set on a spacetime with an arbitrary
number, n, of compact extra dimensions. After fixing the gauge with respect to the Kaluza-Klein heavy
gauge modes in a covariant manner, we calculate a gauge-independent effective Lagrangian expansion
containing multiple Kaluza-Klein sums that entail a bad divergent behavior. We use the Epstein-zeta
function to regularize and characterize discrete divergences within such multiple sums, and then we discuss
the interplay between the number of extra dimensions and the degree of accuracy of effective Lagrangians
to generate or not divergent terms of discrete origin. We find that nonrenormalizable terms with mass
dimension k are finite as long as k > 4þ n. Multiple Kaluza-Klein sums of nondecoupling logarithmic
terms, not treatable by Epstein-zeta regularization, are produced by four-dimensional momentum
integration. On the grounds of standard renormalization, we argue that such effects are unobservable.
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I. INTRODUCTION

The formulation of a physical theory describing nature at
the most fundamental level is one of the main incentives
behind investigations framed within high-energy physics.
While experiments have set some hints [1] pointing
towards this aim, on the theoretical side many possibilities
are available. Among the vast collection of ideas, the
conjectural existence of compact extra dimensions [2–6]
is the setup for the present work.
The exploration of Standard Model extensions with the

ingredient of extra dimensions has been motivated by some
of the most intriguing questions nowadays. A world in
which dark matter particles are part of the field content of
Kaluza-Klein effective theories has been widely investi-
gated [7–18]. Studies of neutrino physics in extra-
dimensional contexts have been carried out as well,
including the generation of neutrino masses [19–26] and
the physics behind neutrino oscillations [19,20,23,27,28].
The physics of the Higgs boson in extra-dimensional
scenarios has been also an object of study [29–43].
Among the different models of extra dimensions, there is

the formulation in which the whole Standard Model is
defined in the extra-dimensional spacetime, where all the
dynamic variables are allowed to propagate, so that those
particles included by the StandardModel in four dimensions
are the lowest-energy manifestations of such extra-
dimensional fields, which describe nature at a higher-energy

scale. This framework, commonly known as universal extra
dimensions [44], is the setting of the study performed in the
present paper. Investigations centered in the cosmological
role of the lightest Kaluza-Klein particle [17,45], a Kaluza-
Klein Higgs boson [43,46,47], and experimental data
[48,49] from the Large Hadron Collider have provided
upper bounds on the size of universal extra dimensions,
corresponding to energy scales that range around 1 TeV for
the case of just one compact dimension.
The recent observation [50,51] of a Higgs-like particle at

the Large Hadron Collider is the last piece of the realization
that nature is governed by gauge symmetry. In this context,
the fate of extra-dimensional gauge symmetry at the level
of Kaluza-Klein theories becomes a matter of interest.
From the four-dimensional viewpoint, extra-dimensional
gauge symmetry is split into two disjoint sets of trans-
formations that have been termed the standard gauge
transformations and the nonstandard gauge transforma-
tions [52–54]. The set of standard gauge transformations is
a gauge subgroup that is identified with the gauge sym-
metry characterizing the four-dimensional low-energy for-
mulation, while the rest of the extra-dimensional gauge
group, which corresponds to the nonstandard gauge trans-
formations, remains hidden [54]. With these ingredients,
the quantization of Kaluza-Klein gauge theories can be
carried out [52]. One can take advantage of the mutual
independence of the two four-dimensional sets of gauge
transformations and execute quantization while leaving
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four-dimensional gauge invariance untouched [52]. In
practice, the presence of this symmetry is convenient,
for it introduces simplifications [55,56] in calculations.
The Becchi-Rouet-Stora-Tyutin quantization [57–60] of

gauge theories in five dimensions was detailed in a paper by
some of us [52]. Among the main points of that work, a four-
dimensional set of SUðN;M4Þ-covariant gauge-fixing func-
tions was proposed in order to maintain four-dimensional
gauge invariance in the quantum Kaluza-Klein theory. This
was then utilized to integrate out [56] all the Kaluza-Klein
excited modes and derive an effective Lagrangian featuring
four-dimensional gauge invariance. In the present paper, we
go further in this direction and perform such calculation for
the case of n extra dimensions. We resort to the results
reported in Ref. [61], in which a full analysis of the Kaluza-
Klein Lagrangian generated by the n-dimensional Yang-
Mills theory was performed. We find that a gauge-indepen-
dent result can be obtained by the delicate interplay of the
contributions from the pure-gauge, pseudo-Goldstone, and
ghost-antighost Kaluza-Klein sectors.
Nonrenormalizability of extra-dimensional formulations

manifests in our results, which include multiple infinite
Kaluza-Klein sums. Using a regularization scheme [62]
that is based on the Epstein-zeta function [63–70], we
identify and isolate divergences that are inherent in such
multiple sums. Our effective Lagrangian expansion
involves nonrenormalizable terms whose mass dimension
is as large as 6. We determine that Kaluza-Klein sums in
these terms produce a divergence if the number of extra
dimensions is greater than 1. Similarly to the general
discussion of Ref. [62], we find that improvements in
the accuracy of this effective Lagrangian would modify the
ultraviolet behavior, by Kaluza-Klein sums, as long as the
number of extra dimensions is large enough. Besides such
discrete divergences, there are terms in our effective
Lagrangian expansion that include standard divergences
(short distance effects on the standard four-dimensional
spacetime manifold) and nondecoupling logarithms that are
affected by multiple Kaluza-Klein sums. Nevertheless,
following previous results [62], we argue that these non-
decoupling effects are unobservable, since they can be
absorbed by the standard renormalization procedure, used
to eliminate standard divergences.
A complete and detailed study about the quantization of

gauge theories comprising n extra dimensions is under way
and will be presented elsewhere [71]. Anyway, in the
present paper we provide some advances on that matter,
including the tree-level couplings from the ghost-antighost
sector that contribute to standard Green’s functions1 at the
one-loop level and a generalization to n extra dimensions of

the Kaluza-Klein covariant gauge-fixing functions given in
Ref. [52]. A simple relation among one-loop contributions
from Kaluza-Klein pseudo-Goldstone bosons and those
from the ghost-antighost sector is observed, which also
occurs in five dimensions [55,56].
This document has been organized in the following way:

we develop a brief discussion on the Kaluza-Klein model in
Sec. II, which includes the mass spectrum of the Kaluza-
Klein scalars and the Kaluza-Klein couplings that are
necessary to carry out the main calculation. Then, in
Sec. III, we provide some results on the quantization of
the Kaluza-Klein theory. Section IV is dedicated to the
integration of the Kaluza-Klein excited modes, covering the
proof of gauge independence and the Epstein-zeta regu-
larization of divergences from Kaluza-Klein sums. Finally,
in Sec. V, we give a summary of the paper.

II. TREE-LEVEL KALUZA-KLEIN COUPLINGS
CONTRIBUTING AT ONE LOOP

Theoretical aspects of field theories in extra dimensions
have been considered in diverse works [5,44,52,54,61,
72–80]. In this section, we provide some results that are
necessary ingredients to perform the main calculation of the
paper. In what follows, we use the notation of Refs. [61,62],
where fully detailed discussions on all these results can
be found.
We begin by assuming that, at some high-energy scale,

spacetime looks like a plane manifold, M4þn, comprising
4þ n dimensions, and characterized by a Minkowski-like
metric, gMN ¼ diagð1;−1;…;−1Þ. Uppercase indices run
over all the spacetime coordinates, so that M;N ¼
0; 1; 2; 3; 5;…; 4þ n. Any field formulation nested in this
spacetime will be governed by the extra-dimensional
Poincaré group ISOð1; 3þ nÞ. We also assume that all
fields propagate in the whole spacetime, so that they are
functions of (4þ n)-vector coordinates ðx; x̄Þ ¼ ðx0; x1;
x2; x3; x̄5;…; x̄4þnÞ. We consider the SUðN;M4þnÞ-
invariant Lagrangian

LYMðx; x̄Þ ¼ −
1

4
F a

MNðx; x̄ÞF aMNðx; x̄Þ; ð1Þ

given in terms of extra-dimensional gauge fields,
which are denoted by Aa

Mðx; x̄Þ and which define the
Yang-Mills curvatures as F a

MNðx; x̄Þ ¼ ∂MAa
Nðx; x̄Þ−∂NAa

Mðx; x̄Þ þ g4þnfabcAb
Mðx; x̄ÞAc

Nðx; x̄Þ. Here, the g4þn

is the SUðN;M4þnÞ coupling constant, with dimensions
ðmassÞ−n=2, and fabc represents the structure constants of
the gauge group. Lowercase indices correspond to the
gauge group, which means that a ¼ 1; 2;…; N2 − 1.
So far, experiments have not found any evidence

