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We recently derived a quantization condition for the energy of three relativistic particles in a cubic box
[M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys.
Rev. D 92, 114509 (2015)]. Here we use this condition to study the energy level closest to the three-particle
threshold when the total three-momentum vanishes. We expand this energy in powers of 1=L, where L is
the linear extent of the finite volume. The expansion begins at Oð1=L3Þ, and we determine the coefficients
of the terms throughOð1=L6Þ. As is also the case for the two-particle threshold energy, the 1=L3, 1=L4 and
1=L5 coefficients depend only on the two-particle scattering length a. These can be compared to previous
results obtained using nonrelativistic quantum mechanics [K. Huang and C. N. Yang, Phys. Rev. 105, 767
(1957); S. R. Beane, W. Detmold, and M. J. Savage, Phys. Rev. D 76, 074507 (2007); S. Tan, Phys. Rev. A
78, 013636 (2008)], and we find complete agreement. The 1=L6 coefficients depend additionally on the
two-particle effective range r (just as in the two-particle case) and on a suitably defined threshold three-
particle scattering amplitude (a new feature for three particles). A second new feature in the three-particle
case is that logarithmic dependence on L appears atOð1=L6Þ. Relativistic effects enter at this order, and the
only comparison possible with the nonrelativistic result is for the coefficient of the logarithm, where we
again find agreement. For a more thorough check of the 1=L6 result, and thus of the quantization condition,
we also compare to a perturbative calculation of the threshold energy in relativistic λϕ4 theory, which we
have recently presented in [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 93, 014506 (2016)]. Here, all
terms can be compared, and we find full agreement.
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I. INTRODUCTION

In two recent papers, we derived a relationship between
the spectrum of three relativistic particles in a periodic box
and on-shell, infinite-volume two-to-two and three-to-three
scattering amplitudes [1,2]. In the first paper, Ref. [1], we
related the finite-volume spectrum to an unphysical infin-
ite-volume three-to-three scattering quantity that we
denoted Kdf;3. The formalism was then completed in
Ref. [2], where we presented the purely infinite-volume
relation between Kdf;3 and the standard three-to-three
scattering amplitude,M3. As the derivation of these results
is lengthy and involved, it is important to check them as
thoroughly as possible. Some checks were made in
Refs. [1,2], but the purpose of the present paper is to
provide a more significant check. We do so by calculating,
in our formalism, the energy of the state closest to threshold
as a function of the inverse box size 1=L, and by comparing
to results obtained using two other methods: nonrelativistic
quantummechanics (NRQM) (as done in Refs. [3–5]) and a
perturbative expansion in relativistic λϕ4 theory (a calcu-
lation we have recently completed in Ref. [6]). These two

methods provide complementary checks of the results of
our general formalism.
The result derived in Refs. [1,2] is for a scalar field ϕ

with a Z2 symmetry, ϕ → −ϕ, so that only even legged
vertices appear. This theory is studied in a cubic box with
side length L and periodic boundary conditions in all three
spatial directions. The absence of 2 → 3 transitions means
that a direct comparison can be made to the nonrelativistic
approach, since in the latter particle number is conserved.
The analysis of Refs. [1,2] allows for nonzero total three-

momentum, ~P, in the finite-volume frame. However, since
Refs. [3–6] consider only zero total three-momentum, we

restrict ourselves here to ~P ¼ 0. This means that the
threshold occurs when the total energy satisfies E ¼ 3m,
with m the physical mass of the scalar particle. In the
absence of interactions, this is also the energy of the lowest-
lying three-particle state in the box, with all particles at rest.
Including interactions, the energy of this state will shift by
an amount

ΔEth ¼ E − 3m; ð1Þ

which should go to zero as L → ∞. For two particles, it is
well known that ΔEth ∝ a=L3 þOð1=L4Þ, with a the
scattering length (see Ref. [7] and references therein).

*hansen@kph.uni‑mainz.de
†srsharpe@uw.edu

PHYSICAL REVIEW D 93, 096006 (2016)

2470-0010=2016=93(9)=096006(26) 096006-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.096006
http://dx.doi.org/10.1103/PhysRevD.93.096006
http://dx.doi.org/10.1103/PhysRevD.93.096006
http://dx.doi.org/10.1103/PhysRevD.93.096006


The 1=L3 factor arises because the two particles, both of
which have spatially uniform wave functions, need to be
close to each other in order to interact. We expect that ΔEth
for three particles should scale with the same power of 1=L,
since one possible process is a pairwise interaction with the
third particle spectating. Similarly, a localized three-particle
interaction should lead to a contribution scaling as 1=L6,
since all three particles must be close. These expectations
are indeed borne out of the results of Refs. [4–6].
It should be noted that, in finite volume, there is an

infinite tower of states with energies EnðLÞ satisfying
limL→∞EnðLÞ ¼ 3m. We are only interested in the lowest
lying level in this infinite set, for which, as noted above,
ΔE ¼ Oð1=L3Þ. In particular, we are not concerned with
excited states that, in the noninteracting limit, contain at
least two particles with nonzero momenta. The energy
shifts for such states scale as ΔE ¼ Oð1=L2Þ with positive
coefficients. Our quantization condition could also be used
to develop the 1=L expansion of the energy shifts for these
excited states, but we do not pursue this in the present
article.
In light of these considerations we expand the energy

shift as

ΔEth ¼
X∞
n¼3

anðLÞ
Ln ð2Þ

and determine the anðLÞ up to n ¼ 6. We include a possible
L dependence in the coefficients, since Refs. [4–6] find a
logarithmic dependence for a6ðLÞ.
As we will show, our results for a3−5, as well as the

logarithmic, volume-dependent term in a6ðLÞ, agree with
those from Refs. [3–5] (which were also checked in
Ref. [6]). We cannot, however, make a useful comparison
with the NRQM results for the volume-independent part of
a6ðLÞ for two reasons. First, as we discovered in Ref. [6],
there are differences between the nonrelativistic and rela-
tivistic results for the two-particle threshold energy shift at
Oð1=L6Þ. Such differences arise from relativistic kinemat-
ics, and we expect these to persist also in the three-particle

case. Second, this is the order at which a three-particle
interaction first appears, and the definition of this quantity
is scheme dependent. The schemes used in the two NRQM
calculations differ from that used in our formalism (as well
as from each other), and the relationship between these
schemes is not known at present. It is primarily because of
this issue that we carried out the perturbative calculation of
Ref. [6], since in that calculation we could use the same
scheme for defining the three-particle interaction, and thus
provide an unambiguous check for a6ðLÞ.1
Since the scheme dependence of the three-particle

interaction plays an important role in the following, we
briefly recall how this issue arises. The quantity that one
naively expects to enter the 1=L6 energy shift in a
relativistic theory is the infinite-volume three-to-three
scattering amplitude at threshold. This cannot be the case,
however, since this amplitude diverges as ΔE ¼ E − 3m
vanishes.2 The divergences are due to the three pairwise
scattering diagrams shown in Fig. 1(a), and they scale as
a2=ΔE, a3=

ffiffiffiffiffiffiffi
ΔE

p
and a4 logðΔEÞ, respectively, where a is

the scattering length. The existence of such singularities is a
general field-theoretic result that was established long ago
[9–12]. Our formalism accommodates these divergences by
finding that ΔEth depends on a modified quantity, M3;th,
given by subtracting the divergent terms from M3 [see
Fig. 1(b) as well as Eq. (114) below]. The choice of
subtraction is, however, ambiguous and introduces depend-
ence on a cutoff scale and scheme.
The remainder of this paper is organized as follows. In

the following section we summarize the quantization
condition of Ref. [1], which takes the form of a determinant
of formally infinite-dimensional matrices. The core of this
paper is Sec. III, in which we describe the development of
the threshold expansion. The central difficulty is that, at

(a)

(b)

FIG. 1. (a) The three-to-three scattering amplitude contains three types of pairwise scattering diagrams that lead to divergences at
threshold. The scaling of the divergence with the shift from threshold, ΔE, and the two-particle scattering length, a, is shown. (b) We
define a finite threshold scattering amplitude by subtracting the singular parts of these diagrams before sending the energy to 3m. The
rings, in contrast to filled circles, indicate that only the two-to-two scattering amplitude near threshold appears in the subtraction. The
vertical dashed lines indicate that a simple pole is used in place of the fully dressed propagator. Detailed definitions are given
in Sec. III D.

1See also Ref. [8] for a recent review of results for three
particles in a finite volume.

2As discussed later, there are also divergences above threshold.
We imagine here choosing the kinematics such that the above-
threshold divergences are avoided, and then moving towards
threshold, at which point the divergences cannot be avoided.
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Oð1=L6Þ in the expansion of ΔEth, all entries in the
infinite-dimensional matrices contribute. We thus first
recast the quantization condition into a more useful form,
given in Eq. (33). We then analyze the reduced result by
understanding the 1=L scaling of its components. The
analysis is rather involved and lengthy, and requires the
introduction of the threshold amplitude M3;th discussed
above. Brief conclusions are given in Sec. IV. Technical
calculations are collected in three appendixes.

II. SUMMARY OF QUANTIZATION CONDITION

In this section we recall the three-particle quantization
condition from Ref. [1]. This condition determines the
spectral energies Ei to be those values for which

det½1þ F3Kdf;3� ¼ 0: ð3Þ

Here, F3 and Kdf;3 are matrices, to be defined below,
that depend on E (and, in the case of F3, also on L).
Particle interactions enter through two infinite-volume
scattering quantities: the three-particle quantity Kdf;3,
shown explicitly, and the two-particle K matrix K2, con-
tained in F3.
Kdf;3 is a three-particle divergence-free K matrix. It

depends on the same (on-shell) kinematic variables asM3,
and is invariant under the interchange of the external
particle momenta. It differs from the standard three-to-
three scattering amplitude in two important ways [1,2].
First, physical divergences, which are known to occur in the
three-particle scattering amplitudeM3, are absent in Kdf;3.
These divergences are due to pairwise scatterings separated
by arbitrarily long-lived intermediate states [see Fig. 1(a)].
Second, loop integrals defining Kdf;3 are evaluated with a
pole prescription differing from the standard iϵ prescrip-
tion. This feature is needed to properly accommodate finite-
volume effects from the two-particle unitary cusp. The
issue of two-particle cusps plays a minor role in the
threshold expansion so we do not describe it here. We
direct the interested reader to Refs. [1,2,8] for a thorough
discussion.
The precise relation between Kdf;3 and M3 is given in

Ref. [2]. First, one uses an integral equation to convertKdf;3

to Mdf;3. The latter is an intermediate quantity that, like
Kdf;3, has no singularities due to long-lived intermediate
states. Unlike Kdf;3, however, Mdf;3 is defined with the
standard iϵ-pole prescription and is therefore more closely
related to the standard scattering amplitude. Mdf;3 is
defined in Eq. (93) below. Second, one adds back in the
singular terms. These depend only on kinematic variables
as well as the on-shell two-to-two scattering amplitude. As
we see below, the threshold expansion of Eq. (3) actually
reproduces the integral equation that converts Kdf;3 to
Mdf;3. In addition, the expansion produces an infinite
series of terms that convert Mdf;3 to the quantity M3;th

introduced above. Of the three quantities, Kdf;3, Mdf;3 and
M3;th, only the latter appears in our final result for the
threshold expansion. This is also the quantity that is most
closely related to the standard scattering amplitude.
We now explain the matrix indices of Kdf;3 and F3.

These specify the incoming and outgoing configuration of

three on-shell particles with ~P ¼ 0 and given total energy
E. We arbitrarily pick one of the three incoming particles

and label its momentum ~k, and similarly label one of the

outgoing momenta ~k0. We sometimes refer to these two
particles as “spectators,” for reasons that will become clear

below. In infinite volume ~k and ~k0 are continuous, but the
quantization condition, Eq. (3), depends only on Kdf;3 for

finite-volume momenta satisfying ~k; ~k0 ∈ ð2π=LÞZ3. With
~k, ~k0 specified, the total momentum and energy of the
remaining two particles are also determined, separately for
the in- and out-states. Thus, the only remaining degrees of
freedom are the incoming and outgoing two-particle orbital
angular momenta in their respective center-of-mass (CM)
frames. We specify these using spherical harmonic indices:
l; m for the in-state and l0; m0 for the out-state. Altogether,
for fixed E (and ~P ¼ 0), Kdf;3 depends on ~k0;l0; m0 and
~k;l; m. Since these quantities take discrete values, it is
convenient to view Kdf;3 as a matrix, i.e. Kdf;3 ¼
Kdf;3;k0;l0;m0;k;l;m. Equivalently, Kdf;3 is a linear operator

acting on a space with orthonormal basis vectors j~k;l; mi,
such that

h~k0;l0; m0jKdf;3j~k;l; mi ¼ Kdf;3;k0;l0;m0;k;l;m: ð4Þ

The other factor in Eq. (3), F3, is a matrix acting on the
same space. It is given by

F3 ¼
1

L3

1

2ω

�
F
3
− F

1

K2
−1 þ F þG

F

�
; ð5Þ

where we have used the form of the result given (up to
trivial rearrangements) in Appendix C of Ref. [1]. Four new
matrices enter Eq. (5): 1=ð2ωÞ, F,G, andK2. The first three
are kinematical quantities and will be described below. We
first discuss K2, which is given by

K2;k0;l0;m0;k;l;m ¼ δk0kδl0lδm0m
16πE�

2;k

q�k
tan δlðq�kÞ: ð6Þ

The physical interpretation of this infinite-volume quantity
is that it describes a process in which the spectator particles

do not interact (so that ~k ¼ ~k0), while the other two particles
scatter (so that the two-particle CM angular momentum is
conserved). In the two-particle CM frame, the momentum
of each particle is denoted q�k, while their combined energy
is E�

2;k. These are given, respectively, by
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q�2k ¼ E�2
2;k=4 −m2 and E�2

2;k ¼ ðE − ωkÞ2 − ~k2; ð7Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
. Stripping away the Kronecker

deltas from Eq. (6), what remains is the two-particle K
matrix, given in terms of the physical, infinite-volume
scattering phase shift δlðq�kÞ.
As written, Eq. (6) is only valid above threshold, i.e. for

ðq�kÞ2 > 0. However, our formalism also requires K2 below

threshold. This is because, as ~k2 increases, E�
2;k drops below

2m and thus ðq�kÞ2 becomes negative. The subthreshold
result is defined in Ref. [1] and is obtained from the above
threshold result, Eq. (6), by two changes. First, one
analytically continues the scattering phase shifts below
threshold in the standard way using threshold expansions.
For example, for l ¼ 0, one uses

q−1½tan δ0ðqÞ� ¼ −a
�
1þ 1

2
raq2 þO½ðaqÞ4�

�
; ð8Þ

which is valid for both positive and negative q2. Here, a is
the scattering length in the nuclear physics convention,3

and r is the effective range. Similar expansions exist for the
higher partial waves, but we will only need the result

q−1½tan δlðqÞ� ¼ Oðq2lÞ: ð9Þ

In addition to the analytic continuation of the phase shift,
the subthreshold definition of K2 includes a term related to
the two-particle unitary cusp (and involving the cutoff
function H introduced below). However, this term does not
contribute to any power of 1=L when doing an expansion
about the threshold energy. We thus do not describe it in
this work.
We now define the remaining matrices contained in F3.