[1,48,49] pointing to the actual existence of extra dimen-
sions, which can be explained as long as these extra
dimensions are small enough. The transition of the
LYMðx; x̄Þ Lagrangian from the extra-dimensional manifold

1Throughout the paper we use the term standard
Green’s function to refer to any Green’s function generated by
loop diagrams in which all external legs are Kaluza-Klein zero
modes.
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M4þn to the four-dimensional perspective is implemented
[62] by two canonical transformations. The first of such
transformations maps covariant objects of ISOð1; 3þ nÞ
into ISO(1,3)-covariant objects: extra-dimensional vector
gauge fields Aa

Mðx; x̄Þ are split into ISO(1,3) 4-vectors
Aa

μðx; x̄Þ, with μ ¼ 0, 1, 2, 3, and a set of ISO(1,3) scalars
Aa

μ̄ðx; x̄Þ, in which μ̄ ¼ 5; 6;…; 4þ n. This transformation
maintains invariance under the extra-dimensional Poincaré
group, though keeping it hidden and only showing manifest
invariance with respect to ISO(1,3). As we consider lower
energies, the compact structure of extra dimensions becomes
apparent and the extra-dimensional Poincaré group
ISOð1; 3þ nÞ is explicitly broken by compactification.
We assume that the resulting spacetime isM4 ×N n, where
M4 represents the standard four-dimensional spacetime and
the submanifold N n ¼ ðS1=Z2Þn stands for all compact
dimensions, whose radii are R1; R2;…; Rn. With this struc-
ture of the compact extra dimensions, the gauge fields
Aa

Mðx; x̄Þ acquire periodicity properties, Aa
Mðx; x̄Þ ¼

Aa
Mðx; x̄þ 2πRÞ, and parity properties, Aa

Mðx;−x̄Þ ¼
�Aa

Mðx; x̄Þ, as well. The implementation in the LYMðx; x̄Þ
Lagrangian of the explicit breaking of the extra-dimensional
Poincaré group ISOð1; 3þ nÞ is carried out by a second cano-
nical transformation [54,62], which turns out to be Fourier
expansions of theAa

Mðx; x̄Þ fields that are consistent with the
periodicity and parity properties adopted by them. These
expansions are commonly known as Kaluza-Klein towers.
After using the aforementioned Fourier series, all depend-

ence on the extra-dimensional coordinates of the Yang-Mills
Lagrangian LYMðx; x̄Þ, Eq. (1), can be integrated out, which
generates a four-dimensional effective theory, L4YMðxÞ,
whose dynamic variables are the Kaluza-Klein modes. To
make sure that the low-energy limit of L4YMðxÞ is just the
Yang-Mills theory in four dimensions, the correct parity
conditions for the extra-dimensional fields are
Aa

μðx;−x̄Þ ¼ þAa
μðx; x̄Þ, and Aa

μ̄ðx;−x̄Þ ¼ −Aa
μ̄ðx; x̄Þ.

With this choice, the Aa
μðx; x̄Þ 4-vector unfolds into a set of

2nðN2 − 1Þ gauge Kaluza-Klein modes, of which (N2 − 1)

are zero modes, Að0;…;0Þa
μ ðxÞ, and ð2n − 1ÞðN2 − 1Þ are

excited modes, Aðk1;…;knÞa
μ ðxÞ. For excited modes, the

Kaluza-Klein indices k1;…; kn are non-negative integer
numbers, but the case in which all of these indices are
simultaneously zero is excluded, because it corresponds to
zero modes. The zero modes are recognized as the dynamic
variables of the low-energy theory, and consistently they
behave as gauge fields with respect to the standard gauge
transformations. The ISO(1,3) scalarsAa

μ̄ðx; x̄Þ, on the other
hand, are decomposed into nð2n − 1ÞðN2 − 1Þ scalar

Kaluza-Klein modes, Aðk1;…;knÞa
μ̄ ðxÞ. Again, the only combi-

nation of Kaluza-Klein indices that is excluded is ð0;…; 0Þ.
The general case of n extra dimensions brings intricate

expressions that are difficult to read. For this reason, a
convenient notation that evokes intuition and directly

generalizes the results of the five-dimensional case [52]
is desirable. To this aim, we define ð0Þ ¼ ð0;…; 0Þ,
which we use to express zero modes more briefly

as Að0;…;0Þa
μ ðxÞ ¼ Að0Þa

μ ðxÞ. We represent all other possible
arrangements of Kaluza-Klein indices ðk1; 0;…; 0Þ;…;
ð0;…; knÞ, ðk1; k2; 0…; 0Þ;…; ð0;…; 0; kn−1; knÞ;…,
ðk1;…; knÞ generically by ðkÞ, so that Kaluza-Klein excited
modes are compactly denoted by AðkÞa

μ ðxÞ and AðkÞa
μ̄ ðxÞ.

Then, we use the sum [61,62]

X
ðkÞ

fðkÞ ¼
X∞
k1¼1

fðk1;0;…;0Þ þ � � � þ
X∞
kn¼1

fð0;…;0;knÞ

þ
X∞
k1¼1

X∞
k2¼1

fðk1;k2;0;…;0Þ

þ � � � þ
X∞

kn−1¼1

X∞
kn¼1

fð0;…;0;kn−1;knÞ þ � � �

þ
X∞
k1¼1

…
X∞
kn¼1

fðk1;…;knÞ; ð2Þ

which comprises all possible arrangements of Kaluza-Klein
indices for a given number of extra dimensions. In terms of
the sum given in Eq. (2), all results have the same structure
that is found in the case of just one extra dimension [52].
Notice that this definition involves multiple infinite sums.
The extra-dimensional curvature F a

MNðx; x̄Þ inherits,
from the gauge fields Aa

Mðx; x̄Þ defining it, specific perio-
dicity and parity transformation properties with respect to
the extra coordinates, which means that it can also be
expanded in Kaluza-Klein towers. The implementation
of the first canonical transformation in the extra-
dimensional Lagrangian LYMðx; x̄Þ separates the extra-
dimensional curvature into three components that possess
definite transformation properties under ISO(1,3),
that is, FMNðx; x̄Þ → F μνðx; x̄Þ;F μν̄ðx; x̄Þ;F μ̄ ν̄ðx; x̄Þ, with
F μνðx; x̄Þ being a 2-tensor, F μν̄ðx; x̄Þ transforming as a
vector, and F μ̄ ν̄ðx; x̄Þ behaving as an ISO(1,3) scalar. The
second canonical transformation, corresponding to the
Kaluza-Klein towers, produces a set of Kaluza-Klein
excitations for each of these components, which are given
in terms of the Kaluza-Klein modes of the extra-
dimensional gauge fields as [61]

F ð0Þa
μν ¼ Fð0Þa

μν þ gfabc
X
ðkÞ

AðkÞb
μ AðkÞc

ν ; ð3Þ

F ð0Þa
μ̄ ν̄ ¼ gfabc

X
ðkÞ

AðkÞb
μ̄ AðkÞc

ν̄ ; ð4Þ

F ðnÞa
μν ¼ Dð0Þab

μ AðnÞb
ν −Dð0Þab

ν AðnÞb
μ

þ gfabc
X
ðkrÞ

ΔðnkrÞA
ðkÞb
μ AðrÞc

ν ; ð5Þ
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F ðnÞa
μν̄ ¼Dð0Þab

μ AðnÞb
ν̄ þpðnÞ

ν̄ AðnÞa
μ þgfabc

X
ðkrÞ

Δ0
ðnrkÞA

ðkÞb
μ AðrÞc

ν̄ ;

ð6Þ

F ðnÞa
μ̄ ν̄ ¼ pðnÞ

μ̄ AðnÞa
ν̄ − pðnÞ

ν̄ AðnÞa
μ̄ þ gfabc

X
ðkrÞ

Δ0
ðkrnÞA

ðkÞb
μ̄ AðrÞc

ν̄ :

ð7Þ

where Fð0Þa
μν ¼ ∂μA

ð0Þa
ν − ∂νA

ð0Þa
μ þ gfabcAð0Þb

μ Að0Þc
ν is the

four-dimensional Yang-Mills curvature and Dð0Þab
μ ¼

δab∂μ − gfabcAð0Þc
μ is the SUðN;M4Þ covariant derivative.