The first is a simple diagonal kinematical matrix,�
1

2ω

�
k0;l0;m0;k;l;m

≡ δk0kδl0lδm0m
1

2ωk
: ð10Þ

The second, G, resembles the three-particle nonrelativistic
propagator, decorated by angular dependence. It has both
diagonal and off-diagonal entries:

Gp;l0;m0;k;l;m ≡
�
k�

q�p

�
l0 4πYl0;m0 ðk̂�ÞHð~pÞHð~kÞY�

l;mðp̂�Þ
2ωkpðE − ωk − ωp − ωkpÞ

×

�
p�

q�k

�
l 1

2ωkL3
: ð11Þ

Here, q�p is defined as for q�k in Eq. (7) except with k → p;
~k� is the result of boosting the vector ~k with velocity
~βp ¼ ~p=ðE − ωpÞ, and ~p� is defined by a similar boost with

~k ↔ ~p. In addition, ωkp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~kþ ~pÞ2 þm2

q
is the on-shell

energy of the particle with the “third” momentum coor-

dinate, −~k − ~p. Finally, H is a cutoff function, defined by4

Hð~kÞ ¼ Jð½E�
2;k=ð2mÞ�2Þ;

JðxÞ≡
8<:

0 x ≤ 0

exp ð− 1
x exp ½− 1

1−x�Þ 0 < x ≤ 1

1 1 < x:

ð12Þ

It ensures that the boosts needed to obtain ~p� and ~k� are
well defined. A key property of JðxÞ is that it is smooth. In
particular, since JðxÞ ¼ 1 for x ≥ 1, all its derivatives
vanish as x → 1−. Thus, the function remains unity to
all orders in a Taylor expansion about x ¼ 1. For further
discussion of J and H see Ref. [1].
The last matrix, F, is a generalization of the zeta

functions introduced in Ref. [7]:

Fk0;l0;m0;k;l;m ≡ δk0kFl0;m0;l;mð~kÞ; ð13Þ

Fl0;m0;l;mð~kÞ ¼ Fiϵ
l0;m0;l;mð~kÞ þ ρl0;m0;l;mð~kÞ; ð14Þ

Fiϵ
l0;m0;l;mð~kÞ

¼ 1

2

�
1

L3

X
~a

−
Z
~a

�
4πYl0;m0 ðâ�ÞY�

l;mðâ�ÞHð~kÞHð~aÞHð~bkaÞ
2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ

×

�
a�

q�k

�
lþl0

: ð15Þ

Here,
R
~a ≡
R
d3a=ð2πÞ3, while the sum over ~a runs over all

finite-volume momenta, and ~a� is the vector obtained by

boosting ~a to the two-particle CM frame, treating ~k as the

spectator momentum, i.e. boosting with velocity ~βk ¼
~k=ðE − ωkÞ. Finally, ρ is a phase space factor defined by

ρl0;m0;l;mð~kÞ≡ δl0lδm0mHð~kÞ~ρðE�
2;kÞ; ð16Þ

~ρðE�
2;kÞ≡ 1

16πE�
2;k

×

(
−iq�k ð2mÞ2 < E�2

2;k

jq�kj 0 < E�2
2;k ≤ ð2mÞ2; ð17Þ

The addition of the ρ term to Fiϵ in Eq. (14) changes the
pole prescription from iϵ to the “fPV” prescription defined
in Ref. [1].3The convention is such that a > 0 for repulsive two-body

interactions and a < 0 for attractive ones. Thus, we expect the
proportionality factor in ΔEth ∝ a=L3 þOð1=L4Þ to be positive.
[See the text after Eq. (1) above.]

4Other choices of the function J are possible, as discussed in
Ref. [1], but this is the form we use for numerical evaluations.
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We close this section by rearranging the matrices
appearing in the quantization condition in two minor ways.
The first takes care of the powers of 1=q�p or 1=q�k (which
we collectively refer to as 1=q�) contained in G and F.
Since we will find that q� ∼ 1=L, these terms apparently
lead to positive powers of L, complicating the development
of the threshold expansion. These powers of 1=q� are,
however, misleading, since they are canceled by corre-
sponding positive powers contained within K2 and Kdf;3.
This is shown for K2 by the result (9), and for Kdf;3 by a
general result shown in Appendix A of Ref. [1]. It is thus
preferable to make this cancellation explicit by introducing
factors of the matrix

Qk0;l0;m0;k;l;m ≡ δk0kδl0lδm0mðq�kÞl: ð18Þ

The second change is to insert factors of the matrix 1=ð2ωÞ
and its inverse ð2ωÞ such that the symmetric matrix
ð2ωÞ−1G appears.
Specifically, we introduce

~F3 ¼ QF3Q; ~Kdf;3 ¼ Q−1Kdf;3Q−1;

~K2 ¼ ð2ωÞQ−1K2Q−1; ~F ¼ ð2ωÞ−1QFQ; and

~G ¼ ð2ωÞ−1QGQ; ð19Þ

in terms of which the quantization condition becomes

det½1þ ~F3
~Kdf;3� ¼ 0; ð20Þ

where

~F3 ¼
1

L3

�
~F
3
− ~F

1

H
~F

�
; ð21Þ

with

H≡ ~K−1
2 þ ~F þ ~G: ð22Þ

We stress that both ~Kdf;3 and ~K2 have a well-defined limit
as q� → 0, and indeed are functions of ðq�Þ2 that can be
analytically continued to negative values. We also note that
~G, ~F and ~K2, and thus also H, are Hermitian.

III. THRESHOLD EXPANSION

To develop the 1=L expansion we need to know how the
various quantities entering the quantization condition,
Eq. (3), scale with 1=L when E ≈ 3m. Specifically, recall-

ing that ~k ¼ 2π~n=L is one of the matrix indices on the
quantities in (3), we can work out the scaling assuming that
n ¼ j~nj ¼ OðL0Þ so that k ¼ Oð1=LÞ ≪ m. This is the
same as assuming that important contributions to the sums
over matrix indices occur when all three particles are
nonrelativistic. This assumption is naive, since the sums

actually range up to values of ~k where Hð~kÞ ¼ 0, for which
k ∼m. It turns out that the naive scaling gives the correct
prediction for the first three orders in the 1=L expansion of
ΔEth. We demonstrate this in Sec. III E, where we also
show how to reach the correct result for the 1=L6

contribution, for which the naive scaling is insufficient.
As we explain in detail in the first subsection below, the

assumption j~nj ¼ OðL0Þ, together with the assumed form
(2) for ΔEth, allows one to determine the scaling with 1=L
of each of the components of the matrices entering into the
quantization condition. We find that the elements of ~Kdf;3

are of OðL0Þ, which is simply the statement that this is an
infinite-volume quantity with a nonzero limit at threshold.
The dominant contributions to ~F and ~G are also of OðL0Þ,
so that ~F3 ∼ 1=L3 due to the explicit volume factor in
Eq. (21). Naively, one might conclude that ~F3

~Kdf;3 ∼ 1=L3

and cannot cancel the contribution from the unit matrix in
Eq. (20), as would be necessary to satisfy the quantization
condition. There are two ways to avoid this conclusion.
First, the determinant involves a product overOðL3Þmatrix
indices, and this multiplicity factor can cancel the 1=L3 in
~F3. Second, the matrix H can, for an appropriately tuned
energy, have an eigenvalue of Oð1=L3Þ, due to cancella-
tions between the terms in Eq. (22) [which are each of
OðL0Þ]. This leads to ~F3 scaling as OðL0Þ. Both mech-
anisms turn out to contribute in the solution to the
quantization condition, and we describe them in turn.
To illustrate the impact of having OðL3Þ matrix indices,

we expand the determinant in terms of cofactors5

det½1þ ~F3
~Kdf;3� ¼ ð1þ ½ ~F3

~Kdf;3�000;000ÞC000

þ
X

fklmg≠0
½ ~F3

~Kdf;3�000;klmCklm: ð23Þ

We focus on the second term. From the discussion above,
we know that the matrix elements ½ ~F3

~Kdf;3�000;klm scale as
1=L3. Now we use the result that the infinite-volume limit
of ð1=L3ÞP~k acting on a smooth function equals the
integral,

R
d3k=ð2πÞ3, of that function. Assuming that

Cklm scales as L0, this implies that the second term in
(23) in fact scales as L0 rather than as 1=L3. To determine
the actual scaling of Cklm, one would need to iteratively
repeat the cofactor analysis, removing increasingly more
rows and columns and evaluating determinants. It is
plausible that this could lead to additional L3 enhance-
ments. In this study, however, we are able to avoid this
complicated line of analysis, by recasting the quantization
condition in a form that, for studying the threshold energy,

5Cklm is the determinant of the matrix reached by removing the
000th row and the klmth column from 1þ ~F3

~Kdf;3, multiplied
by an alternating phase.
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is simpler to handle. We thus use Eq. (23) only to
emphasize that the naive scaling of terms can be invalidated
by the presence of sums over the OðL3Þ indices, leading to
a potential proliferation of contributions. This observation
will play a central role in the subsequent analysis.
To illustrate the second mechanism needed to find the

threshold solution of the quantization condition, we adopt
the naive scaling worked out in the next subsection. In this
scaling, the dominant parts of ~F and ~G are, respectively,
~F00 ≡ ~F000;000 and ~G00 ≡ ~G000;000, both of which scale as
L0 (as do all elements of ~Kdf;3). Here, we are introducing
the abbreviation that the subscript 00 refers to the matrix

element with ~k ¼ ~k0 ¼ ~0 and l ¼ l0 ¼ m ¼ m0 ¼ 0. The
dominant part of ~F3 is then

~F3;00 ≡ ~F3;000;000 ≈ −
1

L3
~F00½H−1�00 ~F00; ð24Þ

with all other matrix elements suppressed by additional
powers of 1=L. If this were the entire story, the quantization
condition would collapse, as L → ∞, to the algebraic
equation

1þ ~F3;00
~Kdf;3;00 ¼ 0: ð25Þ

This equation can be solved if ΔE [of the form shown in
Eq. (2)] can be tuned such that H has an eigenvalue that
behaves as c=L3. We call this putative small eigenvalue λ0.
It is also necessary that the corresponding eigenvector, jλ0i,
have nonzero overlap with j~0; 0; 0i when L → ∞. In that
case ½H−1�00 ∼ L3, so that ~F3;00 ∼ L0 and the quantization
condition (25) can be satisfied if ΔE is tuned so that the
constant c has the appropriate value. The requisite tuning of
the eigenvalue of H is possible because, as can be seen
from Eq. (22),H00 consists of three terms ofOðL0Þ, two of
which ( ~F and ~G) depend on ΔE (as shown in the next
subsection).
To obtain the correct expression for the energy of

the near-threshold state, one must combine the two mech-
anisms. The first mechanism alone would require a
cancellation between quantities in which all finite-volume
sums have been replaced by integrals, so that dependence
on L is lost. This cannot lead to the desired volume
dependence of Eq. (2). The second mechanism does lead
to such a volume dependence—indeed, as we show below,
in order that λ0 ∼ 1=L3 we must remove L0, 1=L and 1=L2

contributions from λ0, and this fixes the coefficients
a3, a4 and a5 in ΔEth. However, to determine the a6=L6

term in ΔEth, it turns out that we must control an infinite
number of contributions arising because of the first
mechanism.
As noted above, we have not found it fruitful to work

directly with the expansion given in Eq. (23). Instead, after
some trial and error, we have found that an alternative form

of the quantization condition allows a simpler analysis.
This is

lim
E→3mþΔEth

hλ0j ~F ~Kdf;3
1

1þ ~F3
~Kdf;3

~Fjλ0i ¼ ∞; ð26Þ

where jλ0i is the eigenvector of H introduced above whose
eigenvalue λ0 is tuned to be of Oð1=L3Þ. We will provide
motivation for this form shortly, but first we explain why it
is valid. We begin by noting that we expect there to be only
one eigenvalue that can be tuned in this way, since only in
the elementH00 can the requisite cancellation occur. This is
consistent with our expectation that there is only a single
near-threshold state. Next we note that the matrix element
in Eq. (26) can diverge if ~F diverges or if one of the
eigenvalues of 1þ ~F3

~Kdf;3 vanishes.
6 The divergence of ~F

only occurs at noninteracting energies and thus does not
lead to interesting solutions. We avoid them by requiring
ΔEth to have the form indicated in Eq. (2), which differs
from all noninteracting energies once L is large enough.
With this proviso we see that, whenever Eq. (26) holds, the
original quantization condition, Eq. (20), is also satisfied.
In fact, Eq. (26) is a stronger condition than (20) because it
requires that the eigenvector of 1þ ~F3

~Kdf;3 corresponding
to the vanishing eigenvalue has nonzero overlap with the
vectors ~Fjλ0i and ~Kdf;3

~Fjλ0i.
A more physical motivation for the condition (26) is that

it corresponds approximately to finding the pole in the
correlation function

Cϕ3ðEÞ ¼
Z

dτeiðiEÞτh ~ϕðτ; ~0Þ3 ~ϕð0; ~0Þ3i; ð27Þ

with ~ϕðτ; ~kÞ the spatial Fourier transform, in the finite box,
of a scalar field coupling to a single particle. Here, it is
understood that the τ integral is performed for real iE. The
resulting function can then be analytically continued into
the entire complex E plane, with the energy poles then
appearing on the real E axis. This correspondence holds
because (as shown below) jλ0i differs from the free particle

state j~0; 0; 0i by factors that vanish as L → ∞. In addition,
the quantity ~Kdf;3ð1þ ~F3

~Kdf;3Þ−1 expands to a geometric
series in which, following the analysis of Ref. [2], we can
think of ~Kdf;3 as a local three-particle interaction, while the
intervening factors of ~F3 incorporate all possible two-to-
two scatterings in finite volume. The form of the correlator
Cϕ3ðEÞ is such that, if one were to use it in a numerical
lattice calculation, one would pick out the near-threshold
state. This is the case because the deviation of the true state
from the noninteracting state falls as a power of 1=L.

6Divergences in eigenvalues of Kdf;3 do not give a solution as
they cancel between the numerator and denominator.
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In any case, what matters in the following is that Eq. (26)
is a valid form for the quantization condition. To see its
utility, we define

~F3 ≡ F̄3 þ Fλ0
3 ; ð28Þ

Fλ0
3 ≡ − ~Fjλ0i

1

N 0L3λ0
hλ0j ~F; ð29Þ

where hλ0jλ0i ¼ N 0.
7 In other words, Eq. (28) splits ~F3

into a part arising from the small eigenvector of H and the
remainder F̄3, which is not enhanced when ΔE is tuned.
Substituting this form into our new quantization condition
and performing straightforward manipulations, we find

hλ0j ~F ~Kdf;3
1

1þ ~F3
~Kdf;3

~Fjλ0i

¼ hλ0j ~F
1

½ ~Kdf;3�−1 þ F̄3 þ Fλ0
3

~Fjλ0i; ð30Þ

¼ Z
1

1 − Z=ðN 0L3λ0Þ
; ð31Þ

where

Z ¼ hλ0j ~F ~Kdf;3
1

1þ F̄3
~Kdf;3

~Fjλ0i: ð32Þ

We now see the reason for placing factors of ~F next to the
external states in the quantization condition (26). This
mirrors the factors that appear in F00

3 and leads to a simple
final expression (31) involving only the matrix element Z.
Using Eq. (31) we see that the quantization condition can

be rewritten as

Z ¼ N 0L3λ0: ð33Þ

We stress that although Z has a very similar form to the
quantity appearing in the quantization condition (26), it
does not diverge near threshold. This is because the
enhanced contribution to ~F3 has been removed, and F̄3

is of Oð1=L3Þ for all near-threshold energies. In fact, as we
show below, Z is related to the divergence-free three-
particle amplitude at threshold, Mdf;3.
To use Eq. (33) we tune the coefficients a3, a4 and a5 in

ΔEth such that λ0 ∼ 1=L3. Then we fix a6 by enforcing
(33). Clearly this form of the quantization condition is
much simpler than the original version, Eq. (3), since
it no longer requires evaluating the formally infinite-
dimensional determinant. This simplicity comes, however,

at a cost in generality—our new form is only useful for
studying the near-threshold state.
In the following subsections we use this reduced

quantization condition to determine the 1=L expansion
of the threshold energy shift. This analysis is organized as
follows. We begin in the following subsection by determin-
ing the 1=L scaling properties of ~K2, ~G and ~F. Next, in
Sec. III B, we use these inputs to develop the perturbative
expansion of λ0 and the corresponding state jλ0i. Following
this, in Sec. III C we prove an important identity relating a
matrix element entering the quantization condition and the
infinite-volume divergence-free three-particle scattering
amplitude. We manipulate this result further in Sec. III D,
to reach our final threshold three-particle observable,
denoted M3;th. Finally in Sec. III E we combine results
to expand Eq. (33) in powers of 1=L and determine the
coefficients in ΔEth.