Both of these objects include the SUðN;M4Þ coupling
constant, g, which is related to its extra-dimensional
counterpart by g ¼ g4þn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πR1Þ…ð2πRnÞ
p

. In addition,
we have defined

pðkÞ
μ̄ ¼

Xn
α¼1

kα
Rα

δμ̄4þα; ð8Þ

with the underlining of kα indicating that kα can be either
zero or a natural number, which depends on the zero and
nonzero Kaluza-Klein indices in any concrete combination
ðkÞ that we take in mμ̄ðkÞ. Some of these Kaluza-Klein
modes include the objects ΔðnrkÞ and Δ0

ðnrkÞ. While their

precise definitions, given in terms of Kronecker deltas, can
be found in Ref. [61], it is worth commenting that in what
follows we do not consider any term in which they appear.
The reason is that couplings that incorporate these objects
do not contribute at the one-loop level to standard Green’s
functions, but they do it since higher orders.
It turns out that the Kaluza-Klein Lagrangian is

expressed in terms of the Kaluza-Klein modes of the
curvature in a relatively simple manner. The precise
expression reads [61]

L4YM ¼ −
1

4

�
F ð0Þa

μν F ð0Þaμν þ F ð0Þa
μ̄ ν̄ F ð0Þaμ̄ ν̄

þ
X
ðkÞ

ðF ðkÞa
μν F ðkÞaμν þ 2F ðkÞa

μν̄ F ðkÞaμν̄

þ F ðkÞa
μ̄ ν̄ F ðkÞaμ̄ ν̄Þ

�
: ð9Þ

In the next two subsections we extract from Eq. (9) all those
Kaluza-Klein couplings that contribute to standard Green’s
functions at one loop.

A. Kaluza-Klein scalars and mass spectrum

The emergence of Kaluza-Klein scalar modes, after
compactification, is an interesting characteristic of the
SUðN;M4þnÞ theory. In the case of just one extra dimen-

sion, the number of Kaluza-Klein scalarsAðkÞa
5 ðxÞ isN2 − 1,

which exactly matches the number of Kaluza-Klein gauge

modes AðkÞa
μ ðxÞ. Remarkably, the gauge excited modes are

massive, even though they originate from massless five-
dimensional gauge fields. The scalar Kaluza-Klein modes
behave like pseudo-Goldstone bosons in the sense that they
are massless and can be eliminated from the theory by a
specific gauge transformation [52], just like if they had given
their physical degrees of freedom to the excited Kaluza-
Klein gauge fields. With the assumption of more extra
dimensions the analysis grows in difficulty, although the
samemechanismforgenerationofgaugemasses2 takesplace
[61,62]. Some complications in the scalar sector arise
because for n > 1 extra dimensions the number of Kaluza-
Klein scalars is greater than the number of Kaluza-Klein
gauge modes. Another difficulty is introduced by the
presence of mixings among some of the scalar Kaluza-
Klein modes. The whole set of nð2n − 1ÞðN2 − 1Þ Kaluza-
Klein scalars can be split into two types of fields,
according to whether or not they participate in such scalar
mixings: n2n−1ðN2 − 1ÞKaluza-Klein scalars mix, whereas
nð2n−1 − 1ÞðN2 − 1Þ do not take part in mixings. All this
information is enclosed by the fifth term of the right-hand
side of Eq. (9).
The fifth term of Eq. (9) can be written as

−
1

4

X
ðkÞ

F ðkÞa
μ̄ ν̄ F ðkÞa

μ̄ ν̄ ¼ −
1

2

X
ðkÞ

AðkÞa
μ̄ MðkÞ

μ̄ ν̄A
ðkÞa
ν̄ þ � � � : ð10Þ

The only term explicitly shown in the right-hand side of the
last equation comprises a set of n × n mixing matrices,

MðkÞ
μ̄ ν̄ , each of which corresponds to a fixed combination of

Kaluza-Klein indices in the sum over ðkÞ. All the informa-
tion concerning Kaluza-Klein scalar mixings is contained
in these matrices, with components concisely expressed as

MðkÞ
μ̄ ν̄ ¼ m2

ðkÞδμ̄ ν̄ − pðkÞ
μ̄ pðkÞ

ν̄ : ð11Þ
This is the structure of the inertia tensor associated to a

single massive particle located at rTðkÞ ¼ ðpðkÞ
5 ;…; pðkÞ

4þnÞ.
The shape of any mixing matrix is determined by the
number of nonzero Kaluza-Klein indices in the combina-
tion ðkÞ that distinguishes it: the number of mixed Kaluza-
Klein scalars matches the number of nonzero Kaluza-Klein
indices, whereas all the remaining, and unmixed, scalars
have definite mass,

mðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k1
R1

�
2

þ � � � þ
�
kn
Rn

�
2

s
; ð12Þ

from the onset. Indeed, by performing appropriate inter-

changes of columns and rows in any mixing matrix MðkÞ
μ̄ ν̄ ,

with r nonzero Kaluza-Klein indices, it can be rearranged
as a block matrix that looks like

2By gauge masses we mean that the corresponding mass terms
are invariant under the standard gauge group SUðN;M4Þ.
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MðkÞ
μ̄ ν̄ →

 
m2

ðkÞ · 1
ðkÞ
n−r 0

0 MðkÞ
r

!
; ð13Þ

where 1ðkÞn−r, in the blockm2
ðkÞ · 1

ðkÞ
n−r, is the ðn − rÞ × ðn − rÞ

identity matrix and MðkÞ
r is an r × r nondiagonal matrix

that mixes r Kaluza-Klein scalars. It is worth emphasizing
that,while any scalarmixingmatrix can bemanipulated to fit

this generic shape, the sizes of the 1ðkÞn−r and MðkÞ
r matrices

depend on the number of nonzero Kaluza-Klein indices,
so that the precise structure of eachMðkÞ clearly depends on
its corresponding combination ðkÞ. A detailed description
of the specific mixing pattern followed by the set of
Kaluza-Klein scalars has been carried out in Ref. [61].
Of course, scalar mixing can be eradicated from the

Kaluza-Klein theory by diagonalizing the mixing matrices

MðkÞ
μ̄ ν̄ . All such matrices have the same eigenvalue spec-

trum: 1 zero eigenvalue and n − 1 nonzero eigenvalues, all
of them being equal to m2

ðkÞ. This corresponds to a mass-

eigenstates basis characterized by 1 massless scalar, AðkÞa
G ,

and n − 1 massive scalars, AðkÞa
n̄ , with n̄ ¼ 1; 2;…; n − 1.

For n extra dimensions, the total number of scalar mixings
in the Kaluza-Klein theory is ð2n − 1ÞðN2 − 1Þ, each one

providing one massless scalar AðkÞa
G . Hence, the total

number of massless scalars is ð2n − 1ÞðN2 − 1Þ, which
consistently coincides with the number of gauge Kaluza-

Klein excited modes AðkÞa
μ . To each mixing matrix MðkÞ

μ̄ ν̄

there corresponds a rotation matrix RðkÞ
μ̄μ̄0 such that

MðkÞ
μ̄ ν̄ ¼ RðkÞ

μ̄μ̄0M
ðkÞ
μ̄0ν̄0R

ðkÞ
ν̄0ν̄ : ð14Þ

In our notation, any matrix MðkÞ with primed indices
μ̄0; ν̄0ð¼ 1; 2;…; n − 1; GÞ is a diagonal matrix, in contrast
to matrices with unprimed indices μ̄; ν̄ð¼ 5; 6;…; 4þ nÞ,
which are nondiagonal. Things can always be acco-
mmodated in such a manner that, after diagonalization,

the last entry of any resulting diagonal matrix MðkÞ
μ̄0ν̄0 is

the zero eigenvalue, which means that MðkÞ
μ̄0ν̄0 ¼

diagðm2
ðkÞ;…; m2

ðkÞ; 0Þ. This allows a straightforward

extraction of the massless scalars AðkÞa
G from

AðkÞa
μ̄ ¼ RðkÞ

μ̄μ̄0A
ðkÞa
μ̄0 ¼ RðkÞ

μ̄ n̄A
ðkÞa
n̄ þRðkÞ

μ̄GA
ðkÞa
G ; ð15Þ

to finally express the scalar-mass terms in Eq. (10) as

−
1

4

X
ðkÞ

F ðkÞa
μ̄ ν̄ F ðkÞa

μ̄ ν̄ ¼ −
1

2

X
ðkÞ

m2
ðkÞA

ðkÞa
n̄ AðkÞa

n̄

−
1

2

X
ðkÞ

0 × AðkÞa
G AðkÞa

G þ � � � : ð16Þ

B. Kaluza-Klein couplings

Now that we have discussed the pure-scalar sector of the
Kaluza-Klein theory, we proceed to set apart from L4YM all
those couplings that contribute to standard Green’s func-
tions through one-loop diagrams and which are thus
necessary for the integration of the Kaluza-Klein excited
modes. An exhaustive catalog of Kaluza-Klein couplings,
in the general context of the full extra-dimensional
Standard Model, can be found in Ref. [62].

From the expression of the zero mode F ð0Þa
μν , exhibited in

Eq. (3), it is clear that the first term of Eq. (9) includes the
four-dimensional Yang-Mills Lagrangian, defined in terms

of the four-dimensional Yang-Mills curvature Fð0Þa
μν and

which we denote by Lð0Þ
4YM. We express this term as

−
1

4
F ð0Þa

μν F ð0Þaμν ¼ Lð0Þ
4YM þ 1

2
gfabc

X
ðkÞ

AðkÞaμFð0Þb
μν AðkÞcν

þ � � � : ð17Þ

Besides the low-energy theory, this equation shows explic-
itly a term contributing at one loop to standard Green’s
functions. The ellipsis, on the other hand, represents
couplings whose lowest-order contributions to such
Green’s functions enter at the two-loop level. Another
term generating pure-gauge interactions within L4YM is the
third one, which we write as

−
1

4

X
ðkÞ

F ðkÞa
μν F ðkÞaμν ¼

X
ðkÞ

�
1

2
gμνAðkÞaμDð0Þab

ρ Dð0ÞbcρAðkÞcν

−
1

2
AðkÞaμDð0Þab

μ Dð0Þbc
ν AðkÞcν

þ 1

2
gfabcAðkÞaμFð0Þb

μν AðkÞcν
�
þ � � � :

ð18Þ

The second term of Eq. (9) produces only quartic
interactions of Kaluza-Klein excited modes, so we omit
it and pass to the Kaluza-Klein gauge-scalar interactions
that are situated in the fourth term of this equation. This
term can be expressed as

1

2

X
ðkÞ

F ðkÞa
μν̄ F ðkÞaμ

ν̄ ¼
X
ðkÞ

�
−
1

2
AðkÞa
ν̄ Dð0Þab

ρ Dð0ÞbcρAðkÞc
ν̄

þ pðkÞ
ν̄ AðkÞa

μ Dð0ÞabμAðkÞb
ν̄

þ 1

2
m2

ðkÞgμνA
ðkÞaμAðkÞaν

�
þ � � � :

ð19Þ

As the third term of this equation shows, the Kaluza-Klein
gauge-scalar sector includes ð2n − 1ÞðN2 − 1Þ mass terms
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for thewhole set ofKaluza-Klein gauge excitedmodesAðkÞa
μ .

The scalar fields AðkÞa
ν̄ in the first term of Eq. (19) can be

directly rotated into the mass-eigenstate fields AðkÞa
n̄ and

AðkÞa
G , just by using orthogonality of RðkÞ

μ̄μ̄0 . An interesting
feature of Eq. (19) is the presence, in its second term, of
Kaluza-Klein gauge-scalar couplings involving the
SUðN;M4Þ covariant derivative. It turns out that the relation

pðkÞ
ν̄ RðkÞ

ν̄ν̄0 ¼ mðkÞδν̄0G ð20Þ
holds for any combination ðkÞ. This yields an exact
cancellation of most gauge-scalar couplings in this
term, in which the only Kaluza-Klein scalars that survive

the rotation RðkÞ
ν̄ν̄0 , and thus participate in such gauge-

scalar couplings, are the pseudo-Goldstone bosons AðkÞa
G .

Before compactification, the interactions among compo-
nents of the extra-dimensional gauge vector field Aa

Mðx; x̄Þ
are explicitly governed by the extra-dimensional
SUðN;M4þnÞ gauge symmetry group. Once the compact-
ness of extra dimensions is implemented in the Lagrangian
by the aforementioned canonical transformations, and extra-
dimensional gauge invariance is hidden, there emerge the

Kaluza-Klein excited gauge modes AðkÞa
μ and the scalar

modes AðkÞa
μ̄ as well. After the explicit breaking of the

ISOð1; 3þ nÞ group takes place, the couplings of extra-
dimensional gauge fields evolve into the couplings andmass
terms characterizing the four-dimensional formulation. In

particular, a link between gauge excited modes AðkÞa
μ and a

subset of the Kaluza-Klein scalar spectrum is developed.
Such a link, which manifests through the generation of

gauge masses for the gauge excited modes AðkÞa
μ and the

emergence of nonphysical scalars AðkÞa
G , also selectively

allows the presence of bilinear gauge-scalar couplings: the
only Kaluza-Klein scalars that bilinearly couple to Kaluza-

Klein gauge modes are the pseudo-Goldstone bosons AðkÞa
G ,

while such interactions are exactly eliminated for the rest of
the scalar spectrum. As we show later, a convenient set of
gauge-fixing functions allows us to trade the only existing
gauge-scalar bilinear couplings by gauge-dependent mass

terms for the pseudo-Goldstone bosons AðkÞa
G .

III. ASPECTS OF QUANTIZATION

Gauge symmetry is a profound concept [81–84] that
characterizes successful and accurate physical formula-
tions, realized within field theory, that are aimed at the
quantum description of nature. The essence of gauge
invariance is the incorporation of more degrees of free-
dom than strictly necessary to describe a given physical
system. While this symmetry manifests as the invariance
of Lagrangians under gauge transformations, the Dirac’s
algorithm [81] dives into the depths of this concept and

even provides tools to determine [85] the corresponding
gauge transformations. This instrument was used in
Refs. [52,54] to develop a careful and complete study
of gauge symmetry in the context of extra-dimensional
gauge theories. Kaluza-Klein effective descriptions that
originate in gauge extra-dimensional theories are invariant
under two disjoint sets of gauge transformations: the
standard gauge transformations, with respect to which

the zero modes Að0Þa
μ behave as gauge fields; and the

nonstandard gauge transformations, which transform the

Kaluza-Klein excited vector modes AðkÞa
μ as gauge fields.

While there are two types of transformations that are
independent of each other, it is indeed the full extra-
dimensional gauge group that governs the interactions of
the Kaluza-Klein Lagrangian. Nevertheless, the sets of
canonical transformations that take the extra-dimensional
Lagrangian LYM into the Kaluza-Klein theory L4YM hide
[54] gauge symmetry living in extra dimensions, in such a
way that the ordinary four-dimensional world displays
explicit invariance only under the SUðN;M4Þ group.
Though gauge symmetry is usually evoked to construct

models, the quantization process by path integral requires
[84] this overdescription to be removed. The framework
to execute the quantization of gauge systems is provided
by the field-antifield formalism [60,86–90] and the
Becchi-Rouet-Stora-Tyutin (BRST) symmetry [57–59].
The main point is the determination of a proper solution
to the master equation, which arises after a series of
extensions of the field spectrum are carried out. In
particular, the ghost and antighost fields are introduced,
and a set of auxiliary fields enters the game as well. The
resulting set of fields is then doubled by introducing an
antifield per each field, and a symplectic structure, known
as the antibracket, is defined. The proper solution turns
out to be the generator of the BRST transformations,
which include, as a particular case, the gauge trans-
formations. In this context, the fixation of the gauge,
intended to remove all degeneracy associated to gauge
symmetry, is carried out in a nontrivial manner. This is
accomplished by defining a fermionic functional that is
used to eliminate all the aforementioned antifields and
collaterally fix the gauge. The main outcome of this
procedure is the derivation of a quantum action that
depends on general gauge-fixing functions. At this level,
gauge symmetry is no longer present and the system is
properly quantized.
The quantization of Yang-Mills theories in five space-

time dimensions has been carried out [52] in this approach.
The simplest strategy [52,71] consists in generalizing the
well-known proper solution that corresponds [60] to the
four-dimensional version of this formulation to the case in
which extra dimensions exist. The transition to the four-
dimensional perspective gives rise to a richer Kaluza-Klein
theory that now includes, besides the L4YM Lagrangian,
gauge-fixing and ghost-antighost sectors. Since the two
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coexisting sets of four-dimensional gauge transformations
are independent of each other, it is possible to remove
only [52,71] invariance under the nonstandard gauge
transformations. In such manner, the four-dimensional
SUðN;M4Þ symmetry is still valid and the zero modes