A. Scaling of matrix components with 1=L

In this subsection we determine how the elements of
the matrices ~K2, ~F and ~G scale with 1=L in the regime
where the spectator-momentum matrix index satisfies
k ∼ 1=L ≪ m. We assume that ΔE scales as 1=L3

throughout.
We repeatedly use several simple kinematic results that

follow from the definitions in Eq. (7). In the special case
~k ¼ 0 we have the exact results

ωk ¼ ω0 ¼ m; q�20 ¼ mΔEþ ΔE2

4
≡ q2; and

E�
2;0 ¼ 2mþ ΔE ¼ 2ωq; ð34Þ

where we have introduced the convenient abbreviation q
for the three-momentum of each of the nonspectator
particles in the case that the spectator has zero momentum.

We note that q2 ∼ ΔE ∼ 1=L3. For general ~k ¼ 2π~n=L ≠ ~0,
with n ∼Oð1Þ, we expand in powers of 1=L, finding

ωk ¼ m

�
1þ k2

2m2
þO½ðmLÞ−4�

�
; ð35Þ

E�
2;k ¼ 2m

�
1 −

3k2

8m2
þ ΔE

2m
þO½ðmLÞ−4�

�
; ð36Þ

q�2k ¼ −
3k2

4
þmΔEþm2O½ðmLÞ−4�: ð37Þ

Note that, unlike for ~k ¼ 0, in this case the CM frame of the
nonspectator pair is moving relative to the rest frame of the
finite volume.
We consider first the 1=L scaling of ~K2, which we recall

is a diagonal matrix. Since this is an infinite-volume
quantity, L dependence enters only through ΔE. The

7We use an unnormalized state jλ0i since this proves conven-
ient when studying this state and its eigenvalue using Raleigh-
Schrödinger perturbation theory, as we do in Sec. III B.
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leading term is ofOðL0Þ and is simply given by the value of
~K2 at threshold in the appropriate partial wave. As noted
above, this is nonvanishing for all l; m because of the
factors of Q−1 in the definition (19). It turns out that the

only explicit expression we need is for the ~k ¼ 0;
l ¼ 0; m ¼ 0 element.8 This can be obtained by inserting
the threshold expansion, Eq. (8), into the definitions (6) and
(19), and using the kinematic results of Eq. (34):

~K2;00 ¼ −64πm2a

�
1þ ΔE

2m
½1þ ram2� þO

�
1

ðmLÞ6
��

:

ð38Þ

At this stage, we reiterate that we are considering in this
subsection only what we have called the “naive” scaling
behavior, valid when k ∼ 1=L ≪ m. It turns out that all

entries of ~K2 (i.e. all ~k, l and m) actually contribute to ΔE
at Oð1=L6Þ, due to the high-momentum ends of the sums
over indices. This is explained in Sec. III B.
The scaling of the elements of ~G is more complicated.

Recall that ~G is given by Eq. (11) with the factors of q�k
removed and an overall factor of 1=ð2ωpÞ included:

~Gp;l0;m0;k;l;m

≡ 1

L3

1

2ωp

4πðk�Þl0Yl0;m0 ðk̂�ÞHð~pÞHð~kÞðp�ÞlY�
l;mðp̂�Þ

2ωkpðE−ωk−ωp−ωkpÞ
1

2ωk
:

ð39Þ

We begin with the generic case in which one or both of ~k
and ~p are of Oð1=LÞ, from which it follows that both ~p�

and ~k� are also of this order. Noting that the energy
denominator then behaves as E − ωk − ωp − ωkp ∼ 1=L2,
we see from Eq. (39) that the generic scaling is

~Gp;l0;m0;k;l;m ∼
1

L1þlþl0 ð~k ≠ 0 and=or ~p ≠ 0Þ:
ð40Þ

The exceptions to this scaling are the ~k ¼ ~p ¼ 0 elements.
These are special because k� and p� now vanish, and the
energy denominator scales as E − 3m ¼ ΔE ∼ 1=L3 rather

than 1=L2. These results imply that the ~k ¼ ~p ¼ 0 elements
of ~G vanish unless l ¼ l0 ¼ 0, while the 00 element is of
OðL0Þ, rather than Oð1=LÞ as the generic scaling would
predict.
The upshot is that, in the naive scaling regime, the

dominant contributions are from the l ¼ l0 ¼ 0 entries of

~G. These can be obtained directly from the definition

Eq. (39). We quote here only the ~k ¼ ~p ¼ 0 component

~G00 ¼
1

8m3ΔEL3
: ð41Þ

As we show in Sec. III B, it turns out that only the l ¼
l0 ¼ 0 entries of ~G contribute to ΔEth through Oð1=L5Þ.
As for ~K2, all entries of ~G contribute to ΔEth at Oð1=L6Þ
due to the high-momentum ends of the sums.
Finally, we describe the scaling of the elements of ~F,

which we recall is given by Eqs. (13)–(15) multiplied by
ð2ωkÞ−1ðq�kÞlþl0 :

~Fk0;l0;m0;k;l;m

≡ δk0k
1

2

�
1

L3

X
~a

−
Z
~a

�

×
4πða�Þlþl0Yl0;m0 ðâ�ÞY�

l;mðâ�ÞHð~kÞHð~aÞHð~bkaÞ
2ωk2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ

þ δk0k
ðq�kÞlþl0

2ωk
ρl0;m0;l;mð~kÞ: ð42Þ

Note that ~F diverges whenever E equals the sum of the
energies of three free particles, each having a finite-volume
momentum (and with the total momentum vanishing). The
value of E we are interested in—the near-threshold energy
level in the presence of interactions—avoids these diver-
gences. However, the fact that these poles lie nearby can
enhance the scaling of ~F.
To determine the nature of this enhancement, we rewrite

~F in terms of dimensionless variables, using manipulations
mirroring those used in Ref. [13]. Dropping contributions
to the summand of the sum-integral difference that are
nonsingular (and which thus lead only to exponentially
suppressed contributions to ~F), we find

~Fk0;l0;m0;k;l;m ¼ δk0k

��
Hð~kÞ

16π2ωkðE − ωkÞ
��

2π

L

�
1þlþl0

× Zl0;m0;l;mðx2; ~nkÞ þ
ðq�kÞlþl0

2ωk
ρl0;m0;l;m

�
;

ð43Þ

Zl0;m0;l;mðx2; ~nkÞ ¼
�X

~na

−
Z
~na

�

×
rl

0þlYl0;m0 ðr̂ÞY�
l;mðr̂ÞHð~aÞHð~bkaÞ

x2 − r2 þ iϵ
;

ð44Þ
where x ¼ q�kL=ð2πÞ, ~a ¼ 2π~na=L, and

R
~na
¼ R d3na. The

vector ~r is related to ~na by

8Higher partial waves are suppressed because, in the matrix
products that arise, these are always multiplied by entries of ~G or
~F with l ≠ 0.
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r∥ ¼
1

γ
ðna∥ − j~nkj=2Þ; r⊥ ¼ na⊥; ~nk ¼

~kL
2π

;

γ ¼ E − ωk

E�
2;k

; ð45Þ

where parallel and perpendicular are relative to the momen-

tum −~k of the nonspectator pair. Note that r2 runs over all
positive values and zero as ~na is varied.
The function in Eq. (44) is simply related to the zeta

functions defined in Ref. [14] (in a way described in
Refs. [13,15]) except that here we are using a different UV
regularization.9 The key property of this function for the
present discussion is that, for fixed ~nk, as L → ∞,
Zl0;m0;l;mðx2; ~nkÞ limits to an L-independent function of
x2 that is finite except for an infinite sequence of poles.
There is one pole for each term in the sum over ~na,
occurring when x2 equals the corresponding value of r2.
These are exactly the poles mentioned above that occur
when E ¼ ωk þ ωa þ ωka.
We first consider ~k ¼ ~k0 ≠ ~0, so that, using Eq. (37),

x2 ¼ −3n2k=4þOð1=LÞ. Since x2 is negative definite, it
does not approach the poles of Z, which are all at x2 ≥ 0.
Thus, there is no enhancement of the scaling, and
Zðx2; ~nkÞ ¼ OðL0Þ. The scaling of the first term in ~F is
therefore given by the explicit factors of 1=L. The ρ-
dependent term has the same scaling, and so we conclude

that ~F ∼ 1=L1þlþl0 when ~k ¼ ~k0 ≠ ~0.
We next turn to ~k ¼ ~k0 ¼ ~nk ¼ 0, in which case x2

vanishes in the infinite volume limit: x2 ¼ q2L2=ð2πÞ2 ∼
1=L. Thus, if Z has a pole at x2 ¼ 0, there can be an
enhancement in the scaling. For ~nk ¼ 0, Eq. (45) gives
r2 ¼ n2a, so there is indeed a pole at x2 ¼ 0, from the
~na ¼ 0 term in the sum. However, this pole is present only
when l ¼ l0 ¼ 0. For nonvanishing angular momenta, the
residue vanishes due to the factor of rl

0þl ¼ nlþl0
a . This

implies that, even for ~k ¼ ~k0 ¼ 0, the scaling derived above

for ~k ¼ ~k0 ≠ 0 holds when one or both of l and l0 are
nonvanishing. The only special case is ~k¼ ~k0 ¼l¼l0 ¼0.

Here, the ~na ¼ 0 term in the sum givesZðx2; ~0Þ ∼1=x2∼L,
and thus ~F00 ∼ L0, i.e. enhanced by one power of L
compared to the generic scaling. In the subsequent analysis
we will need the first four terms in the 1=L expansion of
~F00. These are worked out in Appendix A, with the result

~F00 ¼
1

16mωq

�
1

q2L3
−

I
4π2L

−
q2L3J
ð4π2LÞ2 −

ðq2L3Þ2K
ð4π2LÞ3

þO
�
1

L4

��
: ð46Þ

Here I , J and K are numerical constants defined in
Appendix A.
As with ~K2 and ~G, the high-momentum entries of ~F also

contribute to ΔE atOð1=L6Þ. This contribution comes only
from the ρ-dependent term, the second term in Eqs. (42)
and (43).

B. Perturbative expansion of λ0
In this subsection we develop the perturbative expansion

of λ0, the eigenvalue that appears on the left-hand side of
our reduced quantization condition, Eq. (33). We recall that
λ0 is the eigenvalue H [defined in Eq. (22)] that can be
tuned to be of Oð1=L3Þ by adjusting ΔE. This tuning is
required to satisfy Eq. (33). As already mentioned, H is
generally OðL0Þ, so that ΔE must be adjusted to cancel
three orders to achieve the desired scaling. Such a can-
cellation is only possible for the 00 entry of H, because
only for this entry do ~G and ~F containOðL0Þ parts that can
cancel with ~K−1

2 . It follows that λ0 can be described as a
perturbation of this entry and that the corresponding state,

jλ0i, is a perturbation of j~0; 0; 0i.
We now seek to determine an expression for λ0 in terms

of ΔE. Since H is Hermitian we can borrow technology
from nonrelativistic quantum mechanics. In particular, we
analyze λ0 using a method related to Raleigh-Schrödinger
perturbation theory (RSPT). It proves convenient to first
slightly rewrite our “Hamiltonian” in terms of the two-
particle scattering amplitude M2 instead of K2,

H ¼ ~M−1
2 þ ~Fiϵ þ ~G; ð47Þ

where

M2
−1 ¼ K−1

2 þ ρ; ð48Þ

~M−1
2 ¼ ð2ωÞ−1QM2

−1Q ¼ ~K−1
2 þ ð2ωÞ−1QρQ; ð49Þ

~Fiϵ ¼ ð2ωÞ−1QFiϵQ ¼ ~F − ð2ωÞ−1QρQ; ð50Þ

and Fiϵ is defined in Eq. (15). The reason for this choice is

that, for fixed k ∼m, Fiϵð~kÞ is exponentially suppressed as
L → ∞, since the summand of the sum-integral difference
in (15) is smooth.10 We use this result repeatedly in the

following analysis. The same is not true of Fð~kÞ, due to the
ρð~kÞ term in Eq. (14).
Next, we splitH into a partH0 that contains all the terms

scaling as L0 in the k ∼ 1=L regime, and the remainder,HR,
which is of Oð1=LÞ. As explained in the previous
subsection, all nonzero elements of ~K2, as well as the

9Our functions are regulated by the product of H functions,
whereas Ref. [14] uses analytic regularization.