Að0Þa
μ are still gauge fields, similarly to what happens, for

instance, with the background field method [91–101]. In
practice, this is achieved by introducing [52,71] an ad hoc
set of gauge-fixing functions that are SUðN;M4Þ covar-
iant. This modus operandi to fix the gauge has been of
benefit in phenomenological calculations [102] framed
within other formulations, such as the 331 model
[103,104]. In a forthcoming paper [71], this picture will
be discussed in full detail. However, since the present paper
requires some results concerning the quantum version of
the Kaluza-Klein theory from Yang-Mills in n extra
dimensions, we provide here all indispensable expressions
for the main calculation.
In the (4þ n)-dimensional case, the quantization pro-

cedure sketched above generates a quantum Kaluza-Klein
Lagrangian, LQKK, that can be split into a sum of three parts
as LQKK ¼ L4YM þ LGF þ LG, where LGF is the gauge-
fixing term, defined completely by the gauge-fixing func-
tions, here denoted by fðkÞa. The LG term represents the
sector of ghost and antighost fields, and is determined in
part by the election of the gauge-fixing functions. Different
sets of these functions have been propounded [75,76,80]
for the case of just one extra dimension. We generalize the
proposal of Ref. [52], given for the framework of one extra
dimension, and provide the following set of SUðN;M4Þ-
covariant gauge-fixing functions, which is suitable for n
extra dimensions:

fðkÞa ¼ Dð0ÞabμAðkÞb
μ − ξmðkÞA

ðkÞa
G ; ð21Þ

where ξ is the gauge-fixing parameter, whose different
values correspond to different choices of the gauge.
Using these functions, the gauge-fixing term can be
written as

LGF ¼
X
ðkÞ

�
1

2ξ
AðkÞaμDð0Þab

μ Dð0Þbc
ν AðkÞcν

−mðkÞAðkÞaDðkÞabμAðkÞb
G −

1

2
ξm2

ðkÞA
ðkÞa
G AðkÞa

G

�
: ð22Þ

The second term of the right-hand side of this equation
cancels the only gauge-scalar couplings allowed by the
theory, that is, those involving the pseudo-Goldstone

bosons AðkÞa
G and which arise from Eq. (19). We will profit

from this cancellation later, when we integrate out the
Kaluza-Klein excited modes. In general, simplifications are
introduced by the elimination of these couplings because it
reduces the number of Feynman diagrams in any calcu-
lation aimed at deriving contributions to some standard
Green’s function. Since this cancellation was produced
by the introduction of covariant gauge-fixing functions,
it is clear that the resulting simplifications are a direct
consequence of the preservation of gauge symmetry. In
other words, the presence of symmetries comes along
with simplifications in phenomenological calculations.
However, as the third term of Eq. (22) shows, the removal
of such unphysical couplings leaves, as a remnant, an
unphysical mass term for these spurious scalar degrees of
freedom. In the Feynman–’t Hooft gauge, defined by the
condition ξ ¼ 1, these masses coincide with those of the
Kaluza-Klein gauge excited modes. The first and third
terms in Eq. (22) contribute to light Green’s functions since
the one-loop level and thus are relevant for the present
calculation.
The ghost-antighost fields’ term, LG, involves several

couplings of Kaluza-Klein ghost fields, CðkÞa, and antighost
fields, C̄ðkÞa, with gauge and scalar Kaluza-Klein modes.
After inserting the covariant gauge-fixing functions, only
two types of these couplings contribute to standard Green’s
functions at one loop. One of them is a gauge-dependent
mass term, whereas the other one is a kinetic term.
We end this section by showing the whole set of

couplings that we shall consider in the integration of heavy
Kaluza-Klein modes:

LQKK ¼ Lð0Þ
4YM þ 1

2

X
ðkÞ

AðkÞaμ
�
gμνD

ð0Þab
ρ Dð0Þbcρ þ gμνδacm2

ðkÞ −
�
1 −

1

ξ

�
Dð0Þab

μ Dð0Þbc
ν þ 2gfabcFð0Þb

μν

�
AðkÞcν

−
1

2

X
ðkÞ

AðkÞa
n̄ ½Dð0Þab

ρ Dð0Þbcρ þ δacm2
ðkÞ�A

ðkÞc
n̄ −

1

2

X
ðkÞ

AðkÞa
G ½Dð0Þab

ρ Dð0Þbcρ þ δacξm2
ðkÞ�A

ðkÞc
G

þ
X
ðkÞ

C̄ðkÞ½Dð0Þab
ρ Dð0Þbcρ þ δacξm2

ðkÞ�CðkÞc þ � � � : ð23Þ
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IV. GAUGE-INDEPENDENT INTEGRATION OF
KALUZA-KLEIN EXCITATIONS

In this section, we carry out the functional integration
of all the Kaluza-Klein excited modes and derive the
first nonrenormalizable terms [105,106] of an effective
Lagrangian expansion governed by the low-energy

dynamic variables and symmetries. To this end, we follow

the procedure devised by the authors of Ref. [107], which

was adjusted and implemented, in Ref. [56], to the

integration of heavy Kaluza-Klein modes from Yang-

Mills theories with one extra dimension.
We begin by defining the effective action, Seff , by

eiSeff ¼
Z

DAðkÞaμDAðkÞa
n̄ DAðkÞa

G DC̄ðkÞaDCðkÞa exp
�
i
Z

d4x½L4YM þ LGF þ LG�
�
; ð24Þ

where ðkÞ ≠ ð0;…; 0Þ, so that this expression involves solely the functional integration of Kaluza-Klein excited modes.
Gaussian integration of all the terms in Eq. (23), according to the definition given in Eq. (24), yields

iSeff ≡ i
Z

d4xLeff ¼ iSð0Þ4YM −
1

2

X
ðkÞ

Tr log i

�
−gμνðDð0ÞÞ2 þ

�
1 −

1

ξ

�
Dð0Þ

μ Dð0Þ
ν þ 2igFð0Þ

μν −m2
ðkÞgμν1N

�

−
1

2

X
ðkÞ

Tr log i1n−1½ðDð0ÞÞ2 þm2
ðkÞ1N � −

1

2

X
ðkÞ

Tr log i½ðDð0ÞÞ2 þ ξm2
ðkÞ1N �

þ
X
ðkÞ

Tr log i½−ðDð0ÞÞ2 − ξm2
ðkÞ1N �: ð25Þ

Before following through, some explanation on this equa-
tion is opportune. The symbol Tr stands for a trace over all
degrees of freedom, including spacetime points. Each trace
Tr acts also on matrices that live in different spaces and
coexist within the arguments of the logarithms in the
different terms, where they multiply each other. For
example, look at the second term of the right-hand side
of Eq. (25). One way of making sense of the argument of its
logarithm is by imagining its terms as ðN2 − 1Þ × ðN2 − 1Þ
block matrices, which come from the gauge group and
whose entries are blocks of size 4 × 4, because of the
spacetime indices. This means that, for instance, Dð0Þ is the
SUðN;M2Þ covariant derivative in the adjoint representa-
tion of the gauge group and in matrix form, and 1N is the
ðN2 − 1Þ × ðN2 − 1Þ identity matrix in this gauge-group
space, whereas gμν is the 4 × 4 matrix corresponding to the
inverse of the metric tensor. This term of Eq. (25) contains
all the contributions from the Kaluza-Klein gauge excited

modes AðkÞa
μ and, as it can be appreciated, is gauge

dependent, since it carries the gauge-fixing parameter ξ.
The third and fourth terms of this equation are scalar

contributions from physical scalars AðkÞa
n̄ and pseudo-

Goldstone bosons AðkÞa
G , respectively, and the fifth term

comprehends all contributions from ghost and antighost
fields, CðkÞa and C̄ðkÞa. Note that the global negative sign
within the logarithm of the ghost-sector contribution can be
relegated to the zero-point energy. The resulting expression
is proportional to the fourth term, which comes from the

Kaluza-Klein pseudo-Goldstone modes AðkÞa
G . Clearly, the

ghost-antighost contributions are minus twice times those
produced by the pseudo-Goldstone bosons. This relation,
which had already been noticed in the 331 model [102] and
in the five-dimensional Yang-Mills theory [56], is a direct
consequence of our set of gauge-fixing functions and
illustrates the simplifications supported by the presence
of gauge symmetry. This result is general, within this
gauge-fixing prescription, and remains the same in any
one-loop calculation. Of course, both of these unphysical
contributions are gauge dependent. Finally, we point out
that the argument of the logarithm of the third term includes
the object 1n−1, which is an identity matrix of size
ðn − 1Þ × ðn − 1Þ that appears because of the presence

of n − 1 physical scalars AðkÞa
n̄ per each combination ðkÞ

and per each value of the gauge index a.