10For ΔE ∼ 1=L3 and the spectator momentum k ∼m, the
nonspectator pair are far below threshold, the energy denominator
is of OðmÞ, and there are no poles.
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components ~F00 and ~G00, are of OðL0Þ. The ρ terms are of
Oð1=LÞ and thus do not change the scaling. Thus, we
introduce the subtracted quantities

Fiϵ ≡ ~Fiϵ − j~0; 0; 0i ~Fiϵ
00h~0; 0; 0j; ð51Þ

G≡ ~G − j~0; 0; 0i ~G00h~0; 0; 0j; ð52Þ

in which the OðL0Þ component is excised, and split H as

H ¼ H0 þHR; ð53Þ

H0 ¼ ~M−1
2 þ j~0; 0; 0ið ~Fiϵ

00 þ ~G00Þh~0; 0; 0j; ð54Þ

HR ¼ Fiϵ þG: ð55Þ

By construction,H0 is diagonal, with eigenvectors j~k; l; mi,
and corresponding eigenvalues

λð0Þ0 ≡ λð0Þ000 ¼ ~M−1
2;00 þ ~Fiϵ

00 þ ~G00 ¼ ~K−1
2;00 þ ~F00 þ ~G00;

ð56Þ

λð0Þklm ¼ q�k
16πE�

2;k
cotδlðq�kÞþ ~ρðE�

2;kÞ; f~k; l;mg≠ f~0;0;0g:

ð57Þ
We see again that only λð0Þ0 can be tuned to be small, while
all other eigenvalues are of OðL0Þ. One subtlety in the
following is that H0 is not necessarily Hermitian, since the

eigenvalues with ~k ¼ 0 but l ≠ 0 can be complex. This is
because ~ρðE�

2;kÞ [defined in Eq. (17)] is imaginary if

ΔE > 0, which is possible if ~k ¼ 0. Nevertheless, the
eigenvectors of H0 form an orthonormal basis, and this
is sufficient for the subsequent analysis. We note also that
H0 does become Hermitian when ΔE ¼ 0, i.e.
when L → ∞.
Using the results for ~K2, ~F00 and ~G00 given in Eqs. (38),

(41) and (46), respectively, as well as the kinematic relation

(34), we can work out the 1=L expansion of λð0Þ0 . We obtain

λð0Þ0 ¼ −
1

64πm2a

�
1 −

xð1þ ram2Þ
2m3L3

�
þ 1

16m

�
1

x
−

I
4π2mL

−
J x

ð4π2mLÞ2 −
Kx2

ð4π2mLÞ3

−
3

4m3L3

�
þ 1

8mx
þO

�
1

L4

�
; ð58Þ

where the first square brackets contain the expansion of
~K2;00, the second the expansion of ~F00, the last term is ~G00,
and we have introduced the dimensionless variable

x≡ ΔEL3m2; ð59Þ

which is of OðL0Þ. In order to tune λ0 to scale as 1=L3, we

find that λð0Þ0 itself must scale as 1=L2. This is because the

difference, λ0 − λð0Þ0 , contains a term scaling as 1=L2 that
must be canceled. We defer details of the tuning to Sec. III
E, except for one result. This concerns the cancellation of

the OðL0Þ part of λð0Þ0 . Using the result 2 ~G00 ¼ ~F00 þ
Oð1=LÞ [which can be read off from Eq. (58)] this
cancellation requires −3 ~K2;00

~F00 ¼ 1þOð1=LÞ. We need
this result in the following subsection.
We now work out the perturbative expansion for λ0 and

the corresponding eigenvector jλ0i in powers of HR. A
standard starting point for developing RSPT is

jλ0i ¼ jλð0Þ0 i þR0ðHR − λ0 þ λð0Þ0 Þjλ0i; ð60Þ

R0 ≡ 1 − jλð0Þ0 ihλð0Þ0 j
λð0Þ0 −H0

; ð61Þ

where jλð0Þ0 i ¼ j~0; 0; 0i is the unperturbed state. Note that,

in this formulation, jλ0i satisfies hλð0Þ0 jλ0i ¼ 1, implying
that jλ0i as defined in Eq. (60) is not normalized to unity,
N 0 ¼ hλ0jλ0i ≠ 1. Iterating Eq. (60) yields

jλ0i ¼
X∞
n¼0

jλðnÞ0 i; ð62Þ

with

jλðnÞ0 i≡ ½R0ðHR − λ0 þ λð0Þ0 Þ�njλð0Þ0 i: ð63Þ

Contracting with hλð0Þ0 jH leads to the perturbative expan-
sion for the eigenvalue

λ0 ¼ λð0Þ0 þ
X∞
n¼0

λðnþ1Þ
0 ; ð64Þ

λðnþ1Þ
0 ≡ ½HR½R0ðHR − λ0 þ λð0Þ0 Þ�n�00: ð65Þ

To obtain standard RSPT one inserts the expansion for λ0
and reexpands in powers of HR. We will not take this step
but rather work with the forms above, containing λ0. This is
possible because we will find that, at the order in 1=L that

we work, we can set λð0Þ0 − λ0 to zero on the right-hand
sides of Eqs. (63) and (65).
We first analyze the perturbative shift to the eigenvalue.

Naively, since HR ∼ 1=L, we might expect that a third-
order calculation is sufficient to obtain the desired accuracy,
λ0 ∼ 1=L3. However, as described in the introduction to this
section, this scaling breaks down for k ∼m, and for such
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large momenta it turns out that an all-orders summation is
needed.
The first-order shift λð1Þ0 vanishes, since G and Fiϵ are

both defined with a vanishing 00th component. Thus, the
first nonvanishing correction appears at second order:

λð2Þ0 ¼ ½ðFiϵ þGÞR0ðFiϵ þ GÞ�00: ð66Þ

To obtain this form we have used the result

½ðFiϵ þ GÞR0ð−λ0 þ λð0Þ0 Þ�00 ¼ 0; ð67Þ

which follows from the fact thatR0 has all zeroes in its first

column. We can further reduce λð2Þ0 by using the fact that

λð0Þ0 will be tuned to be of Oð1=L2Þ. This implies

R0 ¼ − ~M2 þOð1=L2Þ; ð68Þ

and substituting into Eq. (66) gives

λð2Þ0 ¼
X
~k;l;m

G000;klm½− ~M2 þOð1=L2Þ�klm;klmGklm;000

þ
X
lm

Fiϵ
000;0lm½− ~M2 þOð1=L2Þ�0lm;0lmF

iϵ
0lm;000;

ð69Þ

where we have written out all sums explicitly. In writing

this form we have used the facts that Fiϵ is diagonal in ~k,
that the slashed quantities have no 00 element, and that
G000;0lm vanishes whenever l ≠ 0.
We want to pick out contributions falling no faster than

1=L3 from Eq. (69). We do so by keeping terms that have
the desired scaling either in the low-momentum (k ∼ 1=L)
regime or in the high-momentum (k ∼m) regime, or both.
For low momenta, the dominant contribution comes from
the first term with l ¼ 0, for then G ¼ Oð1=LÞ. Thus, the
first term scales as 1=L2 (and the dominant contribution
arises when intermediate angular momentum vanishes). In
the second term, only l ≠ 0 contributes, with the leading
term coming from l ¼ 4. Since Fiϵ

000;040 ¼ Oð1=L5Þ, the
second term scales as 1=L10 and can be dropped in the low-
momentum regime.11 In fact, for this term this is the only

relevant regime, since there is no sum over ~k.
What remains is to analyze the first term in Eq. (69) in

the high-momentum regime, k ∼m. Then the only explicit
L dependence arises from the overall factor of 1=L3 in G.
At first sight this leads to a 1=L6 scaling since there are two

factors of G. However, the total number of terms in the
high-momentum part of the sum scales as L3, canceling one
of the factors of 1=L3. This is just an application of the

result that, for a smooth function12 fð~kÞ,

1

L3

X
~k

fð~kÞ ¼
Z

d3k
ð2πÞ3 fð

~kÞ þOðe−mLÞ: ð70Þ

The resulting integral is independent of L, and we are
dropping exponentially suppressed corrections. The con-
clusion is that the high-momentum contribution to
G½− ~M2�G scales as 1=L3. While subleading to the low-
momentum 1=L2 scaling, it is still of an order that we must
keep. We also note that, in contrast to the low-momentum
result, higher angular-momentum contributions are not
suppressed when k ∼m.
The net result is that

λð2Þ0 ¼ ½G½− ~M2�G�00 þO
�
1

L4

�
; ð71Þ

where no constraint is placed on the intermediate matrix
indices.
We now turn to the third-order perturbative correction,

which takes the form

λð3Þ0 ¼ ½ðFiϵ þGÞR0ðFiϵ þ G − λ0 þ λð0Þ0 ÞR0ðFiϵ þ GÞ�00;
ð72Þ

¼ ½G½− ~M2�ðFiϵ þG − λ0 þ λð0Þ0 Þ½− ~M2�G�00 þO
�
1

L6

�
:

ð73Þ

There are now two summed momenta, which we refer to as
k and p, and to determine the scaling we must examine
contributions from all possible momentum regimes. First
suppose both are of Oð1=LÞ, so that naive scaling can be
applied. Then the dominant contribution, scaling as 1=L3,
comes from the s-wave parts of each factor of G and Fiϵ.
This is the first example where Fiϵ enters the result for λ0.

Note further that since, by assumption, −λ0 þ λð0Þ0 ¼
Oð1=L2Þ, it leads to a suppressed contribution to λð3Þ0 of
Oð1=L4Þ. This can be dropped.
We next consider the regime in which both momenta are

large, of OðL0Þ. Here Fiϵ is exponentially suppressed and
can be dropped. The contribution involving three factors of
G comes with three explicit factors of 1=L3, but two of

these are canceled by the sums over ~k and ~p. Thus, as in the
11This follows from the observation that Y40ðk̂Þ is

the lowest spherical harmonic with l ≠ 0 for which
ð1=L3ÞP~kY40ðk̂Þfðj~kjÞ ≠ 0, where fðj~kjÞ is any radial function
for which the sum converges.

12 ~M2 and G are both smooth functions in the high-momentum
regime, since this corresponds (when ΔE ∼ 1=L3) to the far
subthreshold region.
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small-momentum regime, this term is Oð1=L3Þ, but in this
regime all partial waves must be kept. This leaves the term

containing −λ0 þ λð0Þ0 and two factors of G. Since

−λ0 þ λð0Þ0 ¼ Oð1=L2Þ, this contribution has an explicit
factor of 1=L8, one power larger than the explicit factor on

the three-G term. However, since −λ0 þ λð0Þ0 is diagonal,
this contribution is only enhanced by one sum rather than
two, leading to an overall 1=L5 scaling. Thus this term can
also be dropped.
The final region to consider is that in which one

momentum is small and the other large. Since Fiϵ and

−λ0 þ λð0Þ0 are diagonal in momentum space, this regime is
only possible for the term containing threeGs. Since we are
keeping this term for all momenta anyway, no special
attention to this case is needed.
Based on these considerations, we deduce that

λð3Þ0 ¼
X
~k

G0k
~M2;kkFiϵ

kk
~M2;kkGk0

þ ½G½− ~M2�G½− ~M2�G�00 þO
�
1

L4

�
: ð74Þ

Here, the notation in the matrices in the first term indicates
that only l ¼ 0 components are kept, e.g. Fiϵ

kk ≡ Fiϵ
k00;k00.

By contrast, the intermediate indices are summed over all
momenta and all partial waves in the second term. We stress
again that the first term is dominated by small momenta,
while in the second all momenta contribute.
The generalization to higher orders is now clear. For n >

3 one has four or more factors drawn from G, Fiϵ and

−λ0 þ λð0Þ0 . This means that the low-momentum contribu-
tion scales as 1=L4 or higher and can be dropped. In the
high-momentum regime an Oð1=L3Þ contribution does
arise, given by

λðnÞ0 ¼ ½G½− ~M2G�n−1� þO
�
1

L4

�
; for n > 3: ð75Þ

The n − 1momentum sums cancel all but one of the factors
of 1=L3 contained in the Gs, so that the overall scaling is
1=L3. All other contributions are suppressed.
Summing our results for λ0 to all orders, we conclude

that

λ0 ¼ λð0Þ0 þ
X
~k

G0k
~M2;kkFiϵ

kk
~M2;kkGk0

þ
X∞
n¼1

½G½− ~M2G�n�00 þO
�
1

L4

�
; ð76Þ

where, in the last term, all intermediate momenta and
partial waves must be kept.

We turn now to the perturbative analysis of the state jλ0i,
using Eq. (63). We are specifically interested in the two
quantities involving this state that enter into the quantiza-
tion condition Eq. (33). These are the normalization N 0

and the matrix element Z [Eq. (32)]. For both of these, we
need only the leading L0 behavior when L → ∞ with ΔE
tuned such that λ0 ∼ 1=L3.
The task of identifying the leading terms is similar to that

for λ0. After making the simplifications that follow from the
properties of G, Fiϵ, and R0, the first two terms can be
written

jλð1Þ0 i ¼ ½− ~M2�ðGþ FiϵÞjλð0Þ0 i½1þOð1=L2Þ�; ð77Þ

jλð2Þ0 i ¼ ½− ~M2�ðGþ Fiϵ − λ0 þ λð0Þ0 Þ½− ~M2�ðGþ FiϵÞjλð0Þ0 i
× ½1þOð1=L2Þ�: ð78Þ

Using these results, we find that the leading-order correc-
tion to N 0 ¼ hλ0jλ0i occurs at second order13:

N 0 ¼ 1þ h~0; 0; 0jðGþ FiϵÞ† ~M†
2
~M2ðGþ FiϵÞj~0; 0; 0i

þ 2Reh~0; 0; 0j ~M2ðGþ FiϵÞ ~M2ðGþ FiϵÞj~0; 0; 0i
þOð1=L3Þ: ð79Þ

Here, we are already using the result that higher-order
contributions are of Oð1=L3Þ, as will become clear shortly.
Note also that, at this stage, we have to account for the fact,
noted above, that ~M2 and Fiϵ are not Hermitian. In the low-
momentum regime, both of the second-order terms scale as
1=L2, since the dominant terms in G and Fiϵ scale as 1=L.
Similarly, at nth order, the low-momentum terms scale as
1=Ln. In the high-momentum regime, Fiϵ can be dropped,
and each of the G factors has an explicit 1=L3. There is,

however, only a single intermediate sum over ~k, so the
overall scaling is as 1=L3. The same can be easily seen to
hold at all higher orders. We thus conclude that

N 0 ¼ 1þOð1=L2Þ: ð80Þ

Now we turn to the matrix element Z, which can be
expanded as a geometric series

Z ¼ hλ0j ~F ~Kdf;3
~Fjλ0i − hλ0j ~F ~Kdf;3F̄3

~Kdf;3
~Fjλ0i þ � � � :

ð81Þ

Our aim is to substitute the perturbative expansion of jλ0i
and determine the L0 part of Z. We note immediately that
the contribution from the low-momentum regime in the
results (77) and (78) is suppressed by powers of 1=L and

13The first-order term vanishes because G00 ¼ Fiϵ
00 ¼ 0.
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can be dropped. The same is true at higher orders. In the
high-momentum regime the dominant contribution comes
from terms with multipleGs (since, as in the analysis for λ0,

Fiϵ is exponentially suppressed and the −λ0 þ λð0Þ0 term
lacks a momentum sum to cancel the explicit 1=L2). This
high-momentum contribution is of OðL0Þ and must be
kept. To see this scaling, consider the first term on the right-
hand side of Eq. (81) and substitute Eq. (77) for jλ0i. The
presence of a factor of Kdf;3 in the “middle” of the matrix
element implies that there is one momentum sum for each
factor of G, and this cancels the 1=L3 factors in G. The
same cancellation occurs at all orders in perturbation
theory, and also for the higher-order terms in the geometric
series in Eq. (81). This implies that, in the evaluation of the
leading-order contribution toZ, we can make the following
substitution for the nth-order term:

jλðnÞ0 i → ½− ~M2G�nj~0; 0; 0i: ð82Þ

These leading terms can then be summed into

jλ0i →
1

1þ ~M2G
j~0; 0; 0i: ð83Þ

Thus, we find

Z ¼ h~0; 0; 0j 1

1þ G ~M2

~F ~Kdf;3
1

1þ F̄3
~Kdf;3

× ~F
1

1þ ~M2G
j~0; 0; 0i þOð1=LÞ: ð84Þ

Here, we have used the result that ~M2 is Hermitian
at OðL0Þ.

C. Relation to the divergence-free three-to-three
scattering amplitude

In this subsection we demonstrate the following relation
between the matrix element appearing in our modified
quantization condition, Eq. (33), and the infinite-volume
divergence-free three-to-three scattering amplitude at
threshold [defined in Eq. (94) below]:

f9ð ~K2;00Þ2ZgjE¼3mþΔEth
¼ Mdf;3;00 þOð1=LÞ: ð85Þ

This is a key result as it allows us to connect the output of
the finite-volume quantization condition to an infinite-
volume scattering quantity. We stress that this result only
holds when the quantity on the left-hand side is evaluated at
E ¼ 3mþ ΔEth; i.e. the energy must be held at the solution
to the quantization condition as L → ∞.
We first review the definition ofMdf;3, given in Eq. (87)

of Ref. [2]. To do so we introduce the set of integrals

iIðu;uÞn;l0m0;lmð~p; ~kÞ≡
Z

d3kn
ð2πÞ32ωkn

� � �
Z

d3k1
ð2πÞ32ωk1

× ½iM2ð~pÞiG∞ð~p; ~knÞiM2ð~knÞ
� � � iG∞ð~k1; ~kÞiM2ð~kÞ�l0m0;lm; ð86Þ

where n is a positive integer,

G∞
l0m0;lmð~p; ~kÞ ¼

�
k�

q�p

�
l0 4πYl0;m0 ðk̂�ÞHð~pÞHð~kÞY�

l;mðp̂�Þ
2ωkpðE − ωk − ωp − ωkp þ iϵÞ

×

�
p�

q�k

�
l
; ð87Þ

and

M2;l0;m0;l;mð~kÞ

≡ δl0lδm0m

�
q�k

16πE�
2;k

cot δlðq�kÞ þ ~ρðE�
2;kÞ
�
−1
; ð88Þ

is the standard two-to-two scattering amplitude for two

particles carrying energy momentum ðE − ωk;−~kÞ. This
differs from the matrix M2, introduced in Eq. (48) above,

only in that M2ð~kÞ is defined for continuous ~k. The
products in the square brackets of Eq. (86) are understood
as matrix products over the spherical-harmonic indices. We
also extend the definition to n ¼ 0 via

iIðu;uÞ
0;l0m0;lmð~p; ~kÞ≡ ½iM2ð~pÞiG∞ð~p; ~kÞiM2ð~kÞ�l0m0;lm:

ð89Þ

These definitions are shown diagrammatically in
Fig. 2(a). The basic structure is a sequence of on-shell
scattering amplitudes alternating with a pole term that
interchanges the scattering pair. The superscript ðu; uÞ on
Iðu;uÞn ð~k; ~pÞ indicates that the quantity is unsymmetrized, in

the sense that the momenta ~k and ~p are assigned to the
particles that are unscattered by the outermost insertions.
The factors of G∞ (represented by the vertical dashed lines
in the figure) have the same singularities as propagators in
the standard Feynman rules for the diagrams. Thus, the

integrals Iðu;uÞn are simplified versions of the corresponding
Feynman diagrams, having the same singularities, but
depending only on on-shell two-to-two scattering
amplitudes.
We next define symmetrized versions of these integrals:

iInð~p; â0�; ~k; â�Þ≡ S½iIðu;uÞn;l0m0;lmð~p; ~kÞ�≡
X

f~x0;~y0g∈Pout

X
f~x;~yg∈Pin

× 4πY�
l0m0 ðŷ0�ÞiIðu;uÞn;l0m0;lmð~x0; ~xÞYlmðŷ�Þ;

ð90Þ
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where we sum over possible external momentum
assignments

Pout ≡ ff~p; ~a0g; f~a0;−~a0 − ~pg; f−~a0 − ~p; ~pgg; ð91Þ

Pin ≡ ff~k; ~ag; f~a;−~a − ~kg; f−~a − ~k; ~kgg: ð92Þ

Here, ~k, ~a and −~a − ~k are the momenta of the initial
particles, while ~p, ~a0 and −~a0 − ~p are those of the final
particles. The direction â� is that of ~a after boosting to the
CM frame of the scattered pair, with â0� defined analo-
gously for the final state. Similarly, when the momentum
pair is ~x; ~y, ŷ� is defined by boosting ðωy; ~yÞ with velocity
~β ¼ ~x=ðE − ωxÞ. Note also that, prior to symmetrization,
we have to insert the spherical harmonics and sum over
their indices in order to obtain functions of the external
momenta.
As we explain in detail in Refs. [1,2], the sum over all

symmetrized integrals In has the same singularities as the
full three-to-three scattering amplitude M3. Thus, the
difference between these quantities, which we denote
Mdf;3, is free of divergences. Explicitly, this is defined as

iMdf;3ð~p; â0�; ~k; â�Þ≡ iM3ð~p; â0�; ~k; â�Þ

−
X∞
n¼0

iInð~p; â0�; ~k; â�Þ; ð93Þ

and is shown diagrammatically in Fig. 2(b). What is
required for Eq. (85) is the value of this amplitude at
threshold:

Mdf;3;00 ≡Mdf;3ð~0; â0�; ~0; â�ÞjE¼3m: ð94Þ

Note that the right-hand side is, in fact, independent of the

direction vectors â0� and â�, since ~a0� ¼ ~a� ¼ 0 when ~p ¼
~k ¼ 0 and E ¼ 3m. Thus, we have included no such
dependence in Mdf;3;00. An equivalent definition is given

by decomposing Mdf;3ð~p; â0�; ~k; â�Þ in spherical harmon-
ics, keeping only the s-wave term, and evaluating this at
threshold. Thus, the index label on Mdf;3;00 is consistent

with that for ~K2, ~G and ~F used above.
Having explained the definition of the right-hand side of

Eq. (85), we now turn to proving the claim. To do so we
write out the two sides in more detail. Using the result forZ
worked out in the previous subsection, Eq. (84), we can
express the left-hand side of (85) as

f9ð ~K2;00Þ2ZgjE¼3mþΔE ¼ L̄ ~Kdf;3
1

1þ F̄3
~Kdf;3

R̄jE¼3mþΔE

þOð1=LÞ: ð95Þ

Here, we have introduced the row and column vectors

L̄klm ¼ −3 ~K2;00

�
1

1þG ~M2

~F

�
000;klm

; ð96Þ

R̄klm ¼ −3
�
~F

1

1þ ~M2G

�
klm;000

~K2;00: ð97Þ

As for the right-hand side, we can rewrite this using
the general relation between finite-volume and infinite-
volume three-particle scattering amplitudes given in
Eq. (80) of Ref. [2]. For the threshold amplitude this
relation is

(a)

(b)

FIG. 2. Diagrammatic definitions of quantities defined in the text. (a) The unsymmetrized subtraction functions, Iðu;uÞn . Here the black
disks represent on-shell projections ofM2, and the vertical dashed lines represent simple poles, used in place of the propagators. For I0
we have indicated the coordinate dependence, which applies for all of the functions. (b) The divergence-free three-to-three amplitude,
Mdf;3. This quantity is given by subtracting an infinite series of pairwise scattering diagrams,

P∞
n¼0 In, from the standard three-to-three

scattering amplitude, M3. Here, S indicates that the symmetrized versions of In are to be used in the subtraction.
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Mdf;3;00 ¼ lim
L→∞

jiϵS
��

1

3
−

1

1þM2;LG
M2;LF

�
×Kdf;3

1

1þ F3Kdf;3

�
1

3
−

F
2ω

1

1þ GM2;L

×M2;Lð2ωÞ
��

000;000

; ð98Þ

where E ¼ 3m, and the new matrix is M−1
2;L ≡K2

−1 þ F.
Note that here we are apparently taking a step backwards by
expressing the infinite-volume quantityMdf;3;00 in terms of
the L → ∞ limit of a finite-volume matrix element. The
reason for doing so is that the connection to the left-hand
side of the desired relation (85) is then much clearer. One
new feature in (98) is that the infinite-volume limit is taken
using an iϵ prescription. As explained in Ref. [2], a
prescription is needed to avoid singularities in F and G.
The prescription that is required for (98) to hold is that
singularities in summands are shifted by iϵ, after which the
infinite-volume limit is well defined.
The symmetrization operator S in Eq. (98) is essentially

the same as that defined in Eq. (90), although there are
some subtleties when applied to the finite-volume matrices
[2]. These do not concern us here, however, because
symmetrization is trivial for the threshold amplitude—it
leads simply to an overall factor of 9.
We proceed by rewriting the result (98) in a form that is

similar to Eq. (95). After some reorganization (including
insertions of appropriate factors of QQ−1 and using
Q00 ¼ 1) we find

Mdf;3;00 ¼ lim
L→∞

jiϵ ~L ~Kdf;3
1

1þ ~F3
~Kdf;3

~R; ð99Þ

where E ¼ 3m and the new row and column vectors are

~Lklm ¼ ½1 − 3H−1 ~F�000;klm; ð100Þ

~Rklm ¼ ½1 − 3 ~FH−1�klm;000: ð101Þ

The result we are aiming to demonstrate can now be
rewritten as

lim
L→∞

L̄ ~Kdf;3
1

1þ F̄3
~Kdf;3

R̄jE¼3mþΔEth

¼ lim
L→∞

jiϵ ~L ~Kdf;3
1

1þ ~F3
~Kdf;3

~RjE¼3m: ð102Þ

We have chosen the notation in such a way that the results
look similar, but we still have significant work to do to
demonstrate equality. We stress that the nature of the
infinite-volume limits differs between the two sides: on
the left-hand side ΔE is tuned to satisfy the quantization
condition, while on the right-hand side ΔE ¼ 0.

We first focus on the matrices between the “L” and “R”
vectors, and show that

lim
L→∞

~Kdf;3
1

1þ F̄3
~Kdf;3

jE¼3mþΔEth

¼ lim
L→∞

jiϵ ~Kdf;3
1

1þ ~F3
~Kdf;3

jE¼3m: ð103Þ

We first give a qualitative explanation of this equality. The
limit on the right-hand side has been investigated in Ref. [2]
and is given by an infinite-volume function T l0;m0;l;mð~p; ~kÞ
(where ~p and ~k are the external spectator momenta, both
held fixed in the limit). The contribution that survives in the
limit comes from large intermediate momenta—contribu-
tions from low momenta are suppressed by powers of 1=L.
We note also that, once the limit is taken, we can send
ϵ → 0þ, since the poles are at threshold, and do not need
regulation once sums have been converted to integrals. The
quantity on the left-hand side differs in two ways: (i) ~F3 is
replaced by F̄3 ¼ ~F3 − Fλ0

3 , and (ii) the infinite-volume
limit is approached with the tuned ΔEth ¼ Oð1=L3Þ rather
than ΔE ¼ 0. Note that this limit avoids the poles in F and
G that occur atΔE ¼ 0, so that one does not need to use the
iϵ prescription at an intermediate stage. Thus, as far as the
contributions from large intermediate momenta are con-
cerned, one approaches exactly the same kinematic point as
on the right-hand side and should attain the same limit. For
large momenta the subtracted part Fλ0

3 is suppressed by
powers of 1=L. The only complication is that, when
approaching the limit with tuned ΔE, there is an enhanced
low-momentum contribution to ~F3, namely, that from Fλ0

3 .
This, however, is removed by the subtraction in F̄3, so the
left-hand side also receives no low-momentum contribu-
tions as L → ∞.
To demonstrate the result in detail we expand both sides

of (103) in a geometric series and argue that the results
agree order by order. The leading-order terms are identical,
so the first nontrivial result to show is

lim
L→∞

~Kdf;3ð ~F3 − Fλ0
3 Þ ~Kdf;3jE¼3mþΔEth

¼ lim
L→∞

jiϵ ~Kdf;3
~F3

~Kdf;3jE¼3m: ð104Þ

Our first step is to replace the iϵ regulated limit on the right-
hand side with one in which E − 3m ¼ c=L3, with c any
constant differing from the tuned value a3 to be determined
below. This avoids the poles in F and G [which are at
E ¼ 3m and E ¼ 3mþOð1=L2Þ] so that the limit is well
defined. In other words we have

lim
L→∞

jiϵ ~Kdf;3
~F3

~Kdf;3jE¼3m ¼ lim
L→∞

~Kdf;3
~F3

~Kdf;3jE¼3mþc=L3 :

ð105Þ
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Next we argue that on the left-hand side of (104) we can
replace E ¼ 3mþ ΔEth with E ¼ 3mþ c=L3, with any
choice of c:

lim
L→∞

~Kdf;3ð ~F3 − Fλ0
3 Þ ~Kdf;3jE¼3mþΔEth

¼ lim
L→∞

~Kdf;3ð ~F3 − Fλ0
3 Þ ~Kdf;3jE¼3mþc=L3 : ð106Þ

Note here that Fλ0
3 ¼ − ~Fjλ0ihλ0j ~F=ðN 0L3λ0Þ depends on

how E is chosen to approach 3m, since both λ0 and jλ0i
depend on E. To understand this equality consider first the
~F3 terms. We recall from our earlier discussion that ~F3 has
an explicit factor of 1=L3, whereas ~Kdf;3 ∼OðL0Þ. The
1=L3 can only be canceled by a sum over large intermediate
momenta (leading to the infinite volume function T
described above) or by the presence of an eigenvalue of
H scaling as 1=L3. The latter corresponds to a low-

momentum intermediate state since jλ0i ¼ j~0; 0; 0i þ
Oð1=LÞ. The subtraction on the left-hand side removes
this potential OðL0Þ contribution, however, so the differ-
ence F̄3 cannot give rise to an OðL0Þ low-momentum
contribution. Thus, it makes no difference precisely how
the large volume limit is taken as long as the same
asymptote is approached. This is the case for the two sides
of (106) for any choice of c.

Finally, we note that the Fλ0
3 term can be dropped from

the right-hand side of Eq. (106),

lim
L→∞

~Kdf;3ð ~F3 − Fλ0
3 Þ ~Kdf;3jE¼3mþc=L3

¼ lim
L→∞

~Kdf;3
~F3

~Kdf;3jE¼3mþc=L3 ; ð107Þ

as long as c ≠ a3. This is simply because the explicit factor
of 1=L3 in Fλ0

3 cannot be canceled for an untuned energy.
Combining these three steps we find that the left- and

right-hand sides of (104) are equal. This argument can be
extended almost verbatim to the higher-order terms in the
expansions of Eq. (103), and we do not repeat the
discussion. This establishes the desired equality, Eq. (103).
It remains only to relate the “end caps” that appear in

Eqs. (95) and (99). We consider first the barred end caps of
Eqs. (96) and (97), which are to be evaluated along the
tuned energy trajectory E ¼ 3mþ ΔEth in the limit
L → ∞. This means that we can replace ~K2;00 with
~M2;00, and that, as noted above, following Eq. (59), the

combination −3 ~M2;00
~F00 has the limiting value of unity.