A. The gauge trace

In this subsection, we derive a result that is not exclusive
to Kaluza-Klein theories, but also applies in other gauge
formulations. For that reason, only for now we change
our notation to avoid any reference to the particular case
of extra-dimensional models. Inspired by the method of
Ref. [107], and following the Appendix of Ref. [56], we
consider a generic trace of the form

iTr log½gμνð−D2 −m2Þ −Uμν�; ð26Þ

where D is the covariant derivative, which we assume to be
in some representation of a gauge group SUðNÞ, m is some
high-energy scale, and Uμν ¼ Ua

μνTa is an arbitrary block
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matrix function of spacetime coordinates whose entries are
4 × 4 matrices. Here, the Ta matrices are the generators of
the gauge group in whatever representation we choose. As
suggested by the authors of Ref. [107], we use the notation
Aμ ≡ −igTaAa

μ, so that the covariant derivative reads
DμfðxÞ ¼ ∂μfðxÞ þ ½Aμ; fðxÞ� and the definition of the
Yang-Mills curvature, Fμν ¼ −igTaFa

μν, has the simple
form ½Dμ;Dν� ¼ Fμν.
Our objective is to solve the trace given in Eq. (26) and

so derive an effective expansion, L, of the form

L ¼
X∞
k¼1

Xnk
b¼1

αk;b
m2k−4 Ok;b ¼

X∞
k¼1

ck
m2k−4

Xnk
b¼1

γk;bOk;b; ð27Þ

where the αk;b dimensionless coefficients have been written
as αk;b ¼ ckγk;b, with

ck ¼
�

m2

4πμ2

�D
2
−2 D

ð4πÞ2 Γ
�
k −

D
2

�
: ð28Þ

The procedure involves momentum integrals, which pro-
duce ultraviolet divergences. To handle them, we use the
dimensional regularization approach [108], for which the
dimension of spacetime is set asD, withD → 4, and a mass
scale μ, with units of mass, is introduced to correct units in
momentum integrals. The Ok;b, in Eq. (27), are field
operators whose dimensions are ðmassÞ2k, and nk is the
total number of such operators for a fixed k. In the present
study we are concerned with effective operators with mass
dimensions as large as 6, that is, up to k ¼ 3.
In this method [56,107], two partial answers are obtained

by different means and they are then put together in a
particular context to determine the general solution. For the
first piece, essentially, one has to guess which will be the
general structure of the final result. Though the whole set of
SUðNÞ-invariant operators of mass dimensions 4 and 6 is
well known [105,106], the presence of the general object
Uμν complicates this task. The authors of Ref. [107]
provided a set of operators that works well in the absence
of matrices associated to the Lorentz group (which we have
represented by means of Lorentz indices). Fortunately,
gauge independence sheds light on what to expect from
Eq. (26), as we shall appreciate when we implement the
final result in the Kaluza-Klein gauge theory. According to
this criterion, the correct set for k ¼ 1, 2, 3 is

Xn1
b¼1

γ1;bO1;b ¼ γ1;1
1

D
trrfUμ

μg; ð29Þ

Xn2
b¼1

γ2;bO2;b ¼ γ2;1
1

D2
trrfUμ

μUν
νg þ γ2;2trrfFμνFμνg;

ð30Þ

Xn3
b¼1

γ3;bO3;b ¼ γ3;1
1

D3
trrfUμ

μUν
νUρ

ρg

þ γ3;2
1

D2
trrfDμUν

νDμUρ
ρg

þ γ3;3
1

D
trrfFμνUρ

ρFμνg
þ γ3;4trrfDμFμνDρFρνg
þ γ3;5trrfFμνFνρFρ

μg; ð31Þ
with the symbol trr denoting a trace acting on matrices from
the SUðNÞ representation in which we are working.
For the second piece, we use the expressions of Ref. [52],

according to which the trace in Eq. (26) can be written, in
terms of a Lagrangian L, as

iTr log½gμνð−D2 −m2Þ −Uμν� ¼
Z

d4xL; ð32Þ

with

L¼
X∞
k¼1

ð−1Þkþ1

k
tr
�
i
Z

d4p
ð2πÞ4

½δαβðΠ2þ2Π ·pÞ−Uα
β�k

ðp2−m2Þk
�
1:

ð33Þ
To get this expression for the Lagrangian L, the trace over
those degrees of freedom that correspond to points of
spacetime has been taken, so that in L the trace Tr does not
appear. Instead, it involves the trace tr, which acts on all the
discrete matrices within the momentum integral. These are
block matrices of size determined by the gauge group
representation, with entries of size 4 × 4. The symbol 1, on
the other hand, indicates that operators act on the identity.
We have also used the definition [107] Πμ ¼ iDμ.
After solving the integrals for different values of k in the

series given in Eq. (33), one should get, with the desired
accuracy, the effective Lagrangian expansion shown in
Eq. (27), with all the coefficients γk;b established exactly.
The bunch of technical difficulties that may emanate in a
calculation of such nature [109] was attenuated by the
authors of Ref. [107], who cleverly conceived a shortcut that
renders the calculation of the first nonrenormalizable terms a
relatively easy task. While they compared their results and
found agreement with other works [110], we will show
below that this method works well enough to yield gauge-
independent results. As we mentioned already, we will
follow dimensional regularization [108] to deal with ultra-
violet divergences. To this end, we carry out the replacement
d4p=ð2πÞ4 → μ4−DdDp=ð2πÞD in momentum integrals.
For the next step, we connect our ingredients: (1) our

conjectured field-operator combinations, Eqs. (29)–(31),
and (2) Eq. (33), which is a partial calculation of the
effective Lagrangian expansion L. The idea is that both of
these expressions are valid for any field configuration. In
particular, the coefficients γk;b are constant numbers [111],
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which remain the same in any field configuration and for
any choice of the matrix Uμν. We take a particular
configuration in which we denote the gauge fields by
Aμjconf ¼ A0

μ and which is defined by [56,107]

∂μA0
ν ¼ 0; Uα

β ¼ −δαβA02: ð34Þ

Within this context,

½δαβðΠ2 þ Π · pÞ −Uα
β�k ¼ ð2ip · A0Þkδαβ; ð35Þ

so that using the general solution [107]

iμ4−D
Z

dDp
ð2πÞD

pμ1pμ2…pμ2k

ðp2 −m2Þ2k ¼ ð−1Þkþ1

ð4πÞ2
�

m2

4πμ2

�D
2
−2

×
1

m2k−4
Γðk − D

2
Þ

2kΓð2kÞ S
μ1μ2…μ2k
k ; ð36Þ

Eq. (33) can be expressed as Eq. (27) evaluated in the
special configuration, that is, Ljconf , with
Xnk
b¼1

γk;bOk;bjconf ¼
Xnk
b¼1

γk;bO0
k;b ¼

2k

ð2kÞ! trrfSkg: ð37Þ

The object Sμ1μ2…μ2k
k , defining Sk by Sk ¼ Sμ1μ2…μ2k

k ×
A0
μ1A

0
μ2…A0

μ2k , is a totally symmetric 2k-tensor that is
formed by the sum of all possible different products of k
metric tensors. The trace trr, in the last expression, only
affects matrices corresponding to the representation of
SUðNÞ. Using Eq. (37), one finds that

Xn1
b¼1

γ1;bO0
1;b ¼ trrfA02g; ð38Þ

Xn2
b¼1

γ2;bO0
2;b ¼

1

3
trrfðA02Þ2g þ 1

6
trrfðA0

αA0
βÞ2g; ð39Þ

Xn3
b¼1

γ3;bO0
3;b ¼

1

45
trrfðA02Þ3g þ 1

15
trrfA02ðA0

αA0
βÞ2g þ

1

30
trrfðA02A0

αÞ2g þ
1

30
trfðA0

αA0
βA

0αÞ2g þ 1

90
trrfðA0

αA0
βA

0
γÞ2g: ð40Þ

Now we specialize Eqs. (29)–(31) to this particular configuration, equate the resulting expressions to Eqs. (38)–(40), and
find the exact values of the constants γk;b. We calculate the resulting effective Lagrangian expansion to be