However, G does not contain an OðL0Þ term when
ΔE → 0, since the potentially large term has been sub-
tracted. Combining these observations we find

lim
L→∞

L̄klmjE¼3mþΔEth
¼
�
−3 ~M2

~F þ 3 ~M2G ~M2

1

1þ G ~M2

~F

�
000;klm

¼
�
1þ 3 ~M2G ~M2

1

1þ G ~M2

~F

�
000;klm

; ð108Þ

lim
L→∞

R̄klmjE¼3mþΔEth
¼
�
−3 ~F ~M2 þ 3 ~F ~M2G ~M2

1

1þ G ~M2

�
klm;000

¼
�
1þ 3 ~F ~M2G ~M2

1

1þ G ~M2

�
klm;000

; ð109Þ

where we have left the infinite-volume limit and the constraint E ¼ 3mþ ΔEth implicit in the middle and final equality.
Turning to the “tilded” end caps of Eqs. (100) and (101), the infinite-volume limit is to be taken with E ¼ 3m using the iϵ

prescription. This means that the enhanced eigenvalue ofH ¼ ~M−1
2 þ ~Fiϵ þ ~G plays no role. As explained in Ref. [2], ~Fiϵ

vanishes in this limit [since it is a difference between a sum and an integral regulated using an iϵ prescription; see Eq. (13)].
However, ~F does not vanish in general, due to the contribution of the ρ term [see Eq. (14)], although ~F00 does vanish at
threshold, since ρ vanishes there. We find

lim
L→∞

jiϵ ~Lklm ¼ lim
L→∞

jiϵ
�
1 − 3 ~M2

1

1þ ~G ~M2

~F

�
000;klm

¼ lim
L→∞

jiϵ
�
1þ 3 ~M2

~G ~M2

1

1þ ~G ~M2

~F

�
000;klm

; ð110Þ

lim
L→∞

jiϵ ~Rklm ¼ lim
L→∞

jiϵ
�
1 − 3 ~F ~M2

1

1þ ~G ~M2

�
klm;000

¼ lim
L→∞

jiϵ
�
1þ 3 ~F ~M2

~G ~M2

1

1þ ~G ~M2

�
klm;000

: ð111Þ

To complete the argument we note that the distinction between ~G and G is subleading in L. We deduce

lim
L→∞

L̄ jE¼3mþΔEth
¼ lim

L→∞
jiϵ ~LjE¼3m; lim

L→∞
R̄ jE¼3mþΔEth

¼ lim
L→∞

jiϵ ~RjE¼3m: ð112Þ

Combining Eqs. (103) and (112) completes the demonstration of the desired result, Eq. (85).
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D. Relation to minimally subtracted threshold
three-to-three amplitude

Using the results (76) and (85), as well as the equality
of ~K2;00 and ~M2;00 at threshold, we can rewrite the
quantization condition (33) as

9L3

�
ð ~K2;00Þ2λð0Þ0 þ

�
½− ~M2�G

X∞
n¼1

½− ~M2G�n½− ~M2�
�
00

þ
X
~k

~M2;00G0k
~M2;kkFiϵ

kk
~M2;kkGk0

~M2;00

�				
E¼3mþΔEth

¼ Mdf;3;00 þOð1=LÞ: ð113Þ

We recall that the second term in curly braces contains
low-momentum contributions scaling as 1=L2 and 1=L3,
and a high-momentum contribution scaling as 1=L3,
while the third term contains only a low-momentum
contribution scaling as 1=L3. At this stage we could pull
out these low-momentum contributions, evaluate them
explicitly, and replace the high-momentum contributions
by appropriate infinite-volume integrals. With these
expressions in hand we could then determine the coef-
ficients in the expansion (2) for ΔEth. The coefficient a6
would then depend on the divergence-free amplitude at
threshold, Mdf;3;00.
However, there is one feature of such a result that is

unsatisfactory. We recall that Mdf;3 is defined by
subtracting from M3 a series of integrals In that
remove the physical divergences [see Fig. 2 and
Eq. (93)]. The issue is that these integrals, defined in
Eq. (86), involve the two-particle scattering amplitude
M2 evaluated far below threshold [since the spectator
momenta range up to k ∼m at which point the CM
energy of the nonspectator pair is ð3m − ωkÞ2−
k2 ≪ 4m2]. While there is nothing wrong, in principle,
with this (one can obtain the subthreshold amplitude by
analytic continuation) it introduces what seems to be an
unnecessary complication. The point of the subtrac-
tions, after all, is to remove the physical divergences,
which occur at threshold.
It turns out, however, that the formalism, and in

particular, Eq. (113), is hinting at a remedy. The high-
momentum part of the second term in curly braces turns
out, as shown below, to exactly cancel the high-
momentum (far subthreshold) parts of the integrals In
contained in Mdf;3;00. Thus, we are led to a different
definition of the subtracted threshold amplitude that
depends only on physical quantities at or above thresh-
old. This is the threshold amplitude M3;th defined
schematically in the Introduction. Here, we give its
precise definition and then use it to simplify the
quantization condition.
Our specific definition of M3;th makes use of the

observation that the infinite series of terms subtracted in

Eq. (93) is not needed to reach a divergence-free
quantity when working with degenerate particles.14

From the general considerations of Ref. [9] we know
that, above threshold, only I0 and I1 need to be
subtracted. Infrared (IR) divergences are more severe
at threshold, but, as shown in Appendix B, In with
n ≥ 3 remain finite, so the only additional subtraction
we need at threshold is of I2. In total, then, our first step
towards a definition of M3;th is to drop the subtraction
of In with n ≥ 3 from Mdf;3;00. The next step is to
modify the remaining quantities, I0, I1 and I2, to
remove the dependence on subthreshold M2. In fact,
since I0 does not contain an integral [see Eq. (89)], we
need only to modify the latter two.
These considerations lead to the definition

M3;th ≡ lim
δ→0

�
M3;δð0; â0�; 0; â�Þ − I0;δð0; â0�; 0; â�Þ

−
Z
δ

d3k1
ð2πÞ3 Ξ1ð~k1Þ −

Z
δ

d3k1
ð2πÞ3

Z
δ

d3k2
ð2πÞ3

× Ξ2ð~k1; ~k2Þ
�
: ð114Þ

Here, δ indicates the presence of an IR regularization,
to be defined shortly, while Ξ1 and Ξ2 are the
modified integrands whose integrals replace I1 and
I2, respectively. They are given in Eqs. (121) and
(122) below and depend only on the scattering length
a, i.e. not on the scattering amplitude for subthreshold
momenta.
We begin our explanation of the definition of M3;th

by describing the δ regularization. This consists of two
parts. The first is that all IR divergent integrals are
cutoff by a lower limit, k ≥ δ (applied in the frame in

which ~P ¼ 0). This is indicated by the subscript on the
integrals in Eq. (114). As discussed below, this allows
us to set E ¼ 3m for these terms, i.e. to work directly at
threshold. However, I0 diverges at threshold when the

spectator momenta ~p and ~k vanish:

Iðu;uÞ0 ð~0; ~0Þ ∝ 1

E − 3m
: ð115Þ

Thus, we must introduce a second part in the defi-
nition of δ regularization: the energy E must approach
threshold as E − 3m ∝ δ4 with a nonzero proportion-
ality constant. The subscript δ on I0 in Eq. (114)
indicates that E − 3m scales in this way. As we explain
shortly, the choice of the fourth power of δ allows us
to effectively work at threshold for I1 and I2 while

14The set of integrals that needs to be subtracted is larger if
the particles are not degenerate. See Refs. [1,9] for more
discussion.
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regulating I0. In fact, any power of δ greater than
cubic suffices.15

We next determine the form of the modified integrand
Ξ1. We begin with the unsymmetrized form of I1, which is

iIðu;uÞ
1;l0;m0;l;mð~p; ~kÞ≡

Z
d3k1

ð2πÞ32ωk1

½iM2ð~pÞiG∞ð~p; ~k1Þ

× iM2ð~k1ÞiG∞ð~k1; ~kÞiM2ð~kÞ�l0;m0;l;m:

ð116Þ

From this integral, we want to pull out the part that leads to
the IR divergence at threshold, for this is the only part that
we need to subtract fromM3. As explained in Appendix B,

IR divergences at threshold are present only if ~p ¼ ~k ¼ 0
and if all three of the scattering amplitudesM2 are in the s-
wave. Thus, we focus on

Iðu;uÞ1;00;00ð~0; ~0Þ ¼
Z

d3k1
ð2πÞ3

M2;sð~k1Þ
2ωk1

×

�
M2;sð~0ÞHð~k1Þ

2ωk1ðE−m− 2ωk1 þ iϵÞ
�2

þ IR finite;

ð117Þ

where we are using the abbreviation M2;s ≡M2;00;00. The
“IR finite” term is IR finite at threshold and comes from
higher intermediate partial waves. The integral in (117) has

a double pole at k1 ¼ j~k1j ¼ q, where q [defined in
Eq. (34)] is the three-momentum of each particle in the
nonspectator pair. This pole is regulated by the iϵ pre-
scription that comes withG∞. However, unlike the case of a
single pole, the integral here diverges when ϵ → 0, for any
E ≥ 3m. This divergence is necessary to cancel the corre-
sponding physical divergence in M3. The issue at hand is
to find a simpler integral that has the same IR divergence at

threshold but does not depend, as I1 does, on M2;sð~k1Þ
evaluated far below threshold.
To do so we apply the δ regularization to I1. Then, in the

IR regime where k1 ∼ δ, we have that

E −m − 2ωk1 ¼ −
k21
m

þ E − 3mþOðk41Þ

¼ −
k21
m
½1þOðδ2Þ�; ð118Þ

since E − 3m scales in the same way as the k41 term. This
implies that the pole always lies below the cutoff on k1,
so that the integral is well regulated. Since the overall IR
divergence is linear (

R
dk1=k21) the Oðδ2Þ terms lead to

IR-finite corrections and thus can be dropped from the
subtraction to M3. This is why our δ4 scaling of E − 3m
is effectively the same as setting E ¼ 3m. The same
holds for I2, since this integral has a weaker IR
divergence.
We conclude that to obtain the same IR divergence as

in Iðu;uÞ1 we need only expand the residue of the double

pole about ~k1 ¼ 0 and keep the constant and linear
terms. Since E − 3m scales quartically we can set E ¼
3m in this expansion. Similarly we can set ωk1 to m.

The factors of Hð~k1Þ equal unity to all orders in a
Taylor expansion about threshold, but we do not expand
them as they are needed for UV convergence in some

terms. Thus, all we need to expand is M2;sð~k1Þ, which
can be done using the relation between ~M2 and ~K2

[Eq. (48)], the definition of ρ [Eq. (16)], the near-
threshold form of K2 [Eqs. (6) and (8)], and the
expression for q2k [Eq. (37)]. The net result is that
the modified integrand is16

Ξðu;uÞ
1 ð~k1Þ≡−

½32πma�3
8m

�
Hð~k1Þ2
k41

þ a

ffiffiffi
3

p

2

Hð~k1Þ3
k31

�
; ð119Þ

and this satisfies

lim
δ→0

�
Iðu;uÞ1;δ;00;00ð~0; ~0Þ −

Z
δ

d3k1
ð2πÞ3 Ξ

ðu;uÞ
1 ð~k1Þ

�
¼ finite: ð120Þ

At threshold, symmetrization leads only to multiplica-
tion by 9, so we can replace the subtraction of I1 with
that of the integral of

Ξ1ð~k1Þ ¼ 9Ξðu;uÞ
1 ð~k1Þ: ð121Þ

This is the quantity entering Eq. (114).
A similar analysis for I2 leads to the modified

integrand

Ξ2ð~k1; ~k2Þ ¼
9

16m2
½32mπa�4 Hð~k1Þ2Hð~k2Þ2

k21½k21 þ k22 þ ð~k1 þ ~k2Þ2�k22
:

ð122Þ

There is only a single term since the integral is only
logarithmically IR divergent.

15Note that, whatever power one chooses, the square of the
scattering particle momentum in M2 within I0 will scale in
the same way as the energy difference, q2 ∼ E − 3m. Thus, in
the δ → 0 limit, both the scattering length and the effective
range contribute to the I0 subtraction. Indeed, since the
r-dependent terms are finite, one could choose not to subtract
these. This would change the definition of M3;th and would
also change the explicit r-dependent term in a6 [see
Eq. (136)] to compensate.

16This factor of H2 is not necessary to make the 1=k41 term UV
convergent, but we keep it for the sake of uniformity, since the
UV cutoff is needed for the 1=k31 term.
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This completes the explanation of the quantities
entering the definition of M3;th, Eq. (114). To use this
to simplify the quantization condition, we need to relate
M3;th to our original threshold amplitude, Mdf;3;00.
Combining the definition of Mdf;3;00, given in Eqs. (93)
and (94), with the result (114) we find

M3;th ¼ Mdf;3;00 þ lim
δ→0

��
I1;δ −

Z
δ

d3k1
ð2πÞ3 Ξ1ð~k1Þ

�
þ
�
I2;δ −

Z
δ

d3k1
ð2πÞ3

Z
δ

d3k2
ð2πÞ3 Ξ2ð~k1; ~k2Þ

��
þ
X∞
n¼3

In: ð123Þ

Since I0 does not appear, we can set E ¼ 3m in the
expression in curly braces. In other words, IR regularization
is achieved here simply by cutting off the IR divergent
integrals. We are also adopting the notation that In or In;δ
without arguments implies that both spectator momenta
vanish andE ¼ 3m, so that these are purely s-wave quantities
(as forMdf;3;00). The interpretation of the result (123) is that
the subtraction of

P∞
n¼3 In is unnecessary for degenerate

particles, and so we undo this by adding the series back in. In
addition, we add back part of I1 and I2, but with a subtraction
defined using Ξ1 and Ξ2 that keeps M3;th finite.
We conclude this section by rewriting the quantization

condition (113) in terms of M3;th. We need the following
results:

−9L3½ ~M2G½− ~M2G�n ~M2�00jE¼3mþΔEth
¼ In þOð1=LÞ for n ≥ 3; ð124Þ

−9L3½ ~M2G½− ~M2G�2 ~M2�00jE¼3mþΔEth
−

1

L6

X
~k1;~k2≠0

Ξ2ð~k1; ~k2Þ ¼ lim
δ→0

�
I2;δ −

Z
δ

d3k1
ð2πÞ3

Z
δ

d3k2
ð2πÞ3 Ξ2ð~k1; ~k2Þ

�
þOð1=LÞ;

ð125Þ

−9L3½ ~M2G½− ~M2G� ~M2�00jE¼3mþΔEth
−

1

L3

X
~k1≠0

Ξ1ð~k1Þ ¼ lim
δ→0

�
I1;δ −

Z
δ

d3k1
ð2πÞ3 Ξ1ð~k1Þ

�
þOð1=LÞ; ð126Þ

which are demonstrated below. Using these, and the relation (123), we find that the quantization condition can be
written as

�
9L3ð ~K2;00Þ2λð0Þ0 þ 9L3

X
~k

~M2;00G0k
~M2;kkFiϵ

kk
~M2;kkGk0

~M2;00 −
1

L3

X
~k1≠0

Ξ1ð~k1Þ −
1

L6

X
~k1;~k2≠0

Ξ2ð~k1; ~k2Þ
�				

E¼3mþΔEth

¼ M3;th þOð1=LÞ: ð127Þ

We use Eq. (127) in the following subsection to derive the
threshold expansion.
We now return to the demonstration of Eqs. (124)–(126).

We first note that, in all three expressions, we can replace
E ¼ 3mþ ΔEth in the first terms with simply E ¼ 3m.
This is because there are no contributions to these terms
that are enhanced by the tuning of ΔE. Thus, shifting the
energy away from threshold by ΔEth leads only to
corrections suppressed by 1=L3. The net result is that all
terms in Eqs. (124)–(126) can be evaluated at threshold.
Note that for this, it is important that the left-hand sides
contain G rather than G, since the latter diverges at
threshold.
Consider first Eq. (124). Following the arguments of

Sec. III A, the high-momentum part of the sums on the left-
hand side leads to a contribution scaling as L0, in which we
expect the sums can be replaced by integrals. If any of the
sums are restricted to low momenta, then the scaling

arguments of Sec. III A can be used to show that the
contribution falls as L → ∞. For example, if all the
momenta are small, then, using the result that the dominant
terms in G scale as 1=L, the overall scaling is as
L3−ð1þnÞ ¼ L2−n, which is subleading for n ≥ 3. Since
all intermediate momenta must be large, we can restrict
the sums to run over only nonzero values without making
an error when L → ∞. Doing so allows us to replace G
with ~G in the sums. We can further replace ~G with G∞ and
~M2 withM2, as long as we take into account all the factors
of 2ω, Q and L3. Doing so we find that the left- and right-
hand sides of Eq. (124) are simply the sum and integral,
respectively, of the same summand/integrand, up to sub-
leading corrections.17 Thus, we can rewrite (124) as

17We also need the result that In ¼ 9Iðu;uÞn at threshold.
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��
1

L3

X
~k1≠0

� � � 1
L3

X
~kn≠0

−
Z
~k1

� � �
Z
~kn

�
9iM2ð0ÞiG∞ð0; ~k1Þ � � � iG∞ð~kn; 0ÞM2ð0Þ

�				
E¼3m

¼ Oð1=LÞ: ð128Þ

We know from Appendix B that, although the integrand diverges in the IR, the singularity is integrable. We also know that
the integrand is nonsingular in the high-momentum region, and is UV convergent. Thus, we can use the general result of
Ref. [7] that such sum-integral differences vanish as a power of 1=L. This completes the demonstration of Eq. (124).
Turning to Eq. (125), the argument proceeds along similar lines. We can again replace G with G as long as we do not

allow either of the intermediate momenta to vanish. Here, this is an identity, which follows because G000;0lm ¼ 0 if l ≠ 0.
Then, we can manipulate the equation into the form

lim
δ→0

�
1

L6

X
~k1;~k2≠0

−
Z
δ

d3k1
ð2πÞ3

Z
δ

d3k2
ð2πÞ3

�
f9iM2ð0ÞiG∞ð0; ~k1ÞiM2ð~k1ÞiG∞ð~k1; ~k2ÞiM2ð~k2ÞiG∞ð~k2; 0ÞiM2ð0Þ

− iΞ2ð~k1; ~k2ÞgjE¼3m ¼ Oð1=LÞ: ð129Þ
Here, the first term in curly braces does lead to an IR divergent integral, and, correspondingly, a low-momentum
contribution to the sum that is ofOðL0Þ, but both of these are canceled by the Ξ2 term. Thus, the expression in curly braces
is integrable and nonsingular, so the sum-integral difference vanishes as L → ∞.
The argument for Eq. (126) is essentially the same. Again, we can replace G with G as long as the intermediate sum

avoids ~k1 ¼ 0. The equation can then be manipulated into

lim
δ→0

�
1

L3

X
~k1≠0

−
Z
δ

d3k1
ð2πÞ3

�
f9iM2ð0ÞiG∞ð0; ~k1ÞiM2ð~k1ÞiG∞ð~k1; 0ÞiM2ð0Þ − iΞ1ð~k1ÞgjE¼3m ¼ Oð1=LÞ: ð130Þ

Once again, the IR singularities cancel, by construction, in
the expression in curly braces, so the sum-integral differ-
ence vanishes as L → ∞.

E. Solution to the quantization condition

In this section we determine the coefficients an in the
threshold expansion of ΔEth, Eq. (2), by enforcing the
quantization condition, Eq. (127). As noted above, we must
tune ΔE to cancel the OðL3Þ, OðL2Þ and OðLÞ contribu-
tions on the left-hand side of this condition. To do so, we

need the result for the 1=L expansion of λð0Þ0 , given in
Eq. (58). The algebraic manipulations needed are straight-
forward but tedious, and we quote only the final results.
TheOðL3Þ andOðL2Þ contributions to the left-hand side

of the quantization condition come only from the OðL0Þ
and Oð1=LÞ parts of λð0Þ0 . Thus, these two parts must
vanish. Using Eq. (58) we see that canceling theOðL0Þ part
of λð0Þ0 requires

a3 ¼
12πa
m

: ð131Þ

This is 3 times the corresponding coefficient for two
particles, which is the expected ratio as there are now
three pairs that can interact, and is indeed the result found in
Refs. [3–6]. We emphasize that both ~F00 and ~G00 contribute
to a3, showing the necessity of both terms even at
leading order.

At next order, the cancellation requires

a4
a3

¼ −
aI
π

: ð132Þ

This is the same relative correction as for the two-particle
case and agrees with the results of Refs. [3–6].
To proceed one order higher we must determine

the leading OðLÞ contribution from the sum over Ξ1,
a quantity whose definition is given in Eq. (121).
We find18

1

L3

X
~k1≠0

Ξ1ð~k1Þ ¼ −
482m2a3J

π
L − 9

½32mπa�3
ð2mÞ3 m2

1

L3

×
X
~k1≠0

�
Hð~k1Þ2 − 1

k41
þ a

ffiffiffi
3

p

2

Hð~k1Þ3
k31

�
:

ð133Þ

As we show below, the second term on the right-hand side
is ofOðL0Þ. Combining the J term from Ξ1 with that from
Eq. (58) we find that canceling theOðLÞ terms in Eq. (127)
requires

18Here, we are using the definition J ¼P~n≠01=ð~n2Þ2, with ~n
a vector of integers. This is equivalent to the definition given in
Appendix A.
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a5
a3

¼ a2

π2
ðI2 þ J Þ: ð134Þ

Again this agrees with Refs. [3–6]. We note that the J term
in this result arises both from ~F00 and from the factors of
~G0k contained in the sum over Ξ1. Thus, the agreement
provides a more stringent test of our formalism.

To determine the final coefficient a6, we must work out
the L → ∞ limits of all the contributions on the right-hand
side of the quantization condition (127). We first consider

the combination of the term containing λð0Þ0 with the OðLÞ
contribution from Ξ1. Our tuning of ΔE has made this
combination of OðL0Þ. Explicitly, if we substitute the first
three orders of ΔEth into the expression for λð0Þ0 we find

lim
L→∞

�
9 ~K2

2;00L3λð0Þ0 þ 482m2a3J
π

L

�				
E¼3mþa3=L3þa4=L4þa5=L5

¼ 576

π2

�
a4m2ð−I3 þ IJ − 9KÞ − π3m2a

a6ðLÞ
a3

þ 3π4a2 þ 6π4m2a3r

�
: ð135Þ

Combining this result with the remaining terms in Eq. (127), which are worked out in Appendix C, and demanding that the
equality hold at OðL0Þ then gives the expression for a6ðLÞ. We find

a6ðLÞ
a3

¼
�
a
π

�
3
�
−I3 þ IJ − 9Kþ 16π3

3
ð3

ffiffiffi
3

p
− 4πÞ log

�
mL
2π

�
þ CF þ C4 þ C5

�
þ 64π2a2

m
C3 þ

3πa
m2

þ 6πra2 −
M3;thr

48m3a3
: ð136Þ

Numerical values for the new constants CF, C3, C4 and C5
are given in Appendix C, while those for I, J and K are
given in Appendix A. This completes our calculation of
ΔEth throughOð1=L6Þ. Together with results for a3, a4 and
a5 given, respectively, in Eqs. (131), (132) and (134), this is
the main result of the paper.
In a6 only the logarithmic dependence on L can be

compared to that found by the nonrelativistic calculations
of Refs. [4,5], and indeed it agrees. The L-independent
constants cannot be compared, both because relativistic
effects enter at this order and because the nonrelativistic
calculations use different definitions for the three-particle
threshold amplitude.19 It is for this reason that we have
carried out an independent calculation of the threshold
expansion in relativistic λϕ4 theory, working to cubic order
[6]. Since a and a2r are both of OðλÞ in this theory, while
M3;th ¼ Oðλ2Þ, this allows us to check the last four terms
on the right-hand side of Eq. (136). We find complete
agreement. This check also shows how our definition of
M3;th works in detail through one-loop order. The remain-
ing terms in a6, i.e. the constants on the right-hand side
containing the factor of a3, have so far not been checked

independently. This would require a fourth-order calcula-
tion in the λϕ4 theory.
We close this section by commenting on the cutoff

dependence of the various quantities in Eq. (136). The
constants C3, C4 and C5 depend on the choice of cutoff
function H, as does the argument of the logarithm (though
not its coefficient). The energy of a physical finite-volume
state should not depend on H, and indeed this “scheme
dependence” is canceled by that ofM3;th. This can be seen
explicitly by going back to the definition of M3;th,
Eq. (114), in which the dependence on H enters through
the functions Ξ1 and Ξ2, in exactly the same way as on the
left-hand side of the quantization condition (127).

IV. CONCLUSIONS

In this paper, we have shown how to expand the energy
of the state closest to threshold for three interacting
particles in powers of 1=L, starting from the quantization
condition derived in Refs. [1,2]. This turns out to be quite
involved, but also provides insight into the workings of the
formalism. We find that the first three nontrivial terms, a3,
a4 and a5, as well as the logarithmic dependence in a6ðLÞ,
agree with those found previously in calculations using
NRQM [3–5]. For a check of the volume-independent part
of a6ðLÞ (where relativistic corrections and the ambiguity
in the definition of the three-particle threshold amplitude
enter), we have compared to a perturbative calculation in
relativistic λϕ4 field theory [6].

19Nevertheless, we note that the I3 and IJ terms do agree,
though not the K term. We have, however, found that a simple
change in the definition of M3;th also leads to agreement for the
K terms. We do not present the details, however, since other
constant terms do not match, and, as noted in the text, the
comparison is fundamentally ambiguous anyway.
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The two-particle version of the threshold expansion [7]
has been successfully used in many numerical simulations
of lattice field theories to determine the scattering length a.
Using the formula presented here, this can, in principle, be
extended to the determination of the (suitably subtracted)
three-particle scattering amplitude at threshold. This will
require accurate calculations for several volumes of both
the two- and three-particle threshold energy shifts; the
former is needed to determine a and the effective range r.
This will be challenging in practice, since one must control
the volume dependence up to Oð1=L6Þ.
The development of the threshold expansion for three

particles is much more challenging than in the two-particle
case.20 The main reason for this difficultly is that the
matrices appearing in the quantization condition cannot be
truncated when one works at Oð1=L6Þ. While this adds to
the technical challenge, it also led to the conversion of the
unphysical quantity Kdf;3, which appears in the quantiza-
tion condition, into the physical subtracted threshold
amplitude M3;th. This was essential for the final result
for ΔEth to depend only on physical quantities.
One might be concerned that the complications that we

have had to deal with here will carry over to the practical
application of the three-particle quantization condition.
This is not, however, the case. When one does a 1=L
expansion one loses one of the key simplifying features of
the quantization condition. This feature, stressed in
Ref. [2], is that, if one truncates the two-particle angu-
lar-momentum space, then the matrices of the determinant
condition, Eq. (3), become finite. This is because the

remaining matrix index, ~k ¼ 2π~nk=L, is automatically

truncated by the smooth cutoff functionHð~kÞ. In particular,
Hð~kÞ vanishes for k≳m implying that nk is constrained to
satisfy 2πnk ≲mL. Thus, only a finite number of values of
~nk need be used when applying this formalism to numerical
simulations. By contrast, the threshold expansion must be
valid for arbitrarily large L, which implies that all ~n can
contribute.
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APPENDIX A: EVALUATION OF ~F00

In this appendix we expand the quantity ~F00 in powers of
1=L taking ΔE ¼ E − 3m to scale as 1=L3. We recall that
~F00 ≡ ~F000;000, with the latter defined in Eq. (42). For the
analysis in the main text, we need to keep terms in ~F00 up
to Oð1=L3Þ.

We start from the expressions given in Eqs. (43) and
(44). As the spectator momentum is ~k ¼ 0, the scattered
pair are already in their CM frame, so the boost factor γ in
Eq. (34) is unity. It follows that ~r ¼ ~na. Thus, we obtain

~F00 ¼
1

16mωq

�
1

q2L3
þ 1

4π2L

�X
~na≠0

− ~PV
Z
~na

�
Hð~aÞ2
x2 − n2a

�
;

ðA1Þ

where x ¼ qL=ð2πÞ and we have used the fact that
~bka ¼ −~a, and the evenness of Hð~aÞ, to rewrite the
regulator function. We have also absorbed the ρ term in
Eq. (43) into the integral over ~na by reverting to the ~PV pole
prescription. As explained in Ref. [1], this prescription
leads to integrals such as that in Eq. (A1) being real and
smooth functions of x2. In particular, the cusp at x2 ¼ 0

present with the iϵ prescription is absent with the ~PV
prescription.
In Eq. (A1), we have pulled out the ~na ¼ 0 term from the

sum since this scales as L0 [using Eq. (34)]. The remainder
scales as 1=L, as already discussed in Sec. III A. For the
sum in Eq. (A1) we can use the fact that jx2j ∼ 1=L ≪ na
(and the absence of the ~na ¼ 0 term in the sum) to expand
the summand in powers of x2, leading to

X
~na≠0

Hð~aÞ2
x2 − n2a

¼ −
X∞
j¼0

�
q2L3

4π2L

�
jX
~na≠0

Hð~aÞ2
ðn2aÞ1þj : ðA2Þ

AlthoughH is needed to regulate the UVonly for j ¼ 0, we
cannot drop it from the other terms, as doing so leads to
potential power-law corrections. To see this, we note that
[using Eq. (7)]

E�2
2;a

4m2
¼ 5

2
−
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

m2

r
þO

�
ΔE
m

�
; ðA3Þ

implying that the regulator function takes the explicit form

Hð~aÞ ¼ J

 
5

2
−
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2a

N2
cut

s !
þO

�
ΔE
m

�
ðA4Þ

with

Ncut ¼
mL
2π

: ðA5Þ

Given the definition of the function J, Eq. (12), this implies
that the sum over ~na is cut off (smoothly) at na ≈ Ncut.
Since this cutoff depends on L, it can introduce further L
dependence in the individual terms of Eq. (A2). For
example, in the sum over Hð~aÞ2=n4a, it is easy to see that
the cutoff leads to a 1=ðmLÞ correction. Since this sum

20The latter is given up to Oð1=L5Þ in Ref. [7] and to one
higher order in Appendix C of Ref. [6].
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arises in a 1=L2 term in ~F00, the correction would enter at
Oð1=L3Þ, which is the highest order that we are controlling.
Thus, we cannot remove the cutoff at this stage.21

We would like to do a similar expansion in powers of x2

for the integral in Eq. (A1). We know that this must be
possible since the ~PV prescription leads to smooth, non-
singular dependence on x2, including at x2 ¼ 0. Naively
expanding, however, leads to integrals that diverge at
~na ¼ 0. To proceed, we first pull out the x2 ¼ 0 term

~PV
Z
~na

Hð~aÞ2
x2 − n2a

¼ −
Z
~na

Hð~aÞ2
n2a

þ ~PV
Z
~na

x2Hð~aÞ2
n2aðx2 − n2aÞ

;

ðA6Þ

where no pole prescription is needed for the IR and UV
convergent integral in the first term on the right-hand side.
Next, we use the result

~PV
Z
~na

1

n2aðx2 − n2aÞ
¼ 0; ðA7Þ

which can be shown by explicit computation. Note that this
integral is finite both in the UVand IR for x2 ≠ 0; thus, no
regulation is required, and the x2 ¼ 0 result is obtained by
smoothness. Subtracting this vanishing integral from that
appearing in the second term on the right-hand side of
Eq. (A6), we find

~PV
Z
~na

x2Hð~aÞ2
n2aðx2 − n2aÞ

¼ x2 ~PV
Z
~na

Hð~aÞ2 − 1

n2aðx2 − n2aÞ
; ðA8Þ

¼ −x2
X∞
j¼0

ðx2Þj
Z
~na

Hð~aÞ2 − 1

ðn2aÞ2þj : ðA9Þ

Here, we do a Taylor expansion because the resulting
integrals are convergent both in the IR and UV. The IR
convergence is assured by the factor of Hð~aÞ2 − 1, a
function of n2a, all of whose derivatives vanish at
na ¼ 0. The UV convergence is manifest for all j. Once
again, despite the UV convergence, we cannot drop the
factors of H since they give rise to power-law corrections.
Finally, we note that no pole prescription is needed in the
integrals in Eq. (A9).
Collecting these results we obtain the 1=L expansion

for ~F00:

~F00 ¼
1

16mωq

1

q2L3

�
1 −

X∞
j¼1

�
q2L3

4π2L

�
j

I j

�
: ðA10Þ

Here,

I j ¼

8>>><>>>:
�P
~na≠0

−
R
~na

�
Hð~aÞ2
~n2a

j ¼ 1

P
~na≠0

Hð~aÞ2
ð~naÞ2j −

R
~na

Hð~aÞ2−1
ð~naÞ2j j ≥ 2:

ðA11Þ

These quantities retain an implicit dependence on L
through the cutoff functions. However, this dependence
is expected to be exponentially suppressed [falling as
expð−NcutÞ], since in the derivation of the formalism in
Ref. [1] the dependence on the form of H is exponentially
suppressed. Indeed, it is simple to check that the leading
power-law dependence on Ncut cancels between the sums
and integrals for Im with m ≥ 2. Furthermore, numerically
evaluating the expressions, we observe that the conver-
gence as Ncut increases is rapid and consistent with the
exponential. Thus, we can replace these quantities with
their values when Ncut → ∞. In the notation of Ref. [4] the
first three become

I1⟶½Ncut→∞�
I ; I2⟶½Ncut→∞�

J ; I3⟶½Ncut→∞�
K:

ðA12Þ
We have checked that the numerical values we obtain for I,
J and K agree with those quoted (to about 12 significant
figures) in Ref. [4].22 Quoting only four decimal places, the
values are I ¼ −8.914, J ¼ 16.532 and K ¼ 8.402.
Making the replacements of Eq. (A12) we obtain the result
(46) quoted in the main text.