L ¼ 1

ð4πÞ2
�
1þ Δϵ − log

�
m2

μ2

��
m2trrfUμ

μg þ
1

ð4πÞ2
�
1

2
þ Δϵ − log

�
m2

μ2

��
1

8
trrfUμ

μUν
νg

þ 1

ð4πÞ2
�
−
1

2
þ Δϵ − log

�
m2

μ2

��
1

3
trrfFμνFμνg þ 1

ð4πÞ4
1

m2

�
−

1

96
trrfUμ

μUν
νUρ

ρg

þ 1

48
trrfDμUν

νDμUρ
ρg −

1

12
trrfFμνUρ

ρFμνg þ 1

15
trrfDμFμνDρFρνg −

2

45
trrfFμνFνρFρ

μg
�
: ð41Þ

In this expression, ultraviolet divergences are enclosed by

Δϵ ¼
2

ϵ
− γE þ log 4π: ð42Þ

B. Gauge independence of nonrenormalizable
terms

To implement the effective Lagrangian expansion
L, given in Eq. (41), to the contributions of Kaluza-
Klein gauge excited modes, completely contained in
the second term of the right-hand side of Eq. (25),

we carry out the replacement [56] Dð0Þ
μ Dð0Þ

ν →

ð1=DÞðDð0ÞÞ2gμν − ðig=2ÞFð0Þ
μν , so that this trace is

expressed as

−
1

2

X
ðkÞ

Tr log

�
gμν

�
−ðDð0ÞÞ2 −

�
1 −

α

D

�
−1
m2

ðkÞ1N

�

−
�
α

2
− 2

��
1 −

α

D

�
−1
igFð0Þ

μν

�
; ð43Þ

with α ¼ 1 − 1=ξ. Written in this form, this gauge trace
has an effective Lagrangian expansion that fits Eq. (41). It
is very important to keep in mind that the replacement
Fμν → −igFa

μνTa ¼ −igFμν has to be done in L before
putting this result into effect. The first, second, and third
terms of Eq. (41) involve divergences, within the Δϵ factor,
and logarithms that in minimal subtraction-like renormal-
ization schemes, such as M̄S, become nondecoupling. Due

to antisymmetry of the Yang-Mills curvature Fð0Þa
μν , with
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respect to Lorentz indices, the first and second terms of
Eq. (41) vanish exactly when this result is implemented in
the gauge trace given in Eq. (43). The third term, on the
other hand, survives, but its divergent and nondecoupling
effects are unobservable. As discussed in Ref. [62], despite
the presence of multiple and infinite Kaluza-Klein sums,
this term is absorbed by means of the standard renormal-
ization procedure. Omitting divergent and nondecoupling
terms, and assuming that nonrenormalizable terms of mass
dimension 6 are much larger than terms of higher orders,3

we find that the effective Lagrangian emerging from the
pure-gauge Kaluza-Klein contributions reads

Lgauge ≈
1

ð4πÞ2
1

15

X
ðkÞ

1

m2
ðkÞ

�
1

4

�
1 −

1

ξ

�
− 1

�

×

�
g2

2
trafDð0Þ

μ Fð0ÞμνDð0ÞρFð0Þ
ρν g

þ ig
3
trafFð0Þ

μν Fð0ÞνρFð0Þμ
ρ g

�
; ð44Þ

where the symbol tra indicates that the traces are taken on
gauge group generators Ta

a , in the adjoint representation
of SUðN;M4Þ.
With minor customizations, the result of Ref. [107] can

be utilized to solve all the remaining traces in Eq. (25). We
take such an expression and find that the total contribution
from the unphysical pseudo-Goldstone bosons, ghosts, and
antighosts yields the expansion

Lunphy ≈
g2

ð4πÞ2
1

15

X
ðkÞ

1

m2
ðkÞ

1

4ξ

�
g2

2
trafDð0Þ

μ Fð0ÞμνDð0ÞρFð0Þ
ρν g

þ ig3

3
trafFð0Þ

μν Fð0ÞνρFð0Þμ
ρ g

�
; ð45Þ

where, again, we have neglected terms of mass dimensions
larger than 6. As we did in the case of the gauge trace, here
we have omitted terms that are proportional to the trace of
FμνFμν, because they can be absorbed by renormalization
and are thus unobservable [62]. The only sources of gauge
dependence are the contributions from Kaluza-Klein gauge
excited modes, pseudo-Goldstone bosons, and ghost and
antighost Kaluza-Klein fields. As can be appreciated from
Eqs. (44) and (45), the contributions from the gauge excited
modes differ from those generated by unphysical scalars
and ghost-antighost fields by gauge-dependent global

factors. When these contributions are all added together,
these global factors are summed like

1

4

�
1 −

1

ξ

�
− 1þ 1

4ξ
¼ −

3

4
: ð46Þ

This explicitly demonstrates that the effective Lagrangian
expansion resulting from integrating out all the Kaluza-
Klein excited modes is gauge independent, which is
achieved by a fine cancellation between all gauge-
dependent contributions.
The rest of the Kaluza-Klein contributions come from

the whole set of physical scalars. Recall that these con-
tributions do not introduce gauge dependence. Gathering
these scalar contributions with those from gauge and
unphysical Kaluza-Klein modes we find the following
effective Lagrangian:

Leff ≈ Lð0Þ
4YM −

�
g2

ð4πÞ2
Nðnþ 2Þ

60
trffDð0Þ

μ Fð0ÞμνDð0ÞρFð0Þ
ρν g

þ ig3

ð4πÞ2
Nðnþ 2Þ

90
trffFð0Þ

μν Fð0ÞνρFð0Þμ
ρ g

�X
ðkÞ

1

m2
ðkÞ

:

ð47Þ

Both nonrenormalizable terms in this result involve a factor
N, which distinguishes the gauge group. This method to
derive effective Lagrangians by the integration of heavy
degrees of freedom produced SUðN;M4Þ-invariant oper-
ators with traces over generators in the adjoint representa-
tion of the gauge group. This can be appreciated, for
instance, in Eq. (44), which is written in terms of the trace
tra. Nevertheless, we have written the total contribution to
Leff in terms of the trace trf , which represents a trace over
generators in the fundamental representation. In other
words, we have replaced Fμν ¼ Fa

μνTa
a by Fμν ¼ Fa

μνTa
f ,

where Ta
f represents the SUðN;M4Þ generators in the

fundamental representation, and this change has come
along with the previously mentioned factor N. Our result
also depends on the number n of extra dimensions. Explicit
dependence comes from the contribution of physical scalars

AðkÞ
n̄ , which involves a global factor (n − 1) that adds to

factors from all other contributions to produce the (nþ 2)
that appears in Eq. (47). Dependence on the number of
extra dimensions is also implicitly located within the sum
over combinations ðkÞ of Kaluza-Klein indices.

C. Regularization of multiple Kaluza-Klein sums
and final result

In general, ultraviolet divergences are induced by loop
calculations, though renormalizable formulations set the
conditions to get rid of them. The ultraviolet comportment
of loop contributions from Kaluza-Klein excited modes
features, besides the usual divergences, multiple infinite