APPENDIX B: PROOF THAT In>3 ARE FINITE
AT THRESHOLD

In this appendix we prove that, for n ≥ 3, the integrals

Inð~p; â0�; ~k; â�Þ, defined in Eqs. (86) and (90), are finite at
threshold, E ¼ 3m. The potential divergence is only in the
infrared, since the functions H contained in G∞ [defined in
Eq. (87)] regulate the ultraviolet. As will become clear in
the following, the divergences in any In occur only when

the external spectator momenta are set to ~p ¼ ~k ¼ 0, so we

primarily consider this case. Setting ~p ¼ ~k ¼ 0 at threshold
implies in turn that ~a0� ¼ ~a� ¼ 0, so the In are pure s-wave,
with no dependence on â0� and â�.
When all momenta (both external and internal) are in the

IR regime, k ≪ m, the energy denominators in each factor
of G∞ take their nonrelativistic form

E − ωk − ωp − ωpk þ iϵ

→ −½~k2 þ ~p2 þ ð~kþ ~pÞ2 − iϵ�=ð2mÞ: ðB1Þ
21We can, however, drop the ΔE term in Eq. (A4), since this is

proportional to 1=L3, pushing the total power to 1=L5, i.e. beyond
the order we are working.

22Indeed, for I2 and I3, the expressions in Eq. (A11) provide a
numerically efficient way of evaluating the sums.
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Thus, if we set the external momenta to zero and collect the
n three-vectors that are being integrated into a 3n-dimen-

sional vector ~Q≡ ð~k1;…; ~knÞ, we have (since In contains
nþ 1 factors of G∞ and n integrals)23

In∼
Z

dQ
Z

dΩQ3n−1 1

Q2ðnþ1ÞfðΩÞ∝
Z

dQQn−3: ðB2Þ

Here, Ω stands for the collective angular coordinates.
Thus, the integral is IR divergent by power-counting

for n ¼ 1 and 2, while finite for n ≥ 3. There is,
however, another possible source of divergence, namely,
that fðΩÞ can have zeroes. This occurs when some, but
not all, of the G∞ factors diverge. It turns out, however,
that these zeroes result in no additional divergences
since they are canceled by corresponding zeroes in the
numerator. Thus, the naive overall power-counting result
is correct.
To explain this, we first replace In (with vanishing

external momenta) with the simpler integral

In;IR ≡
Z
~k1;…;~kn

1

2~k21

1

~k21 þ ~k22 þ ð~k1 þ ~k2Þ2
� � � 1

~k2n−1 þ ~k2n þ ð~kn−1 þ ~knÞ2
1

2~k2n
: ðB3Þ

This removes extraneous factors while maintaining the IR properties of the integral. We have dropped factors of iϵ since
they are not needed to regularize these integrals when working at threshold.
Next, we consider the n ¼ 3 case in detail.

I3;IR ≡
Z
~k1;~k2;~k3

1

2~k21

1

~k21 þ ~k22 þ ð~k1 þ ~k2Þ2
1

~k22 þ ~k23 þ ð~k2 þ ~k3Þ2
1

~2k23
; ðB4Þ

¼ 1

8ð2πÞ6
Z

dk1

Z
dk2k22

Z
d cos θ12

Z
dk3

Z
d cos θ23

1

k21 þ k22 þ k1k2 cos θ12

1

k22 þ k23 þ k2k3 cos θ23
; ðB5Þ

¼ 1

8ð2πÞ6
Z

dQ
Z

π=2

0

dϕ
Z

π=2

0

dθ
Z

π

0

dθ12

Z
π

0

dθ23

×
sin θ12 sin θ23 sin3 θ sin2 ϕ

ðsin2 θ þ sin2 θ sinϕ cosϕ cos θ12Þðsin2 θ sin2 ϕþ cos2 θ þ sin θ sinϕ cos θ cos θ23Þ
: ðB6Þ

Here, we are using the variables ðk1; k2; k3Þ ¼
Qðsin θ cosϕ; sin θ sinϕ; cos θÞ. The lack of divergence
in the overall Q integral agrees with our analysis above.
One of the possible divergences in the angular integrals

occurs when θ ≈ 0 (corresponding to ~k1 and ~k2 vanishing

but not ~k3). In this limit, the integrand becomes

sin θ12 sin θ23sin2ϕθ3

ð1þ sinϕ cosϕ cos θ12Þθ2
þOðθ2Þ; ðB7Þ

so the integral over θ is finite. There is a similar possible

divergence when ϕ ≈ 0, θ ≈ π=2 (corresponding to ~k2 and
~k3 vanishing but not ~k1), but it is clear from the symmetry

of the original expression (B4) under ~k1 ↔ ~k3 that this will
also lead to a convergent integral. Finally, the divergences

when ~k1 and/or ~k3 both vanish (but not ~k2) are manifestly
integrable.

An alternative way of stating this result is that, when
any pair of momenta vanish, there are two measure factors
of k2 and two denominators vanishing as k2, so the IR
divergence cancels. In this form, the argument is easily
generalized to all In with n ≥ 3. If j coordinates vanish
there will be j measure factors of k2 and, at most, j
denominators vanishing as k2. (To achieve this number of
diverging denominators the momenta must be sequential
and include either the first or last momenta.) Thus, all
subintegrals are IR convergent, and we deduce that In itself
is finite.
The discussion so far assumes that both external

momenta are set to zero. If one (or both) are nonvanishing,
then it is straightforward to see that the loss of one (or two)
potentially vanishing denominators is sufficient to make In
IR finite for all n > 0, including n ¼ 1 and 2. This assumes
that E is evaluated at threshold. Similarly, all In are IR finite
if any of the internal angular momenta are taken to be
anything other than s-wave. For example, in I1, whose
overall IR divergence is linear [

R
dQQ−2 from Eq. (B2)],

choosing the internal M2 to be in a p-wave leads to an
extra Q2 (one factor of Q from each of the adjacent G∞)
and removes the divergence.

23Each factor of G∞ contains a double sum over angular-
momentum indices, but we consider here only s-wave contribu-
tions, since these dominate in the IR due to the factor of
ðk�Þl0 ðp�Þl ∼Ql0þl in G∞.
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APPENDIX C: CALCULATION OF FINITE TERMS

In this appendix we calculate the contributions of OðL0Þ arising from the second, third and fourth terms on the left-hand
side of the quantization condition Eq. (127). These are needed in Sec. III E to find the coefficients in the expansion of the
threshold energy ΔEth.
We begin with

XF ¼ lim
L→∞

�
9L3
X
~k

~M2;00G0k
~M2;kkFiϵ

kk
~M2;kkGk0

~M2;00

�				
E¼3mþΔEth

ðC1Þ

¼ lim
L→∞

�
9L3
X
~k≠0

~M2;00
~G0k

~M2;kk
~Fiϵ
kk

~M2;kk
~Gk0

~M2;00

�				
E¼3m

: ðC2Þ

We recall that the notation here indicates that only
s-wave contributions are kept. In the second form we
have made two changes. The first is an identity: we
can replace the slashed G and Fiϵ with the tilded

versions as long as we remove ~k ¼ 0 from the sum.
The second is to work directly at threshold, which is

allowed since the absence of the ~k ¼ 0 term means that
ΔEth ∼ 1=L3 always leads to a correction suppressed
by 1=L.
We recall from Sec. III A that the sum is dominated

by small momenta, so it is legitimate to use non-
relativistic expansions of the various quantities worked
out in that section and keep only the leading terms.
Thus, ~M2;00 and ~M2;kk can be replaced by the constant
−64πm2a [using Eq. (38) and the equality of ~M2;00 and
~K2;00 at threshold]. Using Eq. (39), the leading term in
~G0k is given by

~G0kjE¼3m ¼ −
1

L
1

32π2m2

1

n2k
þOð1=L2Þ; ðC3Þ

where ~k ¼ 2π~nk=L. Note that in the small-momentum

regime we can set Hð~kÞ to unity. Finally, using Eq. (43),
and recalling that ~Fiϵ differs from ~F by dropping the ρ
term, we have

~Fiϵ
kkjE¼3m ¼ 1

L
1

64π2m2

�X
~na

−
Z
~na

�
Hð~aÞHð~bkaÞ

x2 − r2

þOð1=L2Þ; ðC4Þ

where x2 ¼ −3n2k=4, and ~r is defined in Eq. (45), except
that we can set γ ¼ 1 in our kinematic regime. Since
r2 > 0 while x2 < 0 there is no singularity in the
summand/integrand, and thus the iϵ regularization can
be dropped.
The sum-integral difference can be evaluated using the

Poisson summation formula

�X
~na

−
Z
~na

�
Hð~aÞHð~bkaÞ

x2 − r2

¼ −
X
~s≠0

eiπ~s·~nk
Z

d3re2πi~s·~r
Hð~aÞHð~bkaÞ
jxj2 þ r2

ðC5Þ

¼ −π
X
~s≠0

eiπ~s·~nk
e−2πjxjs

s
þOðe−mLÞ; ðC6Þ

where ~s is a vector of integers. To obtain the second line we
have used the fact that the Fourier transform in the first line
is dominated by values of r satisfying r≲ jxj ¼ Oð1Þ,
which in turn implies that ~a and ~bka are small, so the cutoff
functions H can be replaced by unity up to exponentially
small corrections. Doing so we can evaluate the integral and
obtain the result on the second line. The result shows that
the zeta-function (sum-integral difference) falls exponen-
tially with increasing jxj. When evaluating this expression
numerically, we find that the sum converges rapidly
for jxj≳ 1.
Combining these results, we find that

XF ¼ 576m2a4

π2
ð−4πÞ

X
~nk≠0

1

n4k

X
~s≠0

eiπ~s·~nk
e−2πjxjs

s
ðC7Þ

≡ 576m2a4

π2
CF; ðC8Þ

where numerical evaluation leads to CF ¼ −0.493036.
This accuracy is obtained by summing up to n2k ¼ 11

and s2 ¼ 12.
We next evaluate the contributions coming from the

sum over Ξ1, i.e. those from the last term in Eq. (133).
These are

X1A ¼ lim
L→∞

�
9
½32mπa�3
ð2mÞ3 m2

1

L3

X
~k≠0

Hð~kÞ2 − 1

k4

�
; ðC9Þ
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X1B ¼ 9
½32mπa�3
ð2mÞ3 m2

1

L3

X
~k≠0

a

ffiffiffi
3

p

2

Hð~kÞ3
k3

; ðC10Þ

where we are implicitly working at E ¼ 3m in the
cutoff functions H. In the second quantity we cannot
send L → ∞ but we implicitly discard all terms which
vanish as L → ∞. Recalling that the Taylor expansion of

H about ~k ¼ 0 is unity to all orders, we see that the
summand of X1A is nonsingular, so the sum can be
replaced by an integral in the L → ∞ limit. This leads to
the result

X1A ¼ 576πma364π2C3; ðC11Þ

C3 ≡
Z

d3k
ð2πÞ3

m½Hð~kÞ2 − 1�
k4

¼ −0.05806: ðC12Þ

For X1B, the summand has a pole so the sum cannot be
replaced by an integral. Furthermore, the sum has a
logarithmic divergence in the UV that is cut off by H and
leads to a logðmLÞ dependence. To determine its form we
rewrite the expression as

X1B ¼ 576m2a4

π2
4π2

ffiffiffi
3

p X
~nk

Hð2π~nk=LÞ3
n3k

: ðC13Þ

From the definition of H, Eq. (12), we know it vanishes
when ðE�

2;kÞ2 drops to zero. From the definition of
ðE�

2;kÞ2 in Eq. (7), we find (when E ¼ 3m) that it
vanishes when k=m ¼ 4=3. Thus, in terms of

~nk ¼ ðL=2πÞ~k, the sum is cut off at ð4=3ÞNcut where
Ncut ¼ mL=ð2πÞ. Approximating the UV part of the sum
with an integral gives the logarithmic dependence, and
by numerical evaluation we can determine the constant
underneath:

X
~nk

Hð2π~nk=LÞ3
n3k

¼ 4π logNcut þ 1.54861þOð1=LÞ:

ðC14Þ

Combining these results we find

X1B ¼ 576m2a4

π2
ð16π3

ffiffiffi
3

p
logNcut þ C4Þ þOð1=LÞ;

ðC15Þ
C4 ¼ 105.892: ðC16Þ

The final contribution is that from Ξ2, which is

X2 ¼
1

L6

X
~k1;~k2≠0

Ξ2ð~k1; ~k2Þ: ðC17Þ

This can be evaluated at E ¼ 3m (which only affects the
cutoff functionsH contained in Ξ2). Using the definition of
Ξ2, Eq. (122), we find

X2 ¼
576m2a4

π2
16
X

~n1;~n2≠0

Hð2π~n1=LÞ2Hð2π~n2=LÞ2
n21½n21 þ n22 þ ð~n1 þ ~n2Þ2�n22

:

ðC18Þ
Again the sum has a logarithmic UV divergence, and,
pulling this out, we find by numerical evaluation that

X2 ¼
576m2a4

π2

�
64π4

3
logNcut − C5

�
þOð1=LÞ; ðC19Þ

C5 ¼ 1947: ðC20Þ
We note that, while the coefficient C5 appears large, it is
approximately the same size as the coefficient of the
logarithm: 64π4=3 ≈ 2080.
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