3The ATLAS Collaboration has excluded values of 1=R that lie
below 850 GeV, for the case of one universal extra dimension
[48,49]. Moreover, the results of Ref. [44] suggest that lower
bounds increase if more extra dimensions are assumed. In this
sense, contributions from operators of mass dimension 6, sup-
pressed by 1=ðR−1

j Þ2, are expected to be more important than
mass-dimension-8 terms, which involve a 1=ðR−1

j Þ4 suppression.
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Kaluza-Klein sums that often produce divergent results.
Continuous divergences, from integration of 4-momenta,
and discrete divergences, from Kaluza-Klein sums, share a
common origin. Discrete divergences arise from the split of
extra-dimensional momentum, whose components along
the extra dimensions get quantized by compactification,
producing Kaluza-Klein sums over Kaluza-Klein masses.
In the very special case of only one extra dimension, these
sums are [56,61,62] finite Riemann-zeta functions, but as
more extra dimensions are considered, multiple sums
appear and the convergence of results is lost.
Extra-dimensional coupling constants are dimensionful,

so that these physical descriptions are not renormalizable.
Kaluza-Klein theories, which provide us with a four-
dimensional viewpoint, have their own coupling constants,
which turn out to be dimensionless. Moreover, the direct
generalization of four-dimensional renormalizable formu-
lations, such as the Standard Model, to descriptions placed
in extra dimensions generates Kaluza-Klein theories in
which all couplings are renormalizable in Dyson’s sense.
Consequently, loop amplitudes in which continuous and
discrete divergences coexist can be renormalized [62].
However, in many cases, there are contributions in which
only discrete divergences are present and they cannot be
eliminated by renormalization. Regulators aimed at ultra-
violet divergences produced by Kaluza-Klein modes and
that preserve higher-dimensional Lorentz and gauge sym-
metries were proposed, analyzed, and implemented in
Refs. [112–114]. In Ref. [62], a regularization scheme to
deal with multiple Kaluza-Klein sums was recently intro-
duced and explored. This approach, which is based on the
Epstein-zeta function [63–70], allows one to isolate diver-
gences produced by these infinite sums.
The Epstein-zeta function, which is a generalization of

the Riemann-zeta function, is defined as

ζðs;QÞ ¼
X

0≠x∈Zn

1

ðxTQxÞs ; RðsÞ > n
2
; ð48Þ

where s is some complex number. The sum and the
denominator within it, written in terms of the vector x,
its transpose xT, and the n × n matrix Q, together represent
a multiple sum over integer numbers. Except for a simple
pole at s ¼ n=2, the Epstein-zeta function is analytically
continued by means of the functional equation

ζðs;QÞ ¼ ðdetQÞ−1
2

π2s−
n
2Γðn

2
− sÞ

ΓðsÞ ζ

�
n
2
− s;Q−1

�
: ð49Þ

Following the prescription of Ref. [62], we assume that all
extra dimensions are equally sized, that is, Rj ≡ R for any
j ¼ 1;…; n. In this context, the Kaluza-Klein sums in
Eq. (47) can be written as

X
ðkÞ

1

m2
ðkÞ

¼ R2

2

Xn
l¼1

�
n

l

�
ζð1; IlÞ; ð50Þ

where Il is the l × l identity matrix. The isolated singu-
larities of these sums are given by l ¼ 2. Using these
results, we finally write the effective Lagrangian expan-
sion as

Leff ≈ Lð0Þ
4YM −

g2

ð4πÞ2
Nðnþ 2Þ

120
R2
Xn
l¼1

×
n!

l!ðn − lÞ! ζð1; IlÞtrffD
ð0Þ
μ Fð0ÞμνDð0ÞρFð0Þ

ρν g

−
ig3

ð4πÞ2
Nðnþ 2Þ

180
R2
Xn
l¼1

×
n!

l!ðn − lÞ! ζð1; IlÞtrffF
ð0Þ
μν Fð0ÞνρFð0Þμ

ρ g: ð51Þ

These nonrenormalizable terms are divergent at l ¼ 2,
which means that in the case of only one extra dimension
(n ¼ 1) all results are finite. This property of five-
dimensional models has been reported in phenomenologi-
cal studies [115].
As discussed in Ref. [62], the divergent behavior of loop

amplitudes that include infinite Kaluza-Klein multiple
sums is determined by the number of extra dimensions
and by the accuracy achieved in a given calculation. In the
present paper, we have restricted our result to the very first
nonrenormalizable terms of the effective Lagrangian
expansion, that is, to those with mass dimension 6. A
more accurate effective Lagrangian, however, would
include terms with larger mass dimensions. For instance,
assume that we cut the effective Lagrangian series at
1=m2K

ðkÞ, for some natural number K. The resulting effective

Lagrangian would read

Leff ¼ Lð0Þ
4YM þ

X
ðkÞ

�XK
j¼1

XNj

a¼1

R2j βj;a
ðk2Þj Oj;a

�
; ð52Þ

where the βj;a are dimensionless constant coefficients that
depend on the gauge group, on the number of extra
dimensions, and on the four-dimensional coupling constant
g. TheOj;a factors represent nonrenormalizable operators of
mass dimension ðmassÞ2j and Nj is the total number of such
operators for a fixedmass dimension. The underlined symbol
k2 stands for any sum of quadratic Kaluza-Klein indices:
k21;…; k2n; k21 þ k22;…; k2n−1 þ k2n;…; k21 þ � � � þ k2n. Unless
a cutoff for the Kaluza-Klein sums is established, the sum
over combinations ðkÞ is formally divergent if n > 1. We
have seen that nonrenormalizable termsofmass dimension 6,
which correspond to j ¼ 1, generate a divergence in ζð1; IlÞ,
at l ¼ 2. If somehow mass-dimension-6 terms were not
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present, wemay have cut the series at j ¼ 2 (mass dimension
8). Such terms would involve Epstein-zeta functions ζð2; IlÞ
instead, with a divergence at l ¼ 4 as long as n ≥ 4, though
they would be finite if n < 4. In general, any nonrenorma-
lizable term with mass dimension k, alone, generates ultra-
violet discrete divergences ifn ≥ k − 4, but such divergences
are absent if n < k − 4. Thus, if a more accurate effective
Lagrangian is derived, a different divergent behavior is
expected for a large enough number of extra dimensions.
It is important to stress that this discussion is rather
qualitative, for there are individual divergent sumsP

ðkÞ1=ðk2Þj, which means that using
P

ðkÞ
P

j ¼P
j

P
ðkÞ in Eq. (52) may lead to incorrect results. Strictly

speaking, in the presence of nonrenormalizable terms of
mass dimension larger than 6 we cannot separately analyze
each sum

P
ðkÞ1=ðk2Þj, for each different value of j, and then

infer the divergent nature of the whole effective Lagrangian
expansion.

V. SUMMARY

Assuming that, besides the ordinary four-dimensional
coordinates, spacetime comprises a set of compact dimen-
sions, each one with an orbifold structure, we have worked
with a gauge theory governed by the SUðN;M4þnÞ group,
in a framework in which extra dimensions are universal. We
have integrated out all the four-dimensional heavy degrees
of freedom that are produced by this formulation and which
are part of the particle spectrum of the corresponding
Kaluza-Klein theory. The main result was the derivation of
the first nonrenormalizable terms, with mass dimension 6,
of an effective Lagrangian that abides by low-energy
symmetries and whose field content is the set of Kaluza-
Klein zero modes. In passing, we have studied diverse
aspects of extra-dimensional gauge theories. In particular,
we have given a glimpse on the quantization of these
Kaluza-Klein descriptions, including an SUðN;M4Þ-
covariant set of gauge-fixing functions, which preserves
part of the gauge invariance of the Kaluza-Klein theory and
thus induces valuable simplifications in calculations. For

instance, contributions from ghost-antighost fields are
related in a simple way to those from pseudo-Goldstone
bosons. We have also provided the full set of couplings that
involve heavy modes, including Kaluza-Klein ghost and
antighost fields, and which contribute to standard Green’s
functions since the one-loop level. We have emphasized
that our resulting effective Lagrangian is gauge indepen-
dent with respect to gauge-fixing of the Kaluza-Klein
gauge excited modes. The imperative joint intervention
of the contributions from Kaluza-Klein heavy gauge fields,
pseudo-Goldstone bosons, and ghost and antighost fields to
attain gauge independence was pointed out. We imple-
mented a novel regularization approach, based on the
Epstein-zeta function, which is intended to isolate ultra-
violet divergences that are encrypted within multiple and
infinite Kaluza-Klein sums. In applying the Epstein-zeta
regularization to our results, divergences were explicitly
separated and precisely located. The resulting expression
shows that, as expected, divergences of the first non-
renormalizable terms only arise when the number of extra
dimensions is 2 or greater. We point out that, for a large
enough number of extra dimensions, the divergent behavior
of a more accurate effective Lagrangian expansion will be
modified by nonrenormalizable terms of larger mass
dimensions. In this respect, recall that accuracy, in the
context of effective theories, means adding more non-
renormalizable terms. Standard divergences, from integra-
tion of continuous four-dimensional momentum, also
appear in our expansion. Moreover, nondecoupling effects
driven by logarithmic terms that are subject to multiple
Kaluza-Klein sums are present as well. However, we have
stressed that the renormalization procedure used to remove
standard divergences eliminates these effects, rendering
them unobservable.
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